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Abstract This paper deals with fairness in stable marriage problems. The idea studied here

is to achieve fairness thanks to a Generalized Gini Index (GGI), a well-known criterion in

inequality measurement, that includes both the egalitarian and utilitarian criteria as special

cases. We show that determining a stable marriage optimizing a GGI criterion of agents’

disutilities is an NP-hard problem. We then provide a polynomial time 2-approximation

algorithm in the general case, as well as an exact algorithm which is polynomial time in the

case of a constant number of non-zero weights parametrizing the GGI criterion.

Keywords Stable marriage problem · Fairness · Generalized Gini index · Complexity

1 Introduction

Since the seminal work of Gale and Shapley [1962] on stable marriages, matching problems

under preferences have been extensively studied both by economists and computer scien-

tists. These problems involve two sets of agents (also called individuals in the sequel) that

should be matched with each other while taking agents’ preferences into account. The results

obtained in the field have a tremendous number of applications, among which the National

Resident Matching Program in the US (for allocating junior doctors to hospitals), the teacher

allocation in France (for allocating newly tenured teachers to schools) or the allocation of

lawyers in Germany (for assigning graduating lawyers to legal internship positions). For an

overview of the applications of matching models under preferences, the interested reader

can refer to a recent book chapter on this topic [Biró, 2017].

The stable marriage problem involves n men and n women, each of whom ranks the

members of the opposite sex in order of preference. The goal is to find a stable matching, i.e.,

a matching between men and women such that there is no man and woman that prefer each

other to their current match. Gale and Shapley [1962] provided an algorithm that computes

a stable marriage. However, it is well-known that this algorithm favours one group (men or

women, according to the way the algorithm is applied) over the other.
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We are interested here in fair stable marriage algorithms, i.e., in procedures favouring

stable marriages that fairly share dissatisfactions –also called disutilities– among individuals

(irrespective of their sex), the dissatisfaction being defined for each woman (resp. man) as

a function of the rank, in order of preferences, of the man (resp. woman) to whom she is

paired with. Given the vector of individuals’ dissatisfactions induced by a matching, there

are several ways of formalizing the notion of “fairness”. We mean here by fair stable mar-

riage that the vector of individuals’ dissatisfactions should be well-balanced. For example,

consider the following instance of the stable marriage problem.

Example 1 The instance consists of 10 men {m1, . . . ,m10} and women {w1, . . . , w10}

with the following preferences, where i ≻m
k j (resp. i ≻w

k j) means that mk (resp. wk)

prefers wi to wj (resp. mi to mj):

m1 : 1 ≻m
1 2 ≻m

1 3 ≻m
1 4 ≻m

1 5 ≻m
1 6 ≻m

1 7 ≻m
1 8 ≻m

1 9 ≻m
1 10

m2 : 2 ≻m
2 1 ≻m

2 3 ≻m
2 4 ≻m

2 5 ≻m
2 6 ≻m

2 7 ≻m
2 8 ≻m

2 9 ≻m
2 10

m3 : 3 ≻m
3 1 ≻m

3 2 ≻m
3 4 ≻m

3 5 ≻m
3 6 ≻m

3 7 ≻m
3 8 ≻m

3 9 ≻m
3 10

m4 : 7 ≻m
4 1 ≻m

4 2 ≻m
4 3 ≻m

4 6 ≻m
4 4 ≻m

4 5 ≻m
4 8 ≻m

4 9 ≻m
4 10

m5 : 6 ≻m
5 1 ≻m

5 2 ≻m
5 3 ≻m

5 7 ≻m
5 4 ≻m

5 5 ≻m
5 8 ≻m

5 9 ≻m
5 10

m6 : 4 ≻m
6 1 ≻m

6 2 ≻m
6 3 ≻m

6 5 ≻m
6 7 ≻m

6 6 ≻m
6 8 ≻m

6 9 ≻m
6 10

m7 : 5 ≻m
7 1 ≻m

7 2 ≻m
7 3 ≻m

7 4 ≻m
7 7 ≻m

7 6 ≻m
7 8 ≻m

7 9 ≻m
7 10

m8 : 8 ≻m
8 4 ≻m

8 5 ≻m
8 6 ≻m

8 10 ≻m
8 7 ≻m

8 1 ≻m
8 2 ≻m

8 3 ≻m
8 9

m9 : 10 ≻m
9 4 ≻m

9 6 ≻m
9 7 ≻m

9 9 ≻m
9 5 ≻m

9 1 ≻m
9 2 ≻m

9 3 ≻m
9 8

m10 : 9 ≻m
10 4 ≻m

10 5 ≻m
10 7 ≻m

10 8 ≻m
10 6 ≻m

10 1 ≻m
10 2 ≻m

10 3 ≻m
10 10

w1 : 1 ≻w
1 2 ≻w

1 3 ≻w
1 4 ≻w

1 5 ≻w
1 6 ≻w

1 7 ≻w
1 8 ≻w

1 9 ≻w
1 10

w2 : 1 ≻w
2 2 ≻w

2 3 ≻w
2 4 ≻w

2 5 ≻w
2 6 ≻w

2 7 ≻w
2 8 ≻w

2 9 ≻w
2 10

w3 : 1 ≻w
3 2 ≻w

3 3 ≻w
3 4 ≻w

3 5 ≻w
3 6 ≻w

3 7 ≻w
3 8 ≻w

3 9 ≻w
3 10

w4 : 1 ≻w
4 2 ≻w

4 3 ≻w
4 7 ≻w

4 8 ≻w
4 9 ≻w

4 6 ≻w
4 4 ≻w

4 5 ≻w
4 10

w5 : 1 ≻w
5 2 ≻w

5 3 ≻w
5 6 ≻w

5 8 ≻w
5 9 ≻w

5 7 ≻w
5 4 ≻w

5 5 ≻w
5 10

w6 : 1 ≻w
6 2 ≻w

6 3 ≻w
6 4 ≻w

6 8 ≻w
6 9 ≻w

6 5 ≻w
6 6 ≻w

6 7 ≻w
6 10

w7 : 1 ≻w
7 2 ≻w

7 3 ≻w
7 5 ≻w

7 8 ≻w
7 9 ≻w

7 4 ≻w
7 6 ≻w

7 7 ≻w
7 10

w8 : 2 ≻w
8 10 ≻w

8 8 ≻w
8 7 ≻w

8 1 ≻w
8 3 ≻w

8 4 ≻w
8 5 ≻w

8 6 ≻w
8 9

w9 : 1 ≻w
9 2 ≻w

9 9 ≻w
9 10 ≻w

9 3 ≻w
9 4 ≻w

9 5 ≻w
9 6 ≻w

9 7 ≻w
9 8

w10 : 1 ≻w
10 2 ≻w

10 3 ≻w
10 4 ≻w

10 5 ≻w
10 6 ≻w

10 7 ≻w
10 10 ≻w

10 8 ≻w
10 9

The stable marriages in this instance are:

x
1 : {(m1, w1), (m2, w2), (m3, w3), (m4, w7), (m5, w6), (m6, w4), (m7, w5),

(m8, w8), (m9, w10), (m10, w9)}

x
2 : {(m1, w1), (m2, w2), (m3, w3), (m4, w7), (m5, w6), (m6, w5), (m7, w4),

(m8, w8), (m9, w10), (m10, w9)}

x
3 : {(m1, w1), (m2, w2), (m3, w3), (m4, w6), (m5, w7), (m6, w4), (m7, w5),

(m8, w8), (m9, w10), (m10, w9)}

x
4 : {(m1, w1), (m2, w2), (m3, w3), (m4, w6), (m5, w7), (m6, w5), (m7, w4),

(m8, w8), (m9, w10), (m10, w9)}

x
5 : {(m1, w1), (m2, w2), (m3, w3), (m4, w6), (m5, w7), (m6, w5), (m7, w4),

(m8, w10), (m9, w9), (m10, w8)}

where a pair (mi, wj) means that mi and wj are matched.
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If one assumes that the dissatisfaction of an individual is equal to the rank of the partner

in his/her preference list, then the dissatisfactions induced by the previous stable marriages

are:

matching vector of dissatisfactions
sum of

dissatisfactions

max of

dissatisfactions

x
1 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 7, 7, 7, 7, 3, 4, 10) 61 10

x2 (1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 2, 3, 4, 4, 7, 7, 3, 4, 10) 63 10

x
3 (1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 2, 3, 7, 7, 4, 4, 3, 4, 10) 63 10

x4 (1, 1, 1, 5, 5, 5, 5, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 3, 4, 10) 65 10

x5 (1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 1, 2, 3, 4, 4, 4, 4, 2, 3, 9) 74 9

where the ith component of the vector is the dissatisfaction of mi for i ∈ {1, . . . , 10},

and of wi−10 for i ∈ {11, . . . , 20}.

In this instance, the matching x4 can be considered as inducing a well-balanced vec-

tor of dissatisfactions. The matchings x1, x2 and x3 indeed favour more some individuals

(the men in this case) than others, while matching x5 yields quite high dissatisfactions for

numerous agents. The matching x4 is therefore a good compromise between the utilitarian

and the egalitarian viewpoints, where the utilitarian viewpoint aims at minimizing the sum

of dissatisfactions while the egalitarian viewpoint aims at minimizing the dissatisfaction of

the worst off individual. Both the utilitarian and egalitarian approaches have been advocated

for promoting fairness in the stable marriage problem [Gusfield, 1987; Gusfield and Irving,

1989]. Other approaches aim at treating equally men and women, by minimizing the abso-

lute difference between the total dissatisfactions of the two groups (sex-equal stable mar-

riage problem [Kato, 1993; McDermid and Irving, 2014]) or by minimizing the maximum

total dissatisfaction between the two groups (balanced stable marriage problem [Manlove,

2013]). However, note that, in the instance of Example 1, all these criteria favour either

x1 (utilitarian) or x5 (egalitarian, sex-equal, balanced). Finally, there exists another type of

approach, that is not based on assigning scores to marriages. In a first step, for each man,

one lists all his possible matches in a stable marriage, in order of his preferences (this list

includes as many elements as there are feasible stable marriages). In a second step, each

man is matched with the median woman in the list. This procedure yields a stable marriage,

which is called median stable marriage [Teo and Sethuraman, 1998; Cheng, 2010]. In the

instance of the example, the median stable marriage is x4. Nevertheless, in this article, we

focus on determining a fair stable marriage by using a scoring rule.

In social choice theory, a scoring rule assigns a score to each alternative by summing

the scores given by every individual over the alternative. This summation principle ensures

that all individuals contribute equally to the score of an alternative. An alternative is usually

a candidate in an election, but it can also be an element of a combinatorial domain. For

instance, in proportional representation problems [Procaccia et al., 2008], where one aims

at electing a committee, every feasible committee is an alternative. In the setting of sta-

ble marriage problems, every stable marriage is an alternative and the utilitarian approach

is clearly a scoring rule where each individual evaluates a stable marriage by the rank of

his/her match. An interesting extension of the class of scoring rules is the class of rank de-

pendent scoring rules [Goldsmith et al., 2014], where, instead of limiting the aggregation to

a summation operation, the scores are aggregated by taking into account their ranks in the

ordered list of scores. As emphasized by Goldsmith et al. [2014], rank dependent scoring

rules can be used to favour fairness by imposing some conditions on their parameters. A

well known class of rank-dependent scoring rules in inequality measurement are the Gen-

eralized Gini Indices (GGI) [Weymark, 1981]. Furthermore, this class of rank dependent
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scoring rules circumvents both the utilitarian and egalitarian criteria. Their optimization

on combinatorial domains have been studied in several settings (often under the name of

Ordered Weighted Averages): assignment problems [Lesca et al., 2018], proportional repre-

sentation [Elkind and Ismaili, 2015], resource allocation [Heinen et al., 2015]. To the best

of our knowledge, the problem of determining a GGI optimal stable marriage has not been

studied yet. This is precisely the purpose of the present work.

The paper is organized as follows. In Section 2, we introduce notations and we formally

define the GGI stable marriage problem studied here. Then, in Section 3, we prove that it

is NP-hard to determine an optimal stable marriage according to a GGI criterion applied to

agents’ disutilities. In Section 4, we provide a polynomial time 2-approximation algorithm.

Finally, in Section 5, we establish a parametrized complexity result with respect to a GGI-

specific parameter.

2 The GGI Stable Marriage Problem

Let M = {m1, . . . ,mn} denote the set of men, and W = {w1, . . . , wn} the set of women.

As in Example 1, for each mk (resp. wk), a preference relation ≻m
k (resp. ≻w

k ) is defined on

W (resp. M), where i ≻m
k j (resp. i ≻w

k j) means that mk (resp. wk) prefers wi to wj (resp.

mi to mj). We denote by rk(mi, wj) the rank of woman wj in the preference order of man

mi, and similarly for rk(wj ,mi).
A solution of a stable marriage problem is a matching represented by a binary matrix x,

where xij = 1 means that mi is matched with wj . A matching x induces a matching function

µx defined by wj = µx(mi) and mi = µx(wj) if xij = 1. In a perfect matching (called

indifferently matching or marriage from now on), every man (resp. woman) is matched with

a different woman (resp. man). More formally, a matching is defined by:

∑n
i=1 xij = 1 ∀j ∈ {1, . . . , n} (1)

∑n
j=1 xij = 1 ∀i ∈ {1, . . . , n} (2)

A matching is said to be stable if there exists no man and woman who prefer each

other to their current partner. More formally, a perfect matching is stable if the following

constraints hold [Vande Vate, 1989]:

xij +
∑

j′≻m
i j

xij′ +
∑

i′≻w
j i

xi′j ≥ 1 ∀(i, j) ∈ {1, . . . , n}2 (3)

The set of stable marriages, i.e. binary matrices x such that constraints 1, 2 and 3 hold,

is denoted by X . In their seminal paper, Gale and Shapley [1962] states that there always

exists at least one stable marriage, which can be computed in O(n2).
The Gale-Shapley algorithm is based on a sequence of proposals from men to women. Each

man proposes to the women following his preference order, pausing when a women agrees

to be matched with him but continuing if his proposal is rejected. When a woman receives

a proposal, she rejects it if she already has a better proposal according to her preferences.

Otherwise, she agrees to hold it for consideration and rejects any former proposal that she

might had. Such a sequence of proposals always leads to a stable marriage called man-

optimal stable marriage and denoted by xm (if the role of men and women is reversed,

we obtain the woman-optimal stable marriage denoted by xw). In the man-optimal stable

marriage, each man has the best partner, and each woman has the worst partner, that is

possible in any stable marriage. Contrarily, in the woman-optimal stable marriage, each
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woman has the best partner, and each man has the worst partner, that is possible in any

stable marriage.

Two important properties of the Gale-Shapley algorithm are that:

– if m proposes to w, then there is no stable marriage in which m has a better match than w.

– if m proposes to w, then there is no stable marriage in which w has a worse match than m.

These properties justify the notion of preference shortlists obtained through the Gale-Shapley

algorithm by removing any man m from a woman w’s preference list and vice-versa, when

w receives a proposal from a man she prefers to m. Note that the shortlists that are obtained

at the end of the algorithm do not depend on the order in which the proposals are made.

Example 2 For instance, with the preferences of Example 1, the Gale-Shapley algorithm
leads to the following shortlists:

m1 : 1 ≻m
1 2 ≻m

1 3 ≻m
1 4 ≻m

1 5 ≻m
1 6 ≻m

1 7 ≻m
1 9 ≻m

1 10

m2 : 2 ≻m
2 3 ≻m

2 4 ≻m
2 5 ≻m

2 6 ≻m
2 7 ≻m

2 8 ≻m
2 9 ≻m

2 10

m3 : 3 ≻m
3 4 ≻m

3 5 ≻m
3 6 ≻m

3 7 ≻m
3 10

m4 : 7 ≻m
4 6 ≻m

4 10

m5 : 6 ≻m
5 7 ≻m

5 10

m6 : 4 ≻m
6 5 ≻m

6 10

m7 : 5 ≻m
7 4 ≻m

7 10

m8 : 8 ≻m
8 4 ≻m

8 5 ≻m
8 6 ≻m

8 10 ≻m
8 7

m9 : 10 ≻m
9 4 ≻m

9 6 ≻m
9 7 ≻m

9 9 ≻m
9 5

m10 : 9 ≻m
10 8 ≻m

10 10

w1 : 1

w2 : 1 ≻w
2 2

w3 : 1 ≻w
3 2 ≻w

3 3

w4 : 1 ≻w
4 2 ≻w

4 3 ≻w
4 7 ≻w

4 8 ≻w
4 9 ≻w

4 6

w5 : 1 ≻w
5 2 ≻w

5 3 ≻w
5 6 ≻w

5 8 ≻w
5 9 ≻w

5 7

w6 : 1 ≻w
6 2 ≻w

6 3 ≻w
6 4 ≻w

6 8 ≻w
6 9 ≻w

6 5

w7 : 1 ≻w
7 2 ≻w

7 3 ≻w
7 5 ≻w

7 8 ≻w
7 9 ≻w

7 4

w8 : 2 ≻w
8 10 ≻w

8 8

w9 : 1 ≻w
9 2 ≻w

9 9 ≻w
9 10

w10 : 1 ≻w
10 2 ≻w

10 3 ≻w
10 4 ≻w

10 5 ≻w
10 6 ≻w

10 7 ≻w
10 10 ≻w

10 8 ≻w
10 9

These shortlists makes it possible to identify some transformations that can be applied

from the man-optimal stable marriage to obtain other stable marriages (more favourable to

women). These transformations are called rotations [Irving and Leather, 1986]. A rotation

is a sequence ρ = (mi0 , wi0), . . . , (mir−1
, wir−1

) of man-woman pairs such that, for each

ik (0 ≤ k ≤ r − 1), (1) wik is first in mik ’s shortlist and (2) wik+1
(k + 1 taken modulo r)

is second in mik ’s shortlist. Such a rotation is said to be exposed in the shortlists.

Example 3 Continuing Example 1, there are two rotations exposed in the shortlists, ρ1 =
(4,7), (5, 6) and ρ2 = (6,4), (7,5).

Given a rotation, if each mik exchanges his current partner wik for wik+1
, then the

matching remains stable. Eliminating a rotation ρ = (mi0 , wi0), . . . , (mir−1
, wir−1

) amounts

to removing all successors m of mik−1
in wik ’s shortlist together with the corresponding ap-

pearances of wik in the shortlists of men m. The obtained stable marriage can then be read

from the modified shortlists by matching each man with the first woman in his shortlist. In
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this new stable marriage, each woman (resp. man) is better off (resp. worse off) than before

eliminating the rotation.

Once an exposed rotation has been identified and eliminated, then one or more rotations

may be exposed in the resulting (further reduced) shortlists. This process may be repeated,

and once all rotations have been eliminated, we obtain the woman optimal stable marriage.

A rotation π is said to be a predecessor of a rotation ρ, denoted by π < ρ, if ρ cannot be

exposed in the men shortlists before π is eliminated. This notion of predecessors makes it

possible to define what is called the rotation poset (P,≤) where P is the set of all rotations

and ≤ is the precedence relation that we have just mentioned. A closed set in a poset (P,≤)
is a subset R of P such that ρ ∈ R, π < ρ ⇒ π ∈ R.

The following theorem is crucial to understand the importance of the rotation poset.

Theorem 1 [Irving and Leather, 1986] The stable marriages of a given stable marriage

instance are in one-to-one correspondence with the closed subsets of the rotation poset.

In this correspondence, each closed subset R represents the stable marriage obtained by

eliminating the rotations in R starting from xm.

The rotation poset can be represented as a directed acyclic graph, with the rotations as

nodes and an arc from π to ρ iff π is an immediate predecessor of ρ (i.e., π < ρ and there is

no rotation σ such that π < σ < ρ). Note that this graph has at most n(n− 1)/2 nodes, i.e.,

there are at most n(n− 1)/2 rotations [Irving et al., 1987]. Indeed, there are at most n2 − n

pairs that can be involved in rotations (the n pairs of xw cannot be involved in a rotation).

Each pair belong to at most one rotation and there are at least two pairs in each rotation. We

will take advantage of the rotation poset in multiple places in the paper. Importantly, note

that the rotation poset (actually a subgraph whose transitive closure is the rotation poset) can

be generated in O(n2) [Gusfield and Irving, 1989].

Example 4 For instance, with the preferences of Example 1, the rotations and their imme-

diate predecessors are given in the following table.

Rotation New pairs Immediate predecessors

ρ1 = (4, 7), (5, 6) (4, 6), (5, 7)
ρ2 = (6, 4), (7, 5) (6, 5), (7, 4)
ρ3 = (8, 8), (9, 10), (10, 9) (8, 10), (9, 9), (10, 8) ρ1, ρ2

ρ1

ρ2

ρ3

Fig. 1: Rotation poset in Example 1.

This rotation poset shows that there are (potentially many) other stable marriages than

the man-optimal or woman-optimal stable marriages. These other stable marriages are likely

to be fairer than xm and xw as they are both extreme cases. In order to compute a fair stable
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marriage, the optimization of several aggregation functions has been investigated.

– Utilitarian approach:
∑n

i=1 rk(mi, µx(mi))+
∑n

j=1 rk(wj , µx(wj)), which can be min-

imized in O(n3) [Feder, 1994]).

– Egalitarian approach: max{rk(p, µx(p)) : p ∈ M∪W}, which can also be minimized in

O(n2) [Gusfield, 1987].

– Sex-equal stable marriage: |
∑n

i=1 rk(mi, µx(mi)) −
∑n

j=1 rk(wj , µx(wj))|, the mini-

mization of which is NP-hard [Kato, 1993].

– Balanced stable marriage: max{
∑n

i=1 rk(mi, µx(mi)),
∑n

j=1 rk(wj , µx(wj))}, the min-

imization of which is NP-hard [Manlove, 2013].

Our contribution differs with previous works on the fair stable marriage problem. In-

deed, we optimize a generalized Gini index on disutility values.

Given a matching x, the disutility d(mi,x) (also called dissatisfaction) of a man mi is

defined by d(rk(mi, µx(mi))), where d : N → Q+, is a strictly increasing function called

disutility function. The disutility values d(wj ,x) are defined similarly for women. Every

stable marriage induces therefore a disutility vector:

d(x) = (d(m1,x), . . . , d(mn,x), d(w1,x), . . . , d(wn,x))

with N = 2n components. Note that the use of disutility values (often called weights) is a

common way to extend the traditional framework where the aggregation function is applied

on rank values (see e.g., Teo and Sethuraman [1998]; Gusfield and Irving [1989]). Using a

unique disutility function for all agents guarantees that they all have the same importance in

the aggregation operation. Indeed, the disutility values assigned to the ranks do not depend

on the agent’s identity. Note that both the egalitarian and the utilitarian variants of the stable

marriage problem remain polynomially solvable if one uses disutility values.

Example 5 We come back to Example 1. Let d be the disutility function defined by d(i) =
(i − 1)2, then the disutility values are given by the matrices dM and dW below where

dM [i][j] (resp. dW [j][i]) is the disutility of mi (resp. wj) if he (resp. she) is matched with

wj (resp. mi).

dM :




0 1 4 9 16 25 36 49 64 81
1 0 4 9 16 25 36 49 64 81
1 4 0 9 16 25 36 49 64 81
1 4 9 25 36 16 0 49 64 81
1 4 9 25 36 0 16 49 64 81
1 4 9 0 16 36 25 49 64 81
1 4 9 16 0 36 25 49 64 81
36 49 64 1 4 9 25 0 81 16
36 49 64 1 25 4 9 81 16 0
36 49 64 1 4 25 9 16 0 81




dW :




0 1 4 9 16 25 36 49 64 81
0 1 4 9 16 25 36 49 64 81
0 1 4 9 16 25 36 49 64 81
0 1 4 49 64 36 9 16 25 81
0 1 4 49 64 9 36 16 25 81
0 1 4 9 36 49 64 16 25 81
0 1 4 36 9 49 64 16 25 81
16 0 25 36 49 64 9 4 81 1
0 1 16 25 36 49 64 81 4 9
0 1 4 9 16 25 36 64 81 49




Let d = (d1, . . . , dN ) denote a disutility vector. The generalized Gini index [Weymark,

1981] is defined as follows:

Definition 1 Let λ = (λ1, . . . , λN ) be a vector of weights such that λ1 ≥ . . . ≥ λN . The

GGIλ(·) aggregation function induced by λ is defined by:

GGIλ(d) =
N∑

i=1

λid
↓
i ,
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where d↓ denotes the vector d ordered by nonincreasing values, i.e., d↓1 ≥ d↓2 ≥ . . . ≥ d↓
N

.

The weights of the GGI aggregation function may be defined in a variety of manner. For

instance, the weights initially proposed for the Gini social-evaluation function are:

λi = (2(N − i) + 1)/N2 ∀i ∈ {1, . . . , N} (4)

Example 6 Coming back to Example 1, if the weights λ are defined by Equation 4 and the

disutility function is defined by d(i) = i, the GGI values of the different stable marriages

are (the lower the better):

matching x ordered vectors d↓(x) GGIλ(d(x))
x1 (10, 7, 7, 7, 7, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 4.4525

x2 (10, 7, 7, 5, 5, 4, 4, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1) 4.4725

x
3 (10, 7, 7, 5, 5, 4, 4, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1) 4.4725

x4 (10, 5, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1) 4.3925

x
5 (9, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1) 4.74

We thus observe that using a GGI aggregation function makes it possible to obtain x4 as an

optimal stable marriage.

The GGI is also known in multicriteria decision making under the name of ordered

weighted average [Yager, 1988]. This aggregation function, to minimize, is well-known to

satisfy the Pigou-Dalton transfer principle if λ1>λ2>. . .>λN :

Definition 2 An aggregation function F satisfies the transfer principle if for any d ∈ (R+)N

and ε ∈ (0, dj − di) where dj > di:

F (d1, . . . , di + ε, . . . , dj − ε, . . . , dN ) < F (d1, . . . , dN ).

This condition states that the overall welfare should be improved by any transfer of disutility

from a “less happy” agent j to a happier agent i given that this transfer reduces the gap be-

tween the disutilities of agent i and j. We can now define the GGI Stable Marriage problem.

GGI Stable Marriage (GGISM)

INSTANCE: Two disjoint sets of size n, the men and the women; for each person, a pref-

erence list containing all the members of the opposite sex; a vector of weight parameters

λ and a disutility function d.

SOLUTION: A stable marriage x.

MEASURE: GGIλ(d(x)) (to minimize).

3 Complexity of the GGISM Problem

The GGISM problem extends both the egalitarian and the utilitarian approaches to the stable

marriage problem. Indeed, if the weights of the GGI operator are λ = (1, . . . , 1), one obtains

the sum operation. If the weights are λ = (1, 0, . . . , 0), one obtains the max operation.

While both variants are polynomially solvable problems, the following result states that the

GGISM problem is NP-hard:

Theorem 2 The GGISM problem is NP-hard.
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Proof We make a reduction from Minimum 2-Satisfiability, which is strongly NP-hard

[Kohli et al., 1994].

Minimum 2-Satisfiability (Min 2-SAT):

INSTANCE: A set V of variables, a collection C of disjunctive clauses of at most 2 literals,

where a literal is a variable or a negated variable in V .

SOLUTION: A truth assignment for V .

MEASURE: Number of clauses satisfied by the truth assignment (to minimize).

To illustrate the reduction, we will use the following 2-SAT instance:

V = {v1, v2, v3, v4, v5, v6} (5)

C = {(v1 ∨ v2), (¬v2 ∨ ¬v4), (¬v1 ∨ v3), (v3 ∨ ¬v4), v2, (v5 ∨ v6)} (6)

As a preliminary step, note that we can get rid of variables that are present in only one

clause. Such a variable is set to true if it is present as a negative literal in the clause and to

false otherwise. It can then be removed from the instance. Furthermore, we can make sure

that there are exactly two literals in each clause (by duplicating literals). For example, the

instance described by Equations 5 and 6 can be modified to:

V = {v1, v2, v3, v4} (7)

C = {(v1 ∨ v2), (¬v2 ∨ ¬v4), (¬v1 ∨ v3), (v3 ∨ ¬v4), (v2 ∨ v2)} (8)

In the following we will denote by nv = |V | the number of variables and by nc = |C|
the number of clauses. In the previous example nv = 4 and nc = 5. Furthermore, we will

denote by ci the ith clause in C.

We are now going to create an instance of the GGISM problem such that:

– There is a one-to-one correspondence between the stable marriages and the truth assign-

ments for V .

– A stable marriage minimizing the GGI of the agent’s disutilities corresponds to a truth

assignment of V minimizing the number of clauses that are satisfied.

In order to create a one-to-one correspondence between the stable marriages and the

truth assignments for V , we are going to create a rotation ρi for each variable vi ∈ V . Each

of these rotations will be exposed in the shortlists from the man-optimal stable marriage for

the instance under construction. Additionally, we will ensure that these rotations will be the

only ones of the stable marriage instance. In other words, the rotation poset will have one

vertex per variable and no edge, as illustrated in Figure 2.

We now give the “meaning” of these rotations. Let’s recall that in a stable marriage

there is a one-to-one correspondence between the closed subsets of nodes of the rotation

poset and the stable marriages. Now let x be a stable marriage corresponding to a closed

subset R of rotations, then the corresponding truth assignment over V consists in setting

vi = 1 if ρi ∈ R and vi = 0 otherwise. Thus in the generated stable marriage instance,

the man-optimal stable marriage (i.e., R = ∅) corresponds to a truth assignment where all

variables in V are set to 0 while the woman-optimal stable marriage (i.e., R = {ρi|vi ∈ V })

corresponds to a truth assignment where all variables in V are set to 1.

We now describe more precisely the fashion in which rotations ρi are generated. For

each variable vi, we create a man-woman pair (mij , wij) for each clause cj that involves
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ρ1

ρ2

.

.

.

ρnv

Fig. 2: Rotation poset of the stable marriage instance generated by the reduction.

vi either as a positive or negative literal. If variable vi is present two times in a clause cj ,

then two man-woman pairs (mij , wij) and (m′
ij , w

′
ij) are created. This induces the creation

of 2nc men and 2nc women in the instance. The rotation ρi then involves all the men and

women induced by variable vi. For example, in the instance described by Equations 7 and

8, ρ2 involves men m21,m22,m25,m
′
25 and women w21, w22, w25, w

′
25 as variable v2 is

present in c1, c2 and c5. Let r denote the number of times variable vi appears in C. The

rotation ρi is then induced by the following patterns in the shortlists of men {mij |vi ∈ cj}
and women {wij |vi ∈ cj}:

mij0 : wij0 ≻m
ij0 wij1

mij1 : wij1 ≻m
ij1 wij2

...

mijr−2
: wijr−2

≻m
ijr−2

wijr−1

mijr−1
: wijr−1

≻m
ijr−1

wij0

wij0 : mijr−1
≻w

ij0 mij0

wij1 : mij0 ≻w
ij1 mij1

...

wijr−2
: mijr−3

≻w
ijr−2

mijr−2

wijr−1
: mijr−2

≻w
ijr−1

mijr−1

For instance, rotation ρ2 is induced by the following pattern in the shortlists:

m21 : w21 ≻m
21 w22

m22 : w22 ≻m
22 w25

m25 : w25 ≻m
25 w′

25

m′
25 : w′

25 ≻m′

25 w21

w21 : m′
25 ≻w

21 m21

w22 : m21 ≻w
22 m22

w25 : m22 ≻w
25 m25

w′
25 : m25 ≻w′

25 m′
25

Note that each man mij or woman wij is involved in one and only one rotation, which is

ρi. As a consequence, each man or woman in the generated instance has only two possible

matches in a stable marriage, namely wijk and wijk+1
(modulo the size r of rotation ρi)

for mijk , and mijk−1
(modulo r) and mijk for wijk . For simplicity, we will denote by

rk
+(mij) (resp. rk−(mij)) the rank of the best (resp. worst) possible match for mij in a

stable marriage. Notations rk+(wij) and rk−(wij) are defined similarly for women.

Given a stable marriage characterized by a set R of rotations, it is possible to determine

if clause cj is satisfied by examining which rotations belong to R. According to the form

of clause cj , columns “in” and “out” of Table 1 indicate which rotations should be included

or not in R so that cj is not satisfied. Assuming that cj involves variables vi and vk (or
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clause cj in out decisive agents

vi ∧ vk ρi, ρk mij , mkj

vi ∧ ¬vk ρk ρi mij , wkj

¬vi ∧ vk ρi ρk wij , mkj

¬vi ∧ ¬vk ρi, ρk wij , wkj

vi ∧ vi ρi mij , m′
ij

¬vi ∧ ¬vi ρi wij , w′
ij

Table 1: Clause cj is not satisfied iff the rotations of the second (resp. third) column are included (resp. not

included) in R. Consequently, clause cj is not satisfied iff the two agents in the last column are matched with

their choices of rank rk+(·).

possibly their negations), it is sufficient to examine the matches of two specific agents among

mij ,mkj , wij , wkj to determine if rotations ρi and ρk belong or not to R. These two specific

agents are called decisive agents of cj in the following. We have indeed ρi ∈ R iff the rank

of the match of mij is rk+(mij). Similarly, we have ρi 6∈ R iff the rank of the match of

wij is rk+(wij). Put another way, mij (resp. wij ) is a decisive agent of cj if vi (resp. ¬vi)
belongs to cj . The clause cj is not satisfied iff the two decisive agents are with their match

of rank rk
+(·). The decisive agents according to the form of clause cj are given in the last

column of Table 1.

For illustration, let us return to the 2-SAT instance described by Equations 7 and 8.

Given the stable marriage instance generated by the reduction, and a stable marriage x,

clause v1∧v2 is not satisfied iff rk(m11, µx(m11)) = rk+(m11) and rk(m21, µx(m21)) =
rk

+(m21). More generally, it is possible to count the number of clauses that are not satisfied

by examining the ranks of the matches of the decisive agents of each clause.

We will soon explain how to use a GGI operator to count the number of clauses that

are not satisfied in the 2-SAT instance. Beforehand, we need to introduce fictitious agents

in order to control the positions of the decisive agents in the ordered vector of disutilities

for every stable marriage. More precisely, we introduce four fictitious agents mj , m′
j , wj ,

w′
j per clause cj such that mj (resp. m′

j) is the first choice of wj (resp. w′
j) and vice-versa.

Thus mj (resp. m′
j) can only be matched to wj (resp. w′

j) in a stable marriage, and therefore

the fictitious agents will not interfere with the possible matches of the other agents.

The fictitious agents are placed in the preference lists of the other agents such that

rk
+(·) = 2j + 1 and rk

−(·) = 2j + 2 for the two decisive agents of clause cj . Fur-

thermore, rk+(·) = 1 and rk−(·) = 2 for the remaining (non-decisive) agents. Note that

2j+1 > 2 as j ≥ 1 and therefore the two decisive agents of cj are at positions 2(nc−j)+1
and 2(nc − j) + 2 in the permutation that ranks the agents by non-increasing disutilities.

To achieve these properties, we position 2j fictitious agents at the beginning of the

preference list of the decisive agents of clause cj (e.g., m1m
′
1 . . .mjm

′
j for a decisive agent

wij ). These agents are positioned just before the two possible matches of the agent in a

stable marriage. Regarding the non-decisive agents, their two possible matches in a stable

marriage are simply placed at the beginning of their preference lists.

For illustration, in the 2-SAT instance described by Equations 7 and 8, the preference

list of agent w22 (who is a decisive agent of c2) is:

w22 : m1 ≻w
22 m′

1 ≻w
22 m2 ≻w

22 m′
2 ≻w

22 m21 ≻w
22 m22 ≻w

22 . . .

and the preference list of agent m22 (who is not a decisive agent of c2) is:

m22 : w22 ≻m
22 w25 ≻m

22 . . .
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m1 : w1 . . .

m′
1 : w′

1 . . .

.

.

.

m5 : w5 . . .

m′
5 : w′

5 . . .

m11 : w1w
′
1w11w13 . . .

m13 : w1w
′
1w2w

′
2w3w

′
3w13w11 . . .

m21 : w1w
′
1w21w22 . . .

m22 : w22w25 . . .

m25 : w1w
′
1w2w

′
2w3w

′
3w4w

′
4w5w

′
5w25w

′
25 . . .

m′
25 : w1w

′
1w2w

′
2w3w

′
3w4w

′
4w5w

′
5w

′
25w21 . . .

m33 : w1w
′
1w2w

′
2w3w

′
3w33w34 . . .

m34 : w1w
′
1w2w

′
2w3w

′
3w4w

′
4w34w33 . . .

m42 : w42w44 . . .

m44 : w44w42 . . .

w1 : m1 . . .

w′
1 : m′

1 . . .

.

.

.

w5 : m5 . . .

w′
5 : m′

5 . . .

w11 : m13m11 . . .

w13 : m11m13 . . .

w21 : m′
25m21 . . .

w22 : m1m
′
1m2m

′
2m21m22 . . .

w25 : m22m25 . . .

w′
25 : m25m

′
25 . . .

w33 : m34m33 . . .

w34 : m33m34 . . .

w42 : m1m
′
1m2m

′
2m44m42 . . .

w43 : m1m
′
1m2m

′
2m3m

′
3m4m

′
4m42m44 . . .

Fig. 3: Preference lists obtained for the min 2-SAT instance of Equations 7 and 8.

This construction is illustrated in Figure 3 (where symbols ≻ are omitted for readability

reasons) for the Minimum 2-Satisfiability instance defined by Equations 7 and 8. The pref-

erence lists of the agents are only partially given but note that they can be completed in any

consistent way that would lead to complete and transitive orders.

We now explain how to define the disutility values attributed to each rank, as well as the

weights of the GGI operator, so that the number of unsatisfied clauses can be inferred from

the GGI value of the stable marriage.

Disutility values and weights of the GGI. We first recall that each clause cj induces 6 agents

that are matched either with their first or second choices and 2 agents (the decisive ones) that

are matched with their choices of rank 2j + 1 or 2j + 2. By construction of the preference

lists, note that no agent can be matched with a partner that is ranked strictly beyond 2nc +2
in his/her preference list. Therefore the values of d(i) for i > 2nc + 2 play no role, and can

be fixed arbitrarily as long as they are increasing with i and strictly greater than d(2nc +2).
– The increasing disutility values for ranks 1 to 2nc + 2 are defined as follows (assuming

that nc ≥ 2):

d(1) = 0

d(2) = 1

d(2j + 1) = j + 1, ∀j ∈ {1, . . . , nc}

d(2j + 2) = j + 1 + n−j
c , ∀j ∈ {1, . . . , nc}
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– The non-increasing weights of the GGI are defined as follows:

λ = (nnc+1
c , nnc

c , nnc
c , nnc−1

c , . . . , n3
c , n

2
c , n

2
c , n

1
c︸ ︷︷ ︸

2nc weights

, 0, . . . , 0︸ ︷︷ ︸
6nc weights

).

We recall that the 2nc agents with the highest disutility values are the decisive agents (the

two decisive agents of clause cj are matched with an agent of rank 2j+1 or 2j+2) and the

6nc agents with the lowest disutility values are the non-decisive agents (who are matched to

one of their two first choices). Consequently, the weight vector λ attributes a weight 0 in the

GGI operator to the 6nc non-decisive agents while, for each clause cj , it attributes a weight

nj
c (resp. nj+1

c ) to the most satisfied (resp. least satisfied) of the two decisive agents of cj .

An upper bound on the GGI value is given by ∆u =
∑nc

j=1(n
j
c + nj+1

c )d(2j+2). This

would correspond to a stable marriage, where for each cj , the two decisive agents of cj are

both matched to their choice of rank 2j + 2. Similarly, a lower bound on the GGI value is

given by ∆l =
∑nc

j=1(n
j
c+nj+1

c )d(2j+1) (if the two decisive agents of cj are both matched

to their choice of rank 2j + 1). Simple calculations show that ∆l = ∆u − nc(1 + nc).

These bounds are useful for establishing Lemma 1 below, that makes it possible to infer

the number of unsatisfied clauses from the GGI value. The lower the GGI value, the higher

the number of unsatisfied clauses. Hence, minimizing the GGI value amounts to maximizing

the number of unsatisfied clauses, which concludes the proof.

Lemma 1 For the GGI stable marriage instance obtained by the method described above,

a stable marriage x corresponds to a truth assignment on V for which the number of unsat-

isfied clauses is: ⌊
∆u − GGIλ(d(x))

nc + 1

⌋

Proof of Lemma 1. We wish to show that if a stable marriage x corresponds to a truth

assignment on V with exactly k unsatisfied clauses then:

∆u − (k + 1)(nc + 1) < GGIλ(d(x)) ≤ ∆u − k(nc + 1),

from which the lemma straightforwardly follows.

Assume that k clauses {cj1 , . . . , cjk} are unsatisfied for the truth assignment induced by

x. Then for each cjl , the two decisive agents of cjl are both matched to their choice of rank

2jl + 1. Hence:

GGIλ(d(x)) ≤ ∆u −

k∑

l=1

(njl
c + njl+1

c )(d(2jl + 2)− d(2jl + 1))

= ∆u −

k∑

l=1

(njl
c + njl+1

c )n−jl
c = ∆u − k(nc + 1)

because each decisive agent of clause cjl , for l ∈ {1, . . . , k}, has a disutility of d(2jl + 1)
and not d(2jl + 2).

Now, let {cj1 , . . . , cjnc−k
} denote the satisfied clauses for the truth assignment induced

by x. Then for each cjl , at least one of the two decisive agents of cjl is matched to his/her

choice of rank 2jl+2. In the best case (w.r.t. the GGI value), only one of the two is matched
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to his/her choice of rank 2jl+2, and his/her weight in the GGI aggregation is njl+1
c because

his/her disutility is the highest among the two agents. Hence:

GGIλ(d(x)) ≥ ∆l +
nc−k∑

l=1

njl+1
c (d(2jl + 2)− d(2jl + 1))

= ∆u − nc(1 + nc) +

nc−k∑

l=1

njl+1
c n−jl

c

= ∆u − nc(1 + nc) + (nc − k)nc

= ∆u − (k + 1)nc

> ∆u − (k+ 1)(nc + 1)

This concludes the proof of the lemma.

4 A 2-approximation Algorithm

We now present a polynomial time 2-approximation algorithm for the GGI stable marriage

problem.

The 2-approximation algorithm uses a linear programming formulation of the stable

marriage problem, based on the rotation poset [Gusfield and Irving, 1989]. It is indeed well-

known that the set of stable marriages can be characterized by the following set of inequali-

ties where we have one binary variable y(ρ) for each rotation in the rotation poset and:

y(ρ′)− y(ρ) ≤ 0 (9)

for each pair of rotations such that ρ precedes ρ′. Variable y(ρ) is equal to 1 if rotation ρ

is included in the closed set of rotations associated to the stable marriage and 0 otherwise.

Importantly, note that the extreme points of the polytope defined by constraints 9 for 0 ≤

y(ρ) ≤ 1, ∀ρ are in one-to-one correspondence with the stable marriages of the instance

[Gusfield and Irving, 1989]. Furthermore, the stable marriage x characterized by variables

y(ρ) can be inferred by using Equations 10, 11 and 12 below.

To explain this point we introduce some notations. Let Γ denote the set of man-woman

pairs included in at least one stable matching. These pairs can be found by looking at the

pairs that are created and broken by each rotation. Indeed, note that for each pair (m,w) ∈
Γ , there exists exactly one rotation, denoted by ρget(m,w), that creates this pair (unless

this pair is in xm) and exactly one rotation, denoted by ρbreak(m,w), that breaks this pair

(unless this pair is in xw). Then, one can compute variables xij corresponding to a set of

variables y(ρ) by using the following equations:

xij = 1− y(ρbreak(i, j)), ∀(i, j) ∈ Γ s.t. xmij = 1 (10)

xij = y(ρget(i, j)), ∀(i, j) ∈ Γ s.t. xwij = 1 (11)

xij = y(ρget(i, j))− y(ρbreak(i, j)), ∀(i, j) ∈ Γ s.t. xmij = xwij = 0 (12)

Example 7 Let us come back to Example 1. The pairs in Γ are listed in the left column of

Table 2. The rotations ρget(m,w) and ρbreak(m,w) for each pair (m,w) are given in the

middle and right columns.
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(m,w) ∈ Γ ρget(m,w) ρbreak(m,w)
(m1, w1)
(m2, w2)
(m3, w3)
(m4, w7) ρ1
(m4, w6) ρ1
(m5, w6) ρ1
(m5, w7) ρ1
(m6, w4) ρ2
(m6, w5) ρ2
(m7, w5) ρ2
(m7, w4) ρ2
(m8, w8) ρ3
(m8, w10) ρ3
(m9, w10) ρ3
(m9, w9) ρ3
(m10, w9) ρ3
(m10, w8) ρ3

Table 2: Rotations ρget(m,w) and ρbreak(m,w) in Example 1.

A mathematical programming formulation of the GGISM problem reads as follows:

P





min
d,x,y

GGIλ(d)

dmi =
∑

(i,j)∈Γ

xijd(rk(mi, wj)), ∀i ∈ {1, . . . , n}

dwj =
∑

(i,j)∈Γ

xijd(rk(wj , mi)), ∀j ∈ {1, . . . , n}

xij = 1− y(ρbreak(i, j)), ∀(i, j) ∈ Γ s.t. xmij = 1

xij = y(ρget(i, j)), ∀(i, j) ∈ Γ s.t. xwij = 1

xij = y(ρget(i, j))− y(ρbreak(i, j)), ∀(i, j) ∈ Γ s.t. xmij = xwij = 0

y(ρ′)− y(ρ) ≤ 0, ∀(ρ, ρ′) s.t. ρ < ρ′

dmi ≥ 0, ∀i ∈ {1, . . . , n}

dwj ≥ 0, ∀j ∈ {1, . . . , n}

xij ≥ 0, ∀(i, j) ∈ Γ

y(ρ) ∈ {0, 1}, ∀ρ ∈ P

(13)

(14)

(15)

(16)

where dmi (resp. dwj ) represents the disutility of mi (resp. wj), d = (dm1 , . . . , dmn , dw1 , . . . , dwn ),
and as usual:

– xij = 1 (resp. 0) if (mi, wj) is (resp. is not) in the stable marriage x,

– y(ρ) = 1 (resp. 0) if ρ belongs (resp. does not) to the set of rotations characterizing x,

– P is the set of all rotations.

Let us denote by P̂ the linear programming relaxation of P where y(ρ) ∈ {0, 1} is replaced

by 0 ≤ y(ρ) ≤ 1. Importantly, note that variables y(ρ) in an optimal solution to P̂ are not

necessarily integer because the objective function is non-linear (and therefore there does not

necessarily an optimal vertex in the solution polytope).
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A polynomial time 2-approximation algorithm can be obtained by rounding an optimal

solution of P̂ . The 2-approximation algorithm writes as follows:

ROUNDING ALGORITHM

1. Solve P̂ and let (d̂, x̂, ŷ) denote an optimal solution to P̂;

2. For each ρ ∈ P , set y(ρ) = 1 if ŷ(ρ) ≥ 0.5, and y(ρ) = 0 otherwise;

3. Return the stable marriage x obtained from y by using constraints 13–15 in P .

Example 8 Coming back to Example 1, assume that the weights of the GGI operator are

defined by Equation 4 and that the disutility function is defined by d(i) = i. Then, an optimal

solution (d̂, x̂, ŷ) to P̂ is characterized by ŷ(ρ1) = ŷ(ρ2) = 0.75 and ŷ(ρ3) = 0 (for a GGI

value of 4.3075). For this instance, by ROUNDING ALGORITHM, the obtained vector y is

therefore y(ρ1) = y(ρ2) = 1 and y(ρ3) = 0. This corresponds to stable marriage x4,

which is in fact an optimal solution.

Steps 2 and 3 of the algorithm can obviously be performed in polynomial time. In step 1,

solving P̂ can also be performed in polynomial time by using one of the linearizations of the

GGI operator proposed by Ogryczak and Śliwiński [2003]. The following lemma ensures

that the returned solution is a 2-approximation of an optimal solution of P:

Lemma 2 For any feasible solution (d̂, x̂, ŷ) of P̂ , the feasible solution (d,x,y) of P ob-

tained by setting

y(ρ) =

{
1 if ŷ(ρ) ≥ 0.5,
0 otherwise

is such that d̂ ≥ 1
2d where ≥ is taken componentwise.

Proof In order to establish the result stated in the lemma, we introduce the notion of man

and woman weights of a rotation. Given a rotation ρ = (mi0 , wi0), . . . , (mir−1
, wir−1

) we

define the mi-weight of that rotation by:

ωm
i (ρ) =

{
d(rk(mik , wik ))− d(rk(mik , wi(k+1) mod r

)) if i ∈ {i0, . . . , ir−1} and i = ik
0 otherwise.

Similarly, we define the wj-weight of that rotation by:

ωw
j (ρ) =

{
d(rk(wik ,mik))− d(rk(wik ,mi(k−1) mod r

)) if j ∈ {i0, . . . , ir−1} and j = ik
0 otherwise.

Note that a man weight of a rotation will always be negative while a woman weight of a

rotation will always be positive.

Assume that ρ is a rotation that is exposed in a stable marriage x, and let x′ be the stable

marriage obtained from x by eliminating ρ. Then:

d(mi,x
′) = d(mi,x)− ωm

i (ρ), d(wj ,x
′) = d(wj ,x)− ωw

j (ρ).

Consequently, if x is the stable marriage obtained from the man-optimal stable marriage xm

by eliminating rotations ρ1, . . . , ρt, then:

d(mi,x) = d(mi,x
m)−

t∑

k=1

ωm
i (ρk), d(wj ,x) = d(wj ,x

m)−
t∑

k=1

ωw
j (ρk).
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We now establish the result stated in the lemma. Let (d̂, x̂, ŷ) denote a feasible solution of

P̂ . The previous equations extend as follows for solutions of P̂:

d̂mi = d(mi,x
m)−

∑

ρ∈P

ŷ(ρ)ωm
i (ρ), d̂wj = d(wj ,x

m)−
∑

ρ∈P

ŷ(ρ)ωw
j (ρ). (17)

Now consider the feasible solution (d,x,y) of P defined by y(ρ) = 1 if ŷ(ρ) ≥ 0.5,

and 0 otherwise. The feasibility of (d,x,y) comes from the fact that {ρ : ŷ(ρ) ≥ 0.5} is

a closed set of rotations. Indeed, note that constraints 16 ensures that y(ρ′) ≤ y(ρ) for all

ρ < ρ′. We have:

d̂mi −
1

2
dmi = d(mi,x

m)−
∑

ρ∈P

ŷ(ρ)ωm
i (ρ)−

1

2
(d(mi,x

m)−
∑

ρ∈P

y(ρ)ωm
i (ρ))

=
1

2
d(mi,x

m)−
∑

ρ∈P

(ŷ(ρ)−
1

2
y(ρ))ωm

i (ρ)

≥
1

2
d(mi,x

m) ≥ 0

as 0 ≤ (ŷ(ρ) − 1
2y(ρ)) for all ρ ∈ P and ωm

i (ρ) ≤ 0 for all i ∈ {1, . . . , n} and ρ ∈ P .

Hence, d̂mi ≥ 1
2d

m
i for all i ∈ {1, . . . , n}.

Similarly, for women we have:

d̂wj −
1

2
dwj = d(wj ,x

m)−
∑

ρ∈P

ŷ(ρ)ωw
j (ρ)−

1

2
(d(wj,x

m)−
∑

ρ∈P

y(ρ)ωw
j (ρ))

=
1

2
d(wj ,x

m)−
∑

ρ∈P

(ŷ(ρ)−
1

2
y(ρ))ωw

j (ρ)

≥
1

2
(d(wj ,x

m)−
∑

ρ∈P

ωw
j (ρ))

as (ŷ(ρ)− 1
2y(ρ)) ≤ 0.5 for all ρ ∈ P and ωw

j (ρ) ≥ 0 for all j ∈ {1, . . . , n} and ρ ∈ P . Since

eliminating all rotations from xm leads to xw , we have that 1
2 (d(wj ,x

m)−
∑

ρ∈P ωw
j (ρ)) =

1
2d(wj ,x

w). Therefore, d̂wj − 1
2d

w
j ≥ 0 and hence, d̂wj ≥ 1

2d
w
j for all j ∈ {1, . . . , n}.

By combining the inequalities obtained for men and women, we obtain that d̂ ≥ 1
2d,

which concludes the proof.

We can now state the main result of this section:

Theorem 3 ROUNDING ALGORITHM is a polynomial time 2-approximation algorithm for

the GGI stable marriage problem, and the bound is tight.

Proof We first recall that all steps of ROUNDING ALGORITHM can be performed in polyno-

mial time. Furthermore, by Lemma 2, the feasible solution (d,x,y) generated by ROUND-

ING ALGORITHM is such that d̂ ≥ 1
2d, where (d̂, x̂, ŷ) is an optimal solution to P̂. Conse-

quently:

GGIλ(d̂) ≥
1

2
GGIλ(d)

because GGIλ(d) ≤ GGIλ(d
′) for d ≤ d′ (see e.g. Fodor et al. [1995]) and GGIλ(αd) =

αGGIλ(d) for α > 0.

For the tightness of the bound, consider the following instance of the stable marriage

problem:
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m1 : 1 ≻m
1 2 ≻m

1 3 w1 : 2 ≻w
1 3 ≻w

1 1
m2 : 2 ≻m

2 3 ≻m
2 1 w2 : 3 ≻w

2 1 ≻w
2 2

m3 : 3 ≻m
3 1 ≻m

3 2 w3 : 1 ≻w
3 2 ≻w

3 3

There are two rotations ρ1 = (1,1), (2,2), (3,3) and ρ2 = (1,2), (2, 3), (3,1), with ρ1 <

ρ2, which yield three stable marriages:

– the man-optimal stable marriage xm in which each man is matched with his first choice,

and which corresponds to eliminating no rotation,

– the woman-optimal stable marriage xw in which each woman is matched with her first

choice, and which corresponds to eliminating both rotations,

– a “compromise” stable marriage xc in which each agent is matched with his/her second

choice, and which corresponds to eliminating only ρ1.

We use the disutility function d defined by d(1) = 0, d(2) = 1 + ǫ and d(3) = 2 (with

ǫ > 0) and the following GGI weights: λ = (a, b, c, 0,0, 0) with a ≥ b ≥ c > 0. The

disutility vectors of the three stable marriages are then d(xm) = (0,0, 0, 2,2, 2), d(xw) =
(2,2, 2, 0,0, 0) and d(xc) = (1 + ǫ, 1 + ǫ, 1 + ǫ, 1 + ǫ, 1 + ǫ, 1 + ǫ).

By using Equation 17 from the proof of Lemma 2, the value of d̂mi for each man mi and

the value of d̂wj for each woman wj are written as follows in terms of ŷ(ρ1) and ŷ(ρ2):

d̂mi = 0+ ŷ(ρ1)(1 + ǫ) + ŷ(ρ2)(1− ǫ) ∀i ∈ {1, 2,3}

d̂wj = 2− ŷ(ρ1)(1− ǫ)− ŷ(ρ2)(1 + ǫ) ∀j ∈ {1, 2, 3}

where ŷ(ρ1) ≥ ŷ(ρ2). We see that the three men share the same disutility value, as well as

the three women. The GGI value of a feasible solution to P̂ is thus completely determined

by the common disutility of the men or the common disutility of the women because only

the three least satisfied agents are taken into account in λ. Consequently, an optimal solution

to P̂ minimizes max{d̂m1 , d̂w1 } for ŷ(ρ1) ≥ ŷ(ρ2). Simple calculations make it possible to

conclude that the only optimal solution to P̂ is characterized by ŷ(ρ1) = ŷ(ρ2) = 0.5.

For this instance, ROUNDING ALGORITHM returns therefore the woman-optimal stable

marriage which has the ordered disutility vector (2,2, 2,0, 0, 0) and a GGI value of 2(a+
b + c). However, an optimal stable marriage is the “compromise” stable marriage, which

has the ordered disutility vector (1 + ǫ, 1 + ǫ, 1 + ǫ, 1 + ǫ, 1 + ǫ, 1 + ǫ) and a GGI value of

(1+ ǫ)(a+ b+ c). By taking the limit for ǫ going to 0, we obtain the tightness of the bound.

Remark 1 Note that the approach taken in ROUNDING ALGORITHM is valid for any aggre-

gation criterion F on dissatisfactions of agents for which the following condition holds:

F (
1

2
d(x)) =

1

2
F (d(x))

F (d(x) + r) ≥ F (d(x))

where r is any non-negative vector.

Remark 2 A general approximation result for the optimization of a generalized Gini index in

muliobjective optimization problems has been proposed by Kasperski and Zieliński [2015].

For the GGISM problem, it amounts to compute an optimal stable marriage according to

the sum of disutilities of pairs (mi, wj), where the disutility of a pair (mi, wj) is defined by

λ1max{d(rk(mi, wj)), d(rk(wj ,mi))}+λ2min{d(rk(mi, wj)), d(rk(wj ,mi))}. This can

be performed in polynomial time by linear programming. The returned solution is a Nλ1-

approximation, provided
∑N

i=1 λi = 1. To obtain a better guarantee than 2, one should

have λ1 < 2/N . On the contrary, by taking advantage of the specific structure of the stable

marriage problem, our approach yields a 2-approximation whatever weights are used.
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5 The GGI Stable Marriage Problem with a Bounded Number of Non-zero Weights

In this section, we provide an algorithm whose complexity is O(2Kn2K+4) where K =
max{i : λi > 0}. Hence, the complexity is polynomial time if K is assumed to be a con-

stant, where K is the number of non-zero weights in the GGI operator. In the parametrized

complexity terminology [Niedermeier, 2006], this means that the GGI stable marriage prob-

lem belongs to class XP for parameter K.

We adopt a brute-force approach to solve the problem in O(2Kn2K+4). Let

t(x) = ((d(m1,x),m1, µx(m1)), . . . , (d(mn,x),mn, µx(mn)),

(d(w1,x), w1, µx(w1)), . . . , (d(wn,x), wn, µx(wn))

denote the vectors of triples (d(ai,x), ai, µx(ai)) induced by stable marriage x, where

d(ai,x) is the dissatisfaction of agent ai when matched with µx(ai). We denote by T ↓(x)
the set of vectors t↓(x) that can be obtained from t(x) by sorting the triples in decreasing or-

der of dissatisfactions. The projection of a vector t↓(x) ∈ T ↓(x) on the K first components

is denoted by t
↓
K
(x). We denote by T ↓

K
(x) the set {t↓

K
(x) : t↓(x) ∈ T ↓(x)}.

For instance, assume that t(x) = ((1,m1, w2), (2,m2, w1), (2, w1,m2), (1, w2, m1)).
Then the set T ↓(x) is

{((2,m2, w1), (2, w1,m2), (1,m1, w2), (1, w2, m1)),

((2, w1,m2), (2,m2, w1), (1,m1, w2), (1, w2, m1)),

((2,m2, w1), (2, w1,m2), (1, w2,m1), (1,m1, w2))

((2,w1, m2), (2,m2, w1), (1, w2,m1), (1,m1, w2))}

and the set T ↓
2 (x) is {((2,m2, w1), (2, w1,m2)), ((2,w1, m2), (2,m2, w1))}.

The idea is to enumerate all vectors in T ↓
K

= ∪x∈XT ↓
K
(x) without redundancy. The

polynomiality of the approach follows from the fact that |T ↓
K
| ≤ (2n2)K because the num-

ber of distinct triples is upper bounded by 2n2. Note that we have:

min
x∈X

GGIλ(d(x)) = min
t∈T

↓

K

GGIλ(t)

because λi = 0 for all i > K, where, by abuse of notation, we denote by GGIλ(t) the

value of the GGI operator applied to the vector of dissatisfactions obtained from t1. Hence

identifying an optimal GGI stable marriage will be performed by finding a vector t ∈ T ↓
K

minimizing the GGI operator and computing a corresponding stable marriage.

Example 9 Coming back to the instance of Example 1, assume that K = 2 and that the

disutility function is defined by d(i) = i. Then, our enumeration algorithm would produce

the following set T ↓
2 :

1 Note that vector t ∈ T
↓
K

is incomplete as it only has K components, but it is sufficient to apply the GGI

operator because λi = 0 for all i > K .
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{((10, w10,m9), (7, w4,m6)), ((10,w10,m9), (7, w5,m7)),

((10,w10,m9), (7, w6,m5)), ((10,w10,m9), (7, w7,m4)),

((10,w10,m9), (5,m4, w6)), ((10,w10,m9), (5,m5, w7)),

((10,w10,m9), (5,m6, w5)), ((10,w10,m9), (5,m7, w4)),

((9, w10,m8), (5,m4, w6)), ((9, w10,m8), (5,m5, w7)),

((9, w10,m8), (5,m6, w5)), ((9, w10,m8), (5,m7, w4)),

((9, w10,m8), (5,m8, w10)), ((9,w10,m8), (5,m9, w9)),

((9, w10,m8), (5,m10, w8))}

For this instance, the optimal GGI value is therefore necessarily 9λ1 + 5λ2. Note that, in

most cases, the optimal GGI value depends on λ (it is not the case here because (9,5)

dominates componentwise all vectors of dissatisfactions obtained from T ↓
2 ).

We now describe our enumeration algorithm. Algorithm 1 builds set T ↓
K by induction

using the following formula:

T ↓
0 = {()}

T ↓
k
= {v ◦ t : v ∈ T ↓

k−1
and t ∈ T (v)} where T (v) = {tk : t ∈ T ↓

N
s.t. (t1, . . . , tk−1) = v}

The aim of Algorithm 2 is to compute T (v), i.e., the set of possible triples for the kth com-

ponent of a vector in T ↓
k

starting by the (k − 1)-vector v. The idea is to impose restrictions

on the considered stable marriages so that the least satisfied agents as well as their matches

correspond to the ones in v. For this purpose, we impose mandatory rotations (set INv) and

forbidden rotations (set OUTv). Note that, each time a rotation is made mandatory (resp. for-

bidden), the set of its ancestors (resp. descendants), denoted by Anc(ρ) (resp. Desc(ρ)), are

also made mandatory (resp. forbidden) so that INv (resp. P \ OUTv) remains a closed set of

rotations. For each triple (d, a, a′) belonging to v, we ensure that agent a is matched with

agent a′ by making rotation ρget(a, a
′) mandatory and ρbreak(a, a

′) forbidden (Lines 3–5).

Additionally, to ensure that the k least satisfied agents are indeed those involved in v, we

put a threshold on the dissatisfactions of the agents in Av = M∪W \ {a : (d, a, a′) ∈ v}.

Note that the set Av is updated in Line 3. Let dmin(v) denote the dissatisfaction of the last

triple in v (i.e., the lowest level of dissatisfaction in v). The dissatisfactions of the agents

in Av should not be strictly greater than dmin(v). This condition is imposed by using again

sets INv and OUTv. More precisely, given a rotation ρ = (mi0 , wi0), . . . , (mir−1
, wir−1

),
we define dwmax(ρ) = maxk=0,...,r−1 d(wik ,mik ) the highest dissatisfaction of a woman

involved in ρ before ρ is eliminated, and dmmax(ρ) = maxk=0,...,r−1 d(mik , wik+1
) the

highest dissatisfaction of a man involved in ρ after ρ is eliminated. To make sure that the

agents in Av have a dissatisfaction lower than or equal to dmin(v), we make mandatory

(resp. forbidden) any rotation ρ ∈ P\OUTv (resp. P\INv) such that dwmax(ρ) > dmin(v)
(resp. dmmax(ρ) > dmin(v)) (Lines 6–7, resp. Lines 8–9). The enumeration of the triples

in T (v) is performed by branching on the gender (man or woman) of the agent that will

realize the kth highest dissatisfaction. We denote by TW (v) (resp. TM (v)) the set of triples

(d, a, a′) ∈ T (v) where a ∈ W (resp. a ∈ M). We have of course TW (v)∪TM(v) = T (v).
Algorithm 3 enumerates the triples in TW (v) while Algorithm 4 enumerates the triples in

TM (v) (Line 10 of Algorithm 2). The validity of the approach follows from the validity of

Algorithms 3 and 4.
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Validity of the approach. The operations of Algorithms 3 and 4 are similar. They proceed

in the spirit of the algorithm proposed by Gusfield [1987] for determining a minmax stable

marriage. Let xR denote the stable marriage corresponding to a set R of rotations. Note

that we have built sets INv and OUTv such that if R ∩ INv = INv and R ∩ OUTv = ∅ then

v ∈ T ↓
k−1

(xR). Furthermore, the special case xINv (resp. xP\OUTv ) is the stable marriage

compatible with INv and OUTv that satisfy most the men (resp. women) as it takes as few

(resp. much) rotations as allowed by sets INv and OUTv. We only explain the operation of

Algorithm 3, because the operation of Algorithm 4 is symmetric.

The aim of Algorithm 3 is to enumerate all triples (d, a, a′) in TW (v). Notably, we

will enumerate these triples by nonincreasing values of d by exploring carefully the set of

stable marriages compatible with sets INv and OUTv. More precisely, at each iteration i of

the algorithm (loop while in Line 5) we will consider a stable marriage xi compatible with

sets INv and OUTv such that all women are always better off in xi than in xi−1 for i 6= 0
(with at least one woman strictly better off). At each iteration, the new triples are found by

looking at set Wi that includes all women in Av whose dissatisfaction can be ranked in kth

position in xi, i.e., whose dissatisfaction is equal to d↓
k
(xi) (Lines 3 and 13)2.

Obviously, for the women, the worst stable marriage compatible with INv and OUTv is

xINv . If no woman can be ranked in kth position w.r.t. stable marriage xINv , then no woman

can be ranked in kth position for any stable marriage compatible with INv. Indeed, elimi-

nating additional rotations would only increase the dissatisfactions of men and decrease the

dissatisfactions of women. Otherwise the recurrence is initialized with x0 = xINv and stable

marriage xi+1 is obtained from xi by eliminating rotation ρbreak(m,w) (and all required

ancestors) for all woman w in Wi so that their dissatisfactions are strictly decreased (Line

10). Loop while stops if one of the following conditions occurs:

– if Wi = ∅, it means that only men can be ranked in kth position in xi; as eliminating

rotations will only improve the situation of women and deteriorate the situation of men,

we can safely conclude that all triples in TW (v) have been enumerated;

– if at least one rotation ρbreak(m,w) does not exist or is forbidden (i.e., (m,w) ∈
xP\OUTv ); indeed, in this case, we can conclude that it is not possible to find a triple

in TW (v) with a dissatisfaction strictly less than the current value d↓
k
(xi) (the boolean

Flag is then set to True in Line 9).

Complexity analysis and proof of termination. In Algorithm 3, at every step i of the while

loop, all agents in Wi share the same dissatisfaction level d↓
k
(xi). Furthermore, for all i 6= 0,

we have that d↓
k
(xi) < d↓

k
(xi−1). As there are only n dissatisfaction levels (corresponding to

the n possible ranks), the while loop necessarily terminates in O(n) iterations. The nested

for loop also terminates in O(n) iterations because there can be at most n women in Wi.

All instructions inside the for loop are in O(1), except the instruction in Line 10 which is

in O(n2) (the number of rotations is upper bounded by n(n− 1)/2). Overall, Algorithm 3

is in O(n4). The analysis of Algorithm 4 is similar. In Algorithm 2, Lines 4 and 5 are in

O(n2), hence the for loop in Line 2 is in O((k − 1)n2), therefore in O(n3) as k ≤ 2n.

Lines 6–9 are in O(n4). Since we have shown that both calls in Line 10 are in O(n4), the

overall complexity of Algorithm 2 is O(n4). Finally, the complexity of the three nested for

loops in Algorithm 1 is O(
∑K

k=1(2n
2)k−1(n4 + 2n2)) because:

– the cardinality of set T ↓
(k−1)

in Line 4 is upper bounded by (2n2)k−1 (there are at most

2 We recall that d
↓
k
(x) denotes the kth component of vector d(x) when sorted by nonincreasing values.
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2n2 triples, and k − 1 components per vector of triples in T ↓
(k−1)

);

– Line 5 is in O(n4);
– Lines 6–7 are in O(2n2).

Overall, the complexity of Algorithm 1 thus is O(2Kn2K+4).

Final remarks. At the end of Algorithm 1, one obtains a set T ↓
K of vectors of triples. Within

this set, one can choose a vector v∗ which realizes:

min
v∈T

↓

K

GGIλ(v) = min
x∈X

GGIλ(d(x)).

Given this vector v∗, any stable marriage x∗ such that v∗ ∈ T ↓
K
(x∗) verifies

GGIλ(d(x
∗)) = min

x∈X
GGIλ(d(x)).

Given v∗, it is easy to compute a stable marriage x∗ such that v∗ ∈ T ↓
K(x∗). In particu-

lar, xIN
v
∗ (resp. xP\OUT

v
∗ ) is a best possible stable marriage for men (resp. women) where

sets INv∗ and OUTv∗ are generated in the same fashion as in Algorithm 2 (Lines 1–9).

Algorithm 1: Enumerate

input : the GGISM instance and the value of K

output: T
↓
K

1 T
↓
0 ← {()}

2 for k = 1, . . . ,K

3 T
↓
k
← ∅

4 for v ∈ T
↓
k−1

5 T ← NextTriples(v, k)
6 for t ∈ T

7 T
↓
k
← T

↓
k
∪ {v ◦ t}

8 return T
↓
K

Algorithm 2: NextTriples

input : vector v of imposed triples, index k of the next triple

output: set T of possible next triples

1 INv ← ∅; OUTv ← ∅;Av ←M∪W
2 for i = 1, . . . , k − 1
3 (a, a′, d) = vi,A

v
← A

v
\ {a}

4 INv ← INv ∪ {ρget(a, a′)} ∪ Anc(ρget(a, a′))
5 OUTv ← OUTv ∪ {ρbreak(a, a′)} ∪ Desc(ρbreak(a, a′))

6 for ρ ∈ P\OUTv s.t. dwmax(ρ) > dmin(v)
7 INv ← INv ∪ {ρ} ∪ Anc(ρ)

8 for ρ ∈ P\INv s.t. dmmax(ρ) > dmin(v)
9 OUTv ← OUTv ∪ {ρ} ∪ Desc(ρ)

10 return NextWomen(INv, OUTv, k,Av) ∪ NextMen(INv, OUTv, k,Av)
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Algorithm 3: NextWomen

input : set INv and OUTv of mandatory and forbidden rotations, index k of the next triple, setAv

output: TW (v)
1 Compute xINv and xP\OUTv

2 T ← ∅; R← INv ; i← 0; xi ← xR

3 Wi ← {w ∈ Av ∩W : d(w,xi) = d
↓
k
(xi)}

4 Flag← False

5 while Wi 6= ∅ do

6 for w ∈ Wi

7 let m be the match of w in xi

8 T ← T ∪ {(d(w,m), w,m)}
9 if (m,w) ∈ xP\OUTv then Flag← True

10 else R← R ∪ ρbreak(m,w) ∪ Anc(ρbreak(m,w))

11 if Flag then return T

12 i← i+ 1; xi ← xR

13 Wi ← {w ∈ Av
∩W : d(w,xi) = d

↓
k
(xi)}

14 return T

Algorithm 4: NextMen

input : set INv and OUTv of mandatory and forbidden rotations, index k of the next triple, setA
v

output: TM (v)
1 Compute xINv and xP\OUTv

2 T ← ∅; R← P \ OUTv; i← 0; xi ← xR

3 Mi ← {m ∈ Av
∩M : d(m,xi) = d

↓
k
(xi)}

4 Flag← False

5 while Mi 6= ∅ do

6 for m ∈Mi

7 let w be the match of m in xi

8 T ← T ∪ {(d(m, w),m, w)}
9 if (m,w) ∈ xINv then Flag← True

10 else R← R \ (ρget(m,w) ∪ Des(ρget(m,w)))

11 if Flag then return T

12 i← i+ 1; xi ← xR

13 Mi ← {m ∈ Av
∩M : d(m, xi) = d

↓
k
(xi)}

14 return T

6 Conclusion

In this paper, we have shown that the minimization of a Generalized Gini Index (GGI) of

the dissatisfactions of men and women in a stable marriage problem is an NP-hard problem.

Then, we have proposed a polynomial time 2-approximation algorithm for the problem,

based on a rounding of the optimal solution to the linear programming relaxation of the

problem. Lastly, we have shown that minimizing a GGI of the dissatisfactions of men and

women in a stable marriage is in the class XP with respect to the number of strictly positive

weights in the GGI operator.

For future works, following Aziz and Klaus [2017], it could be worth investigating the

randomized version of the GGI stable marriage problem. By randomized, we mean that

we consider mixed stable marriages, and not only deterministic stable marriages. A mixed

stable marriage is a probability distribution over stable marriages. This enlargement of the
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set of feasible solutions could make it possible to enhance the optimal GGI value (where

the GGI operator is applied to the vector of expected dissatisfactions of the agents). Note

that the relaxed solution we compute in the first step of the 2-approximation algorithm pro-

posed in Section 4 can be converted into a mixed stable marriage by using a trick proposed

by Teo and Sethuraman [1998]. It turns out that the obtained approach returns an optimal

marriage for the randomized variant of the GGI stable marriage problem. A more thorough

investigation of the randomized GGI stable marriage problem is underway.
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