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Introduction

Sampling from probability measures in high dimensional spaces is an important problem that arises in several applications, including computational statistical physics [START_REF] Lelièvre | Free energy computations[END_REF], Bayesian inference [START_REF] Stuart | Inverse problems: a Bayesian perspective[END_REF], and machine learning [START_REF] Andrieu | An introduction to MCMC for machine learning[END_REF]. Typically one is interested in calculating integrals of the form πpφq :" E π φ :"

ż R d φpxq πpdxq, (1) 
where πpdxq " πpxq dx 4 is a probability measure in R d , known up to the normalization constant and φ P L 2 pπq is an observable. Here L 2 pπq denotes the weighted L 2 space for the scalar product pφ, ψq π " ş R d φpxqψpxqπpxqdx and the corresponding norm is denoted by }φ} π . A standard methodology for calculating, or, rather, estimating the integral in ( 1) is to construct a stochastic process tXptqu tą0 in R d , e.g. an Itô diffusion process dXptq " f pXptqq dt `σpXptqq dW t

that is ergodic with respect to the measure π. Here W t is a standard m-dimensional Brownian motion and f : R d Ñ R d and σ : R d Ñ R dˆm are assumed smooth and Lipschitz continuous. In particular, π is the unique normalized solution of the stationary Fokker-Plank equation L ˚π " 0, where L ˚is the L 2 pdxq adjoint of the generator Lφ :" f ¨∇φ `1 2 σσ T : ∇ 2 φ of the SDE (2). 5 In what follows we denote by H the L 2 pdxq adjoint of an operator H and by H 7 its L 2 pπq adjoint. Under appropriate assumptions on the drift and diffusion coefficients, we can prove a strong law of large numbers and a central limit theorem as T Ñ 8,

π T pφq :" 1 T ż T 0 φpXptqq dt Ñ πpφq a.e., X 0 " x, (3) 
and we have the following convergence in law

? T pπ T pφq ´πpφqq Ñ N p0, σ 2 φ q, (4) 
where σ 2 φ denotes the asymptotic variance of the observable φ, given by the Kipnis-Varadhan formula σ 2 φ " xpφ ´πpφq, p´Lq ´1pφ ´πpφqqy π .

(

) 5 
Under the assumption that the generator has a spectral gap in L 2 pπq (see for instance [START_REF] Mattingly | Convergence of numerical time-averaging and stationary measures via Poisson equations[END_REF]) we have the following exponential convergence

ˇˇEpφpXptqqq ´πpφq ˇˇď Ce ´λt , (6) 
where λ ą 0 is the spectral gap of the generator L.

In this paper, we focus on the overdamped Langevin dynamics for sampling [START_REF] Andrieu | An introduction to MCMC for machine learning[END_REF],

dXptq " f pXptqq dt `?2 dW t , (7) 
where f pxq :" ´∇V pxq and W t is a standard d-dimensional Brownian motion. The invariant measure of (a) is given by πpdxq " Z ´1e ´V pxq dx, where Z " ş R d e ´V pxq dx is the normalization constant and V : R d Ñ R is a smooth confining potential. A question that has attracted considerable attention in recent years is the construction of modified Langevin dynamics that have better sampling properties in comparison to the standard overdamped Langevin dynamics [START_REF] Lelievre | Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion[END_REF]. Several modifications of the Langevin dynamics [START_REF] Lelievre | Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion[END_REF] that can be used in order to sample from π are presented in [START_REF] Duncan | Using Perturbed Underdamped Langevin Dynamics to Efficiently Sample from Probability Distributions[END_REF]Sec 2.2]. A well known technique that was first introduced in [START_REF] Hwang | Accelerating Gaussian diffusions[END_REF][START_REF] Hwang | Accelerating diffusions[END_REF] and analyzed in a series of recent papers, e.g. [START_REF] Rey-Bellet | Irreversible langevin samplers and variance reduction: a large deviations approach[END_REF][START_REF] Rey-Bellet | Improving the convergence of reversible samplers[END_REF][START_REF] Lelievre | Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion[END_REF][START_REF] Duncan | Variance Reduction Using Nonreversible Langevin Samplers[END_REF] for improving the performance of the Langevin sampler [START_REF] Lelievre | Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion[END_REF], is to introduce in (2) a divergence-free (with respect to the target distribution) drift perturbation g : R d Ñ R d , dXptq " pf pXptqq `gpXptqqqdt `?2 dW t ,

such that divpgπq " 0. (9) We will refer to [START_REF] Mattingly | Convergence of numerical time-averaging and stationary measures via Poisson equations[END_REF] as the divergence-free condition. This condition ensures that the SDE (8) has the same invariant measure π as [START_REF] Duncan | Variance Reduction Using Nonreversible Langevin Samplers[END_REF]. We remark that there are infinitely many vector fields g that satisfy [START_REF] Mattingly | Convergence of numerical time-averaging and stationary measures via Poisson equations[END_REF]. A complete characterization of all vector fields that satisfy this condition can be found in [START_REF] Hwang | Accelerating diffusions[END_REF]Prop. 2.2].

It is by now a standard, and not difficult to prove, result that nonreversible dynamics exhibits better properties as a sampling scheme, in the sense that the nonreversible perturbation accelerates convergence to equilibrium and reduces the asymptotic variance. The generator of the nonreversible dynamics ( 8) is given by L D " L `A, (10) where L is the generator of (2) A is defined by Aφ " ∇φ ¨g (in the calculations below we will use the notation Aφ " φ 1 g). The drawback of the nonreversible Langevin sampler ( 8) is that, since the generator of the dynamics is a nonselfadjoint operator, a transient, oscillatory phase is introduced. This transient behaviour can be addressed, in principle, by the use of an appropriate splitting numerical scheme [START_REF] Duncan | Nonreversible Langevin samplers: Splitting schemes, analysis and implementation[END_REF].

In this paper, we introduce and analyze an alternative way for perturbing the overdamped reversible Langevin dynamics that is reversible and enjoys all the advantages of the nonreversible sampler (8), while not suffering from the drawback of its oscillatory transient dynamics. The new dynamics is given by the Stratonovitch perturbation

dXptq " f pXptqq dt `gpXptqq ˝?2 dβ t `?2 dW t , (11) 
where g satisfies the divergence-free condition and we assume that β t is a one-dimensional standard Wiener process that is independent of W t . 6 For the Stratonovich-perturbed Langevin dynamics [START_REF] Rey-Bellet | Irreversible langevin samplers and variance reduction: a large deviations approach[END_REF] we have the following result. Theorem 1.1 (Reversibility of the perturbed dynamics) Considered the perturbed dynamics (11), were g satisfies the divergence-free condition [START_REF] Mattingly | Convergence of numerical time-averaging and stationary measures via Poisson equations[END_REF]. Then the generator of (11) can be written in the form

L S " L `A2 , (12) 
and L S is symmetric in L 2 pπq, i.e. L S " L 7 S . As a consequence of Theorem 1.1, the eigenvalues of L S are real, hence there is no transient behaviour of the dynamics. Remark 1 The proposed modified Langevin sampler (11) can be written in the form of general reversible diffusion process 7 (see [START_REF] Pavliotis | Stochastic processes and applications[END_REF]Ch. 4] for the characterization of diffusion processes that are reversible with respect to a given measure):

dXptq " ´pM ∇V qpXptqq dt `pdivM qpXptqq dt `?2DpXptqq d x W t ,
where M " I `gg T " DD T P R dˆd , D " pI, gq P R dˆpd`1q and x W t " pW t , β t q is a standard d `1 dimensional Brownian motion. Theorem 1.2 (Invariant measure preservation) Under the assumptions of Theorem 1.1, the perturbed dynamics [START_REF] Rey-Bellet | Irreversible langevin samplers and variance reduction: a large deviations approach[END_REF] is ergodic with respect to the measure πpdxq " Z ´1e ´V dx.

Remark 2 We note that Theorems 1.1 and 1.2 remain true for general ergodic SDEs (2) with a Stratonovich perturbation, dXptq " f pXptqq dt `gpXptqq ˝?2 dβ t `σpXptqqdW t , (13) where g is a divergence-free vector field with respect to π and f : R d Ñ R d does not have a gradient structure. This includes, in particular, degenerate diffusions (e.g. when the diffusion matrix σσ T is only positive semidefinite), for example the underdamped Langevin dynamics. Indeed the gradient structure is not used in the proofs. Note however that in the case where the functional form of π is not explicitly known, it can be difficult to compute such a vector field.

6. One can also consider Stratonovich perturbations driven by multidimensional Brownian motions with diffusion functions g j , j " 1, 2, . . . satisfying divpg j πq " 0. A detailed analysis of such perturbed Langevin dynamics will be presented elsewhere.

7. Our results can be extended to cover the case of the preconditioned/Riemannian manifold Markov Chain Monte Carlo Langevin dynamics. The details will be presented elsewhere.

The next theorem shows that, in comparison to the original overdamped Langevin dynamics [START_REF] Lelievre | Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion[END_REF], the Stratonovich perturbation yields a larger spectral gap and a reduced asymptotic variance. Similarly to the nonreversible deterministic perturbation [START_REF] Lelièvre | Free energy computations[END_REF], this hence leads to an improved reversible sampler for the invariant measure (1), both in terms of speeding up the convergence to equilibrium (6) as well as in terms of reducing the asymptotic variance [START_REF] Hwang | Accelerating Gaussian diffusions[END_REF]. When combined, these results provide us with improved performance when measured in the mean-squared error; see [START_REF] Duncan | Using Perturbed Underdamped Langevin Dynamics to Efficiently Sample from Probability Distributions[END_REF]Sec.2.3].

We recall that, under the assumption that the potential V grows sufficiently fast at infinity, the generator of both the standard Langevin and of the Stratonovich-perturbed dynamics have purely discrete spectrum. Theorem 1.3 (Accelerated convergence and reduced asymptotic variance) Let the assumption of Theorem 1.1 hold and let λ L and λ S denote the gaps of the overdamped Langevin (7) and of the Stratonovich-perturbed dynamics [START_REF] Rey-Bellet | Irreversible langevin samplers and variance reduction: a large deviations approach[END_REF], respectively. Then

λ ď λ S . (14) 
Let, furthermore φ P L 2 pπq and denote the corresponding asymptotic variances by σ 2 L pφq and σ 2 S pφq. Then

σ 2 L pφq ě σ 2 S pφq. ( 15 
)
Remark 3 When the target distribution is Gaussian, in particular for the two dimensional quadratic potential V pxq " 1 2 px 2 1 `λx 2 2 q with λ ! 1, the standard Langevin dynamics [START_REF] Lelievre | Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion[END_REF] converges to equilibrium at the very slow rate λ L " λ, and it was shown in [START_REF] Lelievre | Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion[END_REF] that a perturbation of the form

gpxq " δ θ J∇V pxq, J " `0 1 ´1 0 ˘, (16) 
with size δ " λ ´1{2 and θ " 1 yields in the case of a nonreversible perturbation (8) an optimally improved convergence rate λ D " Op1q. For isotropic Gaussians, the optimally reduced asymptotic variance using a nonreversible perturbation can also be calculated [START_REF] Duncan | Variance Reduction Using Nonreversible Langevin Samplers[END_REF]Sec. 4]. Similarly, an improved convergence rate of λ S " Op1q can also be obtained for the reversible perturbation (11) for the same scaling δ " λ ´1{2 and θ " 1{2. Observe that the factor δ θ in (16) yields a perturbation of size Opδq of the Langevin generator L in both perturbed generators L D in (10) and L S in [START_REF] Rey-Bellet | Improving the convergence of reversible samplers[END_REF]. It is important to note that the optimal nonreversible perturbation depends on the optimality criterion used, i.e. on whether our aim is to maximize the rate of convergence to equilibrium or to minimize the asymptotic variance (uniformly over the space of square integrable observables). Contrary to this, the optimal reversible perturbation is the same with respect to these two optimality criteria. This observation will be explored further in a future work together with a complete analysis of optimal Stratonovitch perturbations for Gaussian target distributions.

Proof of the main results

We start by recalling from [START_REF] Lelievre | Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion[END_REF] that the differential operator A is skew-symmetric in L 2 pπq, i.e. A 7 " ´A. This result follows from an integration by parts and (9). To prove our main results we also use that the original SDE (2) has the the generator Lφ " φ 1 f `∆φ.

(17) Proof of Theorem 1.1 We convert the Stratonovitch SDE ( 11) into an Itô one:

dX " f pXqdt `g1 pXqgpXqdt `gpXq ? 2 dβ t `?2 dW t . ( 18 
)
Using the calculation A 2 φ " pφ 1 gq 1 g " φ 1 g 1 g `φ2 pg, gq. we deduce the result ( 12) by applying formula (17) to the SDE ( 18). An immediate consequence of A 7 " ´A is then that pA 2 q 7 " A 2 , i.e. A 2 is L 2 pπq symmetric. As L itself is L 2 pπq symmetric, we have that L S is also L 2 pπq symmetric. l Proof of Theorem 1.2 The L 2 -adjoint satisfies

L S π " L ˚π `A˚p A ˚πq " 0, (19) 
where we have used the fact that L ˚π " A ˚π " 0. Hence π is the unique invariant measure of the perturbed dynamics [START_REF] Rey-Bellet | Irreversible langevin samplers and variance reduction: a large deviations approach[END_REF]. l

Proof of Theorem 1.3 We write the generator of the Stratonovich-perturbed dynamics as L S " ´B7 B Á7 A with B " ∇, A " g ¨∇, A 7 " ´A. The quadratic form associated to L S is x´L S φ, φy π " }Bφ} 2 π `}Aφ} 2 π for all φ P H 1 pπq the weighted Sobolev space that is defined in the standard manner. The quadratic form associated to the generator of the reversible Langevin dynamics L " ´B7 B is x´Lφ, φy π " }Bφ} 2 π . Since both L S and L are symmetric operators in L 2 pπq with compact resolvents, the spectral gap of the reversible Langevin dynamics is given by the Rayleigh quotient formula, λ S " min

φPH 1 pπq, ş φπ"0 x´L S φ, φy π }φ} 2 π " min φPH 1 pπq, ş φπ"0 }Bφ} 2 π `}Aφ} 2 π }φ} 2 π ě min φPH 1 pπq, ş φπ"0 }Bφ} 2 π }φ} 2 π " λ L .
To prove the bound on the asymptotic variance, we first write the formula for σ 2 S pφq in the form σ 2

S pφq " xψ S , φy π where ψ S is the solution of the Poisson equation ´LS ψ S " φ, and where without loss of generality we have assumed that ş R d φ π " 0. We also consider ψ L , the solution of the Poisson equation ´Lψ L " φ and using L " L S `A7 A, we obtain π `}Bψ} 2 π ě 0, with ψ :" p´Lq ´1p´A 2 qψ S . l Remark 4 Notice also that the perturbation A 2 is only negative semidefinite. In particular, the null space of the perturbation is (much) larger than that of the generator of the overdamped Langevin dynamics which consists of constants. The amount of improvement in the calculation of the integral in (1) using the long time average depends on the magnitude of the projection of the observable φ on the null space of A 2 . Clearly, if this projection is zero, then the inequality in (15) is strict. The details of these arguments will be presented elsewhere.

σ 2 L pφq

Numerical experiments

In this section, we present some numerical experiments to corroborate our theoretical findings and illustrate the features of the Stratonovitch-perturbed Langevin dynamics [START_REF] Rey-Bellet | Irreversible langevin samplers and variance reduction: a large deviations approach[END_REF]. Although we are primarily interested in large dimensional problems, we consider for simplicity the following warped Gaussian distribution, as considered in [2, Sec. 5.2], with density πpxq " Z ´1e ´V pxq where V pxq is the two-dimensional potential potential V pxq "

x 2 1 100 `px 2 `bx 2 1 ´100bq 2 , where the parameter b " 0.05 is related to how warped the distribution is. For the purposes of this paper, it is sufficient to consider the family of vector fields gpxq " J∇V pxq, J " ´JT , for all constant skew-symmetric matrices J. In particular, we consider the vector field gpxq defined by (16) and we compare the effect of the nonreversible perturbation with θ " 1 in (8) (Figure 1a) and the new reversible Stratonovitch perturbation with θ " 1{2 in (11) (Figure 1b) for several sizes δ " 1, 64, 256 of the perturbation. We also include for reference the results for the standard overdamped Langevin equation [START_REF] Lelievre | Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion[END_REF]. We consider the observable φpxq " x 2 1 `x2

2 and consider the estimator 1 M ř M i"1 φpX piq ptqq » EpφpXptqq. We take the initial condition X 0 " p0, 0q and we plot for M " 10 3 independent realisations X piq ptq, i " 1, . . . , M the error | 1 M ř M i"1 φpX piq ptqq ´πpφq| as a function of time t P r0, 4s. The solution is approximated using the simplest Euler-Maruyama method with very small stepsize ∆t " 10 ´5 (considering the Itô formulation (18)). We observe that although the speed of the convergence EpφpXptqq Ñ πpφq as t Ñ 8 is very slow for the standard overdamped Langevin dynamics (see the nearly horizontal black curve for δ " 0), both perturbations lead to an increase in the speed of the convergence to equilibrium (see the transient phase for small time t) while reducing the asymptotic variance (see the equilibrium phase for large time t ě 2 where the oscillations are only due to Monte-Carlo errors), which corroborates Theorem 1.2 and Theorem 1.3. In addition, the Stratonovitch perturbation yields no oscillatory behavior in contrast to the nonreversible one (see Theorem 1.1). This feature renders the new sampling scheme more amenable to efficient numerical methods. This will be explored further in a future study.

  Stratonovitch-perturbed Langevin dynamics[START_REF] Rey-Bellet | Irreversible langevin samplers and variance reduction: a large deviations approach[END_REF].
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 1 Figure 1. Error evolution along time of the average over M " 10 3 trajectories of the nonreversible and the Stratonovitch-perturbed Langevin dynamics for different sizes δ " 0, 16, 128, 256 of the perturbation.

  " xφ, ψ L y π " xp´L S qψ S , ψ L y π " xψ S , p´Lqψ L y π ´xA 2 ψ S , ψ L y π " xψ S , φy π `xA 7 Aψ S , ψ L y π " σ 2 S pφq `xAψ S , Aψ L y π . To prove our claim, it is sufficient to show that xAψ S , Aψ L y π ě 0. We calculate, xAψ S , Aψ L y π " xAψ S , Ap´Lq ´1φy π " xAψ S , Ap´Lq ´1pp´Lq `p´A 2 qqψ S y π " xA 7 Aψ S , pI `p´Lq ´1p´A 2 qqψ S y π " }Aψ S } 2 π `xp´A 2 qψ S , p´Lq ´1p´A 2 qqψ S y π " }Aψ S } 2

We assume that the target probability measure has a density with respect to Lebesgue measure. To simplify the notation, we will denote both the measure and the density by π.

For two matrices A and B we use the notation A : B " tracepA T Bq.
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