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INTERNAL NULL CONTROLLABILITY OF THE GENERALIZED

HIROTA-SATSUMA SYSTEM∗

Nicolás Carreño1, Eduardo Cerpa1 and Emmanuelle Crépeau2,∗∗

Abstract. The generalized Hirota-Satsuma system consists of three coupled nonlinear Korteweg-de
Vries (KdV) equations. By using two distributed controls it is proven in this paper that the local null
controllability property holds when the system is posed on a bounded interval. First, the system is
linearized around the origin obtaining two decoupled subsystems of third order dispersive equations.
This linear system is controlled with two inputs, which is optimal. This is done with a duality approach
and some appropriate Carleman estimates. Then, by means of an inverse function theorem, the local
null controllability of the nonlinear system is proven.
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1. Introduction

In the eighties, Hirota and Satsuma introduced in [15] the set of two coupled Korteweg-de Vries (KdV)
equations,

{
ut − 1

4uxxx = 3uux − 6vvx,

vt + 1
2vxxx = −3uvx,

(1.1)

describing the interaction of two long waves with different dispersion relations. They studied the existence of
soliton solutions and conserved quantities. Later, in [22] the same authors introduced a new system, coupling
now three KdV equations,


ut − 1

4uxxx = 3uux − 6vvx + 3wx,

vt + 1
2vxxx = −3uvx,

wt + 1
2wxxx = −3uwx.

(1.2)
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This set of equations was called in the literature the generalized Hirota-Satsuma (HS) system and has attracted
the attention of many researchers mainly interested in soliton or explicit solutions. See for instance [13, 23] and
the references therein.

As far as we know, there is no studies of the control properties of this kind of coupled systems. Thus, in this
article the goal is to fill this gap focusing on the null controllability with distributed controls. An important
point is that we obtain our results on the control of this three-equation system using only two control inputs.

Let us precise which system we will control. We can see that the first equation in (1.2) is of KdV type
with a negative dispersive term whereas the two others have positive dispersive term. Considering these facts,
we propose to study equations (1.2) on a spatial domain [0, L] with the usual boundary conditions for KdV
equations, as for instance in [19],


u(t, 0) = u(t, L) = 0, ux(t, 0) = 0,

v(t, 0) = v(t, L) = 0, vx(t, L) = 0,

w(t, 0) = w(t, L) = 0, wx(t, L) = 0,

(1.3)

and the initial conditions

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x). (1.4)

As mentioned previously, we consider here the internal control case. Thus, we study the following system, with
T > 0 and Q = (0, T )× (0, L),



ut − 1
4uxxx = 3uux − 6vvx + 3wx, (t, x) ∈ Q,

vt + 1
2vxxx = −3uvx + p1γ , (t, x) ∈ Q,

wt + 1
2wxxx = −3uwx + q1ω, (t, x) ∈ Q,

u(t, 0) = u(t, L) = 0, ux(t, 0) = 0, t ∈ (0, T ),

v(t, 0) = v(t, L) = 0, vx(t, L) = 0, t ∈ (0, T ),

w(t, 0) = w(t, L) = 0, wx(t, L) = 0, t ∈ (0, T ),

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x), x ∈ (0, L),

(1.5)

where p = p(t, x) and q = q(t, x) are the distributed controls acting on two subdomains γ and ω with γ ⊂ (0, L)
and either ω = (a, L) or ω = (0, a) for some 0 < a < L. From now on, we only consider ω = (a, L) but everything
can be done in similar ways for the other case.

The control of dispersive equations is an active research field. The first results for single KdV equations with
internal controls were presented in [20, 21] where periodic domains were considered. Also in this framework we
found the paper [16]. More related to this paper we can cite [5] where the authors study the internal control of
a KdV equation on a bounded domain with the same kind of boundary conditions than here. They use duality
arguments and a Carleman estimate to prove an observability inequality.

Regarding dispersive systems, we find papers dealing with the boundary controls of either KdV systems on a
bounded domain [6–8, 17] or KdV equations posed on a network [2, 9]. Concerning the internal control of disper-
sive systems, the closest works are [18] where Ingham theorems are used to prove some observability inequalities
for Boussinesq systems and [3] where a Carleman estimates approach is used to get the null controllability of a
linear system coupling a KdV equation with a Schrödinger equation.

Summarizing the links with the existent literature, in this paper we follow the same methods than in [3, 5]
to study the null controllability property of a dispersive system with less controls than equations.
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Let us go back to the control of system (1.5). The first step in our strategy is to linearize the system (1.5)
around the origin, getting the linear system



ut − 1
4uxxx = f1 + 3wx, (t, x) ∈ Q,

vt + 1
2vxxx = f2 + p1γ , (t, x) ∈ Q,

wt + 1
2wxxx = f3 + q1ω, (t, x) ∈ Q,

u(t, 0) = u(t, L) = 0, ux(t, 0) = 0, t ∈ (0, T ),

v(t, 0) = v(t, L) = 0, vx(t, L) = 0, t ∈ (0, T ),

w(t, 0) = w(t, L) = 0, wx(t, L) = 0, t ∈ (0, T ),

u(0, x) = u0(x), v(0, x) = v0(x), w(0, x) = w0(x), x ∈ (0, L),

(1.6)

where f1, f2 and f3 will play later the role of the nonlinearities. In order to study the null controllability of
(1.6) we apply a duality approach that leads us to prove that the solutions of the adjoint system



−φt + 1
4φxxx = g1, (t, x) ∈ Q,

−ψt − 1
2ψxxx = g2, (t, x) ∈ Q,

−ηt − 1
2ηxxx = g3 − 3φx, (t, x) ∈ Q,

φ(t, 0) = φ(t, L) = 0, φx(t, L) = 0, t ∈ (0, T ),

ψ(t, 0) = ψ(t, L) = 0, ψx(t, 0) = 0, t ∈ (0, T ),

η(t, 0) = η(t, L) = 0, ηx(t, 0) = 0, t ∈ (0, T ),

φ(T, x) = φT (x), ψ(T, x) = ψT (x), η(T, x) = ηT (x), x ∈ (0, L),

(1.7)

satisfy an appropriate observability inequality. This is realized proving a Carleman estimate for system (1.7)
where functions g1, g2 and g3 are useful to get information on the solutions of (1.6) when using duality arguments.

Finally, the last step in our strategy is to go back to the original nonlinear system by using an inverse function
theorem. In this way we will get our main result, stating the local null controllability of (1.5).

Theorem 1.1. Let γ ⊂ (0, L) and ω = (a, L), with a ∈ (0, L). Assume that (u0, v0, w0) ∈ [L2(0, L)]3. Then, for
every T > 0 there exists δ > 0 such that if ‖(u0, v0, w0)‖[L2(0,L)]3 < δ, there are controls p ∈ L2(0, T ;L2(γ)) and
q ∈ L2(0, T ;L2(ω)) such that the solutions u, v, w ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)) of (1.5) satisfies

u(T, x) = v(T, x) = w(T, x) = 0 in (0, L).

The organization of this paper is the following. We start giving in Section 2 the well-posedness framework in
which we work along this paper. Then, Section 3 is devoted to the proof of a Carleman estimate that is used
to prove an appropriate observability inequality. Section 4 contains the control results for both the linear and
nonlinear systems. Finally, we end this paper with some comments and related open problems.

2. Well-posedness results

In this section, we give the functional framework and some well-possedness results for the KdV equation.
Additionaly, we present some regularity results for the system (1.6).



4 N. CARREÑO ET AL.

2.1. Functional spaces

We introduce the following functional spaces:

X0 := L2(0, T ;H−2(0, L)), X1 := L2(0, T ;H2
0 (0, L)),

X̃0 := L1(0, T ;H−1(0, L)), X̃1 := L1(0, T ;H3(0, L) ∩H2
0 (0, L)),

(2.1)

and

Y0 := L2(0, T ;L2(0, L)) ∩ C([0, T ];H−1(0, L)),
Y1 := L2(0, T ;H4(0, L)) ∩ C([0, T ];H3(0, L)).

(2.2)

These spaces are equipped with their usual norms. Moreover, we define for each θ ∈ [0, 1] the interpolation
spaces (see [4]):

Xθ := (X0, X1)[θ], X̃θ := (X̃0, X̃1)[θ] and Yθ := (Y0, Y1)[θ].

A sample of spaces that will be often used in the following is

X1/4 = L2(0, T ;H−1(0, L)), X̃1/4 = L1(0, T ;L2(0, L)),
Y1/4 = L2(0, T ;H1(0, L)) ∩ C([0, T ];L2(0, L)).

2.2. Regularity results for a single equation

We first consider a single KdV equation with a source term:


χt + χxxx = g, in Q,

χ(t, 0) = χ(t, L) = χx(t, L) = 0, in (0, T ),

χ(0, x) = χ0(x), in (0, L).

(2.3)

For this equation we have the following known results.

Proposition 2.1. ([14], Sect. 2.2.2). If χ0 ∈ L2(0, L) and g ∈ G with G = X1/4 or G = X̃1/4, then system (2.3)
admits a unique solution χ ∈ Y1/4. Moreover, there exists a constant C > 0 such that

‖χ‖Y1/4
≤ C(‖g‖G + ‖χ0‖L2(0,L)). (2.4)

Proposition 2.2. ([14], Sect. 2.3.1). If χ0 ∈ H3(0, L) is such that χ0(0) = χ0(L) = χ′0(0) = 0 and g ∈ G with
G = X1 or G = X̃1, then system (2.3) admits a unique solution χ ∈ Y1. Moreover, there exists a constant C > 0
such that

‖χ‖Y1
≤ C(‖g‖G + ‖χ0‖H3(0,L)). (2.5)

Proposition 2.3. ([14], Sect. 2.3.2). Let θ ∈ [1/4, 1] and χ0 = 0. If g ∈ G with G = Xθ or G = X̃θ, then system
(2.3) admits a unique solution χ ∈ Yθ. Moreover, there exists a constant C > 0 such that

‖χ‖Yθ ≤ C‖g‖G. (2.6)
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Notice that the same results are valid for the (backward-in-time) adjoint equation


−χt − dχxxx = g, in Q,

χ(t, 0) = χ(t, L) = χx(t, 0) = 0, in (0, T ),

χ(T, x) = χ0(x), in (0, L),

(2.7)

and the reverse-in-space equation,


χt − dχxxx = g, in Q,

χ(t, 0) = χ(t, L) = χx(t, 0) = 0, in (0, T ),

χ(0, x) = χ0(x), in (0, L),

(2.8)

for any dispersive coefficient d > 0.

2.3. Regularity results for the linear system

We first consider the linear system (1.6). Taking advantage of its cascade structure, notice that we can apply
the results for a single equation in order to get the solutions v and w (Prop. 2.1, for instance). Then, we can
see the term 3wx as a source term in the equation satisfied by u. Therefore, we can easily obtain the following
result.

Proposition 2.4. Let (u0, v0, w0) ∈ [L2(0, L)]3, p ∈ L2(0, T ;L2(γ)), q ∈ L2(0, T ;L2(ω)), and (f1, f2, f3) ∈ G3

with G = X1/4 or G = X̃1/4. Then, system (1.6) admits a unique solution (u, v, w) ∈ (Y1/4)3. Moreover, there
exists a constant C > 0 such that

‖(u, v, w)‖(Y1/4)3 ≤C
(
‖(u0, v0, w0)‖[L2(0,L)]3 + ‖(f1, f2, f3)‖G3

+ ‖p‖L2(0,T ;L2(γ)) + ‖q‖L2(0,T ;L2(ω))

)
. (2.9)

The regularity p ∈ L2(0, T ;L2(γ)) and q ∈ L2(0, T ;L2(ω)) is enough to be sure that p1γ and q1ω belong to
both L2(0, T ;H−1(0, L)) and L1(0, T ;L2(0, L)). Consequently they can be seen as appropriate source terms in
Proposition 2.1.

This result can be applied to the adjoint system (1.7) with appropriate functions g1, g2, and g3. To do that
we only need to perform a change of variable in space x ≈ L− x and time t ≈ T − t.

2.4. Regularity results for the nonlinear system

In this section we apply a fixed point argument in order to establish the well-posedness of the nonlinear
system (1.5). First of all, we prove the following lemma inspired from [19].

Lemma 2.5. Let y, z ∈ L2(0, T ;H1(0, L)). Then yzx ∈ L1(0, T ;L2(0, L)) and the map (y, z) ∈
(L2(0, T ;H1(0, L)))2 7→ yzx ∈ L1(0, T ;L2(0, L)) is continuous.
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Proof. Let (y, z) and (ỹ, z̃) in (L2(0, T ;H1(0, L)))2, and let us denote by K the norm of the embedding
H1(0, L) ↪→ L∞(0, L). We then have

‖yzx − ỹz̃x‖L1(0,T ;L2(0,L)) ≤
∫ T

0

‖(y − ỹ)zx‖L2(0,L)dt+

∫ T

0

‖ỹ(z − z̃)x‖L2(0,L)dt

≤
∫ T

0

‖y − ỹ‖L∞(0,L)‖zx‖L2(0,L)dt+

∫ T

0

‖ỹ‖L∞(0,L)‖(z − z̃)x‖L2(0,L)dt

≤ K

(∫ T

0

‖y − ỹ‖H1(0,L)‖z‖H1(0,L)dt+

∫ T

0

‖ỹ‖H1(0,L)‖z − z̃‖H1(0,L)dt

)
≤ K‖(y, z)‖(L2(0,T ;H1(0,L)))2‖(y − ỹ, z − z̃)‖(L2(0,T ;H1(0,L)))2 ,

which proves Lemma 2.5.

We can now prove the following well-posedness result.

Proposition 2.6. Let L > 0 and T > 0. There exist ε > 0 and C > 0 such that for every (u0, v0, w0) ∈
[L2(0, L)]3, p ∈ L2(0, T ;L2(γ)), q ∈ L2(0, T ;L2(ω)), such that

‖(u0, v0, w0)‖[L2(0,L)]3 + ‖p‖L2(0,T ;L2(γ)) + ‖q‖L2(0,T ;L2(ω)) ≤ ε

there exists a unique solution (u, v, w) ∈ (Y1/4)3 of the nonlinear equation (1.5) that satisfies

‖(u, v, w)‖(Y1/4)3 ≤ C
(
‖(u0, v0, w0)‖[L2(0,L)]3 + ‖p‖L2(0,T ;L2(γ)) + ‖q‖L2(0,T ;L2(ω))

)
.

Proof. Let (u0, v0, w0) ∈ [L2(0, L)]3, p ∈ L2(0, T ;L2(γ)), q ∈ L2(0, T ;L2(ω)), such that

‖(u0, v0, w0)‖[L2(0,L)]3 + ‖p‖L2(0,T ;L2(γ)) + ‖q‖L2(0,T ;L2(ω)) ≤ ε

where ε will be chosen small enough later. Let (u, v, w) ∈ (Y1/4)3 and consider the map Φ : (Y1/4)3 → (Y1/4)3

defined by Φ(u, v, w) = (ũ, ṽ, w̃) where (ũ, ṽ, w̃) is the solution of the linear problem,

ũt − 1
4 ũxxx = 3uux − 6vvx + 3w̃x, in Q,

ṽt + 1
2 ṽxxx = −3uvx + p1γ , in Q,

w̃t + 1
2 w̃xxx = −3uwx + q1ω, in Q,

ũ(t, 0) = ũ(t, L) = 0, ũx(t, 0) = 0, in (0, T ),

ṽ(t, 0) = ṽ(t, L) = 0, ṽx(t, L) = 0, in (0, T ),

w̃(t, 0) = w̃(t, L) = 0, w̃x(t, L) = 0, in (0, T ),

ũ(0, x) = u0(x), ṽ(0, x) = v0(x), w̃(0, x) = w0(x), in (0, L).

By Proposition 2.4 we have

‖Φ(u, v, w)‖(Y1/4)3 = ‖(ũ, ṽ, w̃)‖(Y1/4)3 ≤ C
(
‖(u0, v0, w0)‖[L2(0,L)]3 + ‖(3uux − 6vvx,−3uvx,−3uwx)‖(X̃1/4)3

+ ‖p‖L2(0,T ;L2(γ)) + ‖q‖L2(0,T ;L2(ω))

)
. (2.10)
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By Lemma 2.5, we obtain,

‖Φ(u, v, w)‖(Y1/4)3 = ‖(ũ, ṽ, w̃)‖(Y1/4)3 ≤ C
(
‖(u0, v0, w0)‖[L2(0,L)]3 + ‖(u, v, w)‖2(Y1/4)3

+ ‖p‖L2(0,T ;L2(γ)) + ‖q‖L2(0,T ;L2(ω))

)
. (2.11)

We also have, for any (u1, v1, w1) ∈ (Y1/4)3 and (u2, v2, w2) ∈ (Y1/4)3,

‖Φ(u1, v1, w1)− Φ(u2, v2, w2)‖(Y1/4)3

≤ C
(
‖(u1, v1, w1)‖(Y1/4)3 + ‖(u2, v2, w2)‖(Y1/4)3

)
‖(u1, v1, w1)− (u2, v2, w2)‖(Y1/4)3 (2.12)

Thus, if we restrict Φ to a closed ball B(0, R) = {(u, v, w) ∈ (Y1/4)3, ‖(u, v, w)‖(Y1/4)3 ≤ R} where R > 0 will
be chosen later, we have the estimate,

‖Φ(u, v, w)‖(Y1/4)3 ≤ C(ε+R2) and ‖Φ(u1, v1, w1)−Φ(u2, v2, w2)‖(Y1/4)3≤ 2CR‖(u1, v,w1)− (u2, v2, w2)‖(Y1/4)3 .

Then if we take R and ε such that R < 1
2C and ε < R

2C , we can apply the Banach fixed point theorem and Φ
admits a unique fixed point, which ends the proof of Proposition 2.6.

3. Carleman inequalities

This section is dedicated to Carleman estimates. First, we present a general estimate for a KdV equation
with observation in an interior domain. Then, we will prove a new Carleman estimate for the whole adjoint
system (1.7).

3.1. Carleman weights

Let ω0 = (a0, b0) ⊂ (0, L), and set c0 = (a0 + b0)/2. Consider the weight functions defined in [3], namely for
K1,K2 > 0, let

ϕ0(x) = K1(1− e−K2(x−c0)2) + 1, ξ(t) =
1

t(T − t)
(3.1)

and

ϕ(t, x) := ξ(t)ϕ0(x). (3.2)

Notice that, for any K1,K2 > 0, we have

ϕ > 0 in (0, T )× [0, L], (3.3)

|ϕx| > 0 in (0, T )× ([0, L] \ ω̄0), (3.4)

ϕx(t, 0) < 0, ϕx(t, L) > 0 in (0, T ). (3.5)

Furthermore, K1 and K2 can be chosen such that

ϕxx < 0 in (0, T )× ([0, L] \ ω̄0), (3.6)
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and

56ϕ̌(t) > 55ϕ̂(t) in (0, T ), (3.7)

where ϕ̌(t) := min
x∈[0,L]

ϕ(t, x) and ϕ̂(t) := max
x∈[0,L]

ϕ(t, x).

Indeed, property (3.6) holds for

K2 =
4

(b0 − a0)2
.

Now, let us notice that

ϕ̌(t) = ϕ(t, c0) = ξ(t),

and

ϕ̂(t) = max{ϕ(t, 0), ϕ(t, L)} = ξ(t) max{ϕ0(0), ϕ0(L)},

since the extremum of the interval where the maximum is achieved depends on the location of c0. Thus, if we
call

C(K2, c0) = max{1− e−K2c
2
0 , 1− e−K2(L−c0)2},

then, it suffices to take K1 = (110C(K2, c0))−1 for (3.7) to hold.

3.2. Carleman estimate for a single KdV equation

In this section, we establish a Carleman estimate for the general backward in time KdV equation of the
following type, for ν ∈ R∗: 

yt + νyxxx = g, in Q,

y(t, 0) = y(t, L) = 0, in (0, T ),

( ν
|ν| + 1)yx(t, 0) + ( ν

|ν| − 1)yx(t, L) = 0, in (0, T ),

y(T, x) = yT (x), in (0, L).

(3.8)

To begin, we recall a Carleman estimate for the linear KdV equation (3.8) obtained in ([3], Thm. 3.1) and
([5], Prop. 3.1). Their results are obtained in the case ν > 0, but they can easily be converted in the case ν < 0
by using the change of variables x 7→ L− x. We can rewrite that estimate as follows.

Proposition 3.1. Let T > 0 and ω0 ⊂ (0, L) as in Section 3.1. There exist C0 > 0, and s0 > 0 such that for
any g ∈ L2(0, T ;L2(0, L)), yT ∈ L2(0, L), and s ≥ s0, the solution y of (3.8) satisfies∫

Q

[
sξ|yxx|2 + (sξ)3|yx|2 + (sξ)5|y|2

]
e−2sϕdxdt

≤ C0

(∫
Q

e−2sϕ|g|2dxdt+

∫ T

0

∫
ω0

[
s5ξ5|y|2 + sξ|yxx|2

]
e−2sϕdxdt

)
. (3.9)

The idea is to set the path for the Carleman estimate for the adjoint system (1.7). To this end, we will prove
from estimate (3.9) the following inequality with more regular right-hand side in (3.8).
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Proposition 3.2. Let T > 0 and ω0 ⊂ (0, L) as in Section 3.1. There exist C0 > 0, and s0 > 0 such that for
any yT ∈ L2(0, L), and s ≥ s0:

If g ∈ L2(0, T ;H1/3(0, L)), then the solution y of (3.8) satisfies

∫
Q

[sξ|yxx|2 + (sξ)3|yx|2 + (sξ)5|y|2]e−2sϕdxdt+

∫ T

0

sξ−3e−2sϕ̂‖y‖2H7/3(0,L)dt

≤ C
∫
Q

s3ξe−2sϕ|g|2dxdt+ C

∫ T

0

sξ−3e−2sϕ̂‖g‖2H1/3(0,L)dt

+ C

∫ T

0

∫
ω0

s5ξ25|y|2e−2s(7ϕ̌−6ϕ̂)dxdt. (3.10)

If g ∈ L2(0, T ;H2/3(0, L)), then the solution y of (3.8) satisfies

∫
Q

[sξ|yxx|2 + (sξ)3|yx|2 + (sξ)5|y|2]e−2sϕdxdt+

∫ T

0

sξ−3e−2sϕ̂‖y‖2H8/3(0,L)dt

≤ C
∫
Q

s3ξe−2sϕ|g|2dxdt+ C

∫ T

0

sξ−3e−2sϕ̂‖g‖2H2/3(0,L)dt

+ C

∫ T

0

∫
ω0

s5ξ13|y|2e−2s(4ϕ̌−3ϕ̂)dxdt. (3.11)

Proof. To begin the proof, notice that, from the properties of the weight function ϕ, we can write from (3.9),∫
Q

[sξ|yxx|2 + (sξ)3|yx|2 + (sξ)5|y|2]e−2sϕdxdt

≤ C0

(∫
Q

e−2sϕ|g|2dxdt+

∫ T

0

∫
ω0

s5ξ5|y|2e−2sϕdxdt+

∫ T

0

∫
ω0

sξ|yxx|2e−2sϕ̌dxdt

)
. (3.12)

We will now apply a bootstrap argument in order to eliminate the local term of yxx appearing in the right
hand-side of (3.12). Let

I :=

∫ T

0

∫
ω0

sξe−2sϕ̌|yxx|2dxdt.

Since ϕ̌ does not depend on space, we have

I ≤ s
∫ T

0

ξe−2sϕ̌‖y‖2H2(ω0)dt.

Let µ ∈ (0, 1] and ε > 0. Using an interpolation argument between the spaces H2+µ(ω0) and L2(ω0), together
with Young’s inequality, we have

I ≤ C
∫ T

0

sξe−2sϕ̌‖y‖4/(2+µ)
H2+µ(ω0)‖y‖

2µ/(2+µ)
L2(ω0) dt

≤ ε
∫ T

0

sξ−3e−2sϕ̂‖y‖2H2+µ(ω0)dt+ Cε

∫ T

0

sξ1+8/µe−2s[(1+2/µ)ϕ̌−2/µϕ̂]‖y‖2L2(ω0)dt.

(3.13)
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The idea is now to remove the first term in the right-hand side of (3.13). We follow the same arguments as in
[3, 5, 14] and adapt a technique of bootstrap. We define y1(t, x) := θ1(t)y(t, x) with θ1(t) = s1/2ξ1/2e−sϕ̂. Thus
y1 is solution of the system,

y1t + νy1xxx = f1 := θ1g + θ1ty in Q,

y1(t, 0) = y1(t, L) = 0, in (0, T ),

( ν
|ν| + 1)y1x(t, 0) + ( ν

|ν| − 1)y1x(t, L) = 0, in (0, T ),

y1(T, x) = 0 in (0, L).

As |θ1t| ≤ Cs3/2ξ5/2e−sϕ̂, we have for C > 0 and all s ≥ s0, that f1 ∈ L2(Q) = X1/2 and

‖f1‖2L2(Q) ≤ C
∫
Q

sξe−2sϕ̂|g|2dxdt+ C

∫
Q

s3ξ5e−2sϕ̂|y|2dxdt. (3.14)

Then, from Proposition 2.3, we have that y1 ∈ Y1/2, and, in particular,

‖y1‖2L2(0,T ;H2(0,L)) ≤ C‖f1‖2L2(Q). (3.15)

Now we take y2(t, x) := θ2(t)y(t, x) with θ2(t) = s1/2ξ−3/2e−sϕ̂. Then, y2 satisfies the system
y2t + νy2xxx = f2 := θ2g + θ2tθ

−1
1 y1 in (0, T )× (0, L),

y2(t, 0) = y2(t, L) = 0 in (0, T ),

( ν
|ν| + 1)y2x(t, 0) + ( ν

|ν| − 1)y2x(t, L) = 0, in (0, T ),

y2(T, x) = 0 in (0, L).

Notice that since |θ2tθ
−1
1 | ≤ Cs, and if g ∈ L2(0, T ;Hµ(0, L)), we have that f2 ∈ L2(0, T ;Hµ(0, L)). From

Proposition 2.3 (with = X1/2+µ/4), we deduce that

y2 ∈ Y1/2+µ/4 = L2(0, T ;H2+µ(0, L)) ∩ L∞(0, T ;H1+µ(0, L)),

and,

‖y2‖2Y1/2+µ/4
≤ C‖f2‖2L2(0,T ;Hµ(0,L)).

In particular,

‖y2‖2L2(0,T ;H2+µ(0,L)) ≤ Cs
∫ T

0

ξ−3e−2sϕ̂‖g‖2Hµ(0,L)dt+ Cs2‖y1‖2L2(0,T ;H2(0,L)). (3.16)

Then we get, from (3.14), (3.15) and (3.16)∫ T

0

sξ−3e−2sϕ̂‖y(t, .)‖2H2+µ(0,L)dt

≤ C
∫ T

0

(
sξ−3‖g‖2Hµ(0,L) + s3ξ‖g‖2L2(0,L)

)
e−2sϕ̂dt+ C

∫
Q

s5ξ5|y|2e−2sϕ̂dxdt. (3.17)
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By combining (3.17), (3.13) and (3.12), together with a good choice of ε, we get Carleman estimates (3.10)
and (3.11) taking µ equal to 1/3 and 2/3, respectively.

3.3. Carleman estimate for the adjoint system

We now prove a Carleman estimate for the adjoint system (1.7). For this, we will use two weight functions.
Given ω1 = (a1, b1), and γ1 = (a2, b2) two proper subsets of (0, L), we define ϕ1

0 and ϕ2
0 as in (3.1) associated

to the subsets ω1 and γ1, respectively. Then, for i = 1, 2, let

ϕi(t, x) := ξ(t)ϕi0(x),

Ii7/3(y) :=

∫
Q

[
sξ|yxx|2 + (sξ)3|yx|2 + (sξ)5|y|2

]
e−2sϕidxdt+

∫ T

0

sξ−3e−2sϕ̂i‖y‖2H7/3(0,L)dt

and

Ii8/3(y) :=

∫
Q

[
sξ|yxx|2 + (sξ)3|yx|2 + (sξ)5|y|2

]
e−2sϕidxdt+

∫ T

0

sξ−3e−2sϕ̂i‖y‖2H8/3(0,L)dt.

The main result of this section is the following.

Theorem 3.3. Let ω, and γ subsets of (0, L) as in Theorem 1.1. Fix ω1 and γ1 proper subsets of ω and
γ, respectively, such that ω̄1 ⊂ ω and γ̄1 ⊂ γ. Then, there exist C0 > 0, and s0 > 0 such that for any g1 ∈
L2(0, T ;H2/3(0, L)), g2 ∈ L2(0, T ;H1/3(0, L)), and g3 ∈ L2(0, T ;H1/3(0, L)) and s ≥ s0, the solution (φ, ψ, η)
of system (1.7) satisfies

I1
8/3(φ) + I2

7/3(ψ) + I1
7/3(η)

≤ C
∫ T

0

∫
γ

s5ξ25e−2s(7ϕ̌2−6ϕ̂2)|ψ|2dxdt+ C

∫ T

0

∫
ω

s57ξ221e−2s(56ϕ̌1−55ϕ̂1)|η|2dxdt

+ C

∫ T

0

s3ξe−2sϕ̌1‖g1‖2H2/3(0,L)dt+ C

∫ T

0

s3ξe−2sϕ̌2‖g2‖2H1/3(0,L)dt

+ C

∫ T

0

s7ξ23e−2s(8ϕ̌1−7ϕ̂1)‖g3‖2H1/3(0,L)dt, (3.18)

where ϕ1 and ϕ2 are the weight functions associated to ω1 and γ1, respectively.

Proof. We begin applying Proposition 3.2 to the equation in (1.7) satisfied by ψ, taking ω0 = γ1, ϕ = ϕ2,
ν = 1/2, and g = −g2. From (3.10), we obtain

I2
7/3(ψ) ≤C

∫
Q

s3ξe−2sϕ2 |g2|2dxdt+ C

∫ T

0

sξ−3e−2sϕ̂2‖g2‖2H1/3(0,L)dt

+ C

∫ T

0

∫
γ1

s5ξ25e−2s(7ϕ̌2−6ϕ̂2)|ψ|2dxdt.

Using the properties of the weight functions, we have

I2
7/3(ψ) ≤ C

∫ T

0

s3ξe−2sϕ̌2‖g2‖2H1/3(0,L)dt+ C

∫ T

0

∫
γ1

s5ξ25e−2s(7ϕ̌2−6ϕ̂2)|ψ|2dxdt. (3.19)
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Now, for φ we apply the second inequality of Proposition 3.2 with ω0 = ω1, ϕ = ϕ1, ν = −1/4, and g = −g1. In
this way, from (3.11) we get, after using the properties of the weight functions, the estimate

I1
8/3(φ) ≤ C

∫ T

0

s3ξe−2sϕ̌1‖g1‖2H2/3(0,L)dt+ C

∫ T

0

∫
ω1

s5ξ13e−2s(4ϕ̌1−3ϕ̂1)|φ|2dxdt. (3.20)

Lastly, we apply Proposition 3.2 to the equation in (1.7) satisfied by η, with ω0 = ω1, ϕ = ϕ1, ν = 1/2, and
g = −g3 + 3φx. From (3.10), we obtain

I1
7/3(η) ≤C

∫
Q

s3ξe−2sϕ1 |g3 − 3φx|2dxdt+ C

∫ T

0

sξ−3e−2sϕ̂1‖g3 − 3φx‖2H1/3(0,L)dt

+ C

∫ T

0

∫
ω1

s5ξ25e−2s(7ϕ̌1−6ϕ̂1)|η|2dxdt,

from where we deduce

I1
7/3(η) ≤ C

∫ T

0

s3ξe−2sϕ̌1‖g3‖2H1/3(0,L)dt+ C

∫ T

0

∫
ω1

s5ξ25e−2s(7ϕ̌1−6ϕ̂1)|η|2dxdt+ CI1
8/3(φ). (3.21)

Putting together inequalities (3.19), (3.20) and (3.21), we have

I1
8/3(φ) + I2

7/3(ψ) + I1
7/3(η) ≤ C

∫ T

0

s3ξe−2sϕ̌1‖g1‖2H2/3(0,L)dt

+ C

∫ T

0

s3ξe−2sϕ̌2‖g2‖2H1/3(0,L)dt+ C

∫ T

0

s3ξe−2sϕ̌1‖g3‖2H1/3(0,L)dt+ C

∫ T

0

∫
γ1

s5ξ25e−2s(7ϕ̌2−6ϕ̂2)|ψ|2dxdt

+ C

∫ T

0

∫
ω1

s5ξ25e−2s(7ϕ̌1−6ϕ̂1)|η|2dxdt+ C

∫ T

0

∫
ω1

s5ξ13e−2s(4ϕ̌1−3ϕ̂1)|φ|2dxdt. (3.22)

To finish the proof of estimate (3.18), it remains to absorb the last term of this inequality. The idea is to
use the coupling of the equation satisfied by η in system (1.7) to express φ in terms of η. However, since the
coupling is of first order, this cannot be done directly. Here, we will need the fact that ω “touches” the boundary
of (0, L). Let us call

J :=

∫ T

0

∫
ω1

s5ξ13e−2s(4ϕ̌1−3ϕ̂1)|φ|2dxdt,

and consider ω2 := (δ, L), with δ ∈ (0, L) such that ω1 ⊂ ω2 ⊂ ω, where all the inclusions are strict. Since
φ(t, L) = 0, we have with Poincaré’s inequality that

J ≤ C
∫ T

0

∫
ω2

s5ξ13e−2s(4ϕ̌1−3ϕ̂1)|φx|2dxdt.
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We concentrate on this term. Let θ ∈ C∞([0, L]) a non-negative function such that θ(x) = 0 for x ∈ [0, L] \ ω,
and θ(x) = 1 for x ∈ ω2. Then, using the equation satisfied by η in system (1.7), we have

J ≤ C
∫ T

0

∫
ω

θ(x)s5ξ13e−2s(4ϕ̌1−3ϕ̂1)|φx|2dxdt

=
C

6

∫ T

0

∫
ω

θ(x)s5ξ13e−2s(4ϕ̌1−3ϕ̂1)φx
(
2g3 + ηxxx + 2ηt

)
dxdt

=: J1 + J2 + J3.

(3.23)

Let ε > 0. We estimate each one of these terms. Using Young’s inequality, we have

J1 ≤ Cε
∫
Q

s7ξ23e−2s(8ϕ̌1−7ϕ̂1)|g3|2dxdt+ εI1
8/3(φ). (3.24)

For J2, taking into account that φx(t, L) = 0, we integrate by parts in space:

J2 = −C
6

∫ T

0

∫
ω

θ′(x)s5ξ13e−2s(4ϕ̌1−3ϕ̂1)φxηxxdxdt− C

6

∫ T

0

∫
ω

θ(x)s5ξ13e−2s(4ϕ̌1−3ϕ̂1)φxxηxxdxdt,

where we use Young’s inequality to obtain

J2 ≤ Cε
∫ T

0

∫
ω

s9ξ25e−2s(8ϕ̌1−7ϕ̂1)|ηxx|2dxdt+ εI1
8/3(φ). (3.25)

The third and last term is the most difficult one. We integrate by parts once in time and space in the term
J3. We get

J3 = −C
3

∫ T

0

∫
ω

θ(x)s5
(
ξ13e−2s(4ϕ̌1−3ϕ̂1)

)
t
φxηdxdt+

C

3

∫ T

0

∫
ω

s5ξ13e−2s(4ϕ̌1−3ϕ̂1)φt
(
θ(x)η

)
x
dxdt

=: J31 + J32.

For the first term, since ∣∣(ξ13e−2s(4ϕ̌1−3ϕ̂1)
)
t

∣∣ ≤ Csξ15e−2s(4ϕ̌1−3ϕ̂1),

we have that

J31 ≤ Cε
∫ T

0

∫
ω

s9ξ27e−2s(8ϕ̌1−7ϕ̂1)|η|2dxdt+ εI1
8/3(φ).

For the second one, we use the fact that φt = 1
4φxxx − g1 and integrate by parts in space. This is:

J32 =
C

12

∫ T

0

∫
ω

s5ξ13e−2s(4ϕ̌1−3ϕ̂1)(φxxx − 4g1)
(
θ(x)η

)
x
dxdt

=− C

3

∫ T

0

∫
ω

s5ξ13e−2s(4ϕ̌1−3ϕ̂1)g1

(
θ(x)η

)
x
dxdt

− C

12

∫ T

0

∫
ω

s5ξ13e−2s(4ϕ̌1−3ϕ̂1)φxx
(
θ(x)η

)
xx

dxdt+
C

12

∫ T

0

s5ξ13e−2s(4ϕ̌1−3ϕ̂1)φxx(t, L)ηx(t, L)dt.
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We observe the following:

− C

3

∫ T

0

∫
ω

s5ξ13e−2s(4ϕ̌1−3ϕ̂1)g1

(
θ(x)η

)
x
dxdt

≤ C
∫ T

0

∫
ω

s3ξe−2sϕ1 |g1|2dxdt+ C

∫ T

0

∫
ω

s7ξ25e−2s(8ϕ̌1−7ϕ̂1)
(
|η|2 + |ηx|2

)
dxdt;

− C

12

∫ T

0

∫
ω

s5ξ13e−2s(4ϕ̌1−3ϕ̂1)φxx
(
θ(x)η

)
xx

dxdt

≤ εI1
8/3(φ) + Cε

∫ T

0

∫
ω

s9ξ25e−2s(8ϕ̌1−7ϕ̂1)
(
|η|2 + |ηx|2 + |ηxx|2

)
dxdt; and

C

12

∫ T

0

s5ξ13e−2s(4ϕ̌1−3ϕ̂1)φxx(t, L)ηx(t, L)dt ≤ εI1
8/3(φ) + Cε

∫ T

0

s9ξ29e−2s(8ϕ̌1−7ϕ̂1)‖η‖2H2(ω)dt.

Going back to the expression of J3, we obtain

J3 ≤ C
∫
Q

s3ξe−2sϕ1 |g1|2dxdt+ Cε

∫ T

0

s9ξ29e−2s(8ϕ̌1−7ϕ̂1)‖η‖2H2(ω)dt+ 3εI1
8/3(φ). (3.26)

Let us gather what we have so far. Putting together estimates (3.24)–(3.26) in (3.23), we have

J ≤C
∫
Q

s3ξe−2sϕ1 |g1|2dxdt+

∫
Q

s7ξ23e−2s(8ϕ̌1−7ϕ̂1)|g3|2dxdt

+ Cε

∫ T

0

s9ξ29e−2s(8ϕ̌1−7ϕ̂1)‖η‖2H2(ω)dt+ 5εI1
8/3(φ).

We estimate now the local term of η. Regarding H2(ω) as the interpolation of the spaces H7/3(ω) and L2(ω),
and Young’s inequality, we obtain

Cε

∫ T

0

s9ξ29e−2s(8ϕ̌1−7ϕ̂1)‖η‖2H2(ω)dt ≤ C
∫ T

0

s9ξ29e−2s(8ϕ̌1−7ϕ̂1)‖η‖12/7

H7/3(ω)
‖η‖2/7L2(ω)dt

≤ εI1
7/3(η) + Cε

∫ T

0

s57ξ221e−2s(56ϕ̌1−55ϕ̂1)‖η‖2L2(ω)dt.

Then, finally, we get

J ≤C
∫
Q

s3ξe−2sϕ1 |g1|2dxdt+

∫
Q

s7ξ23e−2s(8ϕ̌1−7ϕ̂1)|g3|2dxdt

+ Cε

∫ T

0

∫
ω

s57ξ221e−2s(56ϕ̌1−55ϕ̂1)|η|2dxdt+ εI1
7/3(η) + 5εI1

8/3(φ).

Going back to (3.22), we deduce (3.18) by choosing the biggest weight functions and ε sufficiently small.
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4. Control results

In this section, we establish an observability inequality for the solutions of system (1.7) and deduce a null
controllability result for the linear system (1.6). Moreover, we prove our main result getting the local null
controllability of system (1.5).

4.1. Observability inequality

The observability inequality will be deduced from Carleman estimate (3.18), but first, to be able to deduce
null controllability, we need to change the weight functions in such a way that they do not vanish at t = 0.
Before that, let us deduce a somewhat simpler version of the Carleman estimate (3.18) which will be useful in
what follows.

Let

ϕM := max
{

max
x∈[0,L]

ϕ1
0(x), max

x∈[0,L]
ϕ2

0(x)
}

and

ϕm := min
{

min
x∈[0,L]

ϕ1
0(x), min

x∈[0,L]
ϕ2

0(x)
}
.

Notice that if we call ϕ̂(t) := ξ(t)ϕM and ϕ̌(t) := ξ(t)ϕm, under the assumptions of Theorem 3.3 we can deduce
from (3.18) the following inequality:∫

Q

s3ξ3e−2sϕ̂(|φx|2 + |ψx|2 + |ηx|2)dxdt

≤ C
∫ T

0

∫
γ

s5ξ25e−2s(7ϕ̌−6ϕ̂)|ψ|2dxdt+ C

∫ T

0

∫
ω

s57ξ221e−2s(56ϕ̌−55ϕ̂)|η|2dxdt

+ C

∫ T

0

s7ξ23e−2s(8ϕ̌−7ϕ̂)
(
‖g1‖2H2/3(0,L) + ‖g2‖2H1/3(0,L) + ‖g3‖2H1/3(0,L)

)
dt. (4.1)

Now, let β ∈ C1(0, T ) be defined by

β(t) =


4

T 2
, if t ∈ (0, T/2),

1

t(T − t)
, if t ∈ [T/2, T ),

and let us call

α̂(t) := β(t)ϕM and α̌(t) := β(t)ϕm.

Furthermore, we will assume also that g1, g2, and g3 in system (1.7) belong to L2(0, T ;H1
0 (0, L)). This will

make the analysis of the controllability of system (1.6) simpler later on.

Proposition 4.1. Let s be fixed such that Carleman estimate (3.18) holds. Assume that g1, g2, g3 ∈
L2(0, T ;H1

0 (0, L)). Then, every solution (φ, ψ, η) of system (1.7) satisfies
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∫ L

0

(|φ(0, x)|2 + |ψ(0, x)|2 + |η(0, x)|2)dx+

∫
Q

β3e−2sα̂(|φx|2 + |ψx|2 + |ηx|2)dxdt

+ ‖β1/2e−sα̂φ‖2L∞(0,T ;L2(0,L)) + ‖β1/2e−sα̂ψ‖2L∞(0,T ;L2(0,L)) + ‖β1/2e−sα̂η‖2L∞(0,T ;L2(0,L))

≤ C
∫ T

0

∫
γ

β25e−2s(7α̌−6α̂)|ψ|2dxdt+ C

∫ T

0

∫
ω

β221e−2s(56α̌−55α̂)|η|2dxdt

+ C

∫
Q

β23e−2s(8α̌−7α̂)(|(g1)x|2 + |(g2)x|2 + |(g3)x|2)dxdt. (4.2)

Proof. Let λ ∈ C1([0, T ]) be a non-negative function such that λ(t) = 1 if t ≤ T/2 and λ(t) = 0 if t ≥ 3T/4.
Then, from the system satisfied by (λφ, λψ, λη) and the estimate in Proposition 2.1, we deduce that

‖λ(t)(φ, ψ, η)‖2[L2(0,T ;H1
0 (0,L))]3 + ‖λ(t)(φ, ψ, η)‖2[L∞(0,T ;L2(0,L))]3

≤ C‖λ(t)(g1, g2, g3)‖2[L2(0,T ;L2(0,L))]3 + C‖λ′(t)(φ, ψ, η)‖2[L2(0,T ;L2(0,L))]3 ,

from where

‖(φ, ψ, η)‖2[L2(0,T/2;H1
0 (0,L))]3 + ‖(φ(0), ψ(0), η(0))‖2[L2(0,L)]3

≤ C‖(g1, g2, g3)‖2[L2(0,3T/4;L2(0,L))]3 + C‖(φ, ψ, η)‖2[L2(T/2,3T/4;L2(0,L))]3 .

Since e−2sϕ̂ ≥ C > 0 in (T/2, 3T/4), the last term of this estimate can be bounded from above by the
left-hand side of (4.1). Thus, we get

∫ L

0

(|φ(0)|2 + |ψ(0)|2 + |η(0)|2)dx+

∫ T/2

0

∫ L

0

β3e−2sα̂(|φx|2 + |ψx|2 + |ηx|2)dxdt

≤ C
∫ T

0

∫
γ

β25e−2s(7α̌−6α̂)|ψ|2dxdt+ C

∫ T

0

∫
ω

β221e−2s(56α̌−55α̂)|η|2dxdt

+ C

∫
Q

β23e−2s(8α̌−7α̂)(|(g1)x|2 + |(g2)x|2 + |(g3)x|2)dxdt,

where we have also used the fact that ξ ≡ β in (T/2, T ). Actually, using this last property again, we see that

∫ T

T/2

∫ L

0

β3e−2sα̂(|φx|2 + |ψx|2 + |ηx|2)dxdt

is bounded from above by the left-hand side of (4.1).
To conclude, it suffices to apply the estimate of Proposition 2.1 to the equations satisfied by

(β1/2e−sα̂φ, β1/2e−sα̂ψ, β1/2e−sα̂η).

4.2. Null controllability of the linear system

Now, we are in position to prove the null controllability of the linear system (1.6). In the following, consider
the notation

Lr(ρ(t)(0, T );H) := {y ∈ Lr(0, T ;H) : ρ(t)y ∈ Lr(0, T ;H)}, r ∈ [1,+∞].
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Let E be the space of quintuples (u, v, w, p, q) such that

– (u, v, w) ∈ [L2(β23/2es(8α̌−7α̂)(0, T );H−1(0, L))]3,

– p1γ ∈ L2(β−25/2es(7α̌−6α̂)(0, T );L2(0, L)),

– q1ω ∈ L2(β−221/2es(56α̌−55α̂)(0, T );L2(0, L)),

– (u, v, w) ∈ [L2(β−3/4es/2α̂(0, T );H1
0 (0, L)) ∩ L∞(β−3/4es/2α̂(0, T );L2(0, L))]3,

– (ut − 1
4uxxx − 3wx, vt − 1

2vxxx − p1γ , wt + 1
2wxxx − q1ω) ∈ [L2(β−3/2esα̂(0, T );H−1(0, L))]3.

Actually, the space E becomes a Banach space endowed with its natural norm.
The following result establishes the null controllability of the linearized system (1.6).

Proposition 4.2. Let u0, v0, w0 ∈ L2(0, L) and assume that

(f1, f2, f3) ∈ [L2(β−3/2esα̂(0, T );H−1(0, L))]3. (4.3)

Then, there exist two controls p and q, such that the associated solution (u, v, w) to (1.6) satisfies (u, v, w, p, q) ∈
E. In particular,

u(T, x) = v(T, x) = w(T, x) = 0 in (0, L).

Proof. We follow an approach introduced in [12]. Let P0 be the space of triplets (φ, ψ, η) ∈ [C4([0, T ]× [0, L])]3

such that:

– φ(t, 0) = φ(t, L) = φx(t, L) = φxxx(t, 0) = φxxx(t, L) = 0,

– ψ(t, 0) = ψ(t, L) = ψx(t, 0) = ψxxx(t, 0) = ψxxx(t, L) = 0,

– η(t, 0) = η(t, L) = ηx(t, 0) = ηxxx(t, L) = 0,

– − 1
2ηxxx(t, 0) + 3φx(t, 0) = 0.

Notice that the observability inequality (4.2) holds for every (φ, ψ, η) ∈ P0 taking g1 = −φt + 1
4φxxx,

g2 = −ψt − 1
2ψxxx, and g3 = −ηt − 1

2ηxxx + 3φx.
Let a : P0 × P0 → R be the bilinear form

a((φ̂, ψ̂, η̂), (φ, ψ, η)) =

∫
Q

β23e−2s(8α̌−7α̂)(−φ̂t + 1
4 φ̂xxx)x(−φt + 1

4φxxx)xdxdt

+

∫
Q

β23e−2s(8α̌−7α̂)(−ψ̂t − 1
2 ψ̂xxx)x(−ψt − 1

2ψxxx)xdxdt

+

∫
Q

β23e−2s(8α̌−7α̂)(−η̂t − 1
2 η̂xxx + 3φ̂x)x(−ηt − 1

2ηxxx + 3φx)xdxdt

+

∫ T

0

∫
γ

β25e−2s(7α̌−6α̂)ψ̂ψdxdt+

∫ T

0

∫
ω

β221e−2s(56α̌−55α̂)η̂ηdxdt,

and ` : P0 → R the linear form

`(φ, ψ, η) =

∫ L

0

(u0φ(0, x) + v0ψ(0, x) + w0η(0, x))dx

+

∫ T

0

(〈f1, φ〉+ 〈f2, ψ〉+ 〈f3, η〉)dt,

where 〈·, ·〉 denotes the duality product between H−1(0, L) and H1
0 (0, L).
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Thanks to Proposition 4.1, the bilinear form above induces a norm ‖·‖a := a(·, ·)1/2 in P0. Call P the
completion of P0 with respect to ‖·‖a, which is a Hilbert space for the scalar product a(·, ·). From assumption
(4.3) and using Cauchy-Schwarz inequality, we readily check that

`(φ, ψ, η) ≤
(
‖β−3/2esα̂(f1, f2, f3)‖[L2(0,T ;H−1(0,L))]3 + ‖(u0, v0, w0)‖[L2(0,L)]3

)
‖(φ, ψ, η)‖a,

for every (φ, ψ, η) ∈ P , from where we see that ` is bounded in P . Therefore, we deduce that there exists a

unique triplet (φ̂, ψ̂, η̂) ∈ P such that

a((φ̂, ψ̂, η̂), (φ, ψ, η)) = `(φ, ψ, η), for all (φ, ψ, η) ∈ P. (4.4)

We define (û, v̂, ŵ, p̂, q̂) by

– û := −β23e−2s(8α̌−7α̂)(−φ̂t + 1
4 φ̂xxx)xx,

– v̂ := −β23e−2s(8α̌−7α̂)(−ψ̂t − 1
2 ψ̂xxx)xx,

– ŵ := −β23e−2s(8α̌−7α̂)(−η̂t − 1
2 η̂xxx + 3φ̂x)xx,

– p̂ := −β25e−2s(7α̌−6α̂)ψ̂1γ ,

– q̂ := −β221e−2s(56α̌−55α̂)η̂1ω.

Let us show now that (û, v̂, ŵ, p̂, q̂) is the quintuple that we are looking for. First, let us prove that (û, v̂, ŵ) is
actually the solution of (1.6) with p = p̂ and q = q̂. Let (ũ, ṽ, w̃) be the (unique) weak solution of (1.6) associated
to p = p̂ and q = q̂. This triplet is also the unique solution by transposition of (1.6), that is, it satisfies

∫
Q

(
ũg1 + ṽg2 + w̃g3

)
dxdt =

∫ L

0

(u0φ(0, x) + v0ψ(0, x) + w0η(0, x))dx

+

∫ T

0

(〈f1, φ〉+ 〈f2, ψ〉+ 〈f3, η〉)dt

+

∫ T

0

∫
γ

p̂ψdxdt+

∫ T

0

∫
ω

q̂ηdxdt,

(4.5)

for all (g1, g2, g3) ∈ [L2(0, T ;H1
0 (0, L))]3, where (φ, ψ, η) is the solution of

−φt + 1
4φxxx = g1, in Q,

−ψt − 1
2ψxxx = g2, in Q,

−ηt − 1
2ηxxx = g3 − 3φx, in Q,

φ(t, 0) = φ(t, L) = 0, φx(t, L) = 0, t ∈ (0, T ),

ψ(t, 0) = ψ(t, L) = 0, ψx(t, 0) = 0, t ∈ (0, T ),

η(t, 0) = η(t, L) = 0, ηx(t, 0) = 0, t ∈ (0, T ),

φ(T, x) = ψ(T, x) = η(T, x) = 0, in (0, L).

(4.6)

Actually, one usually takes (g1, g2, g3) ∈ [L2(0, T ;L2(0, L))]3 in (4.5), but given the density of H1
0 (0, L)

in L2(0, L) (together with energy estimates for system (4.6)), these two ways of taking the gi functions are
equivalent. On the other hand, from (4.4), we see that

a((φ̂, ψ̂, η̂), (φ, ψ, η)) = `(φ, ψ, η), for all (φ, ψ, η) ∈ P0, (4.7)
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where (φ̂, ψ̂, η̂) ∈ P is the unique solution of (4.4). Integrating by parts in space once, we find that

∫
Q

(
û(−φt + 1

4φxxx) + v̂(−ψt − 1
2ψxxx) + ŵ(−ηt − 1

2ηxxx + 3φx)
)
dxdt

=

∫ L

0

(u0φ(0, x) + v0ψ(0, x) + w0η(0, x))dx

+

∫ T

0

(〈f1, φ〉+ 〈f2, ψ〉+ 〈f3, η〉)dt

+

∫ T

0

∫
γ

p̂ψdxdt+

∫ T

0

∫
ω

q̂ηdxdt,

(4.8)

for all (φ, ψ, η) ∈ P0. Using the density of P0 in P with respect to the norm ‖·‖a, we show that (4.8) holds for all
(φ, ψ, η) ∈ P . Therefore, the triplets (ũ, ṽ, w̃) and (û, v̂, ŵ) must coincide, and (û, v̂, ŵ) is the solution of (1.6)
associated to p̂ and q̂.

Now, notice that

∫ T

0

β−23e2s(8α̌−7α̂)‖û‖2H−1(0,L)dt =

∫ T

0

β−23e2s(8α̌−7α̂) sup
‖y‖

H1
0(0,L)

=1

〈û, y〉2dt

=

∫ T

0

β23e−2s(8α̌−7α̂) sup
‖y‖

H1
0(0,L)

=1

〈−(−φ̂t + 1
4 φ̂xxx)xx, y〉2dt

=

∫ T

0

β23e−2s(8α̌−7α̂) sup
‖y‖

H1
0(0,L)

=1

(∫ L

0

(−φ̂t + 1
4 φ̂xxx)xyx dx

)2

dt

≤
∫
Q

β23e−2s(8α̌−7α̂)|(−φ̂t + 1
4 φ̂xxx)x|2dxdt

≤ ‖(φ̂, ψ̂, η̂)‖2a < +∞.

Proceeding in the same way for v̂ and ŵ, we can prove that

∫ T

0

β−23e2s(8α̌−7α̂)
(
‖û‖2H−1(0,L) + ‖v̂‖2H−1(0,L) + ‖ŵ‖2H−1(0,L)

)
dt < +∞, (4.9)

and, directly from the definition,

∫ T

0

∫
γ

β−25e2s(7α̌−6α̂)|p̂|2dxdt+

∫ T

0

∫
ω

β−221e2s(56α̌−55α̂)|q̂|2dxdt < +∞. (4.10)

It only remains to check that

(u, v, w) ∈ [L2(β−3/4es/2α̂(0, T );H1
0 (0, L)) ∩ L∞(β−3/4es/2α̂(0, T );L2(0, L))]3.
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To do this, let (ū, v̄, w̄) := β−3/4es/2α̂(û, v̂, ŵ). From (1.6), the triplet (ū, v̄, w̄) satisfies the system

ūt − 1
4 ūxxx − 3w̄x = β−3/4es/2α̂f1 + (β−3/4es/2α̂)tû, in Q,

v̄t + 1
2 v̄xxx = β−3/4es/2α̂(f2 + p̂1γ) + (β−3/4es/2α̂)tv̂, in Q,

w̄t + 1
2 w̄xxx = β−3/4es/2α̂(f3 + q̂1ω) + (β−3/4es/2α̂)tŵ, in Q,

ū(t, 0) = ū(t, L) = 0, ūx(t, 0) = 0, t ∈ (0, T ),
v̄(t, 0) = v̄(t, L) = 0, v̄x(t, L) = 0, t ∈ (0, T ),
w̄(t, 0) = w̄(t, L) = 0, w̄x(t, L) = 0, t ∈ (0, T ),
(ū(0, x), v̄(0, x), w̄(0, x)) = β−3/4(0)es/2α̂(0)(u0(x), v0(x), w0(x)), in (0, L).

(4.11)

Since

|(β−3/4es/2α̂)t| ≤ Cβ5/4es/2α̂ ≤ Cβ23/2es(8α̌−7α̂),

we have from (4.3), (4.9) and (4.10) that the right-hand sides of the previous systems belong to
L2(0, T,H−1(0, L)). Then, from Proposition 2.1, we conclude that

(ū, v̄, w̄) ∈
[
L2(0, T ;H1

0 (0, L)) ∩ L∞(0, T ;L2(0, L))
]3
,

which concludes the proof of Proposition 4.2.

A similar controllability result holds if, instead of (4.3), we assume that

(f1, f2, f3) ∈ [L1(β−1/2esα̂(0, T );L2(0, L))]3. (4.12)

Indeed, the proof is analogous to the one of Proposition 4.2 with a few changes:

– Take

`(φ, ψ, η) =

∫ L

0

(u0φ(0, x) + v0ψ(0, x) + w0η(0, x))dx+ 〈f1, φ〉+ 〈f2, ψ〉+ 〈f3, η〉

where 〈·, ·〉 denotes the duality product between L∞(0, T ;L2(0, L)) and L1(0, T ;L2(0, L)). From (4.2), we
check that ` is a linear bounded operator in P .

– Call Ẽ the space of quintuples (u, v, w, p, q) that satisfy the first four points of the space E above, and
replacing the last condition by

(ut − 1
4uxxx − 3wx, vt − 1

2vxxx − p1γ , wt + 1
2wxxx − q1ω) ∈ [L1(β−1/2esα̂(0, T );L2(0, L))]3.

Then, we can establish the following controllability result for system (1.6).

Proposition 4.3. Let (u0, v0, w0) ∈ [L2(0, L)]3 and assume that (4.12) holds. Then, there exist two controls p
and q, such that the associated solution (u, v, w) to (1.6) satisfies (u, v, w, p, q) ∈ Ẽ. In particular,

u(T, x) = v(T, x) = w(T, x) = 0 in (0, L).

4.3. Local null controllability of the nonlinear system

In this section, we prove the local null controllability of the Hirota-Satsuma system (1.5), that means
Theorem 1.1, using a local inversion argument. More precisely, we apply the following result (see [1]).
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Theorem 4.4. Let B1 and B2 be two Banach spaces and let F : B1 → B2 satisfy F ∈ C1(B1;B2). Assume that
b1 ∈ B1, F(b1) = b2 and that F ′(b1) : B1 → B2 is surjective. Then, there exists δ > 0 such that, for every b′ ∈ B2

satisfying ‖b′ − b2‖B2
< δ, there exists a solution of the equation

F(b) = b′, b ∈ B1.

Proof of Theorem 1.1. Let F : E → [L2(β−3/2esα̂(0, T );H−1(0, L)× L2(0, L))]3 be an operator defined by

F(u, v, w, p, q) :=
(
(ut − 1

4uxxx − 3uux + 6vvx − 3wx, u(0, ·),
vt + 1

2vxxx + 3uvx − p1γ , v(0, ·),
wt + 1

2wxxx + 3uwx − q1ω, w(0, ·)
)
.

Recall that the space E is the Banach space defined at the beginning of Section 4.2.
We will check that the following two points are verified:

– F ′ is an operator of class C1 from E to [L2(β−3/2esα̂(0, T );H−1(0, L))]3.

– F ′(0) : E → [L2(β−3/2esα̂(0, T );H−1(0, L)× L2(0, L))]3 is surjective.

Then, since F(0) = 0, from Theorem 4.4 with B1 := E, and B2 := [L2(β−3/2esα̂(0, T );H−1(0, L)×L2(0, L))]3,
there exists δ > 0 such that if ‖(u0, v0, w0)‖[L2(0,L)]3 < δ, there exists (u, v, w, p, q) ∈ E such that

F(u, v, w, p, q) = (0, u0, 0, v0, 0, w0).

Let us check the two points above.

– F ′ is an operator of class C1 from E to [L2(β−3/2esα̂(0, T );H−1(0, L)× L2(0, L))]3.
It is fairly clear to see that it suffices to prove that the bilinear terms in F are bounded. Indeed, let y and
z two functions in E. We have

‖yzx‖L2(β−3/2esα̂(0,T );H−1(0,L)) ≤ C‖y‖L2(β−3/4es/2α̂(0,T );H1
0 (0,L))‖z‖L∞(β−3/4es/2α̂(0,T );L2(0,L))

≤ C‖y‖E‖z‖E .

– F ′(0) : E → [L2(β−3/2esα̂(0, T );H−1(0, L)× L2(0, L))]3 is surjective.
Notice that

F ′(0) :=
(
(ut − 1

4uxxx − 3wx, u(0, ·), vt + 1
2vxxx − p1γ , v(0, ·), wt + 1

2wxxx − q1ω, w(0, ·)
)
,

which is surjective thanks to Proposition 4.2. This completes the proof of Theorem 1.1.

5. Final comments

We finish our paper with some comments and open problems.

– We have proven in Theorem 1.1 the local null controllability of the generalized HS system (1.5). Given
the strategy followed in this paper, we have done the best possible: to control the three-equation system
with two internal controls. This optimality is clear from the fact that when we linearize we obtain two
decoupled subsystems and consequently we need two controls to achieve our results.

– A very nice open problem is to get the control of the generalized HS system (1.5) using only one control
input. To do that, the strategy used here is not good enough as explained in the previous point. A possible
strategy is the use of nonlinear arguments as the return method as done for instance in [10, 11] for parabolic
systems and in [24] for hyperbolic systems. This strategy should be also useful to control the HS system
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(1.1) with only one control, for instance:

ut − 1
4uxxx = 3uux − 6vvx, (t, x) ∈ Q,

vt + 1
2vxxx = −3uvx + p1γ , (t, x) ∈ Q,

u(t, 0) = u(t, L) = 0, ux(t, 0) = 0, t ∈ (0, T ),

v(t, 0) = v(t, L) = 0, vx(t, L) = 0, t ∈ (0, T ),

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, L).

– Other interesting open problem it is to study the boundary controllability of the generalized HS system,
trying to get some results when some equations are not directly controlled.
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