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Comments on the book “Architects of
Intelligence” by Martin Ford in the light of the

SP Theory of Intelligence

J Gerard Wolff∗
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Abstract

The book Architects of Intelligence by Martin Ford presents con-
versations about AI between the author and people who are influen-
tial in the field. This paper discusses issues described in the book
in relation to features of the SP System, meaning the SP Theory of
Intelligence and its realisation in the SP Computer Model, both out-
lined in an appendix. The SP System has the potential to solve most
of the problems in AI described in [5], and some others. Strengths
and potential of the SP System, which in many cases contrast with
weaknesses of deep neural networks (DNNs), include the following:
the system exhibits a more favourable combination of simplicity and
expressive or descriptive power than, arguably, any alternatives; the
system has strengths and long-term potential in pattern recognition;
the system appears to be free of the tendency of DNNs to make large
and unexpected errors in recognition; the system has strengths and
potential in unsupervised learning, including grammatical inference;
the SP Theory of Intelligence provides a theoretically coherent basis
for generalisation and the avoidance of under- or over-generalisations;
that theory of generalisation may help driverless cars avoid accidents;
the system, unlike DNNs, can achieve learning from a single occur-
rence or experience; the system, unlike DNNs, has relatively tiny de-
mands for computational resources and volumes of data, with poten-
tially much higher speeds in learning; the system, unlike most DNNs,
has strengths in transfer learning; the system, unlike DNNs, provides
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transparency in the representation of knowledge and an audit trail
for all its processing; the system has strengths and potential in the
processing of natural language; as a by-product of its design, the sys-
tem exhibits several different kinds of probabilistic reasoning; the sys-
tem has strengths and potential in commonsense reasoning and the
representation of commonsense knowledge; other strengths of the SP
System are in information compression, biological validity, scope for
adaptation, and freedom from catastrophic forgetting. Despite the
importance of motivations and emotions, no attempt has been made
in the SP research to investigate these areas.

Keywords: artificial intelligence, SP Theory of Intelligence, deep neural
networks, unsupervised learning, generalisation, transfer learning, probabilis-
tic and commonsense reasoning, information compression.

1 Introduction

The book Architects of Intelligence by Martin Ford [5], presents conversa-
tions about AI between the author and people who are influential in the
field, and yields some fascinating insights into current thinking of leading AI
researchers.

This paper discusses issues described in the book in relation to features
of the SP System, meaning the SP Theory of Intelligence and its realisation
in the SP Computer Model, both described in outline in A.

The SP System has the potential to solve most of the problems in AI
described in [5], and some others.

The next subsection outlines some key features of the SP System, and,
because ‘deep neural networks’ (DNNs) are discussed in many parts of [5],
the next-but-one subsection makes some introductory remarks about them.
The main sections that follow describe problems in AI with quotes from [5],
and describe how the SP System may help solve those problems.

1.1 Key features of the SP System

This section summarises some key features of the SP System. There is more
detail in A.

1.1.1 Conceptual Simplicity and descriptive or explanatory Power

As described in A.1, the SP programme of research is a unique attempt to
simplify and integrate observations and concepts across artificial intelligence,
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mainstream computing, mathematics, and human learning, perception, and
cognition (HLPC). In accordance with Ockham’s razor, this means trying to
develop a system which combines conceptual Simplicity with descriptive or
explanatory Power. Hence the name “SP”.

Despite its ambition, this strategy has been largely successful, leading to
the creation of a system that combines relative simplicity with strengths and
potential in diverse aspects of intelligence (A.9.1), including several kinds of
reasoning ( A.9.2), and in the representation of diverse kinds of knowledge
( A.9.3). It also facilitates the seamless integration of diverse aspects of
intelligence and diverse kinds of knowledge, in any combination (SIIKAC,
A.9.4).

1.1.2 A central role for information compression

The SP System incorporates a key principle from human cognitive psychology
and neuroscience: that much of HLPC may be understood as information
compression (IC). Much evidence for that principle is described in [42].

As noted in A.2, the principle accords with concepts of Minimum Length
Encoding (MLE) (see, for example, [13]), although there are important dif-
ferences between the SP Theory and MLE concepts.

It has been recognised for some time that information compression is
closely related to concepts of inference and probability ( B). This makes it
relatively straightforward to calculate absolute and relative probabilities of
inferences that are made by the SP Computer Model.

In the SP Computer Model, IC is achieved via the building of SP-multiple-
alignment (A.4 and Section 1.1.3) and via unsupervised learning (A.5 and
Section 5).

IC may be seen to be a process of maximising Simplicity in a body of
information I, by reducing redundancy in I, whilst at the same time retaining
as much as possible of its non-redundant expressive Power. This is a second
reason for the name “SP”.

1.1.3 SP-multiple-alignment

The third main feature of the SP System to be mentioned here is the simple
but powerful concept of SP-multiple-alignment, outlined in A.4.

The concept of SP-multiple-alignment is largely responsible for the SP
System’s versatility in aspects of intelligence including several kinds of rea-
soning, its versatility in the representation of diverse kinds of knowledge, and
for its potential for SIIKAC.
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SP-multiple-alignment may prove to be as significant for an understand-
ing of ‘intelligence’ as is DNA for biological sciences: it may come to be seen
as the ‘double helix’ of intelligence.

1.1.4 SP-Neural

Abstract concepts in the SP Theory of Intelligence map quite well into struc-
tures and processes represented in terms of neurons and their interconnec-
tions (A.7 and [35]). It is anticipated that, as with the non-neural SP The-
ory, SP-Neural will be developed via the creation and testing of computer
models—to reduce vagueness in the SP-Neural concepts, to weed out ideas
that do not work, and to demonstrate what can be done with the SP-Neural
version of the SP Theory.

1.2 Deep learning and its strengths and weaknesses

“The vast majority of the dramatic advances we’ve seen over the
past decade or so—everything from image and facial recognition,
to language translation, to AlphaGo’s conquest of the ancient
game of Go—are powered by a technology known as deep learn-
ing, or deep neural networks.” Martin Ford [5, p. 3].

“The remaining conversations in this book are generally with
people who might be characterized as deep learning agnostics,
or perhaps even critics. All would acknowledge the remarkable
achievements of deep neural networks over the past decade, but
they would likely argue that deep learning is just ‘one tool in
the toolbox’ and that continued progress will require integrating
ideas from other spheres of artificial intelligence.” Martin Ford
[5, pp. 4–5].

The first of these two quotes acknowledges the undoubted successes of
DNNs while the other suggests that there are “deep learning agnostics, or
perhaps even critics.” That seems to be a reasonably accurate reflection of
the range of views about deep learning amongst AI researchers today.

But, bearing in mind that there is quite a variety of DNNs and that there
is research going on which is aiming to improve DNNs, there are several
shortcomings in at least some of the kinds of DNN, some of which are de-
scribed in [36, Section V], with discussion—different from what is presented
here—of how those shortcomings may be overcome.

Because of the dominance of DNNs in AI research today, DNNs are the
implied or explicit comparison in describing the strengths and potential of the

4



SP System. As will be seen, the SP System has many advantages compared
with DNNs.

2 A top-down strategy

“... one of [the] stepping stones [towards AGI] would be an AI
program that can really handle multiple, very different tasks. An
AI program that’s able to both do language and vision, it’s able
to play board games and cross the street, it’s able to walk and
chew gum. Yes, that is a joke, but I think it is important for
AI to have the ability to do much more complex things.” Oren
Etzioni [5, p. 502].

An implication of this quote is that researchers should be placing more
emphasis on the search for mechanisms and processes that can combine con-
ceptual Simplicity with descriptive or explanatory Power, as in Section 1.1.1
and A.1. This in turn suggests that there may be merits in adopting a top-
down strategy, working from overarching principles to lower-level concepts,
and putting less effort into the popular bottom-up strategies, trying to work
from low-level concepts to over-arching principles.

There has been and still is research with top-down strategies: the quest
for ‘unified theories of cognition’ (see, for example, [16] and later research
such as [10]); and research aiming for ‘artificial general intelligence’ (AGI, see,
for example, [9]). But it appears that, out of the several systems that have
been developed, the SP System provides the most favourable combination of
Simplicity and Power.

3 Recognition of images and speech

“The vast majority of the dramatic advances we’ve seen over the
past decade or so—everything from image and facial recognition,
to language translation, to AlphaGo’s conquest of the ancient
game of Go—are powered by a technology known as deep learn-
ing, or deep neural networks.” Martin Ford [5, p. 3].

With some qualification (Section 4), DNNs do well in tasks such as the
recognition of images and speech. But there is potential for the SP System
in both areas with the completion of some ‘unfinished business’ (A.11). How
the SP System may be developed for computer vision and scene analysis is
described in [30].
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For the achievement of human-like abilities in perception, an attractive
feature of the SP System is that it has robust abilities to achieve what are in-
tuitively correct analyses of incoming information despite errors of omission,
commission and substitution (Section 6.2, [29, Section 4.2.2], [28, Section
2.2.2]).

Another attractive feature of the SP System which chimes with human
psychology is that, in recognising a particular person (say “John”), we are in-
stantly aware without conscious effort that John, as a person, is likely to have
the characteristics of people, and if we were trained in zoology, our knowledge
would probably extend to the characteristics of mammals, vertebrates, and
so on.

The way in which the SP System may achieve recognition at several
different levels of abstraction is describe, with examples, in [29, Section 9.1].

4 Deep neural networks are easily fooled

“In [a recent] paper [1], [the authors] show how you can fool a
deep learning system by adding a sticker to an image. They take
a photo of a banana that is recognized with great confidence by
a deep learning system and then add a sticker that looks like a
psychedelic toaster next to the banana in the photo. Any human
looking at it would say it was a banana with a funny looking
sticker next to it, but the deep learning system immediately says,
with great confidence, that it’s now a picture of a toaster.” Gary
Marcus [5, p. 318].

There are several reports describing how DNNs can make surprisingly big
and unexpected errors in recognition. For example, a DNN may correctly
recognise a picture of a car but may fail to recognise another slightly different
picture of a car which, to a person, looks almost identical [24]. It has been
reported that a DNN may assign an image with near certainty to a class of
objects such as ‘guitar’ or ‘penguin’, when people judge the given image to be
something like white noise on a TV screen or an abstract pattern containing
nothing that resembles a guitar or a penguin or any other object [17].

Recently:

“it is relatively easy to force [DNNs] to make mistakes that seem
ridiculous, but with potentially catastrophic results. Recent tests
have shown autonomous vehicles could be made to ignore stop
signs, and smart speakers could turn seemingly benign phrases
into malware. ... tiny changes to many of the pixels in an image
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could cause DNNs to change their decisions radically; a bright
yellow school bus became, to the automated classifier, an ostrich.
But the changes made were imperceptible to humans.” [4, p. 13].

Naturally, there is research going on to try to solve these problems. But
difficulties are that DNNs represent and process knowledge in a way that is
not transparent (Section 11).

Experience with the SP System to date, and its transparency in both
the representation and processing of knowledge (Section 11), suggests that
it would not be vulnerable to the kinds of mistakes made by DNNs.

5 The importance of unsupervised learning

“Unsupervised learning represents one of the most promising av-
enues for progress in AI. ... However, it is also one of the most
difficult challenges facing the field. A breakthrough that allowed
machines to efficiently learn in a truly unsupervised way would
likely be considered one of the biggest events in AI so far, and an
important waypoint on the road to human-level AI.” Martin Ford
[5, pp. 11–12], emphasis of the last sentence added.

“Until we figure out how to do this unsupervised/self-
supervised/predictive learning, we’re not going to make signifi-
cant progress because I think that’s the key to learning enough
background knowledge about the world so that common sense
will emerge.” Yann Lecun [5, p. 130].

“Unsupervised learning is hugely important, and we’re working
on that.” Demis Hassabis [5, p. 170].

Judging by these remarks, the development of unsupervised learning is
important in AI today. So it should be of interest to researchers in AI that
learning by the SP Computer Model (A.5) is entirely unsupervised. Although
there are (at least) two shortcomings in how the model learns [29, Section
3.3], it appears that these problems are soluble and that “solving them will
greatly enhance the capabilities of the system for the unsupervised learning
of structure in data.” (ibid.).

Unlike DNNs, the SP System has strengths and potential in unsupervised
grammatical inference. The SP computer model ([27, Chapter 9], [29, Section
5]) has already demonstrated an ability to discover generative grammars from
unsegmented samples of English-like artificial languages, including segmental
structures, classes of structure, and abstract patterns.

7



In the SP programme of research, unsupervised grammatical inference is
seen as a foundation for all kinds of unsupervised learning, not merely the
learning of syntax. It may, for example, provide for the learning of non-
syntactic semantic structures and for learning the integration of syntax with
semantics.

And in the SP programme of research, it is recognised that unsupervised
learning is likely to be a good foundation for other kinds of learning, such as
learning by being told, learning by imitation, learning via rewards and pun-
ishments (reinforcement learning), learning via labelled examples (supervised
learning), learning via reading, and more [31, Section V-A.1].

6 Generalisation, under-generalisation, and over-

generalisation

“Many of us think that we are ... missing the basic ingredients
needed [for generalization], such as the ability to understand
causal relationships in data—an ability that actually enables us
to generalize and to come up with the right answers in settings
that are very different from those we’ve been trained in.” Yoshua
Bengio [5, p. 18].

“... we might have a photograph, where we’ve got all the pixels
in the image, and then we have a label saying that this is a
photograph of a boat, or of a Dalmatian dog, or of a bowl of
cherries. In supervised learning for this task, the goal is to find a
predictor, or a hypothesis, for how to classify images in general.”
Stuart J. Russell [5, p. 41].

“The theory [worked on by Roger Shepard and Joshua Tenen-
baum] was of how humans, and many other organisms, solve the
basic problem of generalization, which turned out to be an in-
credibly deep problem. ... The basic problem is, how do we go
beyond specific experiences to general truths? Or from the past
to the future?” Joshua Tenenbaum [5, p. 468].

An important issue in learning is how to generalise ‘correctly’ from the
specific information which provides the basis for learning, without over-
generalisation (‘under-fitting’) or under-generalisation (‘over-fitting’). This
issue is discussed quite fully in [29, Section 5.3] (see also [27, Section 9.5.3]
and [36, Section V-H]) but because it is an important issue, the main ele-
ments of the solution proposed in the SP Theory of Intelligence are described
here.
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Generalisation may be seen to occur in two aspects of AI: as part of the
process of unsupervised learning; and as part of the process of recognition.
Those two aspects are considered in the following two subsections.

6.1 Generalisation via unsupervised learning

The generalisation issue arises most clearly in considering how children learn
their native language or languages, as illustrated in Figure 1.

All possible
utterances

All utterances
in language L

A sample of
utterances

‘dirty
data’

Figure 1: Categories of utterances involved in the learning of a first language,
L. In ascending order of size, they are: the finite sample of utterances from
which a child learns; the (infinite) set of utterances in L; and the larger
(infinite) set of all possible utterances. Adapted from Figure 7.1 in [25], with
permission.

Each child learns a language L from a sample of things that they hear
being said by people around them, a sample which is normally large but,
nevertheless, finite. This is shown as the smallest envelope in the figure.
The variety of ‘legal’ utterances in the language L is represented by the
next largest envelope. The largest envelope represents the variety possible
utterances, both those in L and everything else including grunts, gurgles,
and so on. The two larger envelopes represents sets that are infinite in size
but, in accordance with principles pioneered by Georg Cantor, the set of all
possible utterances is larger than the set of utterances in L.

The difference in size between the smallest envelope and the middle-
sized envelope represents correct generalisations. If a learning system cre-

9



ates a grammar that generates L and some other utterances, then it over-
generalises, and if the grammar generates a subset of the utterances in L,
then it under-generalises.

An interesting feature of the learning of a first language by children is
that their finite sample of what people are saying includes some things that
are not in L (because of slips of the tongue and the like) as well as many
things that are in L. In the figure, the ‘illegal’ utterances that children hear
are marked as ‘dirty data’.

A challenge in understanding how young children learn their first language
is to explain:

• How they generalise correctly without over- or under-generalisation.
In this connection, it is interesting that young children often over-
generalise (saying things like ‘mouses’ instead of ‘mice’—applying a
pluralisation rule too widely—or saying things like ‘hitted’ instead of
‘hit’—applying a past tense rule too widely) but they normally weed
out such over-generalisations when they are older.

• And also how they learn L without their learning being distorted or
corrupted by dirty data.

Judging by the quotations above and elsewhere in [5], and judging by
other writings about language learning and other kinds of learning, there is
no coherent theory of generalisation, and over- or under-generalisation, that
is widely recognised by researchers in AI or psychology. For reasons that
would take us too far afield to explain, ‘nativist’ theories of first language
learning, such as that proposed by Noam Chomsky [2] and others, will not
suffice.

What follows is a summary of what is proposed in the SP Theory of
Intelligence, which appears to be robust and well-founded:

1. Unsupervised learning in the SP Theory of Intelligence may be seen as
a process of compressing a body of information, I, to achieve lossless
compression of I in a structure T, where the size of T (represented
by T ) is as small as can be achieved with the available computational
resources.

2. T may be divided into two parts: a grammar, G of size G; and an
encoding of I in terms of G, where the encoding is E and its size is E.
Clearly, T = G + T .

3. Discard E and retain G.
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4. Provided the compression of I has been done quite thoroughly, G may
be seen to be a theory of I which generalises ‘correctly’ beyond I without
either over- or under-generalisations.

Why should we have more confidence in G as a source of ‘correct’ gen-
eralisations than anything else? Probably the best answer at present is that
G may be seen as a distillation of redundancies in I, whereas E is largely
the non-redundant aspects of I. Since redundancy equates largely with rep-
etition, and since repetition provides the basis for inductive inference, G
may be seen to be the most promising source of generalisations. Each typo,
cough, or similar kind of dirty data is normally rare in a given context and
will normally be recorded in E, not G—and so it will be discarded.

Informal tests with a program for unsupervised learning, ‘SNPR’ [25],
and with the SP Computer Model [27, Chapter 9], suggest that both models
may learn what are intuitively ‘correct’ structures, in spite of being supplied
with data that is incomplete in the sense that generalisations are needed to
produce a ‘correct’ result, and in spite of being supplied, on other occasions,
with data which contains errors that may be seen as ‘dirty data’.

In an application like switching a thermostat on and off, or controlling
an automatic washing machine, everything can be fully defined and there
is no need for generalisations. But with complex activities like driving a
car, playing football, or even playing chess, there are far too many possible
situations for everything to be fully defined, which means that generalisations
are needed.

Evidence to date suggests that the theory of generalisation outlined in this
section, which is part of the SP Theory of Intelligence, is likely to provide
generalisations that are as close to being optimum as may be achieved with
the available computational resources.

6.2 Generalisation via perception

The SP Computer Model has a robust ability to recognise things or to parse
natural language despite errors of omission, commission, or substitution in
what is being recognised or parsed. Incidentally, it is assumed here that
recognition in any sensory modality may be understood largely as parsing,
as described in [30].

Figure 2 shows how the SP Computer Model may achieve a ‘correct’ anal-
ysis of the sentence ‘f o r t u n e f a v o u r s t h e b r a v e’ in
much the same way as in Figure 5 despite errors of omission, commission,
and substitution.
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0 f o t u n e f a v x t o u r s t h e b r y n v e 0

| | | | | | | | | | | | | | | | | | | |

1 | | | | | | Vr 6 f a v o u r #Vr | | | | | | | | 1

| | | | | | | | | | | | | | | |

2 | | | | | | V 7 Vr #Vr s #V | | | | | | | 2

| | | | | | | | | | | | | | |

3 | | | | | | VP 3 V #V NP | | | | | | | #NP #VP 3

| | | | | | | | | | | | | | | | |

4 N 4 f o r t u n e #N | | | | | | | | | | | 4

| | | | | | | | | | | | |

5 NP 2 N #N #NP | | | | | | | | | | | 5

| | | | | | | | | | | | |

6 S 0 NP #NP VP | | | | | | | | | #VP #S 6

| | | | | | | | |

7 | D 8 t h e #D | | | | | 7

| | | | | | | |

8 NP 1 D #D N | | | | #N #NP 8

| | | | | |

9 N 5 b r a v e #N 9

Figure 2: The best SP-multiple-alignment created by the SP Computer
Model in the same way as in Figure 5 but with errors in the New SP-
pattern representing the sentence to be parsed (row 0). Instead of the
New SP-pattern ‘f o r t u n e f a v o u r s t h e b r a v e’, there
is the New SP-pattern ‘f o t u n e f a v x t o u r s t h e b r y n

v e’ containing an error of omission (‘f o t u n e’ instead of ‘f o r t u

n e’), an addition (‘f a v x t o u r s’ instead of ‘f a v o u r s’), and
a substitution (‘b r y n v e’ instead of ‘b r a v e’).

This kind of recognition in the face of errors may be seen as a kind of
generalisation. In this example: ‘f o r t u n e’ has been ‘generalised’ to
‘f o t u n e’, ‘f a v o u r s’ has been ‘generalised’ to ‘f a v x t o u

r s’, and ‘b r a v e’ has been ‘generalised’ to ‘b r y n v e’. There is
relevant discussion in [30, Sections 4.1 and 4.2].

7 Minimising the risk of accidents with driver-

less cars

“In the early versions of Google’s [driverless] car, ... the problem
was that every day, Google found themselves adding new rules.
Perhaps they would go into a traffic circle ... and there would be
a little girl riding her bicycle the wrong way around the traffic
circle. They didn’t have a rule for that circumstance. So, then
they have to add a new one, and so on, and so on.” Stuart J.
Russell [5, p. 47].

“... the principal reason [for pessimism about the early introduc-
tion of driverless cars for all situations is] that if you’re talking
about driving in a very heavy metropolitan location like Man-
hattan or Mumbai, then the AI will face a lot of unpredictabil-
ity. It’s one thing to have a driverless car in Phoenix, where the
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weather is good and the population is a lot less densely packed.
The problem in Manhattan is that anything goes at any moment,
nobody is particularly well-behaved and everybody is aggressive,
the chance of having unpredictable things occur is much higher.”
Gary Marcus [5, p. 321].

A näıve approach to the avoidance of accidents with driverless cars would
be to specify stimulus-response pairs, where the stimulus would be a picture
of the road in front (perhaps including sounds), and the response would be a
set of actions with the steering wheel, brakes, and so on. Of course, driving
is far too complex for anything like that to be adequate.

It seems that, for any kind of driver, either human or artificial, some kind
of generalisation from experience to date is essential. In that connection,
people will have the benefit of all their visual experience prior to their driving
lessons, but the same principles apply.

If a person or a driverless car has learned to apply the brakes when a
child runs out in front, that learning should be indifferent to the multitude
of images that may be seen: the child may be fat or thin; tall or short;
running, skipping, or jumping; in a skirt or wearing trousers; facing towards
the car or away from it; seen through rain or not; lit by streetlights or by the
sun; and so on.

There may be some assistance from ‘generalisation via perception’ (Sec-
tion 6.2) but that in itself is unlikely to be sufficient. It seems that ‘gen-
eralisation via unsupervised learning’ in the SP Theory of Intelligence, as
described in Section 6.1, is needed.

The chief merit of that theory of generalisation is that it is underpinned
by a coherent body of theory which is supported by much evidence. It seems
likely that, over reasonable amounts of time and across a range of driving
conditions, generalisations that are made in accordance with the SP Theory
would minimise the risk of accidents.

As with human drivers, there would still be errors made by the artificial
driver—because the generalisations would be probabilistic—but there is po-
tential for the artificial driver to do substantially better than most human
drivers.

8 Unsupervised learning from a single expo-

sure or experience

“How do humans learn concepts not from hundreds or thousands
of examples, as machine learning systems have always been built
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for, but from just one example? ... Children can often learn a
new word from seeing just one example of that word used in the
right context, ... You can show a young child their first giraffe,
and now they know what a giraffe looks like; you can show them
a new gesture or dance move, or how you use a new tool, and
right away they’ve got it ...” Joshua Tenenbaum [5, p. 471].

“There’s also ‘zero-shot learning,’ where people are trying to build
programs that can learn when they see something even for the
first time. And there is ‘one-shot learning’ where a program sees
a single example, and they’re able to do things.” Oren Etzioni
[5, p. 500].

As noted in A.5, most DNNs incorporate some variant of the idea, pro-
posed by Donald Hebb [8] and known as ‘Hebbian’ learning: when a neuron
A is close to a cell B and repeatedly takes part in firing it, changes take place
so that A’s efficiency in firing cell B is progressively increased. Although this
seems to reflect the way that it takes time to learn a complex skill such as
playing the piano well, or competition-winning abilities in pool, billiards, or
snooker, this feature of DNNs conflicts with the undoubted fact that people
can and often do learn things from a single occurrence or experience.

Unsupervised learning in the SP System (A.5), which is quite different
from Hebbian learning and does not employ any such principle as “Cells that
fire together wire together”, will accommodate both learning from a single
exposure or experience and the slow learning of complex skills:

• The SP System may exhibit learning from a single occurrence or expe-
rience because all learning in the system starts with the direct taking
in of new information from the environment, much like an electronic
recording machine. But unlike an electronic recording machine, all new
information from the environment is interpreted in terms of existing
knowledge (if any), so that newly-acquired information may immedi-
ately slot into a more-or-less rich interpretive structure;

• The SP system will, like a person, be slow in the learning of a complex
skill because that kind of learning requires a time-consuming search
through a large abstract space of ways in which the knowledge may be
structured in order to arrive at an efficient configuration.
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9 Computational resources, speeds of learn-

ing, and volumes of data

“We can imagine systems that can learn by themselves without
the need for huge volumes of labeled training data.” Martin Ford
[5, p. 12].

“... the first time you train a convolutional network you train
it with thousands, possibly even millions of images of various
categories.” Yann LeCun [5, p. 124].

“People can learn from very few examples and generalize. We
don’t know how to build machines that can do that.” Cynthia
Breazeal [5, p. 456].

“[A] stepping stone [towards AGI] is that it’s very important that
[AI] systems be a lot more data-efficient. So, how many examples
do you need to learn from? If you have an AI program that can
really learn from a single example, that feels meaningful. For
example, I can show you a new object, and you look at it, you’re
going to hold it in your hand, and you’re thinking, ‘I’ve got it.’
Now, I can show you lots of different pictures of that object, or
different versions of that object in different lighting conditions,
partially obscured by something, and you’d still be able to say,
‘Yep, that’s the same object.’ But machines can’t do that off of a
single example yet. That would be a real stepping stone to AGI
for me.” Oren Etzioni [5, p. 502].

The large computational resources, slow speeds of learning, and large
volumes of data that are often associated with the training of DNNs seem to
conflict with how people can learn fast with relatively little data and a brain
that consumes only about 20 watts. A possible explanation, in terms of the
workings of the SP System, has three elements:

1. Part of the explanation may be in the way that all learning in the SP
System starts with the direct taking in of information from the system’s
environment, like an electronic recording system (Section 8);

2. Also, the processing of a small body of New information N to de-
tect redundancies within N, and between N and pre-established Old
SP-patterns, can be done efficiently via the building of SP-multiple-
alignments ( A.4).

3. And:
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• The creation of a grammar (a collection of SP-patterns) that can
achieve economical encoding of any small instance of N, can be
done without undue computational demands (A.5);

• And, although the necessary research has not yet been done, it
seems likely that this kind of unsupervised learning may be done
incrementally, so that a grammar may be developed for much
larger bodies of information, including ‘all New information re-
ceived by a given robot or other kind of AI since it was first cre-
ated’; and because of this incremental development, the compu-
tational demands at any one stage may be relatively modest.

With regard to what Oren Etzioni says in the quote above, the SP System
has potential as follows:

• Learning three-dimensional structures. It is unlikely that anyone would
have fully ‘got’ an object in their hand until it has been viewed from
two or more different angles. In that connection, there are applications
already on the market that can construct a three-dimensional compu-
tational model of an object from photographs of the object taken from
different angles.1 It is envisaged that the SP System will be developed
for the learning of 3D structures in a similar way [30, Sections 6.1 and
6.2];

• Other aspects of learning. It is likely that anyone older than a toddler
would have learned a lot about objects that one can hold in one’s hand,
and, in the SP System, that would facilitate unsupervised learning
from a single exposure or experience (Section 8), via transfer learning
(Section 10), and via generalisation in learning (Section 6.1). This may
explain why an adult may look at a new object once and think ‘I’ve
got it.’;

• Generalisation in perception. With knowledge of that object in the
SP System, generalisation in perception (Section 6.2) may explain how
that person may say ‘Yep, that’s the same object’ despite variations in
the object, variations in lighting conditions, or partial obscuring of the
object by something else.

In connection with the large amounts of data that DNNs often need for
learning, Yann LeCun says:

1See, for example, ‘BigObjectBase’, http//:bit.ly/2V1Koh5 and ‘PhotoModeller’,
http//:bit.ly/2rNIPG9
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“If [after training a convolutional network on one category] you
... want to add a new category, for example if the machine has
never seen a cat and you want to train it to recognize cats, then it
only requires a few samples of cats. That is because it has already
been trained to recognize images of any type and it knows how to
represent images; it knows what an object is, and it knows a lot
of things about various objects. ... In the first few months of life,
babies learn a huge amount by observation without having any
notion of language. They learn an enormous amount of knowledge
about how the world works just by observation and with a little
interaction with the world.” Yann LeCun [5, p. 124].

As mentioned above, this kind of transfer learning (Section 10) may help
to explain how the SP System may learn from relatively small amounts of
data. Also, the last two sentences in the quote are references to unsupervised
learning which is one of the strengths of the SP System (Section 5).

10 Transfer learning

“Transfer learning is where you usefully transfer your knowledge
from one domain to a new domain that you’ve never seen before,
it’s something humans are amazing at. If you give me a new
task, I won’t be terrible at it out of the box because I’ll bring
some knowledge from similar things or structural things, and I
can start dealing with it straight away. That’s something that
computer systems are pretty terrible at because they require lots
of data and they’re very inefficient.” Demis Hassabis [5, p. 174].

“Humans can learn from much less data because we engage in
transfer learning, using learning from situations which may be
fairly different from what we are trying to learn.” Ray Kurzweil
[5, p. 230].

“We need to figure out how to think about problems like transfer
learning, because one of the things that humans do extraordinar-
ily well is being able to learn something, over here, and then to be
able to apply that learning in totally new environments or on a
previously unencountered problem, over there.” James Manyika
[5, p. 276].

Transfer learning—meaning the use of old learning to facilitate later
tasks—is fundamental in the SP System. Because the system does not suffer
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from catastrophic forgetting (Section 17), SP-patterns that have been learned
at any stage, will be available in the system’s repository of Old SP-patterns
for use later:

• Analysis or parsing. Figure 5 shows an SP-multiple-alignment in which
the New SP-pattern ‘f o r t u n e f a v o u r s t h e b r a v

e’ has been analysed in terms of the pre-existing Old SP-patterns that
appear in rows 1 to 9. That old learning facilitates the new task of
analysing a new sentence.

• Partial matching in unsupervised learning. Partial matching between,
for example, the New SP-pattern ‘t h a t g i r l r u n s’ and the
Old SP-pattern ‘t h a t b o y r u n s’ would, with some simplifi-
cations, lead to the creation of SP-patterns like ‘X x0 t h a t #X’,
‘Y y0 g i r l #Y’, ‘Y y1 b o y #Y’, ‘Z z0 r u n s #Z’, and ‘A a0

X #X Y #Y Z #Z’, all of which are added to the repository of Old SP-
patterns. In this case, the Old SP-pattern has fed into the analysis
of the New SP-pattern, leading to the creation of five additional SP-
patterns.

• Facilitation of the learning of new words. When knowledge of a target
language is relatively mature, it should facilitate the learning of new
words or other structures. This would be like someone who is quite
advanced in learning English as a foreign language hearing “The blah
is on the table” and inferring that “blah” is a noun that means some
kind of object that can be put on a table.

11 Transparency in the representation and

processing of knowledge

“... if regulation is intended to think about questions of safety,
questions of privacy, questions of transparency, questions around
the wide availability of these techniques so that everybody can
benefit from them—then I think those are the right things that AI
regulation should be thinking about.” James Manyika [5, p. 283].

“Although Bayesian updating is one of the major components
in machine learning today, there has been a shift from Bayesian
networks to deep learning, which is less transparent.” Judea Pearl
[5, p. 363].
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“The current machine learning concentration on deep learning
and its non-transparent structures is such a hang-up.” Judea
Pearl [5, p. 369].

It is now widely recognised that: a major problem with DNNs is that the
way in which learned knowledge is represented in such systems is far from
being comprehensible by people; and that the way in which DNNs arrive at
their conclusions is difficult or impossible for people to understand. These
deficiencies are of concern for reasons of safety, legal liability, and more.2

By contrast, knowledge in the SP System is represented in a manner that
is familiar to people, using such devices as class-inclusion hierarchies, part-
whole hierarchies, and others. And there is an audit trail for all processing
in the SP System, so that it is explicit and comprehensible by people.

As noted in Section 4, DNNs can make errors in recognition that may
have serious consequences. And transparency in the SP System (in both the
representation of knowledge and in processing), and experience with the SP
Computer Model, suggests that it would not make those kinds of errors.

12 The representation and processing of nat-

ural language

“... I think that many of the conceptual building blocks needed
for AGI or human-level intelligence are already here. But there
are some missing pieces. One of them is a clear approach to
how natural language can be understood to produce knowledge
structures upon which reasoning processes can operate.” Stuart
J. Russell [5, p. 51],

“... a successful AI system needs some key abilities, including
perception, vision, speech recognition, and action. These abili-
ties help us to define artificial intelligence. We’re talking about
the ability to control robot manipulators, and everything that
happens in robotics. We’re talking about the ability to make de-
cisions, to plan, and to problem-solve. We’re talking about the
ability to communicate, and so natural language understanding
also becomes extremely important to AI.” Stuart J. Russell [5,
p. 169], emphasis added.

2See, for example, “Inside DARPA’s push to make artificial intelligence explain
itself”, CET US News, 2017-08-10, bit.ly/2FQMoAr.
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DNNs can do well in recognising speech. Also, they can produce im-
pressive results in the translation of natural languages using a database of
equivalences that has been built up via human mark up and pattern match-
ing, with English as a bridge between languages that are not English.

But DNNs are relatively weak in processing natural languages via the
kinds of syntactic/semantic structures that are of interest in theoretical
linguistics—and it appears that structures of that kind are important in
the way that people process natural languages. It seems likely that, without
those kinds of abilities, AI systems will not achieve human levels of language
understanding, or production, and it seems likely that AI systems will not
reach the accuracy of translations between natural languages that can be
achieved by human experts.

As can be seen from the example in A.4 (Figure 5), the SP System lends
itself well to the representation of syntactic knowledge and to its application
in such tasks as parsing a natural language sentence. The SP System may
also represent and process syntactic dependencies in natural language [27,
Section 5.4]. And the system has robust abilities to arrive at an intuitively
‘correct’ parsing, despite errors of omission, commission, and substitution in
the sentence to be parsed Section 6.2 (Figure 2).

The SP System also lends itself to the representation of semantic struc-
tures (see, for example, [29, Section 9.1]) and it lends itself to the integration
of syntax with syntax ([39], [27, Section 5.7]), and the understanding and
production of natural language [27, Section 5.7].

A neat feature of the SP System is that the production of natural language
is achieved by exactly the same mechanisms as are used for the parsing or
understanding of natural language ([29, Section 4.5]), [27, Section 5.7.1]).

With the processing of natural language and the representation of its
structures, as with other aspects of AI, a key feature of the SP System is
its potential for SIIKAC. This feature of the system is likely to facilitate the
smooth integration of syntax with semantics.

13 Several forms of probabilistic reasoning

“What’s going on now in the deep learning field is that people
are building on top of these deep learning concepts and starting
to try to solve the classical AI problems of reasoning and being
able to understand, program, or plan.” Yoshua Bengio [5, p. 21],
emphasis added.

“A lot of people might [say]: ‘Deep learning systems are fine, but
we don’t know how to store knowledge, or how to do reasoning, or
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how to build more expressive kinds of models, because deep learn-
ing systems are just circuits, and circuits are not very expressive
after all.’ ” Stuart J. Russell [5, p. 49], emphasis added.

“I think there’s a presupposition that the way AIs can develop
is by making individuals that are general-purpose robots like you
see on Star Trek. ... I ... think, in terms of general reasoning
capacity, it’s not going to happen for quite a long time.” Geoffrey
Hinton [5, p. 88], emphasis added.

As potential foundations for AGI, DNNs appear to be unsuitable for per-
forming anything but the most rudimentary kind of reasoning. By contrast,
a strength of the SP System is that, via the SP Computer Model, several
different kinds of reasoning can be demonstrated, without any special pro-
vision or adaptation (A.9.2). Because of the probabilistic nature of the SP
System ( A.3), all the kinds of reasoning that may be modelled in the SP
System are fundamentally probabilistic, although it is possible to simulate
the all-or-nothing nature of much classical logic.

Much as with the processing of natural language (Section 12), a strength
of the SP System is that there can be SIIKAC.

The foregoing remarks apply to the non-neural version of the SP System,
expressed in the SP Computer Model. When SP-Neural ( A.7) is more ma-
ture, it should inherit the features and capabilities of the non-neural version
of the SP System.

14 Commonsense reasoning and commonsense

knowledge

“We don’t know how to build machines that have human-level
common sense. We can build machines that can have knowledge
and information within domains, but we don’t know how to do the
kind of common sense we all take for granted.” Cynthia Breazeal
[5, p. 456].

“We still don’t have any real AI in the sense of the original vision
of the founders of the field, of what I think you might refer to
as AGI—machines that have that same kind of flexible, general-
purpose, common sense intelligence that every human uses to
solve problems for themselves.” Joshua Tenenbaum [5, p. 472].

Although ‘commonsense reasoning’ (CSR) is a kind of reasoning, it is
discussed here, with ‘commonsense knowledge’ (CSK), in a section that is
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separate from Section 13 because of the way CSR and CSK (which, together,
may be referred to as ‘CSRK’) have been developing as a discrete subfield of
AI (see, for example, [3]).

Judging by the nature of DNNs and the paucity of research on how they
might be applied in the CSRK area [20], it seems that DNNs are not well
suited to this aspect of AI. By contrast, the SP System shows promise in this
area:

• Several features of the SP System suggest that it is likely to be use-
ful with CSRK [41, Sections 4.1 to 4.3], and more so when ‘unfinished
business’ in the development of the SP Computer Model has been com-
pleted (A.11).

• Three aspects of CSRK may be modelled with the SP Computer Model
[41, Sections 5 to 7]: how to interpret a noun phrase like “water bird”;
how, under various scenarios, to assess the strength of evidence that
a given person committed a murder; and how to interpret the horse’s
head scene in The Godfather film. A fourth problem—how to model
the process of cracking an egg into a bowl—is beyond what can be done
with the SP System as it is now [41, Section 9], but fixing the problems
mentioned under the previous bullet point may make it feasible.

• With the SP Computer Model, it is possible to determine the referent
of an ambiguous pronoun in a ‘Winograd schema’ type of sentence [39],
where a Winograd schema is a pair of sentences like The city councilmen
refused the demonstrators a permit because they feared violence and
The city councilmen refused the demonstrators a permit because they
advocated revolution, and the ambiguous pronoun in each sentence is
“they” [12].

15 The central role of information compres-

sion in the SP System compared with other

AI systems

“There are two parts to an autoencoder, an encoder and a de-
coder. The idea is that the encoder part takes an image, for
example, and tries to represent it in a compressed way, such as
a verbal description. The decoder then takes that representa-
tion and tries to recover the original image. The autoencoder is
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trained to do this compression and decompression so that it is as
faithful as possible to the original.

“Autoencoders have changed quite a bit since that original vi-
sion. Now, we think of them in terms of taking raw information,
like an image, and transforming it into a more abstract space
where the important, semantic aspect of it will be easier to read.
That’s the encoder part. The decoder works backwards, tak-
ing those high-level quantities—that you don’t have to define by
hand—and transforming them into an image. That was the early
deep learning work.

“Then a few years later, we discovered that we didn’t need these
approaches to train deep networks, we could just change the non-
linearity.” Yoshua Bengio [5, p. 26].

From this quote, it appears that IC was once seen as important in research
on DNNs but has now been dropped.

Although Jürgen Schmidhuber notes that “much of machine learning is
essentially about compression,” [20, Section 5.10], IC gets only brief mentions
in his review of research about DNNs [20, Sections 4.4, 5.6, 5.7, 5.10], and
IC is largely invisible in other research on DNNs.

In general, the central role of IC in all the workings of the SP System
contrasts sharply with the marginal or non-existent role for IC in DNNs or
any other AI-related system. In view of extensive evidence for the importance
of IC in HLPC [42], the central role for IC in the SP System sits well with its
role as, inter alia, a model of human-like learning, perception and cognition.

16 Biological validity

“A convolutional network is a particular way of connecting the
neurons with each other in such a way that the processing that
takes place is appropriate for things like images. I should add
that we don’t normally call them neurons because they’re not
really an accurate reflection of biological neurons. Yann LeCun
[5, p. 122].

“Deep learning will do some things, but biological systems rely on
hundreds of algorithms, not just one algorithm. We will need hun-
dreds more algorithms before we can make that progress, and we
cannot predict when they will pop.” Rodney Brooks [5, p. 427].
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With regard to the first quote, above, it is generally recognised that most
neural networks are only vaguely related to biological systems. By contrast,
the concepts of SP-pattern and SP-multiple-alignment in the SP System
have the benefit of Hebb’s studies in neuroscience: in SP-Neural ( A.7), the
concept of an SP-pattern maps quite well on to Hebb’s [8] concept of a ‘cell
assembly’, and connections amongst cell assemblies may be understood in
terms of the SP-multiple-alignment construct.

Although ‘convolutional’ neural networks “are directly inspired by the
classic notions of simple cells and complex cells in visual neuroscience” [11,
p. 439], the concepts of ‘neural symbol’ and ‘pattern assembly’ in SP-Neural
(A.7) may be seen to be configured in a similar way.

The second quote, above, prejudges the issue of whether human intelli-
gence might be: 1) the product of diverse agents [15] or a kluge deriving from
the haphazard nature of evolution [14]; or 2) the product of some unifying
principle, as in the SP Theory; or 3) that it might be some combination
of diverse agents with some unifying principle. Although the main focus in
presenting the SP System is on the second possibility, it is difficult to deny
the kluge-like nature of much human thinking which, with evidence for the
SP concepts, suggests that the third possibility is most likely.

17 Catastrophic forgetting

Catastrophic forgetting—which is a problem for at least some DNNs—is
when a given DNN has learned one thing and then it learns something else,
there is a tendency for the new learning to wipe out the earlier learning (see,
for example, [7]). A related problem is that, to be practical, a learning sys-
tem, like a person, should be able to learn continuously from its environment
without old knowledge being disturbed by new knowledge.3

The SP System is entirely free of the problem of catastrophic forgetting.
Although the SP Computer Model is not currently configured for continuous
learning, it is likely that it could be be adapted in that way.

18 Scope for adaptation

In the SP System, the concept of SP-multiple-alignment, with the concept of
SP-pattern, provide a much greater scope for modelling the world than the

3It appears that this problem is a matter of concern to military planners as
described, for example, in “DARPA seeking AI that learns all the time”, IEEE Spectrum,
2017-11-21, bit.ly/2BdERfZ.
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relatively constrained framework of DNNs. This is because there is no limit to
the number of SP-patterns that may be formed (apart from the memory that
is available in the host computer) and, with unlimited SP-patterns, there is
no limit to the number of ways in which SP-pattrns may be connected within
the framework of SP-multiple-alignments. By contrast, the layers in a DNN,
and the potential connections amongst them, are finite and pre-defined. It
is true that the connections can vary in strength but only within pre-defined
limits.

19 Motivations and emotions

“How much prior structure do we need to build into those sys-
tems for them to actually work appropriately and be stable, and
for them to have intrinsic motivations so that they behave prop-
erly around humans? There’s a whole lot of problems that will
absolutely pop up, so AGI might take 50 years, it might take 100
years, I’m not too sure.” Yann LeCun [5, p. 130].

“Machine learning needs a lot of data, and so I borrowed [a]
dataset [from Cambridge Autism Research Center] to train the
algorithms I was creating, on how to read different emotions,
something that showed some really promising results. This data
opened up an opportunity to focus not just on the happy/sad
emotions, but also on the many nuanced emotions that we see in
everyday life, such as confusion, interest, anxiety or boredom.”
Rana el Kaliouby [5, p. 209].

“[A] subtle question is that of relating emotionally to other be-
ings. I’m not sure that’s even well defined, because as a human
you can fake it. There are people who fake an emotional connec-
tion to others. So, the question is, if you can get a computer to
fake it well enough, how do you know that’s not real?” Daphne
Koller [5, p. 394].

“If you look at human intelligence we have all these different
kinds of intelligences, and social and emotional intelligence are a
profoundly important, and of course underlies how we collaborate
and how we live in social groups and how we coexist, empathize,
and harmonize.” Cynthia Breazeal [5, p. 450].

“... why are we assuming the same evolutionary forces that drove
the creation of our motivations and drives would be anything like
those of [a] super intelligence?” Cynthia Breazeal [5, p. 457].
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In developing human-like AI, motivations and emotions are clearly im-
portant, not least because of the possibility that AIs might come to regard
people as dispensable. But, in the SP programme of research, there has, so
far, been no attempt to give the SP Computer Model any kind of motivation
(except ‘compress information’), or any kind of emotion. This is because of
the belief that, in relation to the SP concepts and their development, it would
be trying to run before we can walk. When the SP System is more mature,
there may be a case for exploring how it may be applied to the complexities
of motivations and emotions.

20 Conclusion

In the book Architects of Intelligence [5], Martin Ford’s interviews with peo-
ple who are influential in AI give very interesting and useful insights into
current thinking in the field. As such, they help to throw into relief the sub-
stantial advantages of the SP System compared with ‘deep neural networks’
(DNNs)—which, because of their dominance in AI today, form a backdrop
for much of this paper and, very often, the explicit or implied reference for
comparison with the SP System.

Key features of the SP System are:

• Conceptual Simplicity and descriptive or explanatory Power. The SP
System is the product of a programme of research seeking to simplify
and integrate observations and concepts across a broad canvass. This
has proved to be, to a large extent, successful with the creation of
a system which combines simplicity with a versatility which is much
wider than that of other AI system.

• A central role for information compression. With its central role for IC,
the SP System adopts a key principle from human cognitive psychology
and neuroscience, for which there is much evidence.

• SP-multiple-alignment. IC in the SP Computer Model is achieved
largely via the powerful concept of SP-multiple-alignment. With the
concept of SP-pattern, the SP-multiple-alignment construct is largely
responsible for the relative simplicity of the SP System and for its ver-
satility, and for its potential for SIIKAC.

• SP-Neural. Abstract concepts in the SP Theory map quite well into
structures and processes in neurons and their interconnections.
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Apart from the key features, the main strengths of the SP System that
are described in this paper are:

• Top-down strategy. In the quest for a favourable combination of con-
ceptual Simplicity with descriptive or explanatory Power, there are
merits in adopting a top-down strategy, developing over-arching prin-
ciples and working from them to lower-level concepts. It appears that
the SP System, as a product of that top-down strategy, has achieved a
more favourable combination of Simplicity and Power than any of the
alternatives.

• Recognition of images and speech. Although the SP System does not
at present do as well as DNNs in the recognition of images and speech,
its long-term potential appears to be greater.

• Deep neural networks are easily fooled. The SP System appears to
be entirely free from the tendency of DNNs to make large and unpre-
dictable errors in recognition.

• The importance of unsupervised learning. Unlike most DNNs, learning
in the SP System is unsupervised, a form of learning which is promi-
nent in the way people learn, which may be the foundation for other
kinds of learning, and which is regarded as important by several of the
interviewees for Architects of Intelligence.

• Generalisation, under-generalisation and over-generalisation. The cen-
tral role of IC in the SP system provides the basis for generalisation
in accordance with coherent principles. These principles provide defi-
nitions of over- or under-generalisation and a safeguard against them.

• Minimising the risk of accidents with driverless cars. The complexities
of driving a car seem to require human-like intelligence or better. And
that seems to require the development of generalisation in accordance
with principles in the SP Theory of Intelligence.

• Unsupervised learning from a single occurrence or experience. Like peo-
ple, and unlike DNNs, the SP System can learn from a single occurrence
or experience.

• Computational resources, speed of learning, and volumes of data. Like
people, and unlike DNNs, the SP System can demonstrate useful learn-
ing with relatively small computational resources, relatively fast, and
with relatively tiny volumes of data.
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• Transfer learning. Transfer learning—meaning the use of old learning
to facilitate later tasks—is prominent in human learning and is fun-
damental in the SP System. In this respect, the SP System contrasts
sharply with DNNs.

• Transparency in the representation and processing of knowledge. Un-
like DNNs, the SP System is entirely transparent in how it represents
knowledge, and it provides a full audit trail for all its processing.

• The representation and processing of natural language. Unlike DNNs,
the SP System can represent and process natural language with the
kinds of structures that are recognised by linguists which, arguably,
have psychological validity, and which appear to be needed ultimately
for human-like capabilities with natural languages.

• Several forms of probabilistic reasoning. As a by-product of its design,
the SP System exhibits several forms of probabilistic reasoning.

• Commonsense reasoning and commonsense knowledge. Because com-
monsense reasoning and commonsense knowledge (CSRK) have devel-
oped as a distinct field within AI, it is discussed in a separate section,
although the SP System’s strengths in probabilistic reasoning are part
of its potential with CSRK. Other strengths of the SP System in that
area have been described.

• The central role for information compression in the SP System com-
pared with other AI systems. The SP System appears to be unique in
employing IC as the basis for all aspects of intelligence;

• Biological validity. Arguably, the SP System, with SP-Neural, has
greater validity in terms of biology than DNNs;

• Catastrophic forgetting. Unlike most DNNs, the SP System is entirely
free from catastrophic forgetting;

• Scope for adaptation. The representation of knowledge with SP-patterns,
with the SP-multiple-alignment construct, provides for much greater
scope for adaptation than the layers of a DNN;

Despite the importance of motivations and emotions, no attempt has yet
been made to study them in the SP programme of research.
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A Outline of the SP Theory of Intelligence

and its realisation in the SP Computer

Model

The SP System—meaning the SP Theory of Intelligence and its realisation
in the SP Computer Model—is a system that has been under development
since about 1987, with a break between early 2006 and late 2012.

The SP System is described in outline here, in more detail in [29], and
quite fully in [27]. Distinctive features and advantages of the SP System are
described in [36]. Other papers in this programme of research are detailed,
with download links, on www.cognitionresearch.org/sp.htm.

In broad terms, the SP System is a brain-like system that takes in New
information through its senses and stores some or all of it as Old information,
as shown schematically in Figure 3.

In the SP System, all kinds of knowledge is represented with SP-patterns,
where each such SP-pattern is an array of atomic SP-symbols in one or two
dimensions. At present, the SP Computer Model works only with one-
dimensional SP-patterns but it is envisaged that it will be generalised to
work with two-dimensional SP-patterns as well.

A.1 Aiming for a favourable combination of concep-
tual Simplicity with descriptive or explanatory
Power

The SP programme of research is a unique attempt to simplify and integrate
observations and concepts across artificial intelligence, mainstream comput-
ing, mathematics, and human learning, perception, and cognition. This may
be seen to be a process of developing concepts that combine conceptual Sim-
plicity with high levels of descriptive or explanatory Power.
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Figure 3: Schematic representation of the SP System from an ‘input’ per-
spective. Reproduced, with permission, from Figure 1 in [29].
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The main justification for this strategy is Ockham’s razor: a theory should
be simple but not so simple that it becomes trivial (ie, it loses ‘power’). Also,
President Eisenhower is reputed to have said: “If you can’t solve a problem,
enlarge it,” meaning that putting a problem in a broader context may make
it easier to solve. Good solutions to a problem may be hard to see when the
problem is viewed through a keyhole, but become visible when the door is
opened.

This top-down approach to the development of concepts contrasts with
the more popular bottom-up approach which seeks to develop ideas in one
area such as computer vision and then integrate it with other areas such
as reasoning, and to repeat that kind of integration to create groupings of
progressively increasing size.

Despite its ambition, the simplicity-with-power objective has been largely
met. This is because the SP System, which is largely the simple but powerful
concept of SP-multiple-alignment (A.4), has strengths and potential across
diverse aspects of intelligence and the representation of knowledge (A.9).

A.2 Information compression via the matching and uni-
fication of patterns

A central idea in the SP System is that all kinds of processing would be
achieved via information compression (IC). Evidence for the importance of
IC in HLPC is described in [42].

In the development of the SP System, it has proved useful to understand
IC in terms of the discovery of patterns that match each other and the merg-
ing or ‘unification’ of patterns that are the same. The expression ‘information
compression via the matching and unification of patterns’ may be shortened
to ‘ICMUP’. Compression of information in the SP System is achieved via
ICMUP and, more specifically via the creation of SP-multiple-alignments
(A.4).

Seven variants of ICMUP are described in [42, Section 2.1]. SP-multiple-
alignment is the seventh variant of ICMUP which may be seen to be a gen-
eralisation of the other six variants.

In terms of theory, the emphasis on IC in the SP System accords with
research in the tradition of Minimum Length Encoding (see, for example,
[13]), with the qualification that most research relating to MLE assumes
that the concept of a universal Turing machine provides the foundation for
theorising, whereas the SP System is founded on concepts of ICMUP and
SP-multiple-alignment ( B).
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A.3 The probabilistic nature of the SP System

Owing to the intimate relation that is known to exist between IC and concepts
of inference and probability (B), and owing to the fundamental role of IC in
the workings of the SP System, the system is inherently probabilistic.

That said, it appears to be possible to imitate the all-nothing-nature of
conventional computing systems via the use of data where most probabilities
yielded by the system, or all of them, are close to 0 or 1.

Because of the probabilistic nature of the SP System, it lends itself to the
modelling of HLPC because of the prevalence of uncertainties in that domain.
Also, the SP System sits comfortably within AI because of the probabilistic
nature of most operations in AI.

An advantage of the SP System in those areas is that it is relatively
straightforward to calculate absolute or conditional probabilities for results
obtained in, for example, different kinds of reasoning (A.9.2).

The very close connection that exists between IC and concepts of inference
and probability may suggest that there is nothing to choose between them.
But B argues that, in research on aspects of AI and HLPC, there are reasons
to regard IC as more fundamental than probability and a better starting
point for theorising.

A.4 SP-multiple-alignment

A central idea in the SP System, is the simple but powerful concept of
SP-multiple-alignment, borrowed and adapted from the concept of ‘multiple
sequence alignment’ in bioinformatics. As mentioned in A.2, SP-multiple-
alignment is the seventh variant of ICMUP described in [42, Section 2.1] and
may be seen as a generalised version of the other six variants.

Probably the best way to explain the idea is by way of examples. Figure
4 shows an example of multiple sequence alignment in bioinformatics. Here,
there are five DNA sequences which have been arranged alongside each other,
and then, by judicious ‘stretching’ of one or more of the sequences in a
computer, symbols that match each other across two or more sequences have
been brought into line.

A ‘good’ multiple sequence alignment, like the one shown, is one with a
relatively large number of matching symbols from row to row. The process
of discovering a good multiple sequence alignment is normally too complex
to be done by exhaustive search, so heuristic methods are needed, building
multiple sequence alignments in stages and, at each stage, selecting the best
partial structures for further processing.

Figure 5 shows an example of an SP-multiple-alignment, superficially
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G G A G C A G G G A G G A T G G G G A

| | | | | | | | | | | | | | | | | | |

G G | G G C C C A G G G A G G A | G G C G G G A

| | | | | | | | | | | | | | | | | | | | |

A | G A C T G C C C A G G G | G G | G C T G G A | G A

| | | | | | | | | | | | | | | | | |

G G A A | A G G G A G G A | A G G G G A

| | | | | | | | | | | | | | | | |

G G C A C A G G G A G G C G G G G A

Figure 4: A ‘good’ multiple alignment amongst five DNA sequences.

similar to the one in Figure 4, except that the sequences are called SP-
patterns, the SP-pattern in row 0 is New information and the remaining SP-
patterns, one per row, are Old information. A ‘good’ SP-multiple-alignment
is one which allows the New SP-pattern to be encoded economically in terms
of the Old SP-patterns.

0 f o r t u n e f a v o u r s t h e b r a v e 0

| | | | | | | | | | | | | | | | | | | | | |

1 | | | | | | | Vr 6 f a v o u r #Vr | | | | | | | | | 1

| | | | | | | | | | | | | | | | | |

2 | | | | | | | V 7 Vr #Vr s #V | | | | | | | | 2

| | | | | | | | | | | | | | | | |

3 | | | | | | | VP 3 V #V NP | | | | | | | | #NP #VP 3

| | | | | | | | | | | | | | | | | | |

4 N 4 f o r t u n e #N | | | | | | | | | | | | 4

| | | | | | | | | | | | | |

5 NP 2 N #N #NP | | | | | | | | | | | | 5

| | | | | | | | | | | | | |

6 S 0 NP #NP VP | | | | | | | | | | #VP #S 6

| | | | | | | | | |

7 | | | | N 5 b r a v e #N | 7

| | | | | | |

8 NP 1 D | | | #D N #N #NP 8

| | | | |

9 D 8 t h e #D 9

Figure 5: The best SP-multiple-alignment produced by the SP Computer
Model with a New SP-pattern, ‘f o r t u n e f a v o u r s t h e b r

a v e’, representing a sentence to be parsed and a repository of user-supplied
Old SP-patterns representing grammatical categories, including morphemes
and words.

In this example, the New SP-pattern (in row 0) is a sentence and each of
the remaining SP-patterns represents a grammatical category, where ‘gram-
matical categories’ include words. The overall effect of SP-multiple-alignment
in this example is the parsing a sentence (‘f o r t u n e f a v o u r s

t h e b r a v e’) into its grammatical parts and sub-parts.
But the SP-multiple-alignment concept is very versatile and, as described

in A.6 and A.9, it may serve to model several different aspects of intelligence,
including several kinds of reasoning, it may serve in the representation of
several different kinds of knowledge, and it facilitates SIIKAC.
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Although the search space for good SP-multiple-alignments is normally
very large, the use of heuristic methods helps to ensure that computational
complexities in the SP System are within reasonable bounds [27, Sections
A.4, 3.10.6 and 9.3.1].

A.5 Unsupervised learning in the SP System

In the SP System, learning is ‘unsupervised’, deriving structures from in-
coming sensory information without the need for any kind of ‘teacher’, or
anything equivalent (cf. [6]).

Unsupervised learning in the SP System is quite unlike ‘Hebbian’ learning:

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.” [8,
location 1500].

This form of learning, often summarised as Cells that fire together wire to-
gether, has been adopted, with variations, in most DNNs, and in some other
AI systems.

In the SP System, unsupervised learning incorporates the building of SP-
multiple-alignments but there are other processes as well. In brief, the sys-
tem creates Old SP-patterns from complete New SP-patterns and also from
partial matches between New and Old SP-patterns. When all the New SP-
patterns have been processed like that, the system creates one or two ‘good’
SP-grammars, where an SP-grammar is a collection of Old SP-patterns, and
it is ‘good’ if it is effective in the economical encoding of the original set of
New SP-patterns.

As with the building of SP-multiple-alignments, the process of creating
good grammars is normally too complex to be done by exhaustive search
so heuristic methods are needed. This means that the system builds SP-
grammars incrementally and, at each stage, it discards all but the best SP-
grammars. As with the building of SP-multiple-aligments, the use of heuristic
methods helps to ensure that computational complexities in the SP System
are within reasonable bounds [27, Sections A.4, 3.10.6 and 9.3.1].

The SP Computer Model has already demonstrated an ability to learn
generative grammars from unsegmented samples of English-like artificial lan-
guages, including segmental structures, classes of structure, and abstract
patterns, and to do this in an ‘unsupervised’ manner ([29, Section 5], [27,
Chapter 9]). But there are (at least) two shortcomings in the system [29,
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Section 3.3]: it cannot learn intermediate levels of structure or discontinuous
dependencies in grammar, although the SP-multiple-alignment framework
can accommodate structures of those kinds. It appears that those two prob-
lems may be overcome and that their solution would greatly enhance the
capabilities of the SP Computer Model in unsupervised learning.

A.6 Two main mechanisms for information compres-
sion in the SP System, and their functions

The two main mechanisms for IC in the SP System are as follows, each one
with details of its function or functions:

1. The building of SP-multiple-alignments. The process of building SP-
multiple-alignments achieves compression of New information. At the
same time it may achieve any or all of the following functions described
in [27, Chapters 5 to 8] and [29, Sections 7 to 12], with potential for
more:

(a) Parsing of natural language (which is quite well developed); and
understanding of natural language (which is only at a preliminary
stage of development).

(b) Pattern recognition which is robust in the face of errors of omis-
sion, commission, or substitution; and pattern recognition at mul-
tiple levels of abstraction.

(c) Information retrieval which is robust in the face of errors of omis-
sion, commission, or substitution.

(d) Several kinds of probabilistic reasoning: one-step ‘deductive’ rea-
soning; chains of reasoning; abductive reasoning; reasoning with
probabilistic networks and trees; reasoning with ‘rules’; nonmono-
tonic reasoning and reasoning with default values; Bayesian rea-
soning with ‘explaining away’; causal reasoning; reasoning that is
not supported by evidence; the inheritance of attributes in class
hierarchies; and inheritance of contexts in part-whole hierarchies.

(e) Planning such as, for example, finding a flying route between Lon-
don and Beijing.

(f) Problem solving such as solving the kinds of puzzle that are pop-
ular in IQ tests.

The building of SP-multiple-alignments is also part of the process of
unsupervised learning, next.
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2. Unsupervised learning. Unsupervised learning, outlined in A.5, means
the creation of one or two grammars which are collections of SP-patterns
which are effective in the economical encoding of a given set of New
SP-patterns.

A.7 SP-Neural

A potentially useful feature of the SP System is that it is possible to see how
abstract constructs and processes in the system may be realised in terms of
neurons and their interconnections. This is the basis for SP-Neural, a ‘neural’
version of the SP System, described in [35].

The concept of an SP-symbol may realised as a neural symbol comprising a
single neuron or, more likely, a small cluster of neurons, an SP-pattern maps
quite well on to the concept of a pattern assembly comprising a group of
inter-connected SP-symbols, and an SP-multiple-alignment may be realised
in terms of pattern assemblies and their interconnections, as illustrated in
Figure 6.

In this connection, it is relevant to mention that the SP System, in both
its abstract and neural forms, is quite different from deep learning in neural
networks [20] and has substantial advantages compared with such systems,
as described in Section 1.2 and [36, Section V].

A.8 Generalising the SP System for two-dimensional
SP-patterns, both static and moving

This brief description of the SP System and how it works may have given the
impression that it is intended to work entirely with sequences of SP-symbols,
like multiple sequence alignments in bioinformatics. But it is envisaged that,
in future development of the system, two-dimensional SP-patterns will be in-
troduced, with potential to represent and process such things as photographs
and diagrams, and structures in three dimensions as described in [30, Sec-
tion 6.1 and 6,2], and procedures that work in parallel as described in [31,
Sections V-G, V-H, and V-I, and C].

It is envisaged that, at some stage, the SP System will be generalised to
work with sequences of two-dimensional ‘frames’ from films or videos.

A.9 Strengths and potential of the SP System

The strengths and potential of the SP System are summarised in the subsec-
tions that follow. Further information may be found in [29, Sections 5 to 12],
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Figure 6: A schematic representation of a partial SP-multiple-alignment
in SP-Neural, as discussed in [35, Section 4]. Each broken-line rectangle
with rounded corners represents a pattern assembly—corresponding to an
SP-pattern in the main SP Theory of Intelligence; each character or group
of characters enclosed in a solid-line ellipse represents a neural symbol corre-
sponding to an SP-symbol in the main SP Theory of Intelligence; the lines
between pattern assemblies represent nerve fibres with arrows showing the
direction in which impulses travel; neural symbols are mainly symbols from
linguistics such as ‘NP’ meaning ‘noun phrase, ‘D’ meaning a ‘determiner’, ‘#D’
meaning the end of a determiner, ‘#NP’ meaning the end of a noun phrase,
and so on.
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[27, Chapters 5 to 9], [36], and in other sources referenced in the subsections
that follow.

A.9.1 Versatility in aspects of intelligence

The SP System has strengths and potential in the ‘unsupervised’ learning
of new knowledge. As noted in A.5, this is an aspect of intelligence in the
SP System that is different from others because it is not a by-product of the
building of multiple alignments but is, instead, achieved via the creation of
grammars, drawing on information within SP-multiple-alignments.

Other aspects of intelligence exhibited by the SP System are modelled via
the building of SP-multiple-alignments. These other aspects of intelligence
include: the analysis and production of natural language; pattern recognition
that is robust in the face of errors in data; pattern recognition at multiple
levels of abstraction; computer vision [30]; best-match and semantic kinds of
information retrieval; several kinds of reasoning (next subsection); planning;
and problem solving.

A.9.2 Versatility in reasoning

Kinds of reasoning exhibited by the SP System include: one-step ‘deductive’
reasoning; chains of reasoning; abductive reasoning; reasoning with proba-
bilistic networks and trees; reasoning with ‘rules’; nonmonotonic reasoning
and reasoning with default values; Bayesian reasoning with ‘explaining away’;
causal reasoning; reasoning that is not supported by evidence; the inheritance
of attributes in class hierarchies; and inheritance of contexts in part-whole
hierarchies. Where it is appropriate, probabilities for inferences may be cal-
culated in a straightforward manner ([27, Section 3.7], [29, Section 4.4]).

There is also potential in the system for spatial reasoning [31, Section
IV-F.1], and for what-if reasoning [31, Section IV-F.2].

It seems unlikely that the features of intelligence mentioned above are the
full extent of the SP System’s potential to imitate what people can do. The
close connection that is known to exist between IC and concepts of infer-
ence and probability (B), the central role of IC in the SP-multiple-alignment
framework, and the versatility of the SP-multiple-alignment framework in
aspects of intelligence suggest that there are more insights to come.

As noted in A.3, the probabilistic nature of the SP System makes it
relatively straightforward to calculate absolute or conditional probabilities
for results from the system, as for example in its several kinds of reasoning,
most of which would naturally be classed as probabilistic.
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A.9.3 Versatility in the representation of knowledge

Although SP-patterns are not very expressive in themselves, they come to
life in the SP-multiple-alignment framework. Within that framework, they
may serve in the representation of several different kinds of knowledge, in-
cluding: the syntax of natural languages; class-inclusion hierarchies (with or
without cross classification); part-whole hierarchies; discrimination networks
and trees; if-then rules; entity-relationship structures [28, Sections 3 and 4];
relational tuples (ibid., Section 3), and concepts in mathematics, logic, and
computing, such as ‘function’, ‘variable’, ‘value’, ‘set’, and ‘type definition’
([27, Chapter 10], [33, Section 6.6.1], [38, Section 2]).

As previously noted, the addition of two-dimensional SP patterns to the
SP Computer Model is likely to expand the representational repertoire of
the SP System to structures in two-dimensions and three-dimensions, and
the representation of procedural knowledge with parallel processing.

As with the SP System’s generality in aspects of intelligence, it seems
likely that the SP System is not constrained to represent only the forms of
knowledge that have been mentioned. The generality of IC as a means of
representing knowledge in a succinct manner, the central role of IC in the
SP-multiple-alignment framework, and the versatility of that framework in
the representation of knowledge, suggest that the SP System may prove to
be a means of representing all the kinds of knowledge that people may work
with.

A.9.4 Seamless integration of diverse aspects of intelligence, and
diverse kinds of knowledge, in any combination

An important third feature of the SP System, alongside its versatility in
aspects of intelligence and its versatility in the representation of diverse kinds
of knowledge, is that there is clear potential for the SP System to provide
seamless integration of diverse aspects of intelligence and diverse kinds of
knowledge, in any combination. (SIIKAC) This is because diverse aspects
of intelligence and diverse kinds of knowledge all flow from a single coherent
and relatively simple source: the SP-multiple-alignment framework.

It appears that seamless integration of diverse aspects of intelligence and
diverse kinds of knowledge, in any combination, is essential in any artificial
system that aspires to the fluidity, versatility and adaptability of the human
mind.

Figure 7 shows schematically how the SP System, with SP-multiple-
alignment centre stage, exhibits versatility and integration.
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Figure 7: A schematic representation of versatility and integration in the SP
System, with SP-multiple-alignment centre stage.

A.10 Potential benefits and applications of the SP Sys-
tem

Apart from its strengths and potential in modelling aspects of the human
mind (A.9), it appears that, in more humdrum terms, the SP System has
several potential benefits and applications. These include:

• Big data. Somewhat unexpectedly, it has been discovered that the SP
System has potential to help solve nine significant problems associated
with big data [32]. These are: overcoming the problem of variety in
big data; the unsupervised learning of structures and relationships in
big data; interpretation of big data via pattern recognition, natural
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language processing and more; the analysis of streaming data; com-
pression of big data; model-based coding for efficient transmission of
big data; potential gains in computational and energy efficiency in the
analysis of big data; managing errors and uncertainties in data; and
visualisation of structure in big data and providing an audit trail in
the processing of big data.

• Autonomous robots. The SP System opens up a radically new approach
to the development of intelligence in autonomous robots [31];

• An intelligent database system. The SP System has potential in the
development of an intelligent database system with several advantages
compared with traditional database systems [28]. In this connection,
the SP System has potential to add several kinds of reasoning and other
aspects of intelligence to the ‘database’ represented by the World Wide
Web, especially if the SP Machine were to be supercharged by replacing
the search mechanisms in the foundations of the SP Machine with the
high-parallel search mechanisms of any of the leading search engines.

• Medical diagnosis. The SP System may serve as a vehicle for medical
knowledge and to assist practitioners in medical diagnosis, with po-
tential for the automatic or semi-automatic learning of new knowledge
[26];

• Computer vision and natural vision. The SP System opens up a new
approach to the development of computer vision and its integration
with other aspects of intelligence. It also throws light on several aspects
of natural vision [30];

• Neuroscience. As outlined in A.7, abstract concepts in the SP Theory of
Intelligence map quite well into concepts expressed in terms of neurons
and their interconnections in a version of the theory called SP-Neural
([35], [27, Chapter 11]). This has potential to illuminate aspects of
neuroscience and to suggest new avenues for investigation.

• Commonsense reasoning. In addition to the previously-described
strengths of the SP System in several kinds of reasoning, the SP Sys-
tem has strengths in the surprisingly challenging area of “commonsense
reasoning”, as described by Ernest Davis and Gary Marcus [3]. How
the SP System may meet the several challenges in this area is described
in [34].
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• Other areas of application. The SP System has potential in several
other areas of application including [33]: the simplification and inte-
gration of computing systems; applications of natural language process-
ing; best-match and semantic forms of information retrieval; software
engineering [38]; the representation of knowledge, reasoning, and the
semantic web; information compression; bioinformatics; the detection
of computer viruses; and data fusion.

• Mathematics. The concept of IC via the matching and unification of
patterns provides an entirely novel interpretation of mathematics [37].
This interpretation is quite unlike anything described in existing writ-
ings about the philosophy of mathematics or its application in science.
There are potential benefits in science from this new interpretation of
mathematics.

A.11 Unfinished business and the SP Machine

Like most theories, the SP Theory is not complete. Four pieces of ‘unfinished
business’ are described in [29, Section 3.3]: the SP Computer Model needs
to be generalised to include SP-patterns in two dimensions, with associated
processing; research is needed to discover whether or how the SP concepts
may be applied to the identification of low-level perceptual features in speech
and images; more work is needed on the development of unsupervised learning
in the SP Computer Model; and although the SP Theory has led to the
proposal that much of mathematics, perhaps all of it, may be understood as
IC [40], research is needed to discover whether or how the SP concepts may
be applied in the representation of numbers. A better understanding is also
needed of how quantitative concepts such as time, speed, distance, and so
on, may be represented in the SP System.

It appears that these problems are soluble and it is anticipated that, with
some further research, they can be remedied.

More generally, a programme of research is envisaged, with one or more
teams of researchers, or individual researchers, to create a more mature SP
Machine, based on the SP Computer Model, and shown schematically in
Figure 8. A roadmap for the development of the SP Machine is described in
[18].
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Figure 8: Schematic representation of the development and application of
the SP Machine. Reproduced from Figure 2 in [29], with permission.

B Information compression, inference, and prob-

ability

It has been recognised for some time that there is an intimate connection
between IC and concepts of inference and probability [21, 22, 23, 13]. This
may suggest that there is nothing to choose between IC and concepts of
probability as a foundation for the development of the SP System, or any
other artificial system that aspires to human-like intelligence.

For reasons outlined in the following subsections, there is an advantage
in putting the main focus on IC.

B.1 Asymmetry between ICMUP and concepts of in-
ference and probability

The very close connection between IC and concepts of inference and proba-
bility makes sense in terms of ICMUP because:

• IC via unification of patterns. The unification of patterns achieves
compression of information.

• Absolute probability. Absolute probabilities may be derived from the
frequencies of patterns, and, for a given pattern, its frequency of occur-
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rence may be derived from the number of original patterns that have
been unified to create that pattern.

• Inference and conditional probability. Inference may be achieved via
partial matching as, for example, when seeing black clouds allows us
to make the inference that rain is likely, via a partial match between
‘black clouds’ and the pre-established pattern ‘black clouds rain’.
Conditional probabilities for inferences may be derived from the fre-
quencies of occurrence of patterns.

As may be seen from points just made, there is an asymmetry between
ICMUP and concepts of inference and probability: absolute and conditional
probabilities may be derived from the matching and unification of patterns,
but the reverse is not true. This is partly because, arguably, the matching and
unification of patterns is more primitive than concepts of probability. But
more to the point, values for probability, in themselves, have lost information
about the matches and unifications that led to their creation.

Because probabilities may be derived from unifications but not the other
way round, and because the matching and unification of patterns is prominent
in HLPC [42], any artificial system that aspires to the generality of human
intelligence should be founded on ICMUP, not concepts of probability.

B.2 The discovery of structure

Perhaps because of the prominence of uncertainties in the way people think,
much research in AI is based on concepts of probability, especially Bayes’
Theorem.4

Much can be done with this kind of probabilistic approach to AI, but
something is missing: it is assumed that all of the conceptual entities in a
probabilistic analysis have been created already, and there is nothing about
how they may be formed. By contrast, the matching and unification of
patterns opens up the possibility of isolating words as discrete entities in
speech [42, Section 15.1], and likewise for phrases [42, Section 15.2]. And it
can provide a basis for the building of three-dimensional models of entities,
as outlined in [30, Sections 6.1 and 6.2].

4In brief, Bayes’ Theory may summarised with the equation P (h|D) = P (D|h)P (h)
P (D) ,

where P (h) = prior probability of hypothesis h, P (D) = prior probability of training
data D, P (h|D) = probability of h given D, and P (D|h) = probability of D given h.
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B.3 Extending the scope of inference and probability

The matching and unification of patterns opens up some interesting aspects
of probability which are not seen with approaches to probability which deal
with pre-formed entities. By way of explanation, consider, firstly, that it
is commonly assumed in ‘mainstream’ statistics that statistical significance
can only be achieved when the frequencies with which phenomena occur are
relatively high. For example:

“There is a definition of probability in terms of frequency that is
sometimes usable. It tells us that a good estimate of the proba-
bility of an event is the frequency with which it has occurred in
the past. This simple definition is fine in many situations, but
breaks down when we need it most; i.e., its precision decreases
markedly as the number of events in the past (the ‘sample size’)
decreases. For sample sizes of 1 or 2 or none, the method is
essentially useless.” [23, pp. 74–75].

Now consider, secondly, that very often, the need for large sample sizes
does not apply with the matching and unification of patterns:

• For any given size of pattern, there is a minimum frequency below
which no compression can be achieved. This is because each unified
chunk requires some kind of label or identifier by which it can be
referenced—and the information ‘cost’ of these labels offsets the com-
pression achieved by the unification of matching patterns. This is true
even if there is some kind of optimisation via Huffman coding or the
like. Unless the compression is greater than the amount of information
required for the labels, there is no net saving in the number of bits that
are needed.

• In this connection, there is a trade-off between sizes of patterns and
the minimum frequency that is needed for compression. With small
patterns, high frequencies are required. But with large patterns, useful
compression can be achieved when frequencies are as low as 2 or 3.

• As an example, one can, very often, recognise with high confidence
a previously-heard song or other piece of music from hearing only a
smallish sample of the piece. In such cases, our brains register that it
is very unlikely that there would be any other piece of music containing
the sample we have heard. Accordingly, we assign a mental probability
of 1.0 to the identification we have made, a probability which corre-
sponds to a frequency of 2, because the first ‘learning’ hearing of the
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music yields a frequency of 1, and the second ‘recognition’ hearing
yields a frequency of 2.

B.4 Probability and causation

Another apparent shortcoming with concepts of probability arises where we
wish to know about causation. For example:

“The answer [to difficulties in solving causal problems with statis-
tics ...] has to do with the official language of statistics—namely
the language of probability. This may come as a surprise to some
[people] but the word cause is not in the vocabulary of probabil-
ity theory; we cannot express in the language of probabilities the
sentence mud does not cause rain—all we can say is that the two
are mutually correlated or dependent—meaning that if we find
one, we can expect the other. Naturally, if we lack a language to
express a certain concept explicitly, we can’t expect to develop
scientific activity around that concept.” [19, p. 342].

Although no serious attempt has yet been made to examine issues in
causality in terms of the SP Theory (but see [29, Section 10.5] and [27,
Section 7.9]), there are reasons to think that it may be more successful than
classical statistics. This is because:

• Judea Pearl, who has studied causality and its relation to statistics
in great depth, has concluded that “[An engineering diagram] is, in
fact, one of the greatest marvels of science. It is capable of conveying
more information than millions of algebraic equations or probability
functions or logical expressions. What makes [such a diagram] so much
more powerful is the ability to predict not merely how the [system]
behaves under normal conditions but also how [it] will behave under
millions of abnormal conditions.” [19, p. 344].

• The SP System, because of its potential to build new structures (Ap-
pendix B.2), has the potential to build the kinds of structures referred
to in the quote just given. This suggests that it may also have the
potential make causal inferences that may be derived from such struc-
tures, as indicated in the quote.
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