
HAL Id: hal-02060966
https://hal.science/hal-02060966

Submitted on 7 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Enabling Automatic Discovery and Querying of Web
APIs at Web Scale using Linked Data Standards

Franck Michel, Catherine Faron Zucker, Olivier Corby, Fabien Gandon

To cite this version:
Franck Michel, Catherine Faron Zucker, Olivier Corby, Fabien Gandon. Enabling Automatic Discovery
and Querying of Web APIs at Web Scale using Linked Data Standards. WWW2019 workshop on
Linked Data on the Web and its Relationship with Distributed Ledgers (LDOW/LDDL), May 2019,
San Francisco, United States. �10.1145/3308560.3317073�. �hal-02060966�

https://hal.science/hal-02060966
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Enabling Automatic Discovery andQuerying of Web APIs at
Web Scale using Linked Data Standards
Franck Michel

Université Côte d’Azur, CNRS, Inria, I3S, France
franck.michel@cnrs.fr

Catherine Faron-Zucker
Université Côte d’Azur, Inria, CNRS, I3S, France

faron@i3s.unice.fr

Olivier Corby
Université Côte d’Azur, Inria, CNRS, I3S, France

olivier.corby@inria.fr

Fabien Gandon
Université Côte d’Azur, Inria, CNRS, I3S, France

fabien.gandon@inria.fr

ABSTRACT
To help in making sense of the ever-increasing number of data
sources available on the Web, in this article we tackle the problem
of enabling automatic discovery and querying of data sources at
Web scale. To pursue this goal, we suggest to (1) provision rich
descriptions of data sources and query services thereof, (2) leverage
the power of Web search engines to discover data sources, and (3)
rely on simple, well-adopted standards that come with extensive
tooling. We apply these principles to the concrete case of SPARQL
micro-services that aim at querying Web APIs using SPARQL. The
proposed solution leverages SPARQL Service Description, SHACL,
DCAT, VoID, Schema.org and Hydra to express a rich functional
description that allows a software agent to decide whether a micro-
service can help in carrying out a certain task. This description
can be dynamically transformed into a Web page embedding rich
markup data. This Web page is both a human-friendly documenta-
tion and a machine-readable description that makes it possible for
humans and machines alike to discover and invoke SPARQL micro-
services at Web scale, as if they were just another data source. We
report on a prototype implementation that is available on-line for
test purposes, and that can be effectively discovered using Google’s
Dataset Search engine.

KEYWORDS
SPARQL, Web API, discovery, dataset, Web service, Linked Data

ACM Reference Format:
Franck Michel, Catherine Faron-Zucker, Olivier Corby, and Fabien Gandon.
2019. Enabling Automatic Discovery and Querying of Web APIs at Web
Scale using Linked Data Standards. In Companion Proceedings of the 2019
World Wide Web Conference (WWW ’19 Companion), May 13–17, 2019, San
Francisco, CA, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3308560.3317073

1 INTRODUCTION
As data sources multiply all over the Web, it becomes increasingly
crucial to enable the automatic discovery of sources suitable to
answer a certain query. Multiple portals and services allow to search

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6675-5/19/05.
https://doi.org/10.1145/3308560.3317073

datasets based on metadata, such as the manifold CKAN-based
portals1 like Datahub2 and the data portals of European states
and institutions. Some portals specialize in specific dataset formats
or interface technologies. For instance, ProgrammableWeb.com3

registers Web APIs, a loosely defined category of lightweight Web
services also referred to as REST-like or Lo-REST [25] services,
while LODAtlas [26] and SPARQLES [31] focus on RDF datasets
and SPARQL endpoints respectively.

Even though some of these portals have gained significant pop-
ularity due to the large number of datasets that they index, they
suffer relentless flaws. Firstly, they are centralized registries with a
somehow restricted scope. Consequently, potential data consumers
may have to query several portals one by one, accommodating the
various query interfaces, to discover suitable datasets. Secondly,
in many cases, datasets are manually registered and annotated by
dataset producers, thereby raising concerns about outdated meta-
data or deprecated services. Thirdly, metadata-based search results
have a limited relevance. Typically, searching datasets by keywords
and data formats is a first step in the discovery process, but a
potential consumer needs deeper insight in the data themselves
and the technical interfaces available to query the dataset. In this
respect, WSDL-based semantic Web services (e.g. OWL-S [4] or
SAWSDL [8]) tackled this question with a thorough description of
the exchanged messages, yet often failing to describe the actual
dataset being queried. Besides, they were better suited to the con-
trolled environment of companies [20] than the open environment
of the Web. By contrast, the VoID vocabulary [1] can help describe
RDF datasets with regards to vocabularies, classes and properties
used, links to other datasets, etc. But it does not address the de-
scription of what properties a resource may typically have nor how
the resources relate to each other, which are key criteria in the
discovery and selection of datasets.

To spur and enable automatic discovery and consumption of
datasets at Web-scale, we believe that a few principles should drive
future research and developments.

(1) Metadata-based search is not enough. As we pointed out
above, metadata-based search using e.g. keywords, data for-
mats, vocabularies or even classes and properties used in
an RDF dataset, is just a first step in the discovery process.
For example, assume a biologist wants to develop a software
agent capable of browsing Linked Data and gathering photos

1https://ckan.org/about/instances/
2https://datahub.ckan.io/
3https://www.programmableweb.com/

https://doi.org/10.1145/3308560.3317073
https://doi.org/10.1145/3308560.3317073
https://doi.org/10.1145/3308560.3317073
https://ckan.org/about/instances/
https://datahub.ckan.io/
https://www.programmableweb.com/

Figure 1: Envisaged use case spanning the indexing, discovery and invocation of a SPARQL micro-service.

related to biological species. The agent may submit several
queries to repositories such as LODAtlas looking for datasets
whose textual description contains keywords “photo” and
”biodiversity”, or those whose VoID description (if any) men-
tions classes representing photographies and biological taxa.
Within the matching datasets, however, nothing guarantees
that photographic resources do actually depict biological
species; photographies may well be scans of academic pa-
pers related to the species. Hence, the agent has no choice
but to query the dataset in order to get insight into it and find
out if it matches the search. This simple example illustrates
the lack of in-depth semantic description of datasets, that
would consist of the resources (what are the actual proper-
ties of photographic and taxonomic resources) along with
their mutual relationships.

(2) Thediscovery of datasets atWeb-scale should leverage
the power of Web search engines. Major search engines
such as Google, Yahoo and Bing crawl and index an unprece-
dented breadth of information every day. They already har-
vest the content of specialized open data portals, in particular
by taking advantage of the growing use of the Schema.org
vocabulary [12]. Google has recently opened a beta service
specifically dedicated to dataset search4. Therefore, despite
concerns raised by the Web centralization effect of search
engines, it is worth studying how we can take advantage
of their services to enable the discovery and querying of
datasets at Web scale.

(3) The description of datasets and their query services
should rely on well adopted (de-facto) standards. En-
abling the automatic discovery and querying of datasets at
Web-scale means that, at some point, a consensus should
be reached with respect to technologies and practices. Such
a consensus may emerge only if the selected approaches
put little constraints on and require little efforts from those
in charge of describing datasets, publishing and maintain-
ing query services thereof. This means relying on existing,
well-adopted standards or de-facto standards.
In terms of semantic description, existing vocabularies should
be leveraged, ranging from mature and widely used W3C
standards to de-facto standards such as Schema.org that
benefits from a large and growing adoption even though
it still lacks terms in many domains. Additionally, selected

4https://www.blog.google/products/search/making-it-easier-discover-datasets/

approaches should enjoy sufficient and appropriate tooling
with APIs in various programming languages. Such tools
should be relatively simple in the sense that (i) they should
not require a long learning curve from developers, and (ii)
they should be easy to deploy and maintain. In this respect,
the example of WSDL-based semantic Web service frame-
works is inspiring: their deployment and operation required
significant efforts that only companies with solid IT ser-
vices were ready to invest [25]. But when seeking Web-scale
adoption, such perceived complexity would have a counter-
productive effect.

In a previous work, we defined the SPARQL Micro-Service ar-
chitecture [23] aimed at querying Web APIs using SPARQL [14],
thus bridging the Linked Data and Web API worlds. We suggested
that this approach could foster the emergence of an ecosystem
of SPARQL services published by independent providers, allow-
ing Linked Data-based applications to glean pieces of data from a
wealth of distributed data sources, in a scalable and reliable manner.

In this article, we present further exploratory works aimed at
applying the principles set out above, and thereby make SPARQL
micro-services effectively discoverable and queryable at Web-scale.
We describe and explain our architectural and modeling choices.
Let us however underline that alternative choices may be figured
out, driven by different incentives or trade-offs. We touch upon
these considerations in the last section.

Envisaged use case. Figure 1 outlines the main steps of a typical
use case as we see it, along with the main choices that we made. A
SPARQLmicro-service produces aWeb page (step 1) whose primary
goal, beyond providing developers with appropriate documentation
and a testing interface, is to be processed by Web crawlers. It em-
beds rich markup data, notably based on Schema.org, to enhance
indexing and help search engines yield more accurate results. The
Web page is generated dynamically from the service self-description
that consists of a SPARQL Service Description (SD) graph [33] and a
SHACL shapes graph [16]. Together, they provide various metadata,
a description of the graphs that the service typically spawns, the
service inputs and outputs and the way they relate to one another.
An application willing to carry out a certain task first queries search
engines (step 2) for datasets matching certain keywords. From the
search results, it extracts and looks up SPARQL endpoint URLs.
SPARQL micro-services return an SD document that links to the
shapes graph. In turn, the application fetches the shapes graph that
allows verifying whether the service is indeed suited for the task

https://www.blog.google/products/search/making-it-easier-discover-datasets/

Figure 2: SPARQL micro-service processing workflow.

(step 3). Based on the description of the service inputs, the applica-
tion can submit an appropriate SPARQL query to the micro-service
(step 4).

The rest of this article is organized as follows. Section 2 briefly
summarizes the concepts of SPARQL micro-services and presents a
quick example. Section 3 then presents the way we describe micro-
services in amachine-readablemanner. Section 4 focuses on theway
micro-services are made discoverable at Web scale. Related works
are discussed in section 5 while the last section brings elements of
discussion and suggests future leads.

2 BACKGROUND
In [22], we described the SPARQL Micro-Service architectural prin-
ciples. Later on in [23], we extended this description and reported
on several biodiversity-related use cases. In this section, we briefly
summarize these previous works.

The SPARQL Micro-Service architecture addresses the problem
of combining Linked Data with data from non-RDF Web APIs. A
SPARQL micro-service is a lightweight SPARQL endpoint that pro-
vides access to a graph generated at run-time. This graph is shaped
by theWeb API service being wrapped, the arguments passed to the
micro-service and the types of RDF triples it is designed to produce.
How the arguments are passed to a SPARQL micro-service, and
how the Web API response is transformed into a SPARQL result,
are implementation choices.

In accordance with the micro-service architecture principles [24],
a SPARQL micro-service is typically designed to be loosely coupled
(it is deployed independently of other services, possibly using light-
weight container technologies such as Docker5) and fine-grained:
it provides access to a small, resource-centric graph corresponding
to a small fragment of the whole dataset served by the Web API.

Interestingly, this architecture can be used to assign dereference-
able URIs to Web API resources that do not have URIs in the first
place: a micro-service responds to SPARQL queries by assigning
URIs to Web API resources, while other micro-services are designed
to dereference these URIs to RDF content. This entails an effective
solution to bridge Web APIs, that are designed as closed worlds,
with the open world of Linked Open Data.

Implementation. We implemented a lightweight PHP proto-
type available on GitHub6 under the Apache 2.0 license. The pro-
totype focuses on JSON-based Web APIs, and expects arguments
of a micro-service to be passed as parameters of the service URL’s
query string. Figure 2 illustrates how a SPARQL micro-service Sµ
evaluates a SPARQL query Q . In step 1, Sµ receives query Q and
extracts the set Arдw of arguments from the HTTP query string.
In step 2, it invokes the Web API with the arguments in Arдw , in
addition to any other parameter required by the Web API. In step 3,

5https://www.docker.com
6https://github.com/frmichel/sparql-micro-service/tree/0.3.1/

Sµ translates the JSON response into an RDF graph: it carries out a
first mapping towards selected vocabularies by applying a JSON-LD
profile [30] to the response; the resulting graph G is loaded into
a local triple store; if mappings are needed that JSON-LD cannot
express, Sµ runs a SPARQL INSERT query that enriches G with
additional triples. Finally, Sµ evaluates Q againstG and returns the
result to the client.

Alternative argument-passing method. In the method de-
scribed above, the arguments of a SPARQL micro-service are passed
as query string parameters rather than RDF terms. One advantage
is that it spares creating new terms whenever a Web API-specific ar-
gument has no counterpart in existing vocabularies. Nevertheless, a
downside is that the semantics of such a SPARQL micro-service dif-
fers from that of a standard SPARQL endpoint. Indeed, the SPARQL
protocol treats a service URL as a black box, i.e. it does not identify
nor interpret URL parameters apart from those specified in the
SPARQL protocol itself. By contrast, in a SPARQL micro-service
the query string parameters are meaningful arguments that shape
the virtual graph being queried. Therefore, since one of our goals
in this article is to comply with standards (principle 3), we have re-
cently implemented an alternative method wherein arguments are
passed as regular RDF terms of the SPARQL query graph pattern.
To illustrate this, we now introduce an example that we shall reuse
throughout the rest of this article.

Running example. Let us consider the service of Flickr’s Web
API that returns a list of photos matching some criteria7. We define
Sµf as a SPARQL micro-service8 that wraps this Flickr service and
returns photos of a given biological species. Sµf takes as argument
the species scientific (taxonomic) name, and searches photos match-
ing this name. It abides by the convention that photos of a species
should be tagged with the species scientific name formatted as
taxonomy:binomial=<scientific name>9. Sµf expects the scientific
name argument to be passed as the object of the dwc:scientificName
predicate.

Listing 1 depicts a query, Q1, that meets this requirement. It
aims at retrieving photos depicting species Delphinus delphis, the
common dolphin. When it evaluates Q1, Sµf first extracts the sci-
entific name argument from the graph pattern (highlighted line)
and builds the following Web API invocation URL:

https ://api.flickr.com/services/rest/?

formatformatformat=json&methodmethodmethod=flickr.photos.search&

tagstagstags=taxonomy:binomial=Delphinus+delphis

It then submits this invocation and translates the JSON response
into an RDF graph such as the one exemplified in Listing 2. Finally,

7https://www.flickr.com/services/api/flickr.photos.search.html
8The code of this service is available at https://frama.link/kVhhnE-v.
9This is a common convention used on Flickr for biodiversity resources, in particular
the Encyclopedia of Life group (https://www.flickr.com/groups/806927@N20) and the
Biodiversity Heritage Library (https://www.flickr.com/photos/biodivlibrary).

https://www.docker.com
https://github.com/frmichel/sparql-micro-service/tree/0.3.1/
https://www.flickr.com/services/api/flickr.photos.search.html
https://frama.link/kVhhnE-v
https://www.flickr.com/groups/806927@N20
https://www.flickr.com/photos/biodivlibrary

prefixprefixprefix schema: <http :// schema.org/>
prefixprefixprefix dwc: <http ://rs.tdwg.org/dwc/terms/>

SELECTSELECTSELECT ?title ?img WHEREWHEREWHERE {
?taxon a dwc:Taxon;

dwc:scientificName "Delphinus delphis";
schema:image [

a schema:Photograph;
schema:name ?title;
schema:contentUrl ?img.

].
}

Listing 1: Query Q1 can be submitted to SPARQL micro-
service Sµf in order to retrieve photos of species Delphinus
delphis.

[] a dwc:Taxon;
dwc:scientificName "Delphinus delphis ";
schema:image <http :// example.org/ld/flickr/photo /31173091626 >.

<http :// example.org/ld/flickr/photo /31173091626 >
a schema:Photograph;
schema:name "Delphinus delphis 5 (13-7-16 San Diego)";
schema:contentUrl
<https :// farm6.staticflickr.com /5718/31173091626 _88c410c3f2_z.jpg >;

schema:mainEntityOfPage
<https :// flickr.com/photos /10770266 @N04 /31173091626 >;

schema:fileFormat "image/jpeg";
schema:author [
schema:identifier "10770266 @N04";
schema:url <https :// flickr.com/photos /10770266 @N04 >

].

Listing 2: Example graph produced by micro-service Sµf to
evaluate query Q1.

it evaluatesQ1 against this graph, yielding the response exemplified
below in the SPARQL Query Results JSON format [28]:
{ "headheadhead": { "vars": ["title", "img"] }, "resultsresultsresults ": {

"bindingsbindingsbindings ": [

{ "title": {

"typetypetype": "literal",

"valuevaluevalue": "Delphinus delphis 5 (13-7-16 San Diego)" },

{ "img": {

"typetypetype": "uri",

"valuevaluevalue": "https :// farm6.staticflickr.com /5718/ \

31173091626 _88c410c3f2_z.jpg" }

}] } }

3 MACHINE-READABLE DESCRIPTION OF
SPARQL MICRO-SERVICES

Building on the work presented in section 2, we aim at proposing a
mechanism that enables a software agent to discover, select and in-
voke the SPARQL micro-services that are relevant for a certain task.
In section 1, we pointed out three principles that, we believe, should
help pursue this goal: (1) have rich descriptions of data sources that
go beyond common metadata, (2) leverage Web search engines to
discover data sources, and (3) rely on well-adopted standards. This
section presents the modeling choices we made with respect to
principle (1), section 4 deals with principle (2) while principle (3) is
transversal to both sections.

A rich SPARQL micro-service description should span two dis-
tinct levels further detailed in this section. The high-level descrip-
tion consists of metadata about the data being queried (keywords,

publisher, license, vocabularies, graphs, etc.), as well as metadata
about the micro-service itself (supported operations, result formats,
etc.). The functional description describes the actions the ser-
vices carries out: what are the types of resources involved, what
are their recommended/expected properties, what are the service
arguments and how they relate to the resources.

3.1 High-level Description
To describe SPARQL micro-services, we use SPARQL Service De-
scription (SD) [33] which is both a vocabulary to describe SPARQL
endpoints and a method requiring compliant endpoints to return
an SD document when their URL is looked up.

Listing 3 depicts a snippet of the SD document (in the Turtle
syntax) for the example service Sµf introduced in section 2. The
service is at the same time an instance of the SD Service class and
the class of SPARQL micro-services sms:Service (line 17). Common
metadata are provided lines 19 to 26, such as a name and description,
keywords, supported SPARQL language and result formats. A VoID
description can also be embedded here, as exemplified in line 29 (the
default dataset is stated to be a void:Dataset) and lines 34 to 3610.
Additional triples are not depicted here for conciseness, such as the
service publisher and an example SPARQL query. Note that many
more metadata could be provided, such as common dataset profile
features [2]. Furthermore, in the implementation we demonstrate
here, we wrote the SD document manually. Future works could
consider dataset profiling techniques to (at least partially) automate
this generation.

The SD document is obtained by looking up the service URL.
Content negotiation is supported such that a Web browser will
obtain an HTML page, whereas a Linked Data application would
typically require one of the supported RDF serialization syntaxes.
The SD document itself is a named graph of the dataset served
by the SPARQL micro-service (line 31). The interested reader may
view the full range of metadata by looking up the named graph
URI11 in a Web browser (this will typically return an RDF/XML
representation) or by issuing the following command on a standard
Linux system:

curl --header "Accept: text/turtle" \

http ://sms.i3s.unice.fr/sparql -ms/flickr/getPhotosByTaxon_sd/

3.2 Functional Description
There exist various options to represent the functional descrip-
tion of a service. In section 5 we discuss some of them. As far as
SPARQL micro-services are concerned, we choose to leverage sev-
eral vocabularies for this purpose: SHACL [16], Schema.org and
Hydra [19].

SHACL Description of the Dataset. SHACL, the Shapes Con-
straint Language, is designed for the validation of RDF graphs
(called data graphs) against a set of conditions expressed in the
form of shapes graphs. In our context, instead of using a shapes
graph Gsh a posteriori to validate the data graph produced by a

10As an alternative, a VoID description could be made available using the well-known
URIs mechanism, at path /.well-known/void.
11http://sms.i3s.unice.fr/sparql-ms/flickr/getPhotosByTaxon_sd/ServiceDescription

http://sms.i3s.unice.fr/sparql-ms/flickr/getPhotosByTaxon_sd/ServiceDescription

1 prefix xsd: <http ://www.w3.org /2001/ XMLSchema#>
2 prefix sd: <http ://www.w3.org/ns/sparql -service -description#>
3 prefix frmt: <http ://www.w3.org/ns/formats/>
4 prefix dct: <http :// purl.org/dc/terms/>
5 prefix shacl: <http ://www.w3.org/ns/shacl#>
6 prefix void: <http :// rdfs.org/ns/void#>
7 prefix hydra: <http ://www.w3.org/ns/hydra/core#>
8 prefix schema: <http :// schema.org/>
9 prefix skos: <http ://www.w3.org /2004/02/ skos/core#>
10 prefix dwc: <http ://rs.tdwg.org/dwc/terms/>
11 prefix sms: <http ://ns.inria.fr/sparql -micro -service#>
12
13 @base
14 <http ://sms.i3s.unice.fr/sparql -ms/flickr/getPhotosByTaxon_sd />.
15
16 <>
17 a sd:Service, sms:Service;
18 sd:endpoint <>;
19 sd:supportedLanguage sd:SPARQL11Query;
20 sd:feature sd:BasicFederatedQuery , sd:EmptyGraphs;
21 sd:resultFormat
22 frmt:SPARQL_Results_JSON , frmt:Turtle , frmt:JSON -LD;
23
24 schema:name "Search for Flickr photos by taxon scientific name";
25 schema:description "...";
26 schema:keywords "biodiversity", "lifesciences", "photography ";
27
28 sd:defaultDataset [
29 a sd:Dataset, void:Dataset;
30 sd:defaultGraph [a sd:Graph; shacl:shapesGraph <ShapesGraph>];
31 sd:namedGraph [a sd:Graph; sd:name <ServiceDescription>];
32 sd:namedGraph [a sd:Graph; sd:name <ShapesGraph>];
33
34 void:vocabulary
35 <http :// schema.org/>, <http ://rs.tdwg.org/dwc/terms/>;
36 void:sparqlEndpoint <>;
37];
38
39 dct:source [
40 # Web API service being wrapped by this service
41 a schema:WebAPI; schema:name "Flickr API";
42 schema:url <https ://www.flickr.com/services/api/>;
43 schema:potentialAction [
44 a schema:SearchAction;
45 a hydra:IriTemplate;
46 hydra:template "https ://api.flickr.com/services/rest/? \
47 format=json&method=flickr.photos.search& \
48 tags=taxonomy:binomial={name}"
49
50 hydra:mapping [
51 hydra:variable "name";
52 schema:description "Taxon scientific name";
53 hydra:required "true "^^xsd:boolean;
54 skos:example "Delphinus delphis ";
55
56 # Use either hydra:property or shacl:sourceShape
57 hydra:property dwc:scientificName;
58];
59];
60].

Listing 3: Snippet of the Service Description of SPARQL
micro-service Sµf .

SPARQL micro-service, we consider Gsh as a specification of the
graphs that a SPARQL micro-service can generate.

The shapes graph is linked to the SD document as follows: the
default dataset has a default graph that is validated by the shapes
graph (property shacl:shapesGraph lines 30). The shapes graph is
itself one of the named graphs of the default dataset (line 32).

A short snippet of the shapes graph corresponding to service
Sµf is given in Listing 4. The interested reader may check the
complete shapes graph on GitHub12 or by dereferencing its URI13.
It states that an instance of class dwc:Taxon (lines 4-5) should have

12Complete shapes graph on GitHub: https://frama.link/we_EQWnC
13Shapes graph URI: http://sms.i3s.unice.fr/sparql-ms/flickr/getPhotosByTaxon_sd/
ShapesGraph

exactly three properties: rdf:typewith object dwc:Taxon (lines 9-10),
shacl:imagewhose object should be validated against another shape
(lines 12-13) and property dwc:scientificName that should have
exactly one literal object (lines 17-18). Notice that the graph pattern
of query Q1 (Listing 1) specifically matches these constraints.

Description of the Input Arguments. We now need to char-
acterize the micro-service input arguments, how they are extracted
from a SPARQL graph pattern, and how they map to parame-
ters of the Web API wrapped by the micro-service. We define the
Web API as the micro-service data source (line 39 of Listing 3).
It is typed as a Schema.org WebAPI having one potential action of
type SearchAction (lines 40-44). Note that an alternative is cur-
rently being discussed within the Schema.org community, that
links EntryPoint objects to a WebAPI [27]. The search action is also
typed as a Hydra IriTemplate whose template string is the Web
API invocation URL (lines 46-48). Each mapping (lines 50-58) maps
a parameter used in the template string to a term of the SPARQL
query by pointing to a specific property using hydra:property. In
our example, the scientific name, denoted “{name}” in the template
string (line 48), is mapped to property dwc:scientificName (line 57).
Upon invocation, the service simply reads the value of property
dwc:scientificName in the graph pattern, and substitutes it with
“{name}” in the template string.

This solution is simple and concise, but it presents two downsides:
(i) hydra:property only names a property but does not put any other
constraint such as what is the subject of this property, or how many
values are allowed; (ii) there is no explicit relationship between the
input argument and the shapes graph. Hence, to specify the input
arguments more precisely, an alternative is to map the parameter
to a property shape of the shapes graph. In our example, this would
be expressed by replacing line 57 with the following:

shacl:sourceShape <ShapesGraph#NamePropertyShape >;

The referenced property shape is defined in Listing 4 (lines 16-18).
Not only it instructs that the scientific name should be given by
property dwc:scientificName, but also that this property should be
attached to an instance of the dwc:Taxon class and that there should
be only one such property.

Advantages of using SHACL. We believe that using SHACL
presents two advantages:
(1) SHACL’s expressiveness allows denoting complex relationships
between resources (e.g. cardinality, predicate paths). Even though
this description is schema-based, it is sufficient to enable SPARQL
micro-service discovery and selection since, by construction, the
shape of generated graphs is know at design time. By contrast,
SPARQL federated query engines generally rely on dynamic instance-
based statistics because the graphs being queried can hardly be
characterized by a static SHACL description. For instance, it would
be impossible to define a precise shapes graph of crowd-sourced
graphs such as DBpedia.
(2) A SHACL shapes graph is itself an RDF graph. Therefore, a
software agent can leverage existing tooling to reason upon it and
verify whether the SPARQL micro-service fulfills the agent’s goals.
As an illustration, we are currently developing a SPARQL micro-
service federated query engine14. Given an input SPARQL query, the
engine searches candidate SPARQL micro-services whose inputs
14Beta version available at https://frama.link/VWG7r8PF.

https://frama.link/we_EQWnC
http://sms.i3s.unice.fr/sparql-ms/flickr/getPhotosByTaxon_sd/ShapesGraph
http://sms.i3s.unice.fr/sparql-ms/flickr/getPhotosByTaxon_sd/ShapesGraph
https://frama.link/VWG7r8PF

1 @base
2 <http ://sms.i3s.unice.fr/sparql -ms/flickr/getPhotosByTaxon_sd />.
3
4 <ShapesGraph#TaxonShape > a shacl:NodeShape;
5 shacl:targetClass dwc:Taxon;
6 shacl:property
7 <ShapesGraphNamePropertyShape>,
8 [a shacl:PropertyShape;
9 shacl:path rdf:type;
10 shacl:hasValue dwc:Taxon],
11 [a shacl:PropertyShape;
12 shacl:path schema:image;
13 shacl:node <ShapesGraph#PhotographShape >];
14 shacl:closed true.
15
16 <ShapesGraphNamePropertyShape> a shacl:PropertyShape;
17 shacl:path dwc:scientificName; shacl:nodeKind shacl:Literal;
18 shacl:minCount 1; shacl:maxCount 1.
19
20 <ShapesGraph#PhotographShape > a shacl:NodeShape;
21 ...

Listing 4: Snippet of the shapes graph of SPARQL micro-
service Sµf .

are satisfied by the query. It then selects those whose shapes graphs
validate some triple patterns of the query, and finally rewrites the
input query into a UNION of SERVICE clauses that invoke SPARQL
micro-services. Each step of the processing (selection, matchmaking,
query rewriting) is performed using SPARQL queries that involve
the SD documents, the shapes graphs and the input query.

3.3 Invocation
To process an incoming SPARQL query, a SPARQL micro-service
needs to extract the input arguments from the query graph pattern.
For instance, when a client invokes Sµf with query Q1 (Listing 1),
Sµf must extract the object of property dwc:scientificName (Delphi-
nus delphis) to perform the subsequent invocation of Flickr’s Web
API. This involves reasoning simultaneously on the query graph
pattern, the SD document that describes the arguments mappings,
and optionally the shapes graph if the mappings refer to property
shapes.

Since a SPARQL graph pattern is not represented in RDF, we first
translate the incoming query into its SPIN representation [15] that
we load into the local triple store as a temporary graph. A major
advantage of this approach is that extracting the input arguments
can be carried out declaratively within a single SPARQL query
rather than in custom code. This query is shown in Listing 5. The
first member of the UNION clause (lines 4-11) matches the case
where arguments are denoted with hydra:property: it retrieves the
object of hydra:property (line 8), i.e. dwc:scientificName, and looks
for it in the SPARQL query SPIN graph (line 11). By contrast, the
second member (lines 15-34) matches the case where arguments
are denoted with a property shape.

Once the arguments have been extracted, the rest of the SPARQL
query evaluation is performed as illustrated in section 2.

Implementation. To implement this solution, we deployed
Corese [7], an in-memory triple store, as the SPARQL engine un-
derlying SPARQL micro-services. Corese implements the SPARQL
Template Transformation Language (STTL) [5] and comes with a
built-in STTL SPARQL-to-SPIN transformation. For greater flexibil-
ity, our implementation allows passing arguments with VALUES

1 SELECTSELECTSELECT DISTINCTDISTINCTDISTINCT ?name ?predicate ?value
2 WHEREWHEREWHERE {
3 {
4 # Predicate given with hydra:property
5 [] a sd:Service;
6 dct:source [schema:potentialAction [hydra:mapping [
7 hydra:variable ?name;
8 hydra:property ?predicate;
9]]].
10
11 [] sp:predicate ?predicate; sp:object ?value.
12 }
13 UNIONUNIONUNION
14 {
15 # Predicate given through a property shape
16 [] a sd:Service;
17 dct:source [schema:potentialAction [
18 hydra:mapping [
19 hydra:variable ?name;
20 shacl:sourceShape ?propShape;
21]]].
22
23 ?nodeShape a shacl:NodeShape; shacl:property ?propShape.
24 ?propShape a shacl:PropertyShape; shacl:path ?predicate.
25 OPTIONALOPTIONALOPTIONAL {
26 ?nodeShape shacl:property [
27 shacl:path rdf:type; shacl:hasValue ?class
28]
29 }
30
31 [] sp:subject ?subject; sp:predicate ?predicate; sp:object ?value.
32 OPTIONALOPTIONALOPTIONAL {
33 [] sp:subject ?subject; sp:predicate rdf:type; sp:object ?class.
34 }
35 }
36 }

Listing 5: Extraction of input argument predicates and val-
ues (variables ?predicate and ?value) from a SPARQL query
submitted to a SPARQL micro-service. The default dataset
contains the SPARQL query SPIN graph, the shapes graph
and the SPARQL SD graph.

or FILTER clauses, which entails a substantially more complicated
query than the one depicted in Listing 5. In particular, it leverages
the LDScript [6] SPARQL extension to define functions able to parse
the nested RDF lists entailed by the VALUES clause15.

From a more general perspective, the approach we propose con-
siders the service as a coherent, self-contained, reflexive system
where RDF and SPARQL are used internally for the service self-
description and configuration, at run-time for the query processing,
and as the service external interface.

4 WEB-SCALE DISCOVERY OF SPARQL
MICRO-SERVICES

In section 1, we suggested that Web search engines can play a
key role in enabling the automatic discovery and querying of
data sources at Web-scale. Applied to our context, this means that
SPARQL micro-services should be published along with a dedicated
Web page to be indexed by search engines. Furthermore, major
search engines now recommend the inclusion of markup data in
Web pages to enhance indexing and consequently yield more accu-
rate results. Therefore, to spur Web-scale discovery while avoiding
redundant work, we propose that SPARQL micro-services dynami-
cally transform their service description into Web pages that embed

15The complete query is available at https://github.com/frmichel/sparql-micro-service/
tree/0.3.1/src/sparqlms/resources/read_input_from_gp.sparql.

https://github.com/frmichel/sparql-micro-service/tree/0.3.1/src/sparqlms/resources/read_input_from_gp.sparql
https://github.com/frmichel/sparql-micro-service/tree/0.3.1/src/sparqlms/resources/read_input_from_gp.sparql

rich markup data meant for search engines. Following content ne-
gotiation principles, the micro-service URL dereferences to this
Web page if it is looked up by a Web browser, while it dereferences
to the SPARQL SD document when requested with appropriate RDF
media types.

To standardize such markup data, Google, Yahoo, Bing and Yan-
dex support the Schema.org community project that has become a
de-facto standard. In particular, Google’s recently launched Dataset
Search service16 exploits Schema.org’s Dataset term17 as well as
equivalent terms from the DCAT W3C recommendation [21]. A
Schema.org Dataset consists of a set of distributions represented
by means of the DataDownload object that, unfortunately, is not
suited to depict API resources such as SPARQL endpoints. On-
going discussions are held within the Schema.org community re-
garding how to annotate a Dataset with the interfaces that allow
access it18. Until a consensus be eventually adopted, a common
workaround implemented by the CKAN data portal19 is to asso-
ciate to the DataDownload object the encoding format “api/sparql”.
Although semantically questionable (“api/sparql” is not a standard
IANA media type20), this practice is a trade-off between the need
for valid semantic description and the need for effective Web-scale
discovery means. Furthermore, given the popularity of CKAN for
hosting data portals, this practice tends to spread out.

In the context of SPARQL micro-services, we mitigate this is-
sue with a twofold approach. On the one hand, we comply with
the DataDownload + “api/sparql” encoding format practice to ensure
maximum discoverability. On the other hand, we embed additional
DCAT Dataset and Distribution objects conveying similar informa-
tion in a more semantically formal manner. Both ways are depicted
in Listing 6, lines 24-30 and 38-49 respectively.

Results. The combination of standard content negotiation, se-
mantic Web standards and current Linked Data practices fuels a
human-friendly documentation and testing interface on one side
and a machine-readable Linked Data description on another side.
Furthermore, this combined use pushes “RDF in HTML” descrip-
tions to Web crawlers and indexes in such a way that the described
services can be effectively discovered and called by both humans
and machines as if they were just another data source.

As an illustration, at the time of writing, the example service Sµf
can be discovered in Google Dataset Search using the keywords
“biodiversity” and “photography”. Figure 3 shows a snapshot of the
result page. Notice that the available download format is appropri-
ately set to SPARQL. Furthermore, adding keyword “sparql” returns
the micro-service as the first result in the result page.

Implementation. The Web page generation is performed us-
ing the technologies already introduced in section 3.3. An STTL
transformation21 instantiates HTML templates with elements from
the SPARQL SD document. The embedded markup data (exempli-
fied in Listing 6) is generated by a SPARQL CONSTRUCT query
whose result is passed to a generic built-in STTL transformation
that serializes RDF data in JSON-LD. All these transformations are

16Google Dataset Search: http://g.co/datasetsearch
17Schema.org Dataset: https://schema.org/Dataset
18https://github.com/schemaorg/schemaorg/issues/1423. Accessed Jan. 30th 2019.
19The CKAN project: https://ckan.org/
20IANA media types: https://www.iana.org/assignments/media-types/
21The whole transformation code is available at: https://frama.link/hBDkM7ep.

1 {
2 "@context ": [
3 "http :// schema.org",
4 { "dcat": "http ://www.w3.org/ns/dcat#",
5 "frmt": "http ://www.w3.org/ns/formats /" }
6],
7
8 "@type": "Dataset",
9 "identifier ":
10 "http ://sms.i3s.unice.fr/sparq -ms/flickr/getPhotosByTaxon_sd /",
11 "name": "Search for Flickr photos by scientific name",
12 "description ": "...",
13 "publisher ": {
14 "@type": "Organization",
15 "name": "Universite Cote d'Azur , CNRS , Inria , I3S",
16 },
17 "keywords ": ["biodiversity", "lifesciences", "photography"],
18 "isBasedOn ": {
19 "@type": "CreativeWork",
20 "@id": "https ://www.flickr.com/services/api/",
21 "name": "Flickr Web API"
22 },
23
24 "distribution": {
25 "@type": "DataDownload",
26 "contentUrl ":
27 "http ://sms.i3s.unice.fr/sparq -ms/flickr/getPhotosByTaxon_sd /",
28 "name": "SPARQL endpoint",
29 "description ": "SPARQL micro -service endpoint",
30 "encodingFormat": "api/sparql"
31 },
32
33 "additionalType ": [
34 "dcat:Dataset",
35 "http ://ns.inria.fr/sparql -micro -service#Service"
36],
37
38 "dcat:distribution": {
39 "@type": "dcat:Distribution",
40 "name": "SPARQL endpoint",
41 "description ": "SPARQL micro -service endpoint",
42 "dact:accessUrl ":
43 "http ://sms.i3s.unice.fr/sparq -ms/flickr/getPhotosByTaxon_sd /",
44 "dcat:mediaType ": [
45 "frmt:SPARQL_Results_JSON", "frmt:Turtle", "frmt:JSON -LD"
46],
47 "http ://www.w3.org/ns/shacl#shapesGraph ":
48 "http ://sms.i3s.unice.fr/sparq -ms/flickr/ \
49 getPhotosByTaxon_sd/ShapesGraph"
50 }
51 }

Listing 6: Snippet of the JSON-LD markup data embedded
in the automatically generated Web page of SPARQL micro-
service Sµf .

independent of any service and domain. The whole process happens
at run-time upon look-up of the micro-service URL. A snapshot
of the Web page generated by service Sµf is displayed in Figure 4,
and the reader may access this page by pointing a Web browser at
http://sms.i3s.unice.fr/sparql-ms/flickr/getPhotosByTaxon_sd/.

5 RELATEDWORKS
The work presented in this article addresses two fundamental ques-
tions that have been studied under many different perspectives:
capturing the functionality of Web services on one side, and au-
tomating their discovering and consumption by software agents on
the other side.

Works about semantic Web services, whether “big” WSDL-based
(e.g. OWL-S [4], SAWSDL [8]) or REST-based (e.g. WADL [13]),
have long tackled the question of capturing the functionality of
a service through the semantic description of their inputs, out-
puts and the way they relate to one another. These models, that

http://g.co/datasetsearch
https://schema.org/Dataset
https://github.com/schemaorg/schemaorg/issues/1423
https://ckan.org/
https://www.iana.org/assignments/media-types/
https://frama.link/hBDkM7ep
http://sms.i3s.unice.fr/sparql-ms/flickr/getPhotosByTaxon_sd/

Figure 3: Google Dataset Search result page showing the example SPARQL micro-service Sµf .
Clicking on the sms.i3s.unice.fr link opens the micro-service Web page depicted in Figure 4.

Figure 4: Web page automatically generated from the description of SPARQL micro-service Sµf .

support automatic discovery, invocation and composition of Web
services, usually entail the deployment of complex frameworks
requiring advanced skills and tooling. Besides, service discovery is
made possible using a centralized repository such as the Universal
Description Discovery and Integration (UDDI) registry22. As a con-
sequence, they are better suited to the controlled environment of

22UDDI specification: http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

companies [20] than the open, loosely constrained environment of
the Web that we wish to address.

By contrast, Web APIs are quite simple to deploy and interact
with. Still, it is hardly possible to discover and invoke them automat-
ically insofar as they commonly rely on proprietary vocabularies
described in Web-based documentation with little concern for se-
mantic interoperability. To fulfill this lack, some initiatives seek to
enrich existing human-readable documentation of Web APIs with
markup data so as to make it machine-processable. They rely on

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

microformats (e.g. hRESTS [17]) possibly joined to existing ser-
vice ontologies (e.g. MicroWSMO [9]), or RDFa (e.g. SA-REST [10]).
These methods are however more concerned with describing the
service interface (operations, parameter types) than its actual func-
tionality. Indeed, the description of the resources manipulated is
delegated to domain ontologies that provide terms for classes and
properties, but often put little constraints on how to use them. By
contrast, we harness SHACL specifically to address this lack. SHACL
can describe rich constraints on what can be stated, thus making
it possible to specify in a comprehensive manner how resources
relate to each other.

OpenAPI23 takes the problem the other way round: it equips a
Web APIs with a machine-readable documentation, that, in turn,
can be compiled into aWeb page. This is closer to our approach, yet,
this description remains at a syntactic level essentially enabling the
automatic generation of server- and clients-side stubs, very similar
to what WSDLs enabled for “heavy” Web services.

Linked REST APIs (LRA) [29] is a framework dedicated to the
semantic annotation of Web APIs and the automatic specification
of SPARQL query execution plans that invoke these Web APIs. The
framework relies on a centralized repository that stores the Web
APIs descriptions and offers search services. Several key differences
with our work can be pointed out. With SPARQL micro-services,
we seek to set up a totally distributed architecture wherein indepen-
dent service providers may publish SPARQL micro-services that
can be discovered using regular Web search engines, rather than
a centralized repository. Furthermore, LRA describes a Web API
by means of a custom vocabulary and relies on a SPARQL graph
pattern to serve as a functional description. To spur large adoption,
we instead stick to standard vocabularies, and we use SHACL to
describe resources as it allows for more expressiveness than a sheer
SPARQL graph pattern.

RESTdesc [32] is a semantic description format for hypermedia
APIs. It captures the functional description of APIs in Notation3 [3],
a language extending RDF’s data model with variables, existential
and universal quantifiers, and logical implications. RESTdesc relies
on the HTTP mechanisms and RESTful principles for the discovery
and invocation of semantically described Web services. Starting
from a known URI, an application can follow its nose by resolv-
ing links and making sense of Notation3 service descriptions. This
is an elegant solution that however requires Notation3 reasoners
able to interpret the advanced features of quantification and logical
implications. Such reasoners exist but are far less common than
SPARQL-based implementations available in many programming
languages. Since we seek a solution that can be adopted easily by
a large community of independent actors, leveraging more com-
mon standards such as regular RDF and SPARQL is probably more
promising.

In line with our idea of leveragingWeb search engines to discover
relevant datasets and query services, SpEnD [34] is a metacrawler
designed to discover SPARQL endpoints. It first creates a list of
keywords commonly found on Web pages advertising SPARQL
endpoints, such as the pages of DataHub. It then looks for these
keywords on search engines, explores the result Web pages looking
for SPARQL endpoint URLs and looks up these URLs in search for

23https://github.com/OAI/OpenAPI-Specification

VoID or SPARQL SD documents. This kind of approach is clearly
what could be implemented to discover SPARQL micro-services at
Web scale. We believe that the usage of well-adopted markup data
could help enhance search results and, in this respect, dataset-search
services such as Google Dataset Search could be more effective than
generic Web search engines.

6 CONCLUSION AND PERSPECTIVES
In this article, we address the problem of enabling automatic discov-
ery and consumption of data sources at Web scale. We suggested
that three principles should be considered to pursue this goal: (1)
provision rich descriptions of data sources and query services, (2)
leverage the power of Web search engines to discover data sources,
and (3) rely on simple, well-adopted standards that come with ex-
tensive tooling. We applied these principles to the concrete case
of SPARQL micro-services that aim at querying Web APIs using
SPARQL. The proposed solution considers a SPARQL Service De-
scription (SD) document as the description central point. It links
to a SHACL shapes graph describing precisely the resources ma-
nipulated by the micro-service. It also connects the resources to
the micro-service inputs, thereby coming up with a rich functional
description that allows a software agent to decide whether this
micro-service can help in carrying out a certain task. To enable
accurate discovery using common Web crawlers, the SD document
can be dynamically transformed into a Web page embedding rich
markup data based on Schema.org’s Dataset term and the DCAT
vocabulary.

From a general perspective, the combination of standard content
negotiation, semantic Web standards and Linked Data practices
fuels a human-friendly documentation and machine-readable de-
scription that make it possible for humans and machines alike to
discover and invoke SPARQL micro-services as if they were just
another data source.

We showed that our approach is effective as our example SPARQL
micro-service can be successfully discovered using the Google
Dataset Search engine (as illustrated in Figure 3). From this point
on, a framework such as SpEnD (described in section 6) could be ex-
tended to accommodate the invocation of SPARQL micro-services.
Service composition-based query answering systems could fetch
the shapes graphs of candidate SPARQL micro-services, check the
compatibility of their inputs and outputs with respect to the query
to process, and finally compute and enact valid compositions. In
particular, SPARQL query federation is a specific type of Web ser-
vice composition wherein any piece of data in the federated graphs
may play the role of either an input or an output. Existing federated
query engines could be extended so as to reason on the descrip-
tion of SPARQL micro-services and come up with query plans that
respect SPARQL micro-services’ input requirements.

As pointed out in section 4, denoting a SPARQL endpoint using
Schema.org terms is still quite unpractical at the moment. From a
more general perspective, describing the multiple interfaces that a
client may use to access a dataset is an increasingly pressing need.
The Schema.org community is currently thinking this through with
discussions revolving around the Dataset, WebAPI and EntryPoint

terms. Concomitantly, the DCAT community is working out the
next version of the W3C DCAT recommendation [11] that defines

https://github.com/OAI/OpenAPI-Specification

the generic concept of DataService meant to serve dataset distribu-
tions. The term is flexible enough to accommodate various types of
interfaces, providing notably a contract the interface conforms to
and an out-of-band description that may typically be a SPARQL SD
document in our context.

In the current state of our work, SHACL graphs are used as
a specification of the graphs that a SPARQL micro-service can
generate. We can think of two interesting leads for future works in
this respect. Firstly, once a shapes graph is published with its own
dereferenceable URI, it can be reused by SPARQL micro-services
providers, thereby sparing time and making it possible to share
common practices. A second lead could be to consider SHACL as a
way for a client to request responses in a certain shape. This would
amount to some sort of extended content negotiation where a client
could express that it would prefer a response not only favoring a
vocabulary over another, but also describing resources and their
relationships according to a certain shape, as much as possible.

Finally, whether our approach succeeds in reaching principle
(3) (rely on well-adopted standards) is debatable and possibly a
matter of perspective and community. Some people contend that
Semantic Web standards are not likely to be largely adopted by
Web developers [18] due to the perceived complexity of RDF and
SPARQL, as compared to RESTful APIs for instance. Besides, SHACL
is a rich language, yet perhaps too rich to gain large adoption. In
the end however, we do believe that there will be room for different
types of interfaces, suited to different contexts and scenarios. This
article primarily intends to propose a research direction, not a
ready-to-use solution. And we encourage the interested readers to
explore alternative architectural and modeling choices.

REFERENCES
[1] Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao. 2011.

Describing Linked Datasets with the VoID Vocabulary. W3C Recommendation
(2011).

[2] Mohamed Ben Ellefi, Zohra Bellahsene, John G. Breslin, Elena Demidova, Stefan
Dietze, Julian Szymański, and Konstantin Todorov. 2018. RDF Dataset Profiling –
a Survey of Features, Methods, Vocabularies and Applications. Semantic Web –
Interoperability, Usability, Applicability 9, 5 (2018), 677–705. https://doi.org/10.
3233/SW-180294

[3] Tim Berners-Lee and Dan Connolly. 2011. Notation3 (N3): A Readable RDF
Syntax. W3C Team Submission (March 2011).

[4] Mark Burstein, Jerry Hobbs, Ora Lassila, DrewMcDermott, Sheila McIlraith, Srini
Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, Evren Sirin, Naveen
Srinivasan, and Katia Sycara. 2004. OWL-S: Semantic Markup for Web Services.
W3C Member Submission (2004).

[5] Olivier Corby and Catherine Faron-Zucker. 2015. STTL: A SPARQL-Based Trans-
formation Language for RDF. In 11th International Conference on Web Information
Systems and Technologies (ISWC). Lison, Portugal.

[6] Olivier Corby, Catherine Faron-Zucker, and Fabien Gandon. 2017. LDScript: A
Linked Data Script Language. In Proceedings of the 16th International Semantic
Web Conference (ISWC). Springer, Vienna, Austria, 208–224.

[7] Olivier Corby and Catherine Faron Faron-Zucker. 2010. The KGRAM Abstract
Machine for Knowledge Graph Querying. In Proceedings of the International
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT). IEEE,
338–341.

[8] Joel Farrell and Holger Lausen (Eds.). 2007. Semantic Annotations for WSDL and
XML Schema. W3C Recommendation (2007).

[9] Florian Fischer and Barry Norton. 2009. MicroWSMO v2 – Defining the Second
Version of MicroWSMO as a Systematic Approach for Rich Tagging. Technical
Report.

[10] Karthik Gomadam, Ajith Ranabahu, and Amit Sheth. 2010. SA-REST: Semantic
Annotation of Web Resources. W3C Member Submission (2010).

[11] Alejandra Gonzalez Beltran, Dave Browning, Simon Cox, and Peter Winstanley.
2019. Data Catalog Vocabulary (DCAT) - revised edition. W3C Editor’s Draft 01
February 2019 (2019). https://w3c.github.io/dxwg/dcat/ Accessed: 2019-02-01.

[12] R. V. Guha, Dan Brickley, and Steve MacBeth. 2015. Schema.Org: Evolution of
Structured Data on theWeb. ACMQueue - Strutured Data 13, 9 (2015), 10:10–10:37.
https://doi.org/10.1145/2857274.2857276

[13] Marc Hadley. 2009. Web Application Description Language. W3C Member
Submission (2009).

[14] Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language.W3C Recom-
mendation (2013). http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

[15] Holger Knublauch. 2013. SPIN - SPARQL Syntax. W3C Member Submission
(2013).

[16] Holger Knublauch and Dimitris Kontokostas (Eds.). 2017. Shapes Constraint
Language (SHACL). W3C Recommendation (2017).

[17] Jacek Kopecky, Karthik Gomadam, and Tomas Vitvar. 2008. hRESTS: An
HTML Microformat for Describing RESTful Web Services. In Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelligence (WI-IAT). 619–625.
https://doi.org/10.1109/WIIAT.2008.379

[18] Markus Lanthaler and Christian Gütl. 2011. A Semantic Description Language
for RESTful Data Services to Combat Semaphobia. In Proceedings of the IEEE
International Conference on Digital Ecosystems and Technologies. 47–53. https:
//doi.org/10.1109/DEST.2011.5936597

[19] Markus Lanthaler and Christian Gütl. 2013. Hydra: A Vocabulary for Hypermedia-
Driven Web APIs. In Proceedings of the 6th Workshop on Linked Data on the Web
(LDOW2013). CEUR-WS.

[20] Moussa Lo and Fabien Gandon. 2007. Semantic Web Services in Corporate
Memories. In Proceedings of the Second International Conference on Internet and
Web Applications and Services. https://doi.org/10.1109/ICIW.2007.59

[21] Fadi Maali, John Erickson, and Phil Archer. 2014. Data Catalog Vocabulary
(DCAT). W3C Recommendation (Jan. 2014).

[22] Franck Michel, Catherine Faron-Zucker, and Fabien Gandon. 2018. SPARQL
Micro-Services: Lightweight Integration of Web APIs and Linked Data. In Pro-
ceedings of the Linked Data on the Web Workshop (LDOW2018), Vol. 2073. CEUR,
Lyon, France, 10.

[23] Franck Michel, Catherine Zucker, Olivier Gargominy, and Fabien Gandon.
2018. Integration of Web APIs and Linked Data Using SPARQL Micro-
Services—Application to Biodiversity Use Cases. Information 9, 12 (Dec. 2018),
310. https://doi.org/10.3390/info9120310

[24] Sam Newman. 2015. Building Microservices. O’Reilly Media.
[25] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. 2008. RESTful Web

Services vs. “Big” Web Services: Making the Right Architectural Decision. In
Proceedings of the 17th International World Wide Web Conference (WWW2008).
Beijnig, China, 805–814. https://doi.org/10.1145/1367497.1367606

[26] Emmanuel Pietriga, Hande Gözükan, Caroline Appert, Marie Destandau, Šejla
Čebirić, François Goasdoué, and Ioana Manolescu. 2018. Browsing Linked Data
Catalogs with LODAtlas. In Proceedings of the 17th International Semantic Web
Conference (ISWC). Monterey, USA, 17.

[27] Mike Ralphson and Ivan Goncharov. 2017. WADG0001 WebAPI type extension.
Draft Community Group Report (2017). https://webapi-discovery.github.io/rfcs/
rfc0001.html

[28] Andy Seaborne. 2013. SPARQL 1.1 Query Results JSON Format. W3C Recommen-
dation (2013).

[29] Diego Serrano, Eleni Stroulia, Diana Lau, and Tinny Ng. 2017. Linked REST
APIs: A Middleware for Semantic REST API Integration. In Proceedings of the
IEEE International Conference on Web Services (ICWS). IEEE, Honolulu, HI, USA,
138–145. https://doi.org/10.1109/ICWS.2017.26

[30] Manu Sporny, Dave Longly, Gregg Kellog, Markus Lanthaler, and Niklas Lind-
ström. 2014. JSON-LD 1.0. A JSON-based Serialization for Linked Data. W3C
Recommendation (2014). https://www.w3.org/TR/2014/REC-json-ld-20140116/

[31] Pierre-Yves Vandenbussche, Jürgen Umbrich, Luca Matteis, Aidan Hogan, and
Carlos Buil-Aranda. 2017. SPARQLES: Monitoring Public SPARQL Endpoints.
Semantic Web 8, 6 (Aug. 2017), 1049–1065. https://doi.org/10.3233/SW-170254

[32] Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Jos De Roo, Rik Van de
Walle, and Joaquim Gabarro Vallés. 2011. Description and Interaction of RESTful
Services for Automatic Discovery and Execution. In Proceedings of the Interna-
tional Workshop on Advanced Future Multimedia Services. Future Technology
Research Association International (FTRA), Jeju, South Korea.

[33] Gregory Tood Williams (Ed.). 2013. SPARQL 1.1 Service Description. W3C
Recommendation (2013).

[34] Semih Yumusak, Erdogan Dogdu, Halife Kodaz, Andreas Kamilaris, and Pierre-
Yves Vandenbussche. 2017. SpEnD: Linked Data SPARQL Endpoints Discovery
Using Search Engines. IEICE Transactions on Information and Systems E100.D, 4
(2017), 758–767. https://doi.org/10.1587/transinf.2016DAP0025

https://doi.org/10.3233/SW-180294
https://doi.org/10.3233/SW-180294
https://w3c.github.io/dxwg/dcat/
https://doi.org/10.1145/2857274.2857276
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://doi.org/10.1109/WIIAT.2008.379
https://doi.org/10.1109/DEST.2011.5936597
https://doi.org/10.1109/DEST.2011.5936597
https://doi.org/10.1109/ICIW.2007.59
https://doi.org/10.3390/info9120310
https://doi.org/10.1145/1367497.1367606
https://webapi-discovery.github.io/rfcs/rfc0001.html
https://webapi-discovery.github.io/rfcs/rfc0001.html
https://doi.org/10.1109/ICWS.2017.26
https://www.w3.org/TR/2014/REC-json-ld-20140116/
https://doi.org/10.3233/SW-170254
https://doi.org/10.1587/transinf.2016DAP0025

	Abstract
	1 Introduction
	2 Background
	3 Machine-readable Description of SPARQL Micro-Services
	3.1 High-level Description
	3.2 Functional Description
	3.3 Invocation

	4 Web-Scale Discovery of SPARQL Micro-Services
	5 Related Works
	6 Conclusion and Perspectives
	References

