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Research Article

Lithium reverses mechanical
allodynia through a mu
opioid-dependent mechanism

Ivan Weinsanto1,2, Jinane Mouheiche1,2, Alexis Laux-Biehlmann1,2,
Maya Aouad1,2, Tando Maduna1,2, Nathalie Petit-Demoulière1,2,
Virginie Chavant1,2,3, Pierrick Poisbeau1,2, Pascal Darbon1,2,
Alexandre Charlet1,2, Anne Giersch4, Marie-Odile Parat5 and
Yannick Goumon1,2,3

Abstract

Background: Lithium is widely used to treat bipolar disorders and displays mood stabilizing properties. In addition, lithium

relieves painful cluster headaches and has a strong analgesic effect in neuropathic pain rat models.

Objectives: To investigate the analgesic effect of lithium on the cuff model of neuropathic pain.

Methods: We used behavioral and pharmacological approaches to study the analgesic effect of a single injection of lithium in

wild-type and mu opioid receptor (MOR) null cuffed neuropathic mice. Mass spectrometry and enzyme-linked immunosor-

bent assay allowed to measure the levels of endogenous MOR agonist beta-endorphin as well as monoamines in brain and

plasma samples 4 h after lithium administration.

Results: A single injection of lithium chloride (100 mg/kg, ip) alleviated mechanical allodynia for 24 h, and this effect was

absent in MOR null neuropathic mice. Biochemical analyses highlight a significant increase in beta-endorphin levels by 30% in

the brain of lithium-treated mice compared to controls. No variation of beta-endorphin was detected in the blood.

Conclusions: Together, our results provide evidence that lithium induces a long-lasting analgesia in neuropathic mice

presumably through elevated brain levels of beta-endorphin and the activation of MORs.
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Background

Lithium is a metallic ion displaying chaotropic and

denaturating properties.1 This metal is described to

treat bipolar disorders,2 to be able to reduce painful

cluster headache3 and to decrease inflammation.4

Several research groups reported functional interactions

between lithium and the opioid system. In particular, lith-

ium affects morphine-induced analgesia,5,6 and reduces

morphine tolerance and dependence.7,8 Lithium attenu-

ates thermal hyperalgesia and mechanical allodynia in

different models of neuropathic pain in rats via a

naloxone-sensitive mechanism, suggesting that lithium

action is opioid receptor dependent.9,10 In addition, lith-

ium prevents paclitaxel-induced peripheral neuropathy,11
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increases survival by allowing the use of higher doses of
paclitaxel, and prevents paclitaxel-induced cardiac
abnormalities.

The present study reveals that a single injection
of lithium alleviates neuropathic pain symptoms in
a mouse model of sciatic nerve chronic constriction
and demonstrates for the first time mu opioid
receptor (MOR) involvement in lithium analgesia.
In this context, the potential variations of endogenous
opioid as well as monoamine levels have been studied
after lithium injection.

Methods

Animals

Experiments were performed with 45-day-old adult male
C57BL/6J mice (25 � 4 g; Charles River, L’Arbresle,
France). MOR null mice were a generous gift from
Professor B. Kieffer (IGBMC, Illkirch-Graffenstaden,
France). Animals were given free access to food and
water, with a 12 h light-dark cycle at a temperature of
22�C � 2�C. All procedures were performed in accor-
dance with European directives (2010/63/EU) and were
approved by the regional ethics committee and the
French Ministry of Agriculture (license No. 00456.02
to Y.G.). The right sciatic nerve was cuffed with a sec-
tion of polyethylene tubing (cuff group) as previously
described.12 Briefly, surgeries were done under aseptic
conditions and ketamine/xylazine was used for anesthe-
sia (ketamine: 17 mg/mL, i.p., xylazine: 2.5 mg/mL, i.p.,
4 mL/kg; Centravet, Taden, France). After performing a
1.5 cm skin incision of the right hind thigh, a 2 mm long
polyethylene tubing was placed on the common branch
of the right sciatic nerve (internal diameter = 0.38 mm,
external diameter = 1.09 mm; PE-20, Harvard
Apparatus, Les Ulis, France) and sutures were used to
close the skin.12 Sham-operated mice underwent the
same surgical procedure as cuffed animals without
implantation of the cuff.

Response to mechanical stimuli

The mechanical threshold for hind paw withdrawal was
determined using Von Frey hairs as previously
described.12 Intraperitoneal injections of a solution of
100 mg/kg of lithium chloride (corresponding to 16.4
mg/ml of lithium; Sigma-Aldrich, St. Louis, USA) dilut-
ed in NaCl 0.9% (w/v; saline), naloxone (Sigma-Aldrich)
diluted in saline or an equivalent volume of saline were
performed at 10 am. Injections of naloxone13 (0.1 mg/kg,
s.c.) were performed 4 h after the injections of lithium
(corresponding to the peak of analgesia observed
for neuropathic mice). Hind paw withdrawal was deter-
mined 15 min later.

Response to thermal stimuli

Mice were placed during 15 min in clear Plexiglas boxes
(7 cm � 9 cm� 7 cm) on a glass surface.14 The infrared
beam of the radiant heat source (7370 Plantar Test, Ugo
Basile, Comerio, Italy) was applied to the plantar surface
of each hind paw. The cut-off to prevent damage to the
skin was set at 15 s. The paw withdrawal latency
was tested 3 times 4 h after lithium injection and was
averaged for each hind paw.

Sample preparation

Plasma was prepared from blood recovered in tubes con-
taining 50 ml of 2% EDTA (w/v) and protease inhibitors
(cOmplete Mini EDTA-free, Roche, Basel, Switzerland).

Each brain was homogenized in 2 ml of 0.5 mM ascor-
bic acid containing protease inhibitors and sonicated for
10 s at 90 W and centrifuged (20,000 g, 15 min, 4�C).
Supernatant was recovered and protein content was
determined using the Protein Assay kit (Bio-Rad,
Marnes-la-Coquette, France).

Monoamines and catecholamines derivatization

The presence of L-DOPA, dopamine, adrenaline, nor-
adrenaline, serotonin, and adenosine was studied.
Twenty microliters of tissue extracts or plasma were
derived with the AccQ-Tag Ultra Derivatization kit
(Waters, Guyancourt, France). Twenty microliters
of the sample were added to 30 ml of borate buffer
(provided within the kit) and 10 ml of internal standards
([2H3]-L-DOPA, [2H4]-dopamine, [2H6]-adrenaline,
[13C6]-noradrenaline, [2H4]-serotonin, [13C5]-adenosine;
Sigma Aldrich and Alsachim, Illkirch, France).
Derivatization was performed by addition of 10 ml of
AccQtag Ultra reagent (10 min, 55�C under agitation).
Ten microliters of this solution were analyzed using a
LC-MS/MS approach.

Beta-endorphin enzyme-linked immunosorbent assay

Beta-endorphin concentrations in the brain and
plasma were quantified using a direct enzyme-linked
immunosorbent assay (ELISA) (M0184 ELISA,
Clinisciences-Elabscience, Nanterre, France) according
to the manufacturer’s instruction. Samples (50 ml) were
analyzed in duplicate. All samples with a duplicate CV >
5% were retested to obtain a CV below or equal to 5%.
Detection range was 15.63-1000 pg/ml and sensitivity
was 9.38 pg/ml of beta-endorphin.

LC-MS/MS instrumentation and analytical conditions

Analyses were performed with a Dionex Ultimate, 3000
HPLC system (Thermo Scientific, San Jose, USA) cou-
pled with a triple quadrupole Endura. The system was
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controlled by Xcalibur v2.0 software. Samples were

loaded onto an Accucore RP-MS column (100 � 2.1

mm, 2 lm, Thermo Electron) heated at 50�C. Buffer A
was H2O 99.9%/formic acid 0.1% (v/v), whereas buffer

B was ACN 99.9%/formic acid 0.1% (v/v). Gradient

used is detailed in Table 1.
Electrospray ionization was achieved in the positive

mode with the spray voltage set at 3750 V. Nitrogen was

used as the nebulizer gas and the ionization source was

heated to 250�C. Desolvation (nitrogen) sheath gas was

set to 45 Arb and Aux gas was set to 15 Arb. Ion transfer

tube was heated at 350�C. Q1 and Q2 resolutions were

set at 0.7 full width at half maximum (FWHM), whereas

collision gas (CID, argon) was set to 2 mTorr.

Identification of the compounds was based on precursor

ion, selective fragment ions, and retention times.

Selection of the monitored transitions and optimization

of collision energy and radio frequency (RF) lens param-

eters were manually determined (see Table 1 for details).

Qualification and quantification were performed in mul-

tiple reaction monitoring (MRM) mode using Quan

Browser software (Thermo Scientific). Limits of detec-

tion and of quantification for each compound are

indicated in Table 2. All amounts of opiates present in

samples fit within the standard curve limits. Precision

values were <1% for same-day measurements and

<5% for inter-day measurements.

Statistics

Statistical analysis was performed using GraphPad

Prism 6 Software. Results were presented as mean

values � standard error of the mean. Groups were com-

pared using analysis of variance tests with Bonferroni

correction.

Results

Effect of lithium on the mechanical nociceptive

threshold in the cuff neuropathic pain model

Cuff and Sham mice were tested for mechanical pain

threshold using the Von Frey filaments test. The cuff

group showed a significant mechanical allodynia com-

pared to the sham group (Figure 1(a)). Lithium injection

performed six days after surgery did not affect the

Table 1. LC and MS conditions for the purification and the detection of catecholamines and monoamines and their respective heavy
tagged counterparts.

HPLC gradient

Time (min) 0 2.5 4.5 6.5 7.5 8 10

% B buffer 1 1 30 99 99 1 1

MS ionization, selection, fragmentation, and identification parameters

Compound Polarity

Precursor

(m/z)

Product

(m/z) Ion product type

Collision

energy (V)

Adenosine Positive 268.25 136.07 Qualification and Quantification 26

C5-Adenosine Positive 273.25 136.18 Qualification and Quantification 23

AccQ-Tag-D4-dopamine Positive 328.25 171.16 Qualification and Quantification 35

AccQ-Tag-Dopamine Positive 324.25 171.16 Qualification and Quantification 38

AccQ-Tag-C6-noradrenaline Positive 346.25 171.16 Qualification and Quantification 35

AccQ-Tag-noradrenaline Positive 340.25 171.16 Qualification and Quantification 35

AccQ-Tag-D6-adrenaline Positive 360.25 171.16 Qualification and Quantification 36

AccQ-Tag-adrenaline Positive 354.25 171.16 Qualification and Quantification 34

AccQ-Tag-D4-serotonin Positive 351.25 171.16 Qualification and Quantification 40

AccQ-Tag-serotonin Positive 347.25 171.16 Qualification and Quantification 38

Note: Buffer A corresponded to ACN 1%/H2O 98.9%/formic acid 0.1% (v/v/v), whereas buffer B was ACN 99.9%/formic acid 0.1% (v/v).

Table 2. Limits of detection (LOD) and limits of quantification (LOQ).

Adenosine Adrenaline Dopamine L-DOPA Noradrenaline Serotonin

LOD (fmol� SEM) 9.77� 1.20 0.71� 0.29 4.64� 1.54 43.31� 1.04 3.39� 0.74 24.04� 0.22

LOQ (fmol� SEM) 32.53� 3.99 2.36� 0.97 15.46� 5.14 144.24� 3.45 11.29� 2.45 80.05� 0.73

Note: LOD was defined as the lowest detectable amount of analyte with a signal-to-noise (S/N) ratio >3. LOQ was defined as the

lowest detectable amount of analyte with a signal-to-noise (S/N) ratio >10. Data are presented as the mean� SEM of five

measurements.
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mechanical pain threshold of the sham group.

Conversely, in the neuropathic cuff group, lithium nor-

malized the ipsilateral mechanical pain threshold

to sham group values. This analgesic effect of a single

injection lasted for about 24 h (Figure 1(a)). The contra-

lateral paw mechanical pain threshold was unaffected

(Figure 1(b)), and no statistical difference before and

after lithium injection was observed. Additional experi-

ments were designed to determine the effect of lithium 4

h after administration on thermal hyperalgesia (6 days

after the surgery). The Hargreaves test (Figure 1(c))

showed a significant relief of thermal hyperalgesia for

the ipsilateral paw compared to the pretest condition

(before lithium administration; n = 6; Mann–Whitney

U test; p < 0.01). Heat-nociceptive threshold of the con-

tralateral paw was not affected by lithium.

Effect of naloxone on lithium-induced analgesia

In order to determine if this analgesic effect involves the

endogenous opioid system, naloxone (0.1 mg/kg, s.c.),

a non-specific opioid receptor antagonist, was adminis-

tered 4 h after lithium injections (corresponding to the-

peak of analgesia observed for neuropathic mice;

Figure 1(a)). Naloxone alone did not modify the

mechanical threshold but significantly decreased the

analgesic effect of lithium (Figure 2(a)). The contralat-

eral paw mechanical pain threshold was not affected.

Effect of lithium on neuropathic MOR-null mice

To assess whether MORs were necessary for lithium

analgesia, sham and cuff MOR null mice were treated

with a single injection of lithium. Lithium-induced anal-

gesia was never observed in MOR-null mice (Figure 2

(b)) as illustrated by the stability of the mean mechanical

threshold observed in lithium and vehicle-treated cuffed

mice. No effect was observed on the contralateral paw

mechanical pain threshold.

Effect of lithium on the level of endogenous mediators

While MORs have been long known to promote analge-

sia, opioid ligands such as beta-endorphin as well as

non-opioid neurotransmitters may be produced locally

or after recruitment of classical pain controls acting in

central nervous system (CNS) circuits or at the periph-

ery. Plasma and brains of saline and lithium-treated neu-

ropathic animals were analyzed using biochemical

approaches aimed at measuring levels of noradrenaline,

adenosine, serotonin, and beta-endorphin.
In the plasma, no differences between saline- and

lithium-treated cuff groups were found (Figure 3).

Adrenaline, dopamine, and L-DOPA were below detec-

tion levels. Values obtained for beta-endorphin, seroto-

nin, noradrenaline, and adenosine were in agreement

with values published in the literature.15–18

In the brain, adrenaline, noradrenaline, dopamine,

L-DOPA, adenosine, and serotonin levels were not

Figure 1. Antinociceptive effect of lithium chloride (100 mg/kg, i.p., day 6) on sham and cuffed mice. Effect of lithium administration on
(a) ipsilateral paw mechanical allodynia and (b) contralateral paw (n¼ 6; two-way ANOVA test with a Bonferroni correction; **p< 0.01).
(c) Effect of lithium 4 h after administration on thermal hyperalgesia (6 days after the surgery; Hargreaves test; n¼ 6; Mann–Whitney U
test; **p< 0.01). Values are means� SEM.
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affected by a lithium treatment (Figure 4) and were in

agreement with levels described for healthy animals.19–21

In sharp contrast, beta-endorphin levels were significant-

ly increased by 30% (p = 0.0047; 54.9 � 4.1 pg/mg of

brain protein) in lithium-treated cuff mice compared to

the saline group (42.1 � 2.1 pg/mg). Similarly, the values

of beta-endorphin brain levels (low pg/mg physiological

range) are consistent with previous studies.22

Discussion

In addition to the physiological processing of acute pain

by the nociceptive system, inflammatory and neuropath-

ic insults may sometimes result in chronic pain that per-

sists long after recovery from the initial lesions.23 In such

pathological states, pain no longer plays its physiological

warning role. Most therapeutic approaches aimed at

alleviating chronic pain symptoms have beneficial effects

but suffer from adverse side effects.24,25 This is the case

for morphine and related opiates that are widely pre-
scribed to chronic pain patients and may lead to the
development of tolerance, opioid-induced hyperalgesia,

and addiction.26,27 Therefore, alternative therapeutic
strategies are needed.

Figure 3. Effect of lithium chloride on noradrenaline, adenosine,
serotonin, and beta-endorphin plasma levels of neuropathic mice.
Li: lithium chloride (n¼ 7 or 8), Mann–Whitney U test.

Figure 4. Effect of lithium chloride on adrenaline, noradrenaline,
dopamine, L-DOPA, adenosine, serotonin, and beta-endorphin
brain levels of cuffed mice. Li: Lithium chloride; n¼ 8, 7, or 6
(please see graphs). Mann–Whitney U test. *p< 0.05; **p< 0.01.
Values are means� SEM.

Figure 2. Mu opioid receptor-dependent analgesic effect of lithium chloride on neuropathic mice. (a) Effect of naloxone (0.1 mg/kg, s.c.)
on lithium-induced analgesia (100 mg/kg, i.p.; n¼ 6 per group; two-way ANOVA test with a Bonferroni correction; $p< 0.01). (b) Effect of
lithium chloride on MOR null neuropathic mice (n¼ 6 per group, ANOVA test; n¼ 6. ns: non-significant). Values are means� SEM.
Pretesting group corresponds to mechanical threshold before lithium and/or naloxone injections. The 4-h group corresponds to
mechanical threshold observed 4 h after lithium and/or naloxone injections. MOR: mu opioid receptor.
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Studies examining the role of lithium on pain
responses are unfortunately contradictory so far. On
one side, lithium seems to induce hyperalgesia and
decrease morphine-induced analgesia.5,28,29 In addition,
lithium overdose can, in a few cases, cause peripheral
neuropathy or myopathy in patients.30 In mice and
rats, it has been hypothesized that lithium induces a
biphasic effect on morphine-induced analgesia that is
dependent on lithium concentration and on the pain
test used.6,31,32 On the other hand, several groups did
not observe any direct effect of lithium on pain percep-
tion using a mouse model.33

Interestingly, lithium was shown to relieve cluster
headache, which causes pain episodes of extreme inten-
sity. Lithium also reduced the associated autonomic
symptoms in humans.34 Moreover, acute and chronic
administration of lithium induce a direct analgesia in
neuropathic pain states,9,10,35 and potentiate morphine
analgesia in mouse and rat models.33,36 Lithium treat-
ments also reversed thermal hyperalgesia as well as the
mechanical and cold allodynia induced by a partial sci-
atic nerve ligation in rats in a naloxone-sensitive
manner.9,10 Furthermore, lithium has been shown to
prevent paclitaxel-induced peripheral neuropathy in
mice.11 In humans, a clinical trial performed with lithi-
um medication had a favorable effect on sciatic nerve
injury neuropathic pain.37 Moreover, lithium was
able to relieve tricyclic antidepressants-refractory fibro-
myalgia.38 Our present data confirm the long-lasting
analgesic effect of acute lithium administration on a
well-characterized mouse neuropathic model.12 In addi-
tion, we show that MORs are necessary for lithium-
induced analgesia, as no analgesic effect was observed
in MOR-null mice.

Lithium acts on numerous targets that have been
recently reviewed.39,40 Different mechanisms of action
have been proposed and include a possible substitution
of Naþ by Liþ impacting homeostasis of electrolyte
balance and therefore neuronal firing, or a modulation
of the membrane transport of different ions and neuro-
transmitter precursors.41 In rats, lithium-aversive
effects (place-preference conditioning procedure)
were abolished by naloxone, suggesting a beta-
endorphin-dependent mechanism.42 In addition to
being a modulator of NO production in the brain, lith-
ium inhibits Gi and Gs proteins leading to an inhibition
of adenylate and guanylate cyclases and of different
protein kinases.43 Moreover, lithium affects GSK-3b
(glycogen synthase kinase 3)44 acting on both Akt
(protein kinase B) and Wingless-related integration
site (Wnt) signaling.45 This compound is also able to
inhibit inositol monophosphatase and inositol polyphos-
phate-1-phosphatase,46,47 influencing inositol-dependent
regulatory processes. It also reduces cyclic
AMP-responsive element-binding protein (CREB)

phosphorylation and decreases CREB-dependent gene
expression.48 Lithium’s anti-inflammatory properties
lead to a downregulation of both proinflammatory
cytokines and TNF-alpha interleukin and intracellular
mechanisms including GSK-3b.4 Finally, lithium has
also been shown to regulate the biosynthesis of different
neurotransmitters and/or associated receptors (e.g.,
modulation of serotonin and glutamate synthesis and
secretion).42,49– 52

Our results indicate that acute lithium treatment has a
strong anti-allodynic effect as well as a stimulatory effect
(þ30%) on the production of brain beta-endorphin, a
MOR agonist displaying strong analgesic properties.
In good agreement with our data, it has been described
that stress-induced analgesia is absent in mice lacking
beta-endorphin53 and that ultraviolet light induces
both analgesia and addiction through a 35% increase
of plasma beta-endorphin levels.15 More recently, photo-
biomodulation therapy performed on the chronic con-
striction injury mouse model correlated the level of pain
relief to an increase of beta-endorphin levels.54 However,
this effect is still unclear since previous studies reported
that in vivo chronic treatment with lithium did not
modify beta-endorphin levels in different rat brain struc-
tures,55 whereas in vitro and ex vivo experiments dem-
onstrated that an acute stimulation with lithium
increases the release of hypothalamic beta-endorphin.56

As a 35% blood beta-endorphin increase induces a
strong elevation of mechanical and thermal thresholds,15

the 30% increase in beta-endorphin brain content we
observed after lithium injection should likely be suffi-
cient to induce robust analgesia.

Plasma levels of beta-endorphin are tightly linked to
secretions from the pituitary and adrenal gland, whereas
brain and cerebrospinal fluid levels are mainly depen-
dent on the arcuate nucleus of the hypothalamus and
of the brainstem nucleus tractus solitaris. In addition,
beta-endorphin displays a short half-life in rodents’
blood (2 to 10 min)57,58 while in the CNS, degradation
of beta-endorphin is described to be extremely long.59,58

Therefore, the beta-endorphin elevation observed in
the brain 4 h after a lithium injection is likely due to an
upregulation of beta-endorphin production from the
arcuate nucleus and the nucleus tractus solitaris associ-
ated with a longer brain half-life. While the cuff is a
model of peripheral neuropathy, CNS beta-endorphin
secretion can normalize the ipsilateral paw threshold
by acting on supraspinal (e.g., periaqueductal gray, ros-
tral ventromedial medulla) or spinal nociceptors.

Together with other studies showing the analgesic
effect of acute lithium treatment on chronic pain, our
results suggest that lithium analgesia involves the upre-
gulation of beta-endorphin synthesis in the CNS. This
would explain, at least in part, the MOR-dependent
nature of the analgesic properties of lithium.
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