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Experimental and numerical modelling of a one-degree of
freedom non-smooth mechanical system

S. Kojtych1, Y. Coläıtis1, E. Piollet1, A. Batailly1

Abstract
The aim of this paper is to highlight some numerical challenges occurring in the analysis of
non-smooth mechanical systems by focusing on a single degree of freedom system with unilateral
contact interface. An experimental setup is developed, its vibration behaviour is analyzed
both with and without contact interface by means of forward and backward sweep tests. The
parameters of the associated numerical model are carefully identified based on experimental
measurements and observations. Numerical investigations are carried out assuming the system’s
response is periodic using the harmonic balance method. Numerical results are then confronted
to experimental observations: frequency response curves and time responses are superimposed
in order to assess the accuracy of the numerical model. Overall, a good agreement is obtained
between numerical predictions and experimental measurements. Additionally, the sensitivity
of accelerations computed with the harmonic balance method to the Gibbs phenomenon is
highlighted.

Keywords
non-smooth system; unilateral contact; harmonic balance method; experimental setup; Gibbs
phenomenon
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Modélisation numérique et expérimentale d’un système
mécanique non-régulier à un degré de liberté

S. Kojtych1, Y. Coläıtis1, E. Piollet1, A. Batailly1

Résumé
Cet article a pour objectif de mettre en évidence certains défis numériques relatifs à l’analyse de
systèmes mécaniques non-réguliers. Il se focalise sur l’étude d’un système mécanique à un degré
de liberté avec interface de contact. Un banc d’essais spécifique a été conçu pour cette étude, son
comportement vibratoire est tout d’abord analysé avec et sans interface de contact en effectuant
des balayages en fréquence montant et descendant. Ces observations et mesures expérimentales
servent de base pour la calibration des paramètres du modèle numérique associé. L’étude du
modèle numérique est effectuée en supposant que le système a un comportement périodique à
l’aide de la méthode de l’équilibrage harmonique. La confrontation des résultats numériques
aux mesures expérimentales est faite en superposant des courbes de réponse en fréquence et
des réponses temporelles obtenues expérimentalement et numériquement. Dans l’ensemble,
une bonne superposition des résultats est observée. L’intérêt de cette confrontation réside
notamment dans la mise en évidence de sensibilité numérique du calcul des accélérations par
la méthode d’équilibrage harmonique. En effet, l’apparition du phénomène de Gibbs perturbe
significativement les résultats dans le domaine fréquentiel.

Mots-clés
système non-régulier; contact unilatéral; méthode de l’équilibrage harmonique; dispositif
expérimental; phénomène de Gibbs
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1. Introduction

The modelling of non-smooth mechanical systems, particularly those featuring contact
interfaces, is a challenge both from an experimental and a numerical standpoint. In a
context where the design of sophisticated engineering applications now requires to account
for inherent nonlinearities associated to contact [1, 2] or friction [3], the understanding of
the physical phenomena at play is critical. Non-smooth mechanical systems are nonlinear
systems characterized by the fact that their speed and acceleration fields are discontinuous.
Because there is no equivalent to modal analysis in a non-smooth context, acquiring the
intrinsic signature of a sophisticated mechanical non-smooth system is a very active field of
research [4, 5]. Engineers and designers rely on several types of numerical methods [6, 7, 8]
that may provide accurate results but that are also prone to numerical sensitivity or
instability. The development of a robust numerical strategy thus requires that attention be
paid to both physical and numerical aspects [1, 9].

In this context, and as a first step towards the development of a robust numerical
strategy dedicated to the analysis of non-smooth mechanical systems, this paper presents a
numerical/experimental confrontation on an academic non-smooth system: a one-degree of
freedom setup featuring a contact interface. Based on the assumption that the system’s
response is periodic, numerical investigations are carried out using the Harmonic Balance
Method (HBM). Though fairly simple, the mechanical system of interest exhibits a rich
dynamic behaviour calling for a careful analysis of both experimental observations and
numerical results. The numerical sensitivity of the HBM is underlined, particularly when
looking at acceleration fields. Nonetheless, the HBM advantageously provides a qualitative
view of the system’s dynamics that time integration techniques—also considered in this
paper for the sake of validation—fail to provide.

The second section of the article describes the experimental setup. An analytic model
for the underlying smooth system is proposed before its key mechanical parameters are
identified. Frequency sweep tests are conducted for two distinct experimental configurations:
with and without the contact interface. The third section of this paper briefly describes
the theory behind the HBM. A comparison between numerical and experimental results
for the two experimental configurations is presented and the differences are discussed. The
influence of the number of harmonics taken into account in the HBM on the accuracy of the
predicted solutions is investigated.

2. Experimental system

2.1 Setup description

 

sliding mass

impactor

excitation spring

compression spring

excitation wheel
pulley

x

Figure 1. CAD and photo of the experimental setup.

The experimental setup depicted in Fig. 1 aims at modelling a one-degree of freedom
mass-spring system with contact-induced nonlinearity. The system consists of two main
bodies: a sliding mass, excited along the x axis, and an impactor fixed on the bench structure
and constraining the displacement of the mass. The impactor may be removed, thus making
it possible to identify parameters of the system without contact interface. The impactor is
made of steel, the gap between its extremity and the sliding mass at rest is L = 10 mm. The
semi-cylindrical extremity of the impactor yields a line-to-surface contact interface. The
sliding system is designed to meet specific criteria while the bench support and excitation
system are adapted from [10].
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Sliding system The sliding mass is made of steel, it is guided along the x direction by two
parallel shafts fixed on the bench support. Sliding is made possible by two linear self-aligning
bearings which also reduce friction with the shafts. Four compression springs of stiffness kc
placed along the guiding shafts allow the mass to oscillate. An initial compression of these
springs ensures permanent contact with the mass in operation.
Excitation system A sinusoidal excitation is applied on the sliding system. A motor (not
visible in Fig. 1) is fixed below the bench support, it provides a rotary motion which is
transmitted to an excitation wheel. Two eccentric pins on this wheel are linked with two
extension springs by means of a cable-pulley system. Finally, the sliding system undergoes a
translation motion initiated by the springs. The magnitude of the excitation force depends
on the stiffness ke of the excitation springs and the excitation frequency can be chosen
by the control panel of the motor and goes from about 0.85f0 to 1.15f0, where f0 is the
system’s natural frequency. It is assumed that the global stiffness of the system is not
significantly impacted by the excitation springs stiffness, because their contribution are very
low compared to compression springs.
Measurement system A ±16 g triple-axis accelerometer fixed on the mass is used to
acquire accelerations and for transmission to a data acquisition system (DAQ). For cost-
efficient reasons as well as academic purposes, the use of an ADXL326 accelerometer from
Analog Devices and an Arduino UNO microncontroller (revision 3) as DAQ is considered in
this study. The DAQ behavior is implemented through codes in C programming language,
pre- and post-processing operations are carried out automatically by means of a dedicated
Python 2 interface developed specially for the experiment. Both the accelerometer and the
DAQ were calibrated prior to the experiments. All codes are open source and available
online [11]. The resolution of the measurement system is 0.05 g and the sampling frequency
is set to 1000 Hz.

2.2 Model and parameters identification

Assuming the investigated mechanical system behaves as a one-degree of freedom system,
its equation of motion is given by:

mẍ+ d(ẋ) + kx = F (ω, x, t) (1)

where m and k are respectively the mass and the global stiffness of the system, d(ẋ) is a
damping function to be determined, F stands for the external force, ω is the pulsation of
the excitation and t is the time.

The aim of this section is to introduce and quantify sources of uncertainty for each
of the system parameters m, d(ẋ), k and F in order to identify a suitable value for each
of them. A precise estimation of F is particularly arduous to obtain as a non-negligible
transverse motion of the extension springs is observed experimentally. For this reason, the
characterization of the system follows a two-pronged approach: (1) values of m, d and k are
first obtained without any excitation (F = 0) then, (2) F is identified.
Stiffness identification An uniaxial load frame is used to obtain an accurate value of the
static stiffnesses of both compression and extension springs. The measurements confirmed
the linear behavior of the springs. Averaged stiffnesses are summed up in Tab. 1 and the
global stiffness of the system is given by:

k = 4kc + 2ke. (2)

Due to the fairly low excitation frequency fe ≈ 13 Hz, a characterization of dynamical
stiffnesses is assumed unnecessary.
Mass identification Although the mass of each component is known, a precise estimate
of the mass of the sliding system is difficult to assess due to the unknown contribution of
compression springs to the global sliding system’s mass m. Indeed, the mass of compression
springs is distributed between the steel mass and the guiding shaft, thus only bounds can
be given for m:

3.718 kg ≤ m ≤ 4.612 kg (3)

A more accurate estimate of the system’s mass calls for a thorough analysis of the free
response of the system.
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Table 1. Parameters identified for the numerical model.

quantity expression value

compression spring stiffness kc 6 278 N/m

excitation spring stiffness ke 138 N/m

viscous damping coefficient ξ 0.014

dry friction coefficient µ 0.135

mass of sliding system m 4.262 kg

Damping analysis Looking at the test bench depicted in Fig. 1, it is assumed that
structural damping may essentially result from friction in linear bearings and from losses
within the springs. Free vibration decay is thus analyzed: the sliding mass is moved to
x = 10 mm, it is then released and accelerations are recorded. This test is conducted three
times for the sake of repeatability.
Three damping models are considered, see Tab. 2. Raw acceleration data depicted in
Fig. 2 are properly filtered and converted into displacements in order to identify the best
parameters for each model (µ and/or ξ). The best matching is observed with the mixed
damping model (viscous damping ξ and dry friction µ) which yields very good agreement
with experimental data as shown in Fig. 3. Averaged values of the best fit parameters µ
and ξ for the three tests are given in Tab. 1.
The low value of ξ underlines that viscous damping is weak. For this reason, free-decay
tests may be used to approximate the system’s natural frequency f0 = 12.28 Hz and thus
determine its mass m = 4.262 kg. Values of m, kc, ke, ξ and µ—which define the left term
of (1)—used for the numerical model are reported in Tab. 1.

Table 2. Damping model equations (g = 9.81 m/s2 gravitational constant, sgn() sign function, ξ
viscous damping coefficient, µ dry friction coefficient, ω0 = 2πf0 natural pulsation of the system).

damping model equation

viscous damping d(ẋ) = 2mξω0ẋ

dry friction d(ẋ) = µmg sgn(ẋ)

viscous damping and dry friction d(ẋ) = 2mξω0ẋ+ µmg sgn(ẋ)

0 0.5 1

−50

0

50

time (s)

ac
ce
le
ra
ti
on

ẍ
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Figure 2. Free decay experimental data.

Frequency analysis A frequency sweep is conducted to determine the frequency response
of the system as well as the expression of the right term of (1). The excitation frequency
is updated step-by-step; for each increment the amplitude of the system’s steady state
response is recorded. Acquisitions last for 20 s and are recorded at a frequency rate of
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Figure 3. Simulation of damping model with viscous damping and dry friction ( ) and experimental
acceleration data ( ).

1000 Hz. The close agreement of successive sweep tests has been checked in order to ensure
the repeatability of the procedure. Only results for a single sweep test are presented in the
following paragraphs.
In order to improve the experimental measurements accuracy, the frequency step is decreased
to 0.05 Hz in the vicinity of the resonance peak. For each frequency excitation value, the
maximal magnitude is plotted to draw an experimental response curve, see Fig. 4. Tests
were made both for forward and backward frequency sweeps: the good match between the
two responses underlines that the system without impactor does not exhibit any unwanted
nonlinearity.
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Figure 4. Experimental frequency response for the system without impactor: forward ( ) and
backward ( ) frequency sweeps.

High-resolution video-tracking used during the sweep tests shows that the excitation springs
undergo large frequency-dependent transverse displacements in operation as depicted in
Fig. 5. As a consequence, it is not possible to establish any straightforward relation between
the excitation springs stiffness and the magnitude of the force F . Due to the fact that the
excitation is driven by the rotary motion of the motor, it is assumed that the right term of
(1) may be written as:

F (ω, x, t) = fext(ω, t) = F(ω) sin(ωt) (4)

where ω = 2πfe is the pulsation of the excitation and F(ω) the unknown force magnitude.
Through a computation of the system’s forced response using the previously identified
parameters m, d(ẋ) and k, the values of F(ω) that corresponds to the experimentally
measured amplitudes are retrieved for each considered excitation frequency. F(ω) related to
both forward ( ) and backward ( ) frequency sweeps are pictured in Fig. 6. The similarity
of the curves attest that the calculated excitation force can be considered as independent
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Figure 5. Extreme positions of an excitation spring undergoing transverse displacement in operation
: ( ) theoretical baseline.

from the type of sweep.
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Figure 6. Magnitude of the excitation force obtained for forward ( ) and backward ( ) frequency
sweeps.
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Figure 7. Experimental frequency response for the system with impactor: forward ( ) and back-
ward ( ) frequency sweeps.

2.3 Experimental results for system with impactor

Forward and backward sweep tests are conducted with impactor. Results in acceleration are
depicted in Fig 7 and superimposed with experimental results without impactor. Curves are
significantly different: for the forward sweep, the highest magnitude is located at a higher
frequency than for the backward sweep and a jump in magnitude is visible at about 13.5 Hz.
These behaviours are typical of the contact stiffening phenomenon and attest that a strong
nonlinearity is induced by the contact interface. The slight decrease in magnitude for the
three excitation points located immediately before the jump is assumed to result from a
slight rotary motion of the sliding mass, due to unavoidable clearances in the linear bearings.
A more in-depth analysis of the influence of this potential second degree of freedom goes
beyond the scope of this study.
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3. Numerical model

Several numerical strategies may be employed to solve (1). In particular, one may distinguish
two classes of methods: (1) time integration and (2) frequency methods. Time integration
is costly but advantageously does not rely on any assumption with respect to the system’s
behaviour; it is still commonly used today in the industry. To the contrary, frequency methods
typically rely on an assumption of periodicity but may provide fast and reliable results.
More importantly, frequency methods such as the HBM, when coupled to continuation
algorithms, are able to provide a qualitative view of the system’s dynamics which is key for
understanding the underlying physical phenomena.

3.1 Theoretical presentation of the harmonic balance method

The HBM is widely used for the computation of nonlinear mechanical problems’ periodic
solutions [12, 13]. It relies on the assumption that the solution of a nonlinear system (1)
undergoing a harmonic forcing (4) may be approximated by a truncated Fourier series up to
the H-th harmonic:

x(t) ' a0√
2

+

H∑
j=1

[aj cos (jωt) + bj sin (jωt)] (5)

where aj and bj are the unknowns Fourier coefficients related to cosine and sine terms. The
same decomposition may also be used for the nonlinear forces fnl (e.g. contact or friction)
and the periodic external force fext:

fnl(x, ẋ) ' anl0√
2

+

H∑
j=1

[
anlj cos (jωt) + bnlj sin (jωt)

]
fext(ω, t) '

aext0√
2

+

H∑
j=1

[
aextj cos (jωt) + bextj sin (jωt)

]
.

(6)

From this point, all the Fourier coefficients may be gathered into the (2H + 1)-dimensional
vectors:

x̃ = [ a0 a1 b1 . . . aH bH ]
T

f̃nl =
[
anl0 anl1 bnl1 . . . anlH bnlH

]T
f̃ext =

[
aext0 aext1 bext1 . . . aextH bextH

]T (7)

where the symbol ( ˜ ) refers to frequency domain variables. By defining the Fourier basis
vector TH related to (5):

TH =

[
1√
2

cos (ωt) sin (ωt) . . . cos (Hωt) sin (Hωt)

]
, (8)

(5) and (6) are now read as:

x(t) = TH x̃

fnl(x, ẋ) = TH f̃nl

fext(ω, t) = TH f̃ext.

(9)

Also, velocities and accelerations may be written as:

ẋ(t) = ṪH x̃ = ω(TH∇)x̃

ẍ(t) = T̈H x̃ = ω2(TH∇2)x̃
(10)

where ∇ is a derivative operator defined as:

∇ =


0

. . .
∇j

. . .
∇H

 and ∇2 = ∇∇ (11)
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with

∇j = j

[
0 1
−1 0

]
for j = 1, . . . ,H. (12)

Using (9) and (10), the equation of motion (1) becomes:

mω2(TH∇2)x̃ + cω(TH∇)x̃ + kTH x̃ + TH f̃nl ' TH f̃ext (13)

where c = 2ξω0m accounts for viscous damping. The difference between the left and right
terms of (13) is related to the truncation of x(t), see (5), it is called the residual r(x̃, t) and
can be expressed as:

r(x̃, t) = mω2(TH∇2)x̃ + cω(TH∇)x̃

+ kTH x̃ + TH f̃nl(x̃)−TH f̃ext(ω, t).
(14)

A Galerkin projection [6] on the Fourier basis TH is then applied to remove the time
dependency of r(x̃, t) so as to obtain a relation between the unknowns, aj and bj . This
leads to the following set of nonlinear algebraic equations:

R(x̃, ω) = mω2∇2x̃ + cω∇x̃ + kI2H+1x̃

+ I2H+1f̃nl(x̃)− I2H+1f̃ext(ω)
(15)

with I2H+1 the identity matrix of size (2H + 1). Equation (15) may be written in a more
compact form:

R(x̃, ω) = Z(ω)x̃ + f̃nl(x̃)− f̃ext(ω) = 0 (16)

where Z(ω) is the square linear dynamic stiffness matrix of size (2H + 1) defined by:

Z(ω) = mω2∇2 + cω∇+ kI2H+1. (17)

The nonlinear algebraic system (16) may be solved iteratively, for instance with a Newton-
type or jacobian-free algorithms [12].
Nonlinear forces In general, the expression of the external forcing f̃ext is known. Nonlinear
forces f̃nl however depend on the displacement and velocity amplitudes and are not known a
priori. In order to address this issue, an Alternating Frequency/Time (AFT) procedure is
adopted [14, 13]. It consists in the use of direct and inverse Discrete Fourier Transform (DFT)
to evaluate the expression of nonlinear forces fnl(x, ẋ) as well as their derivatives ∂fnl

∂x , ∂fnl∂ẋ

in the time domain, then to obtain the frequency domain representations of f̃nl and ∂ f̃nl
∂x̃ (the

latter is only required for a Newton nonlinear solver). The AFT procedure is illustrated in
Fig. 8.

x̃
DFT−1

−−−−−−→ x(t), ẋ(t) −→ fnl(x(t), ẋ(t))
DFT−−−−−−→ f̃nl(x̃)

Figure 8. Evaluation of nonlinear forces with AFT.

In this study a distinction is made between the normal fn and tangential ft components
of the nonlinear forces, respectively related to contact and dry friction. An exponential
penalty law is employed to model unilateral contact constraints:

fn =


0 if δ ≤ −c0

f0
e(1)−1

[(
δ
c0

+ 1
)(

e

(
δ
c0

+1
)
− 1

)]
if δ > −c0 (18)

where δ is the penetration between solids, and (c0,f0) are contact regularization parameters.
With respect to dry friction, the computation of ft relies on a regularized Coulomb law:

ft = µmg sgn(ẋ) ' µmg tanh(γẋ) with γ � 1 (19)
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where γ is the sign function regularization parameter.
The choice of parameters c0, f0 and γ is based on a compromise between an accurate

modelling of the physical problem and the need to ensure numerical stability. In this study,
c0 = 5× 10−4 m, f0 = 10 N and γ = 10 are used.
Path following : continuation Nonlinear dynamics systems often exhibit complex be-
haviours, such as coexistence of multiple solutions. The possibility to obtain some of these
distinct solutions is a key asset of the HBM in comparison with time integration techniques.
To this end, an arc-length continuation procedure is combined with the HBM/AFT algorithm.
It consists in a prediction-correction approach to build the frequency response curve where
ω is unknown and constrained by a curvilinear abscissa parametrization of the curve. For
the sake of brevity, details of this algorithm are not given in this paper, the reader may refer
to [15] for more details.

3.2 Numerical simulations without contact interface

Without contact interface, it is assumed that dry friction is the only source of nonlinearity:

fnl(x, ẋ) = ft. (20)

Experimental data and numerical frequency response curves for the identified set of parame-
ters given in Tab. 1 are presented in Fig. 9. Both forward and backward frequency sweeps
are considered numerically and experimentally. A good agreement between HBM calcula-
tions and experimental values is evidenced as numerical predictions are almost perfectly
superimposed with experimental measurements.

fe = 12, 74
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Figure 9. Comparison of experimental frequency response curves (forward ( ) and backward ( )
frequency sweeps) to the HBM model with H = 8 (forward ( ) and backward ( ) frequency
sweeps).

When looking at the response of the system in the time domain at the resonance peak,
see Fig. 10, it appears that the numerical prediction matches experimental observation. In
addition to experimental data and HBM results, the solution obtained using time integration
(an embedded Runge-Kutta RK5 (4) time integration scheme is used) is also plotted in
order to ensure the validity of numerical calculations. To give an idea, HBM computation
time for one solution is about less than one second, and for time integration is about 1-2
minutes. As mentioned above, it is assumed that the minor discrepancy between numerical
results and experimental observations in the vicinity of the highest amplitudes in Fig. 10 is
related to a minor rotation of the mass due to bearing clearances.

3.3 Numerical simulations with contact interface

Accounting for the contact interface, the nonlinear forces may be written as:

fnl(x, ẋ) = fn + ft. (21)

The superimposition of results obtained with the HBM considering H = 20 harmonics
and experimental measurements is given in Fig. 11. Significant differences of amplitudes
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Figure 10. Comparison between experimental acceleration evolution (forward frequency sweep ( )),
HBM ( ) with H = 8, and RK5 (4) time integration ( ) at fe = 12.74 Hz.
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Figure 11. Comparison between experimental frequency response for the system : without im-
pactor ( ), with impactor (forward frequency sweep ( )) and HBM (stable ( ), unstable ( )
periodic solutions) with H = 20.

are found between the numerical prediction ( ) and experimental measurements ( ).
It is noticeable that the discrepancy between the two plots increases as the excitation
frequency increases. In order to better understand the root cause of such discrepancy,
time responses predicted numerically and observed experimentally are superimposed for
two distinct excitation frequencies: fe1,fe2 = 12.8, 13.5 Hz. The comparison between
experimental and numerical accelerations are presented in Figs. 12 and 13. Interestingly,
numerical predictions and experimental measurements essentially differ over a very narrow
time frame, corresponding to the exact instant over which contact with the impactor occurs.
During the contact phase, HBM results present a large peak of amplitude which is responsible
for the error in amplitude evidenced in Fig. 11. The direct comparison of Figs. 12 and 13
underlines that the amplitude of this peak increases with the excitation frequency.

The solutions computed by HBM at fe = 12.8 Hz for different values of the number of
harmonics H—not shown in this paper due to a lack of space—underline that the amplitude
of the peak is strongly influenced by the number of harmonics H thus indicating it is
essentially a numerical artifact. The well-known Gibbs phenomenon is responsible for this
peak: in the vicinity of the time over which contacts occur, speeds and accelerations are
non-differentiable and the Fourier basis used in (5) becomes ill-suited to accurately represent
time responses.

There exists strategies to mitigate the Gibbs phenomenon, including the use of different
bases of functions, see for instance [8]. One may note that the definition of the acceleration
given in (10) in the frequency domain is proportional to ω2. For this reason, accelerations
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Figure 12. Comparison between experimental acceleration evolution (forward frequency sweep ( ))
and HBM ( ) with H = 20 at fe1 = 12.8 Hz. Time interval over which contacts occur is
highlighted in grey.
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Figure 13. Comparison between experimental acceleration evolution (forward frequency sweep ( ))
and HBM ( ) with H = 20 at fe2 = 13.5 Hz. Time interval over which contacts occur is
highlighted in grey.

are particularly sensitive to the Gibbs phenomenon since the excitation frequency acts as a
quadratic error amplification factor. To the contrary, results in terms of displacements, which
are not displayed for the sake of brevity do not feature such discrepancy with experimental
results. One way to mitigate the influence of the Gibbs phenomenon on the numerical
results is to make a truncation of the predicted numerical solution computed for H = 20 to
a lower number of harmonics; such truncations are depicted in Fig. 14. It is noticeable that
the truncation of the solution to its first harmonic yields an acceptable approximation of
the experimental observation.

Finally, the amplitude of all numerical solutions computed with H = 20 and truncated
to their first harmonic ( ) are plotted in Fig. 15. There is a better agreement between
the numerically predicted frequency response of the system and experimental observations
throughout the frequency range of interest. One should note that these solutions are distinct
from the solutions directly computed by HBM with H = 1 ( ), also depicted in Fig. 15.

4. Conclusion

The numerical and experimental modelling of a single degree of freedom mechanical system
with contact interface is investigated in this study. Based on a newly designed experimental
setup, the mechanical parameters of the associated numerical model are identified. Frequency
sweep tests are conducted with and without the contact interface. Assuming the periodicity
of the system’s response, the HBM is used to predict vibrations of the system. A good
agreement is found between numerical prediction and experimental results in both time and
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Figure 14. HBM results at fe1 = 12.8 Hz : full solution with H = 20 ( ) and truncations to the
first: 10 harmonics ( ), 5 harmonics ( ) and 1 harmonic ( ).
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Figure 15. Frequency responses: experiment without impactor ( ), with impactor ( ), HBM ( )
with H = 20 truncated to the first harmonic, and HBM ( ) with H = 1.

frequency domains. Moreover, this study highlights the sensitivity of numerical results to
the Gibbs phenomenon, particularly when looking at the accelerations.

This article underlines challenges in design and analysis of non-smooth one-degree
of freedom mechanical system and attests to the importance of numerical/experimental
confrontation. Future work will focus on an in-depth analysis of experimental data in
displacements as well as investigations on the stability of experimental solutions prior to
the jump discontinuity in forward frequency sweep. From a numerical standpoint, work is
in progress for including within the HBM a numerical procedure of wear management in
order to simulate complex industrial systems featuring wear and fretting.
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