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Abstract. In recent years, flash evaporation processes have received an increased attention in the wine industry
for must concentration applications. Specific constraints related to the wine industry area had lead to many
improvements of flash evaporators initially designed for seawater desalination. In particular the quality of the
vintage, the transportability of the system and the environmental impact are of main interest. Moreover, the
preliminary design of such systems must also consider robustness criteria. Obviously, variations of temperatures
and flow rates of liquids at the inlet of the process can dramatically impact the quality of the product at the
system outlet. In particular, deviations from the target values of temperature and alcoholic volume fraction can
lead to a severe degradation of the vintage. As it is common in product design to have multiple performance
measures, the robust design problem is addressed using a multi-objective approach. A trade-offs is introduced
between two main design objectives: (i) the improvement in overall performance (product quality,
transportability, environmental impact and costs) and (ii) the lowering of the sensitivity of the product
quality under uncertainty. These main objectives are related to several elementary objectives corresponding to
design criteria and a preference aggregation method is used to formulate the two different design objectives.
Objectives are linked to weighting parameters values equivalent to priority levels. The selection of the most
preferred design solution is discussed according to different trade-off strategies. The generation of the Pareto set
is addressed by the non dominated sorting genetic algorithm NGSAII. From computing results, our
recommendations concern the compromise between performance and robustness of flash evaporators. In this
context, the final alcoholic volume fraction of the wine is the most sensitive parameter, which justify to maintain
a high value of evaporative capacity when designing this type of system.

Keywords: Flash evaporation / robustness / desirability function / trade-off / non dominated sorting genetic
algorithm

1 Introduction

In recent years, flash evaporation processes have received
an increased attention in many different domains of
concentration processes such as desalination of water [1].
Concerning food engineering, a general overview of flash
processes could be seen in [2] where several applications like
flash distillation or milk treatment (pasteurization or
sterilization) are developed. For fruit juices Ruan proposes
in [3] a mathematical model for multiple stages of flash
evaporation. In the wine industry a review of main
extraction processes is proposed in [4] including flash
evaporation processes. Due to a drop of the table wine
consumption and changes of consumer tastes, there is a
growing interest in using flash evaporation processes in the
wine industry. Indeed, according to specific studies for the

pre-treatment of grapes by flash-release (or flash détente),
benefits come from considerable improvements of the wine
quality and enhancement of its gustative properties [5–7].
In particular, the final content of polyphenol in the wine
(chemical agent in the berries skin tissues responsible for
the colour and flavour of red wines) is at least 50% higher
compared to wines obtained from traditional production
techniques [8].

Figure 1 shows the must concentration by flash
evaporation within the wine production process. This
operation consists in increasing the alcoholic volume
fraction of the must until the final desired value. As a
general rule, an enrichment of 1% by volume required to
evaporate 10% of the vintage volume. Typically, grapes are
first heated at temperatures ranging between 70 °C to 90 °C
according to traditional postharvest process [9]. The
vintage is then brutally cooled by flash evaporation to
temperatures ranging between 25 °C to 30 °C which are
suitable for vintage fermentation. The terminology flash* e-mail: yann.ledoux@u-bordeaux.fr
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comes from the quasi-instantaneous and partial vaporiza-
tion of the vintage when it is subjected to a sudden drop of
pressure below its saturation pressure [10]. As a conse-
quence, the liquid temperature drops to the saturation
temperature corresponding to the lowered pressure.
Additionally, due to this abrupt change of pressure,
sudden mechanical constraints appear within berry skin
tissues, enhancing the release of many different substances
such as tannins, and thus, improve the color and some
gustative properties of wines.

In practical terms, specific constraints related to the
wine industry area had lead to many improvements of flash
evaporators initially designed for seawater desalination [11]
and flavors extraction [12] applications. Typical flash
evaporators must be designed to treat grape mass flow rate
of at least 10 t/h which corresponds to the treatment of the
whole harvest of an average vineyard of 19 ha, with a
production efficiency of 50 hl/ha in the region of Bordeaux
[13], during a working day (∼10 h). This requirement often
leads to oversized systems while flash evaporators are
required to be transportable from a wine production site to
another during the harvest period. But, the main weakness
of this system is its high energy consumption impacting the
environment and increasing considerably the operating
costs, and so the price of wine (given in €/l of wine). Indeed,
thermal and electrical energy (defined in kW·h/hl of wine)
are required respectively to heat the vintage at the inlet of
the evaporator, and to supply pumps for liquids circulation
and fan for the warm air in the cooling tower (cf. Fig. 1).
The water consumption of the system is due to the
evaporation of the water required to condensate the vapors
within the condensers while it goes through the cooling
tower. Based on this considerations, the system designed
by Sebastian et al. [12,14] is based on the development of a
two-staged evaporator combined with the used of compact
condensers and mist eliminators. The main components of
this process and the industrial system have already been
presented in [15,16].

In a recent study, the formulation of the model was
proposed by [17]. In [18], we tackled the preliminary design
of this flash evaporator by trading-off multiple conflicting

design objectives of performance such as transportability,
environmental impact, operative cost, product quality and
cooling power. A multi-objective optimization (MO)
method based on preferences formulation with desirability
functions is proposed to investigate the design space, and
thus, determine the most preferred solution. However, this
approach still cannot be considered completely satisfactory
since we processed a nominal optimization without taking
into account the inherent variability of operating con-
ditions and environmental parameters (uncertainties) that
may disturb the nominal performances of the system.
Obviously, variations of temperatures and flow rates of
liquids (must and water) at the inlet of the process can
dramatically impact the quality of the product at the
system outlet. In particular, deviations from the target
values of temperature and alcoholic volume fraction can
lead to a severe degradation of the vintage. These two
parameters are definitively decisive for the final wine
quality and thus, their variations must be controlled.

The purpose of this research work is to determine an
optimal robust design for the two-staged flash evaporator
previously discussed. A design is called robust if it achieves
simultaneously a satisfying level of performance and low
sensitivity under uncertainty. Robust design methodolo-
gies are widely used in engineering to improve the quality of
products and processes [19]. As the reduction of the overall
degree of uncertainty impacting the systems performances
is often impossible, robust design aims at designing systems
that are relatively insensitive to variability and impreci-
sion. Most of the time, the system quality is estimated
through a quality loss function [20,21]. The “parameters
design” method proposed by Taguchi [21] aims at
determining the design parameters values while variability
is considered. In this way, he introduced a “signal-to-noise”
ratio to evaluate the robustness of each candidate solution,
expressed as:

h ¼ � 10log
y

s

� �

; ð1Þ

where y and s denote respectively the mean and the
standard deviation of the performance. Many robust

Fig. 1. Must concentration by flash evaporation in the wine production process.
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optimization approaches based on the calculation of these
two measures have been developed in the past few years. It
can be cited the work of Brotchie in [22] optimizing a
structural optimization or Parkinson in [23] applying same
procedure in general analytical problem. Du in [24]
introduce the probabilistic approach in design formulation
and Ardakani in [25] has proposed to compare different
strategies based on mean and standard deviation quanti-
fications. A review of the different existing robust
optimization methods can be found in the litterature. A
general overview is available in [26] or in [27]. The works of
Arvidsson [28] or of Schuëller [29] are more dedicated to
analyze computation methods for the robust design.
However, the interpretation of the performance mean
and standard deviation are sometimes difficult in presence
of non-Gaussian distributions.

As it is common in product design to have multiple
performance measures, robust design is often addressed
using aMO approach like in [30] or in [31]. Basseur in [32] or
Greiner [33], have introduced uncertainties into multi-
objective optimization. In a recent study [34], we proposed
to formulate the sensitivity of the design as a particular
design objective to be traded-off. However, this approach
doesn’t allow designers to express a compromise between
the performance and the sensitivity while, these objectives
must be obviously balanced according to the designers’
expectations.

In this paper, we address the robustness of the flash
evaporator as a trade-off between two design objectives: (i)
the improvement in overall performance (efficiency, trans-
portability, environmental impact, costs) and (ii) the
lowering of the sensitivity of the product quality under
uncertainty. Three objectives measures are proposed to

observe the dispersion of the performances: the bandwidth of
variation, the tolerance to nominal, and the minimum
admissible value. No assessments are made on the
distribution of noise factors (temperatures and flow rates).
A preference aggregation method is used to formulate the
two design objectives. The selection of the most preferred
design solution is discussed according to different trade-off
strategies and scenarios. The design objective linked to the
product quality has been modified to integrate the
enhancement of gustative properties and the rate of must
concentration. The generation of the Pareto set is addressed
by the non dominated sorting genetic algorithm NGSAII.

2 Two-staged flash evaporation process and
design model

This paragraph aims at introducing briefly the principles of
the two-stage flash evaporator, and at characterizing the
main variables associated to the design of the system.

2.1 Principles

The two-staged flash evaporator represented in diagram
form in Figure 2 is designed to treat about 10 t/h of grapes.
The vintage is initially heated at temperatures ranging
between 70 °C to 90 °C under atmospheric conditions, and
stored in the buffer tank (1) where it is stirred by a mixer
(2) to maintain a uniform temperature. The system is put
under vacuum conditions due to the action of a vacuum
pump (4a) coupled with an air ejector (4b). A pump makes
the fluid to be sucked up the low-pressure stage of the
evaporation chamber. As soon as the product enters in the

Fig. 2. Two-stage flash evaporator principles.
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low pressure (LP) expansion chamber (6a), a part of the
liquid phase is suddenly vaporized, and the level of the
remaining fluid rises and activates the float (8) to maintain
the pressure difference between the stages. Entering in the
very-low pressure (VLP) stage (6b) of the evaporation
chamber, the fluid is then once again partially vaporized.
The remaining part of the fluid is extracted by the
extraction pump (5) which is an eccentric rotor pump of the
Archimedes screw type. This type of pump is well adapted
for moving fluids containing solid particles such as grapes.

The vapor created by the fluid evaporation is condensed
through two condensers, one for each stage (3a, 3b), to
maintain in the system under low pressure conditions.
Condensates are stored in a tank from where they are
extracted by a condensate pump (9). As the vaporization at
the low-pressure stage is very violent, droplets are formed
and carried out with the vapor. Therefore, a mist
eliminator (7) is added to ensure the droplet recovery.
The cooling of vapors within the condensers is maintained
by the joint action of a mechanical draft cooling tower (11)
coupled with a centrifugal pump (12).

The transfers, dimensional, environmental and eco-
nomical models contributing to the design model of the
flash evaporation process are not detailed in this paper, but
the reader could refer to [15–17] for further explanations.

2.2 Definition of design variables

Modeling of flash evaporator design problems requires the
definition of the design variables (x). Such variables are the
main dimensioning and monitoring parameters required to
completely define the system (regarded as a candidate
solution) and its functioning environment (vintage and
coolant liquid). They refer to the inlet temperature (Tpi) of
the product (must and grapes), the inlet temperature (Tcl)
and flow rate (qcl) of the coolant liquid (water), the flow
rate (qcl+) of the coolant added to the LP condenser, and
finally, the number of plates in the low-pressure (NLP) and
very low-pressure (NVLP) condensers. Condensers can be
composed up to 250 plates which represents amaximal heat
surface exchange of 40m2 by condenser. As the flash
evaporator is supposed to be designed to treat 10 t/h of
grapes, the inlet product flow rate is considered here as a
constant parameter of the design model.

Design variables are provided with admissible domains
of values, generating the so called design space (V) to be
investigated. The ranges of design variables values are

provide in Table 1. As a set of design variable values
characterizes one particular candidate solution, different
combinations of design variables values lead to flash
evaporators with different levels of performance.

2.3 Performance and observation variables

Performances of two-staged flash evaporator are observed
through a set of observation variables. They are suitable
measures of some system properties, required to support
the decision making process. The discrimination of design
alternatives is based on the evaluation and comparison of
their ability in meeting simultaneously every design
criteria, i.e. equality or inequality constraints associated
with observation variables. Moreover, every criterion and
so, observation variable, can be associated to the
achievement of the following design objectives of perfor-
mance: improving the quality of the product, improving the
system transportability, reducing the environment impact
of the system and reducing the overall total cost.

2.3.1 Quality of the product
Due to the importance of preserving the gustative
properties of wine while meeting international and regional
legislations of the wine-making practices, the quality of the
product (i.e. grapes and must) at the outlet of the flash
evaporator is the first design objective to be considered.
The quality of the product depends both on the tempera-
ture, the level of final alcoholic volume fraction and the rate
of polyphenol of vintage at the outlet of the system. The
temperature of the product at the outlet of the flash
evaporator (Tpo) is equal to the saturation temperature of
the vapor inside the VLP stage of the evaporation chamber.
Depending on the type of wine expected, the desired target
temperature can slightly vary from one producer to
another. But, in general, the continuity and efficiency of
the fermentation process is ensured for temperatures
comprised between 10 °C (the temperature below is too
low for the yeast to work in the fermentation process) and
35 °C (die of the yeast).

The rate of concentration (Cx) of the product is the
ratio between the mass flow rate of water evaporated
during the process and the initial mass flow rate of product:

Cx ¼
qvapor
qpi
¼
qpi � qpo
� �

qpi
ð2:3:1Þ

Table 1. Design variables and associated domain of values.

Design variables x= [x1, …, x6]T Name Unit Domain V(X)= [x� ; x+]

x� x+ Type
Inlet product temperature (x1) Tpi °C 70 90 Continuous
Inlet coolant temperature (x2) Tcl °C 15 25 Continuous
Inlet coolant flow rate (x3) qcl t/h 1 20 Continuous
Flow rate of the coolant added to the low-pressure condenser (x4) qcl+ t/h 1 25 Continuous
Number of plates in the low-pressure condenser (x5) NLP – 6 250 Discrete
Number of plates in the very low-pressure condenser (x6) NVLP – 6 250 Discrete
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where qpi and qpo are respectively the input and output
product flow rate, qvapor is the mass flow rate of water
eliminated during the process. The rate of concentration
determines the evaporative capacity of the system. The
mass flow rate of water to be eliminated, and so, the rate of
concentration, are constrained by the desired final alcoholic
volume fraction of the must. In general, it is estimated
using the following formula [35]:

qvapor ¼ qpi � qpo with qpo ¼ qpi⋅
Dpi

Dpo
ð2:3:2Þ

where Dpi and Dpo are respectively the initial and final
alcoholic volume fraction of the must. For example,
increasing the alcoholic volume fraction from 11% to
12.5% by volume, of 100 hl of must, implies a vaporization
of 12 hl of water.

As the release of tannins and polyphenol mainly
depends on the drop of pressure in the expansion chambers,
and according to the results presented in [8], we considered
here that the pressure inside the very low pressure chamber
must be at least of 94mbar.

2.3.2 Transportability
As mentioned in the introduction, the transportability of
the system is a significant design objective since it must be
moved from one wine production site to another during the
harvest period. The transportability depends both on the
floor area (Asys) and the overall mass (msys) of the system
which must not exceed a limit defined by the standard
maximal capacities of flat bed trucks. It is estimated by
calculating the mass and size of tanks (expansion
chambers, buffer and condensates tanks), condensers
and pumps which are the biggest and heaviest components
of the system. The total mass of the system also involves
the mass of the metallic structure used to support the flash
evaporator.

msys ¼ mtanks þmcondensers þmpumps þmstructure

Asys ¼ Atanks þAcondensers
ð2:3:3Þ

2.3.3 Environmental impact
Facing with the emergence of environmental constraints in
the agricultural field, the environmental impact of the flash
evaporation process must be also considered as a design
objective. One of the main inconvenient of flash evapora-
tion processes is its high consumption of energy, materials
and fluids. In this study, the material consumption of the
system is mainly based on the total mass of steel used for
manufacturing the tanks. Based on the EcoIndicator99
methodology [36], the relative impact corresponding to 1
ton of steel is quantified and the related damage coefficients
(environment, human health, resources) are derived.

EImaterial ¼ a1 þ a2 þ a3ð Þ⋅msys

ta1 ¼ 1:9ðenvironmentÞ; a2 ¼ 13 233ðhumanhealthÞ;

a3 ¼ 2:3ðresourcesÞ ð2:3:4Þ

Similarly, we evaluate the damage coefficients associ-
ated to the consumptions of 10 kW·h and 1m3 of water.
Finally, a global score EI is derived from the impacts of
material, energy and water consumptions.

EI ¼ EImaterial þ EIelec þEIwater
with;

EIelec ¼ b1 þ b2 þ b3ð Þ⋅Celec; b1 ¼ 0:145;
b2 ¼ 0:0139; b3 ¼ 0:0271

EIwater ¼ c1 þ c2 þ c3ð Þ⋅Cwater; c1
¼ 0:0187; c2 ¼ 0:00204; c3
¼ 0:00607 ð2:3:5Þ

The energy consumption calculation is based on the
power required to supply the different pumps, mixer and
fan. The water consumption corresponds to the mass flow
rate of water used by the cooling tower. Mechanical draft
cooling towers consume water in three major ways [37].
Evaporation rate (CE) is approximately 1% of the water
flow rate per each 10 °F (≈5.5 °C) of the cooling range. Drift
(CD) is approximately 0.2% of the water flow rate, and
refers to the water which leaves the cooling tower carried
out with the exiting air. In order to prevent concentration
of solid and chemical particles in the cooling water resulting
from the evaporation, blowdown (CB) is the mass of water
removed from the system and replaced by fresh water. It is
usually 20% of the evaporation rate.

Celec ¼ Powermixer þ Powerfan þ
P
Powerpumps

� �
⋅top

Cwater ¼ CE þ CD þ CBð Þ⋅top
ð2:3:6Þ

The electrical consumption and water consumption are
respectively expressed in kW·h and t/h. They are
estimated over a period of 20 years with an average
operating time of 10 h a day during 2 months (duration of
the harvest period).

2.3.4 Total cost
The development of flash détente processes in the wine area
is also hampered by the initial cost of investment. The
economical analysis of the flash evaporator aims at
modeling manufacturing costs (material purchase and
forming) of tanks, and purchasing costs of other parts of the
flash evaporation system (condensers, pumps, etc.). The
global purchasing cost of the system is calculated by adding
these manufacturing and purchasing costs for each part of
the system. The total investment (Cinvest) cost of the
process results from this global purchasing cost multiplied
by the Lang factor to take into account installation costs,
transportation costs and various costs such as insurance
[38].

From the investment cost of the system, we derive the
maintenance cost which is assessed as 2.5 per cent of the
investment cost, and the total discounting cost of the
system which is estimated from the coefficient of
discounting evaluated over a period of twenty years. The
overall operating cost (Cop) over this period is derived from
the electricity and water consumption costs calculated

T. Quirante et al.: Mechanics & Industry 19, 207 (2018) 5



according to the peak charges applied by EDF (0.1275 €/
kW·h) and the average price of water distributed in France
(3.39 €/m3) in 2011. Finally, the overall total cost (Ctotal) is
calculated by adding the overall costs of discounting and
the operating cost of the system.

3 Expression of performance objective
through desirability

The approach based on the concept of desirability and
developed for modeling the preference and optimizing the
design architecture had already been presented by
Sebastian et al. [18].

3.1 Desirability functions and criteria

Desirability functions are value functions mapped between
zero and one, which enable to bring the observation
variables on a same scale of values. They allow the designer
to model preferences on the criteria satisfaction, and thus,
enhance the design model with non-formalized expert
knowledge. Harrington’s desirability functions [39] are
declined into one-sided type or two-sided type depending if
the property is expected to be minimized (or maximized) or
if a target value is desired. The specification of these
functions requires at least four parameters which are the
desirability and threshold values associated to the defini-
tion of an absolute constraint (AC) and a soft limit (SL).
Absolute constraints specification usually corresponds to
the criteria expressed in the requirements. In this study,
the soft limits related to transportability and cost criteria
are derived from a system of reference with intermediate
performance, i.e. associated with a global desirability of
0.5.

The system of reference is a mono-stage evaporator
proposed by the society “Entropie SAS”. It had been chosen
to concentrate 10 t/h of product from 11% to 12% by
volume which corresponds to an evaporative capacity of
1 t/h of water. From the constructor data, we evaluate the

weight and floor occupation of this system respectively
equal to 5.3 t and 10m2, for an estimated cost of investment
of close to 153 k€. The criteria related to the product
quality are mainly turned into target objectives. As an
example, the desirability functions associated to the mass
and output temperature criteria are plotted in Figure 3.
Criteria and desirability function specifications used in this
study are given in Table 2.

3.2 Design objective of performance

Individual desirability functions are then aggregated into
design objective indices (DOI), and finally, into a global
desirability index (GDI) of performance as follow:

GDIperfo ¼ ∏
4

i¼1

DOIi
wi ; w ¼ 0:5; 0:3; 0:1; 0:1½ �

T

with DOI1 ¼ d1
1=3d2

1=3d3
1=3; DOI2 ¼ d4

1=2d5
1=2;

DOI3 ¼ d6
1; DOI4 ¼ d7

1=2d8
1=2 ð3:2Þ

These values qualify the level of achievement for each
design objective. The aggregation function is the weighted
geometric mean as proposed by Derringer [40]. This
aggregation function presents mathematical properties
which are relevant in a design context. According to the
axioms of the Method of Imprecision (MoI) developed by
Anthonsson [41], this aggregation function is said to be
design appropriate [42]. In particular, the axiom of
annihilation states that the result of the aggregation must
be equal to zero if at least one of the desirability values
equals zero. The definition of an aggregation function also
includes the definition of a weight vector w to express
priority orders between objectives. Multicriteria decision
methods such as Saaty’s Analytic Hierarchy Process
(AHP) [43] can be used as basis for the numerical weights
assignment.

The global formulation of the performance design
objective is summarized in graph form in Figure 4. The
simulation model, desirability and aggregation functions

Fig. 3. Desirability functions for the mass and the output temperature.
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are highlighted in different colors. The numerical weights
involved in the aggregation processes are reported in italic
font.

4 Uncertainties and design objective of
sensitivity

Due to the inherent uncertainty and external fluctuations
of the operating conditions, performances are often
disturbed from their nominal predictive values. In this
study, a design is said to be robust if it presents
simultaneously a satisfying level of overall performance
and a low variability of the vintage quality. It entails the
minimization of the dispersion of the vintage outlet
temperature (y1), final alcoholic volume fraction (y2) and
pressure inside the VLP chamber (y3) around their nominal
values under uncertainty. In the following, we denote as
nominal, the value of a variable (or a parameter) without
taking any uncertainty into account.

4.1 Uncertainty modeling

The robust design of flash evaporators deals with the
variability of operating conditions and uncertainty caused
by modeling errors. They are considered as random
uncertainties without any assessment on their distribution.
The ranges of variations of uncertain variables and

parameters used in this study are given in Table 3.
According to the analysis proposed by Chen [30], we denote
noise factors as uncontrollable parameters (Type I), and
inherent variations of design variables as control factor
(Type II).

Fluctuations during operating phases of flash evapo-
rators are due to variations of inlet temperatures and mass
flow rates of liquids (product and coolant) which can
dramatically impact the quality of vintage by shifting its
nominal output temperature and final alcoholic volume
fraction from the target value. The temperatures variations
of the must and coolant are supposed to be up to±1 °C
around their nominal values. As the flash evaporator had
been originally designed to concentrate 10 t/h of must, the
inlet product flow rate can vary of ±1 t/h from the initial
value depending on the size of the vineyard.

Moreover, heat transfer coefficients values are derived
from experimental correlations that are highly sensitive to
physical phenomena with values that are difficult to
predict. Due to their predominant role in the heat transfer
within the condensers, modeling errors affecting heat
transfer coefficients may cause significant inaccuracies in
the predictions of the nominal performances. We add two
other variables (kLP and kVLP) to assign a variability of
±1% on these parameters.

In practical terms, the simplest way to deal with
uncertainty is to introduce stochastic variability during the
evaluation of candidate solutions. Thus, it is equivalent to

Table 2. Desirability function specifications.

Design objectives Observation var. Name Unit Desirability functions specifications
DOI= [DOI1, …, DOI4]T y= [y1, …, y8]T d= [d1, …, d8]T

AC d(AC) SL d(SL) Objective

1) Product quality

Product output temperature Tpo (°C) 20 0.05 25 0.9
Target35 0.05 30 0.9

Alcoholic volume fraction Dpo (%) 11 0.05 11.8 0.9
Target13 0.05 12.2 0.9

Pressure PVLP (mbar) 97 0.01 94 0.9 Minimize

2) Transportability
Mass msys (t) 7.5 0.01 5.3 0.5 Minimize
Floor area Asys (m2) 16 0.01 10 0.5 Minimize

3) Environmental impact Eco-Indicator EI99 (–) 50000 0.01 1000 0.99 Minimize

4) Cost
Investment Cost Cinvest (k€) 465 0.01 141 0.5 Minimize
Operating costs Cop (k€) 153 0.01 84 0.5 Minimize

Fig. 4. Formulation of the performance design objectives.
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define and evaluate a neighborhood around the nominal
design configuration such as:

ey ¼ f ex; eð Þ; ex ¼ xþ Dx ð4:1Þ

where ey is the vector of disturbed observation variables
computed from the vector of design variables x submitted
to the variations of noise factors e and control factorsDx. In
nominal evaluation, every combination of design variables
results in a unique set of performances. The variability
propagated through the behavior model of the flash
evaporator towards observation variables results in a set
of different functioning states characteristic of one
candidate solution.

The analysis of the effects of design variable variations
on the performances mainly depends on the method used to
simulate uncertainty. In general, uncertainty can be
introduced in the simulation model through Monte Carlo
simulation, Taylor series expansion or experimental design
tables [44]. In our approach, we use the third method. We
use a Box-Behnken design (5 factors, 3 levels) to sample the
domain of noise and control factors as shown in Table 4.
Box-Behnken design is an economical fractionalized
design, useful while it is expensive to perform the necessary
experimental runs. Therefore, 41 experiments are required
to evaluate the dispersion of the performance. The choice of
a fractional design enables to achieve a homogenous

repartition of the experiments around the nominal, and
thus a suitable representation of the observation variables
excentration. Initially, design of experiments is used to
derive a numerical model of the system behavior. It is not
the purpose of our approach. Instead, we use design of
experiments only for defining a set of points to be
evaluated.

4.2 Measures of performance sensitivity

Facing with epistemic uncertainties, the calculations of the
average performance and standard deviation appear of little
interest. Instead, we propose three othermeasures to qualify
the sensitivity of theperformances.Theyare respectively the
bandwidth of variation (a), the tolerance to nominal (b) and
theminimumadmissible value (g). Everymeasure is applied
to the observation variables y1, y2 and y3 (i.e., the output
product temperature, the final alcoholic volume fraction and
the pressure inside the VLP stage). The measures of the
performance sensitivity are presented below.

4.2.1 Bandwidth of variation
The bandwidth of variation (a) is the distance between the
extreme values achieved for the observation variable
disturbing design variables. It corresponds to the maxi-
mum range of variation to be expected for the performance.

Table 3. Uncertainties in operating and modeling phases of flash evaporators.

Type Variables and parameters Name Unit Variation

Control factors (Dx)
Inlet product temperature Tpi (°C) ±1 °C
Inlet coolant temperature Tcl (°C) ±1 °C

Noise factors (e)
Input product mass flow rate qpi (t/h) ±1 t/h
Heat transfer coefficients kLP (W·m� 2·K� 1) ±1%

kVLP (W·m� 2·K� 1) ±1%

Table 4. Box-Behnken design (5 factors, 3 levels (respectively 0, � 1, +1)).

Exp. Factors
# Tpi (°C) Tcl (°C) qpi (t/h) kLP (%) kVLP (%)
1–4 ±1 ±1 0 0 0
5–8 0 0 ±1 ±1 0
9–12 0 ±1 0 0 ±1
13–16 ±1 0 ±1 0 0
17–20 0 0 0 ±1 ±1
21–24 0 ±1 ±1 0 0
25–28 ±1 0 0 ±1 0
29–32 0 0 ±1 0 ±1
33–36 0 ±1 0 ±1 0
37–40 0 ±1 0 ±1 0
41 0 0 0 0 0
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This measure is expected to be minimized and is defined as:

ai ¼ jmax eyið Þ � min eyið Þj ð4:2:1Þ

This measure is equivalent to define an interval of
confidence around the target value to be satisfied. For
example, the temperature of the outlet product is expected
to be changed of less than 1 °C.

4.2.2 Tolerance to nominal
The tolerance to nominal (b) measures the eccentricity of
the nominal. It is dedicated to replace the nominal
performance value toward the center of its interval of
variation which can be seen as the center of gravity of the
neighborhood (cf. Fig. 5a). This measure is also submitted
to minimization and is expressed as:

bi ¼ jyi � yij; yi ¼ mean eyið Þ ð4:2:2Þ

4.2.3 Minimum admissible value
For a given performance, the minimum admissible value
(g) is the smallest desirability scores among the neighbor
solutions:

gi ¼ min d eyið Þð Þ ð4:2:3Þ

This measure is related to a reliability approach since it
constrains performance variations to remain in the range of
admissible values. The minimum of the desirability scores
is subjected to be maximized.

Figures 5a and 5b give an insight of the sensitivity
measures in a 3d space. The convex hull formed by the set
of tested points is represented. The sensitivity measures are
evaluated through a set of constraints which is equivalent
to the definition of a volume of control around the nominal
performance. Thus, the objective is to keep the perfor-
mance dispersion within this volume of control.

4.3 Design objective of sensitivity

In the same way that we explain the performance criteria
into desirability functions, the different sensitivity mea-

sures are turned into objectives by specifying relevant
desirability functions specifications. The observation
variables concerned by theminimization of their variability
are related to the vintage quality, i.e. the output
temperature of the must, the final alcoholic volume
fraction and the pressure in the low pressure chamber.
Criteria and desirability function specifications are given in
Table 5. In the same way, we have represented the design
objective of performance (cf. Fig. 4) the formulation of the
sensitivity objective is summarized in graph form in
Figure 6.

The design objectives are: (i) limit the bandwidth of
variation, (ii) limit the distance of the nominal value to the
centre of gravity and (iii) increase the minimum admissible
value. The resulting DOIs are computed by taking the
minimum of the desirability values. According to the
axioms of the MoI [41], this aggregation function is also
considered as design appropriate. In [45], this function is
used to aggregate desirability functions. The GDI related
to design sensitivity results from a geometric mean
aggregation of the DOIs:

GDIsens ¼ ∏
3

i¼1

gDOIi
vi
; v ¼

4

10
;
4

10
;
2

10

� �T

with;

gDOI 1 ¼ min
i ¼ 1 . . . 3
j ¼ 1 . . . 3

edi aj
� �� �

;

gDOI 2 ¼ min
i ¼ 4 . . . 6
j ¼ 1 . . . 3

edi bj
� �� �

;

gDOI 3 ¼ min
i ¼ 7 . . . 9
j ¼ 1 . . . 3

edi gj
� �� �

ð4:3Þ

The min aggregation function enables to improve the
lowest desirability value to the expense of the global
desirability level of the design solution. Inversely, the
weighted geometric mean aggregation reflects the intention
of improving the global level of desirability by worsening
the lowest desirability value.

Fig. 5. Representation of the performance sensitivity measures.
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5 Numerical solving
5.1 Formulation of the robust design optimization
model

Fundamental basis of multiobjective problems (MO) are
presented by Coello [46] and Miettinen [47]. In this section,
only the main principles of MO problems are described. In
general, MO problems can be formally expressed as:

minimize f xð Þ ¼ f1 xð Þ; f2 xð Þ; . . . ; fk xð Þ½ �
T

Subject to:
gi xð Þ≥ 0 i ¼ 1; 2; . . . ;m
hi xð Þ ¼ 0 i ¼ 1; 2; . . . ; p

x∈V; x ¼ x1;x2; . . . ;xn½ �
T

ð5:1:1Þ

where x designates the vector of design variables (or
decision variables) taken in the design space V, f is the
vector of objective functions to be jointly optimized, gi and

hi refer respectively to the m inequality and p equality
constraints to be satisfied.

Principles of MO are different from classical mono-
objective approaches. Indeed, the main objective of a
mono-objective optimization is to find the global optimum
solution, i.e. the one which minimizes (or maximizes) the
objective function. However, real life applications often
involve more than one objective (minimization of the mass,
minimization of costs, etc.). Moreover, these objectives are
often in conflict, making impossible the determination of a
unique optimal solution, but rather a set of equivalent
solutions which must be traded-off. When at least two
conflictual objectives are traded-off, the classical meaning
of optimum is no longer adapted. Instead, the terminology
Pareto optimum is generally used.

A vector of variables x* V is said Pareto optimal if ∀ x
V, i I={1,2,…,k}, such as fi (x)= fi (x*), then 9 j I such as:
fj (x)> fj (x*). Instead of determining a unique solution,
MO provides a set of Pareto optimal solutions. Every

Table 5. Desirability functions specification for the performance sensitivity measures.

Design objectives
gDOI ¼ gDOI1 ; . . . ; gDOI3

h iT Observation
var. ey ¼ ey1 ; . . . ; ey3½ �

T
Name Unit Desirability functions

specifications ed ¼ ed1 ; . . . ; ed9

h iT

AC d(AC) SL d(SL) Objective

1) Bandwidth of variation:
Output temperature a1 (°C) 1 0.01 6 0.9 Minimize
Alcoholic volume fraction a2 (%) 1 0.01 4 0.9 Minimize
Pressure a3 (mbar) 10 0.01 40 0.9 Minimize

2) Tolerance to nominal:
Output temperature b1 (°C) 0.25 0.01 2.5 0.9 Minimize
Alcoholic volume fraction b2 (%) 0.05 0.01 1.25 0.9 Minimize
Pressure b3 (mbar) 5 0.01 20 0.5 Minimize

3) Minimum admissible:

Output temperature g1 (°C) 20 0.05 25 0.9
Target35 0.05 30 0.9

Alcoholic volume fraction g2 (%) 11 0.05 11.8 0.9
Target13 0.05 12.2 0.9

Pressure g3 (mbar) 97 0.01 94 0.9 Minimize

Fig. 6. Formulation of the sensitivity design objective.
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solution of this set is optimal as it is impossible to reach any
solutions which are better simultaneously for every
objective.

The determination of the Pareto frontier is based on the
notion of dominance between solutions. Let us consider two
candidate solutions, denoted A and B, then A dominates B
if and only if: ∀ i I={1,2,…,k}, fi (A)� fi (B) and 9 j I such
as: fj (A)< fj (B). If A dominates B, then it is said that B is
dominated by A, or A is non-dominated by B. Therefore,
Pareto optimal solutions are also denoted as non-
dominated solutions. The set of Pareto optimal solutions,
or non-dominated solutions, defines the Pareto frontier.
Figure 7 shows a non convex Pareto frontier for a bi-
objectives minimization problem. Solutions in black
represent the set of non-dominated solutions. Using the
principle of dominance, the set of dominated solutions can
be ordered by defining sub-optimal Pareto frontiers. These
solutions are designated as weakly Pareto optimal. Thus,
solutions in dark grey represent the solutions which are
simultaneously dominated by A and B, and not dominated
by D, whereas solutions in light gray are solutions which
are dominated both by A, B and C.

In this study, a design is considered as robust if it
achieves a satisfying level of performance while maintain-
ing a low level of variability under uncertainty. This is
expressed mathematically with a statement similar to
equation (5.1.1) in which the objectives functions are
replaced by the GDIperfo and GDIsens. We can therefore
obtain a robust design of two-stage flash evaporator by
solving the following bi-objective optimization problem:

maximize GDI xð Þ ¼ GDIperfo xð Þ;GDIsens xð Þ
� �T

Subject to: x∈V; x ¼ x1;x2; . . . ;x6½ �
T

ð5:1:2Þ

One can notice that design constraints are no longer
explicit but intrinsic to the design problem definition. Due
to discontinuities within the response surface and numer-
ous local extrema created by weighted aggregations,
classical gradient-based optimization approaches appear
inadequate, and thus, this MO problem is numerically
solved by genetic algorithm which enables a global
investigation of the design space.

5.2 Genetic algorithms and NGSAII

Genetic algorithms (GA) are metaheuristic used to solve
non-trivial optimization problems. They simulate the
natural selection process of individuals in an unfavorable
environment. The survival of the fittest [48] states that
within a population, the most adapted individuals tend to
live long enough to breed whereas the weakest tend to
disappear. By analogy with the natural evolution rules, GA
consists in making a population of candidate solutions to
evolve toward the optimum.An individual corresponds to a
candidate solution of the optimization problem. The
quality of each individual is evaluated through a fitness
function (the function to be optimized). The best
individuals of the current population are first selected by
comparison of their fitness scores, and then, a new

population of solutions is created for the next generation
by crossover and mutation operations. This process is
performed generation after generation, until the termina-
tion criteria is reached (the maximum number of iterations
for example).

According to Deb [49], most of GA developed for MO
problems must ensure the convergence toward the Pareto
frontier with a uniform repartition of the non-dominated
solutions. The NSGA-II (Non Dominated Sorting Genetic
Algorithm) developed by Deb [50] is a popular GA for MO.
It’s a very effective algorithm due to the elitist approach
which enables to keep the best individuals from a
generation to another. It uses a selection procedure based
on non-dominance principle and it requires no parameters
specification. It uses a comparison operator based on the
computation of crowding distance.

A schematic description of NGSAII principles is
represented in Figure 8. A parent population Pt of size
N and a children populationQt of sizeN are gathered into a
population Rt of size 2N (as usual). This operation enables
to apply elitist strategy. Individual of the resulted
population Rt are sorted according to a non-dominance
criteria to identify the different frontiers Fi. Each
individual is assigned with a rank (fitness) value based
on the front they belong to. Thus, the best individuals will
belong to the first frontier (fitness value of 1). In addition to
the fitness value, a crowding distance is calculated for each
individual. The crowding distance is a measure of how close
an individual is to its neighbors. It is computed according
to the perimeter formed by its closest neighbors on each
objective. Large average crowding distance results in better
diversity within the population. Parents are selected from
the population by using binary tournament selection based
on the rank and crowding distance. A new children
population is then created by genetic operators (crossover
and mutation). In [51], the Simulated Binary Crossover
(SBX) and the Polynomial Mutation are proposed as real-
coded GA’s operators.

The flash evaporators’ robust design problem
(Eq. (5.1.2)) had been addressed by NGSAII with a
population of 250 individuals and a limit criterion of 200

Fig. 7. Pareto frontier and dominance relation for a bi-objective
minimization problem.
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generations. We use the real-coded GA operator with a
distribution index of 20. The fitness computation proce-
dure is represented in the flow chart of Figure 9. Results are
presented and discussed in the following section.

6 Results and discussion

The results are summarized from Figure 10 to Figure 14.
The Pareto set (GDIperfo, GDIsens) in Figure 10 is composed
of 250 robust design solutions. The two ends of the frontier
respectively correspond to the design solutions with the
lowest sensitivity and with the highest level of perfor-
mance. In the following, we have plotted the design
variables, observation variables and desirability levels
according to the GDIperfo values of the candidate solutions.
It is equivalent of plotting the design properties in function
of the Pareto optimal solutions.

Looking at the design variables, we notice that the
achievement of robust design solutions is mainly concerned
with the input product temperature (Tpi), the coolant
liquid temperature (Tcl) and the number of plates in the LP
condenser (NLP). The evolution of these three design
variables with the GDIperfo are reported in Figure 11a, 11b
and 11c. The coolant liquid flow rate required is about
12.5 t/h of water (qcl=5.55 t/h, qcl+=6.94 t/h). The VLP
condenser is composed by 23 plates (NVLP). On Figure 11d,
we have also reported the evaporative capacity expressed
in liter of water evaporated per hour. Discontinuities are
due to the variation of the number of plates in the LP
condensers (NLP) which evolves from 247 to 248. The
validity domain of the flash evaporator thermodynamic
model imply a reduction of the condenser heat transfer area
to increase the evaporative capacity of the system
(improvement of the cooling power), and so its perfor-
mances. Inversely, the evaporative capacity is required to
be slightly decreased to reduce the variability of the
product quality. It means that such a system will be able to
cool vintage at a lower inlet temperature (decreasing of the
cooling power).

The observation variables related to the system’s
performance and their interpretation into desirability
scores are represented in Figure 12. The desirability scale
is placed on the right axis. As the achievement of the
product quality objective is highly prioritized (numerical
weight of 0.5) in the geometric mean aggregation, the
performance optimization is mainly driven by the output
product temperature (Tpo), the final alcoholic volume
fraction (Dpo) and the pressure inside the VLP stage
(PVLP). Consequently, these three performance measures
get very high desirability levels (higher than 0.95). The
satisfaction of the final alcoholic volume fraction criterion
is linked to the evaporative capacity of the system by
equation (2.3.2). To reduce the variability of the product
quality, the performance of the evaporator must be
decreased. Its evaporative capacity is smaller, and
consequently the design solution moves away from the
target objective being realized. The high prioritization of
the quality objective also requires an increase of the cooling
power, and therefore of the systems’ overall dimensions.
Thus, the reduction of the performance variability leads to
design solutions which are more transportable. As a
consequence, the energy consumptions and overall costs
are reduced. These results strongly depend on the weight
assignment values used in the aggregation formula. The
evolution of the design objectives indexes with the GDIperfo
are represented in Figure 14.

Themeasures related to the design sensitivity (ai, bi, gi)
are represented in Figure 13. The desirability scores
associated to ai and bi have also been represented (gi is
already expressed as a desirability value). According to
Figures 13c, 13f and 13i, the variation of the pressure inside
the VLP chamber is not significant and remains acceptable.
However, the dispersions of the output temperature and
final alcoholic volume fraction are significant. From the
variability of the inlet flow rates and temperatures, it
results a bandwidth of variation of 3.4 °C for the outlet
product temperature (a1) and 2.48% for the final alcoholic
volume fraction (a2). Looking at the tolerance to nominal
measure (b), it appears that the dispersions of these two
variables remain close to the nominal value. Finally, the

Fig. 8. NGSA-II principles (Deb 2002).

12 T. Quirante et al.: Mechanics & Industry 19, 207 (2018)



minimum admissible measure (g) shows that the variabili-
ty of the final alcoholic volume fraction can lead to
undesirable results, i.e. solutions with a desirability level
lower than 10� 2. The variability of Tpo and Dpo tend to be
reduced by design solutions with a lower level of
performances. The design objective indexes related to
the design sensitivity are represented in Figure 14.

According to the robust design problem definition, the
sensitivity of the quality product face to external

uncertainty can be slightly reduced by performing some
compromises on the performance. In particular, the cooling
power and the evaporative capacity of the system are
lower. However, the design objectives linked to the
transportability, the environmental impact and the costs
are more achieved. The purpose of the following section
deals with the selection of the most preferred solution
within the Pareto set by performing different trade-off
strategies.

Fig. 9. Fitness computation procedure.

Fig. 10. Pareto set for the robust design problem of flash evaporator.
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6.1 Decision process and trade-off strategies

The selection of the most preferred design solution depends
on the trade-offs strategy which is used by the designer. In
the MoI, a class of suitable aggregation functions for
modeling trade-offs in engineering is proposed [42]. These

functions are derived from the general weighted mean
which, in the bi-objective case, is expressed as:

Ps f1; f2;w1;w2ð Þ ¼
w1f1

s þ w2f2
s

w1 þ w2

� �1=s

; s∈ ℜ ð6:1Þ

Fig. 11. Evolution of design variables along the Pareto frontier.

Fig. 12. Evolution of the observation variables and desirability levels along the Pareto frontier.
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Fig. 13. Evolution of the design sensitivity measures along the Pareto frontier.

Fig. 14. Evolution of the design objective indexes along the Pareto frontier.
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where the parameter s represents the trade-off strategy. It
can be seen as a measure of the compensation level.
Increasing the value of s reflects the intention of improving
one particular objective by lowering the others. For s=1,
the aggregation function P1 is the classical weighted sum
aggregation:

P 1 f1; f2;w1;w2ð Þ ¼
w1f1 þ w2f2
w1 þ w2

ð6:2Þ

This situation is denoted as a super-compensatory
strategy [42]. From equation (6.1), it can be shown [42] that
when s!0, the aggregation function P0 corresponds to the
weighted geometric mean aggregation (cf. Eq. (3.2)) which
is a compensatory strategy:

P0 f1; f2;w1;w2ð Þ ¼ f1
w1 ⋅f2

w2ð Þ
1= w1þw2ð Þ

ð6:3Þ

In the same way, while s!� ∞, the function P � ∞
refers to the min aggregation function and traduces a non-
compensatory strategy:

P � ∞ f1; f2;w1;w2ð Þ ¼ min f1; f2ð Þ ð6:4Þ

In the following, we discuss the selection of the most
preferred design solution on the flash evaporator example
according the following strategies: weighted sum aggrega-
tion, weighted geometric aggregation, min aggregation.

It is well known that the weighted sum (WS)
aggregation suffers from serious drawback due to its
inability in detecting solutions in non-convex parts of the
Pareto frontier [52,53]. Actually, real Pareto frontiers are
rarely completely convex. As a consequence, using a WS
aggregation, many of the relevant solutions can’t be
selected. If we consider the extreme case, i.e. a purely non-
convex Pareto frontier, whatever the weights values, only
solutions at the ends could be captured. On Figure 15a, it
appears that the WS approach enables to capture 50
solutions over 250 (20% of recovery), using a discretization
step of 5e� 6 for the weights. For each detectable point,
there is a couple of weights such as the solution can be
captured [42]. Thus, the designer can filter the Pareto
frontier by adjusting the weights value according to its
preferences, keeping in mind that many solutions couldn’t
be selected. Assigning wperfo with the values 0.95, 0.98 and
0.99, leads to select solutions with different levels of
robustness. Under the threshold value of 0.95, only the
sensitivity optimum is captured.

Theweighted geometric (WG)mean aggregation ismore
effective than the WS aggregation in detecting solutions
non-convex parts of the Pareto frontier. However, the
capture of the detectable solutions is often hampered by the
high sensitivity of the weights approaching the ends of the
frontier. On Figure 15b, it appears that 52 solutions are
captured over 250 (20.8%) using the same discretization step
as the previous case. But, increasing the discretization step
of the weights enables to capture more solutions. Assigning
wperfo with the values 0.95, 0.98 and 0.99, leads to different
solutions that the ones achieved with the WS aggregation.

Finally, in Figure 15c, the non-compensatory strategy
is applied. As the selection is based on the minimum of the

GDI scores, the sensitivity optimum is captured. Fixing
wperfo to zero and wsens to one, a WS or WG aggregation
leads to the same result.

In Table 6, all found solutions with the different trade-
off strategies are available. For each of them, the values of
the design variables are listed. It could be observed that for
all captured solutions, the Tpi is closed to 70 °C. This value
corresponds to the low value of the range. The temperature
of the cooling water is subjected to small variation since the
initial value is equal to 20 °C and the Tcl is around 18.7 °C
(decrease of about 1.5 °C). All solutions use an important
mass flow rate of water (qcl and qcl+) since the operating
cost of cooling is a less sensitive criterion than the output
temperature of the product (Tpo). This late could be
considerate as a relevent parameter of the final product
quality.

It could be observed that all solutions have an
important number of plates (247 or 248 plates) for the
low pressure condenser and a number of plates constituting
the very low pressure condenser of 23. It can notice a factor
of 10 between these two condensers corresponding to the
fact that the cooling need concerns essentially the LP stage.
The VLP condenser is only used to adjust the outlet
product temperature. The cooling flow rate in the VLP
condenser is of the same order of magnitude as the flow
added to low pressure condenser (qcl+).

Indeed, the need for cooling in VLP is small compared
to the need for cooling LP. More to this point, it is
interesting to use a important flow rate of water in the VLP
since it will be also used in the LP condenser. This relative
important rate allows a good control of the product cooling
at the machine output. More generally, the performance of
the solutions is high and its sensitivity is low compared to
the desirability thresholds. This do not improve a pre-
existing solution. This leads to a solution improving the
value of criteria derived from available information related
to actual processes.

6.2 Recommendations

From the previous analysis, we derive some recommenda-
tions about the robust design of flash evaporators.
According to the design requirements, the resulting set
of optimal solutions shows a weak gain in sensitivity
compared to the loss of performance. Obviously, from the
previous section, it appears that a high priority is required
on the performance objective (wperfo> 0.95) to detect
potential solutions. As the development of flash evapo-
rators for must concentration applications is mainly
concerned with the quality of the product at the system
outlet, the evaporative capacity criterion must be fulfilled
and thus highly prioritized. The weak values of the design
sensitivity objectives are mainly due to the high sensitivity
of the final alcoholic volume fraction. Consequently, in the
context of this study, we show that an oversized system
with a high evaporative capacity appears as the most
adapted design to ensure an increase of the alcoholic
volume fraction of 1%while avoiding the degradation of the
product quality when the evaporator is moved from an
exploitation site to another.
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7 Summary and conclusion

In this research work, a methodology for achieving robust
design of flash evaporators for the wine industry has been
presented. The developed approach tackles the robust
design problem as a trade-off between two main objectives:
(i) improve the overall level of performance including the
quality of the vintage, the transportability of the system
and the total costs; (ii) reduce the sensitivity of some
performances, namely the temperature of the outlet
product and the final alcoholic volume fraction, under
epistemic uncertainty. An originality of the method is to
consider uncertainties without probabilistic distributions.
We also introduce three measures to observe the dispersion
of the performances: the bandwidth of variation, the
tolerance to nominal, and the minimum admissible value.
A preference aggregation method is used to formulate the

two design objectives. The design objective of performance
is based on weighted geometric mean aggregations whereas
the sensitivity objective involves min aggregations steps.
These two aggregation strategies are considered as design
appropriate, and thus, enables to reflect accurately the
intentions of the designer. The Pareto set of the optimal
design solutions is generated by the non-dominated sorting
genetic algorithm NGSAII. Finally, the selection of the
most preferred solution according to different trade-off
strategies has been discussed.

From the robust design formulation and criteria
definitions, the methodology enables to show that the
variability of the product quality, in particular the vintage
output temperature and final alcoholic volume fraction,
can be reduced by performing some compromises on the
performances. These two observation variables are decisive
for the wine quality and their variationsmust be controlled.

Table 6. Optimal design selection with different trade-off strategies.

Aggregation function Weights Selected solution GDI values Design variables

wperfo wsens GDIperfo GDIsens Tpi (°C) Tcl (°C) qcl (t/h) qcl+ (t/h) NLP NVLP

Weighted sum (s=1)
0.95 0.05 #237 0.9234 0.3790 70.83 18.88 5.55 6.94 248 23
0.98 0.02 #56 0.9239 0.3643 71.81 18.66 5.55 6.94 247 23
0.99 0.01 #27 0.9240 0.3612 72.06 18.66 5.55 6.94 247 23

Weighted product
(s=0)

0.95 0.05 #249 0.9234 0.3796 70.79 18.88 5.55 6.94 248 23
0.98 0.02 #226 0.9234 0.3783 70.89 18.88 5.55 6.94 248 23
0.99 0.01 #70 0.9239 0.3659 71.69 18.66 5.55 6.94 247 23

min (s!� ∞) #250 0.9234 0.3797 70.79 18.89 5.55 6.94 248 23

Fig. 15. Selection of the most preferred solution according different trade-off strategies.
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In this way, the quality product objective has been highly
prioritized. Such a strategy coupled with a geometric mean
aggregation leads to small improvements of the other
objectives. But, another assignment of weight values may
lead to different system configurations which can be more
robust. Finally, in the last section, we have observed that
the selection of the most preferred design solutions can be
modeled by a class of function which is more or less
compensatory, and thus, the modeling of trade-offs is of
main interest. Obviously the designer should be able to
express howmuch he is prepared to loose in performance to
reduce the variability of the design. This salient point will
be the subject of further development and research works.

Nomenclature

Physical variables and parameters (associated
unit)

C Energy consumption (kW·h)
C Costs (€)
Cx Rate of concentration (1)
D Alcoholic volume fraction (%)
EI Environmental Impact (1)
h Heat transfer coefficient (W·m� 2·K� 1)
m Mass (t)
N Number of plates within the condensers (1)
P Pressure (Pa)
q Mass flow rate (t/h)
A Floor area (m2)
T Temperature (°C)
t Time (s)

Decision variables and parameters
(associated unit)

d Desirability score (1)
ed Desirability score related to the sensitivity objec-

tive (1)
DOI Design Objective Index (1)
gDOI Design Objective Index related to the sensitivity

objective (1)
GDI Global Desirability Index
x Vector of design variables
ex Disturbed design variables vector
y Vector of observation variables
eyi Disturbed vector associated to the ith observation

variable
yi Average of the ith observation variable values
w Vector of numerical weights

Greek symbols

V Design space
a Measure of the bandwidth of variation

b Measure of the tolerance to nominal
g Measure of the minimum admissible value
Dx Variation of control factors
e Variation of noise factors
s Standard deviation
f Flash evaporator simulation model

Subscripts

cl Coolant liquid
elec Electric
invest Investment
LP Low pressure
op Operating
perfo Performance
pi Inlet product
po Outlet product
sens Sensitivity
sys System
VLP Very Low Pressure

References

[1] J.W. Wu, M.J. Biggs, E.J. Hu, Dynamic model for the
optimisation of adsorption-based desalination processes,
Appl. Therm. Eng. 66 (2014) 464–473

[2] Z. Berk, Food process engineering and technology, 2nd
edition, Food science and technology, International Series,
Elsevier, 2013, 1–721.

[3] Q. Ruan, H. Jiang, M. Nian, Z. Yan, Mathematical modeling
and simulation of countercurrent multiple effect evaporation
for fruit juice concentration, J. Food Eng. 146 (2015) 243–
251.

[4] A.G. Reynolds, Managing Wine Quality: vol. 2 Oenology
and Wine Quality, Woodhead Publishing, 2010, 589–630.

[5] D. Ageron, J.L. Escudier, Ph. Abbal, M. Moutounet,
Pretreatment of grapes by flash detente under high vacuum
atmosphere (Prétraitement des raisins par Flash Détente
sous vide poussé), Rev. Fr. Oenol. 153 (1995) 50–54.

[6] J.L. Escudier, et al., Interest traitrement of grapes from high
vacuum atmosphere for oenology (Intérêt du traitrement des
raisins par un vide poussé pour l’œnologie), ONIVINS,
Contrat Etat � Région, filière viti-vinicole, 1995.

[7] J.L. Escudier, M.Mikolajczak,M.Moutounet, Pretreatment
of grapes by flash detente under high vacuum atmosphere
and wine characteristics (Pré-traitement des raisins par flash
détente sous vide et caractéristiques des vins), Journal
International des Sciences de la Vigne et du Vin, hors série �
Traitements Physiques des MoÛts et des Vin (1998) 105–
110.

[8] E. Vinsonneau, P. Escaffre, Evaluation of winemaking
process by flash detente approach in Bordeaux � Synthesis
of three years of testing 1999–2001 (Evaluation du procédé
de vinification par la flash-détente en bordelais � Synthèse
de trois années d’essais 1999–2001), CRAT ITV, France,
2002.

[9] E. Celotti, S. Rebecca, Expériences récentes de thermo-
macération des raisins rouges, Revue des Œnologues, 87
(1998) 23–28.

18 T. Quirante et al.: Mechanics & Industry 19, 207 (2018)



[10] O. Miyatake, K. Murakami, Y. Kawata, T. Fujii, Funda-
mental experiments with flash evaporation, Heat Transfer
Japanese Res. 2 (1973) 89–100.

[11] O. Miyatake, Y. Kito, K. Tagawa, Y. Murata, Transient
characteristics and performance of a novel desalination
system based on heat storage and spray flashing, Desalina-
tion 137 (2001) 157–166.

[12] P. Sebastian, J.P. Nadeau, Experiments and modeling of
falling jet flash evaporators for vintage treatment, Int. J.
Therm. Sci. 41 (2002) 269–280.

[13] Agreste, Ministry of Agriculture, Food, Fisheries, Rural
Affairs and Spatial Planning, Annual Agricultural Statistics,
Aquitaine, French, 2010, www.agreste.agriculture.gouv.fr
(last access: 18/03/2015).

[14] D. Cadiot, P. Sébastian, D. Callede, J.P. Nadeau, System for
cooling a heated juice by partial low-pressure evaporation,
Patent WO02096530, 2002.

[15] A. Bouchama, S. Sebastian, J.P. Nadeau, Flash evaporation,
modeling and constraints formulation, Transactions on
IChemE, 81(Part A) (2003) 1250–1258

[16] V. Ho Kon Tiat, P. Sebastian, J.P. Nadeau, Multicriteria-
oriented preliminary design of a flash evaporation process for
cooling in the wine industry, J. Food Eng. 85 (2008) 491–508.

[17] V. Ho Kon Tiat, P. Sebastian, T. Quirante, Multiobjective
optimization of the design of two-stage flash evaporators:
Part 1: Process modeling, Int. J. Therm. Sci. 49 (2010) 2453–
2458.

[18] P. Sebastian, T. Quirante, V. Ho Kon Tiat, Multiobjective
optimization of the design of two-stage flash evaporators:
Part 2: Multiobjective optimization, Int. J. Therm. Sci. 49
(2010) 2459–2466.

[19] M.S. Phadke, Quality Engineering Using Robust Design, 1st
edition, Prentice Hall, 1989.

[20] P.J. Ross, Taguchi Techniques for Quality Engineering, 2nd
edition, McGraw-Hill Professional, New York, 1995.

[21] G. Taguchi, S. Chowdhury, Y. Wu, Taguchi’s Quality
Engineering Handbook, 1st edition, Wiley-Interscience, New
York, 2004.

[22] J.F. Brotchie, Optimization and robustness of structural
engineering systems, Eng. Struct. 19 (1997) 289–292.

[23] D.B. Parkinson, Robust design by variability optimization,
Qual. Reliab. Eng. Int. 13 (1997) 97–102

[24] X. Du, W. Chen, Towards a Better Understanding of
Modeling Feasibility Robustness in Engineering Design, J.
Mech. Des. 122 (2000) 385–394.

[25] M. Ardakani, R. Noorossana, S. Niaki, H. Lahijanian,
Robust Parameter Design Using the Weighted Metric
Method-The Case of ‘the Smaller the Better’, Int. J. Appl.
Math. Comput. Sci. 19 (2009) 59–68.

[26] C. Zang, M.I. Friswell, J.E. Mottershead, A review of robust
optimal design and its application in dynamics, Comput.
Struct. 83 (2005) 315–326.

[27] H.G. Beyer, B. Sendhoff, Robust optimization-A compre-
hensive survey, Comput. Methods Appl. Mech. Eng. 196
(2007) 3218–3190.

[28] M. Arvidsson, I. Gremyr, Principles of robust design
methodology, Qual. Reliab. Eng. Int. 24 (2008) 23–35.

[29] G.I. Schuëller, H. Jensen, Computational methods in
optimization considering uncertainties � An overview,
Comput. Methods Appl. Mech. Eng. 198 (2008) 2–13.

[30] W. Chen, J.K. Allen, A Procedure for Robust Design:
Minimizing Variations caused by Noise Factors and Control
Factors, J. Mech. Des. 118 (1996) 478–485.

[31] W. Chen, M.M. Wiecek, J. Zhang, Quality Utility-A
Compromise Programming Approach to Robust Design,
J. Mech. Des. 121 (1999) 179–187.

[32] M. Basseur, E. Zitzler, Handling Uncertainty in Indicator-
Based Multiobjective Optimization, Int. J. Comput. Intell.
Appl. 2 (2006) 255–272.

[33] D. Greiner, P. Hajela, Truss topology optimization for mass
and reliability consideration-co-evolutionary multiobjective
formulations, Struct. Multidiscip. Optim. 45 (2011) 589–
613.

[34] T. Quirante, Y. Ledoux, P. Sebastian, Multiobjective
optimization including design robustness objectives for the
embodiment design of a two-stage flash evaporator, Int. J.
Interact. Des. Manuf. 6 (2011) 29–39.

[35] P, Jacquet, C. Capdevielle, Installations vinicoles, Tome 2,
Transport de la vendange et vinification, Féret, Bordeaux,
2002, 298p.

[36] M. Goedkoop, S. Effting, M. Collignon, The Eco-indicator
99: A damage oriented method for Life Cycle Impact
Assessment, Manual for Designers, 2nd edition, Pré Con-
sultants B.V., Amersfoort, The Netherlands, 2000.

[37] S.A. Leeper, Wet Cooling Tower: “Rule-of-Thumb”
Design and Simulation, U.S. Department of Energy
Assistant Secretary for Ressource Application, Office of
Geothermal, under DOE Contract No. DE-AC07-
76ID01570, 1981.

[38] K. Rehfeldt, B. Schwenk, J.P. Molly, Sensitivity study of
different parameters concerning the energy generating costs
of wind turbines, in: R. Watson (Eds.), Proceedings of
European Wind Energy Conference, Dublin, Ireland 1997,
pp. 90–93.

[39] E. Harrington, The Desirability Function, Ind. Qual.
Control 21 (1965) 494–498.

[40] G. Derringer, R. Suich, Simultaneous Optimization of
Several Response Variables, J. Qual. Technol. 12 (1980)
214–219.

[41] E.K. Antonsson, K.N. Otto, Imprecision in Engineering
Design, Special combined issue of the transactions of the
ASME commemorating the 50th anniversary of the design
engineering division of the ASME 117 (1995) 25–32.

[42] M.J. Scott, E.K. Antonsson, Aggregation Functions for
Engineering Design Trade-Offs, 9th International conference
on design theory and methodology 2 (1995) 389–396.

[43] T.L. Saaty, Relative measurement and its generalization in
decision making: Why pairwise comparisons are central in
mathematics for the measurement of intangible factors �
The Analytic Hierarchy/Network Process, RACSAM (Re-
view of the Royal Spanish Academy of Sciences) 102 (2008)
251–318.

[44] M.N. Shyam, Robust Design, Seminar Report, Department
of Aerospace Engineering, Indian Institute of Technology,
2002.

[45] K.J. Kim, D.K.J. Lin, Simultaneous Optimization of
Mechanical Properties of Steel by Maximizing Exponential
Desirability Functions, J. R. Stat. Soc. Ser. C Appl. Stat. 49
(2000) 311–325.

[46] C. Coello, et al., Evolutionary Algorithms for Solving Multi-
Objective Problems, 1st edition, New York, Springer, 2002.

[47] K. Miettinen, Nonlinear multiobjective optimization, Unit-
ed States Of America, Kluwer Academic Publisher, Fourth
Printing, 1999.

[48] D.E. Goldberg, Genetic algorithm: exploration, optimisation
and automatic learning (Algorithmes génétiques: Explora-

T. Quirante et al.: Mechanics & Industry 19, 207 (2018) 19

http://www.agreste.agriculture.gouv.fr


tion, optimisation et apprentissage automatique), Addison-
Wesley, France, 1996.

[49] K. Deb, Evolutionary Algorithms for Multi-Criterion
Optimization in Engineering Design, Evol. Algorithms
Eng. Comput. Sci. 2 (1999) 135–161.

[50] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and
elitist multiobjective genetic algorithm: NSGA-II, IEEE
Trans. Evol. Comput. 6 (2002) 182–197.

[51] K. Deb, R.B. Agarwal, Simulated Binary Crossover for
Continuous Search Space, Complex Syst. 9 (1995) 115–148.

[52] R.T. Marler, S.A. Jasbir, The weighted sum method for
multi-objective optimization: new insights, Struct. Multi-
discip. Optim. 41 (2009) 853–862.

[53] A. Messac, et al., Ability of Objective Functions to Generate
Points on Nonconvex Pareto Frontiers, AIAA J. 38 (2000)
1084–1091.

Cite this article as: T. Quirante, Y. Ledoux, P. Sebastian, Robust design of flash evaporators for must concentration applications
in wine production, Mechanics & Industry 19, 207 (2018)

20 T. Quirante et al.: Mechanics & Industry 19, 207 (2018)


	Robust design of flash evaporators for must concentration applications in wine production
	1 Introduction
	2 Two-staged flash evaporation process and design model
	2.1 Principles
	2.2 Definition of design variables
	2.3 Performance and observation variables
	2.3.1 Quality of the product
	2.3.2 Transportability
	2.3.3 Environmental impact
	2.3.4 Total cost


	3 Expression of performance objective through desirability
	3.1 Desirability functions and criteria
	3.2 Design objective of performance

	4 Uncertainties and design objective of sensitivity
	4.1 Uncertainty modeling
	4.2 Measures of performance sensitivity
	4.2.1 Bandwidth of variation
	4.2.2 Tolerance to nominal
	4.2.3 Minimum admissible value

	4.3 Design objective of sensitivity

	5 Numerical solving
	5.1 Formulation of the robust design optimization model
	5.2 Genetic algorithms and NGSAII

	6 Results and discussion
	6.1 Decision process and trade-off strategies
	6.2 Recommendations

	7 Summary and conclusion
	References


