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Abstract— Walking gaits generated using Model Predictive
Control (MPC) is widely used due to its capability to handle
several constraints that characterize humanoid locomotion. The
use of simplified models such as the Linear Inverted Pendulum
allows to perform computations in real-time, giving the robot
the fundamental capacity to replan its motion to follow external
inputs (e.g. reference velocity, footstep plans). However, usually
the MPC does not take into account the current state of
the robot when computing the reference motion, losing the
ability to react to external disturbances. In this paper a closed-
loop MPC scheme is proposed to estimate the robot’s real
state through Simultaneous Localization and Mapping (SLAM)
and proprioceptive sensors (force/torque). With the proposed
control scheme it is shown that the robot is able to react
to external disturbances (push), by stepping to recover from
the loss of balance. Moreover the localization allows the robot
to navigate to target positions in the environment without
being affected by the drift generated by imperfect open-loop
control execution. We validate the proposed scheme through
two different experiments with a HRP-4 humanoid robot.

I. INTRODUCTION

In recent years, humanoid robots have been given in-
creasingly more attention due to their ability to perform
complex tasks, thanks to their highly redundant kinematic
structure. However, those systems are also challenging to
control because they have very complex dynamics. Therefore
researchers tend to use simplified models to approximate
the humanoid robot dynamics. When dealing with humanoid
locomotion, the most commonly used model to approximate
the dynamics of walking is the Linear Inverted Pendulum
(LIP) [1], and the use of Model Predictive Control (MPC)
has become predominant [2, 3]. In traditional MPC-based
gait generation techniques, a reference motion is generated
without taking into account the current robot state, however,
planning a motion starting from the current robot state is of-
ten necessary to react to unexpected situations and to obtain
more robust motions. In this paper the problem of closed-
loop MPC is tackled [4, 5], and the robot state is estimated
using SLAM and force/torque sensor measurements.

The use of SLAM for humanoid locomotion planning has
been widely used, since the introduction of dense RGB-D
approches, such as [6, 7] because they both provide a dense
3D map of the explored environment and 6D localization
at sensor framerate with centimeteric precision. With this
information, it becomes possible to plan robot actions w.r.t.
the environment. In [8], a pair of Multisense stereo cameras

This work is supported by grant from the COMANOID H2020 project
1 CNRS-University of Nice Sophia Antipolis, I3S, France
2 CNRS-University of Montpellier, LIRMM, Interactive Digital Humans,

France
3 CNRS-AIST Joint Robotics Laboratory, UMI3218/RL, Japan
4 Sapienza University of Rome, DIAG, Italy
*Joint first authorship, authors contributed equally

Fig. 1. HRP-4 walking with the proposed closed-loop MPC with dense
visual SLAM feedback. The estimated LIP pendulum state obtained from
SLAM and force-sensor measurements is shown as a red line going from
the ZMP estimate to the robot’s CoM. The green line represents the desired
pendulum state. Blue and green squares are respectively the desired optimal
footstep, and a non-optimal footstep that minimizes changes of the footstep
trajectory.

are used to generate RGB-D inputs for use with Kintinuous
SLAM [6]. A footstep plan for walking over a rough brick
field is generated from its map, while the robot state is
estimated with a kinematic-inertial estimator [9]. Footsteps
are selected within the map, but no attempt is made to change
the next robot’s footstep should its state differ from a feasible
one. In [10], kinematic-inertial measurements are used to
improve the robustness of ElasticFusion [11], and are applied
to a cartesian walking controller to repeatedly walk towards
goal positions in the environment. The proposed approach is
depicted in Figure 1.

II. MPC-BASED GAIT GENERATION

When dealing with a complex system like a humanoid
robot, it is a common practice to rely on a simplified model,
the Linear Inverted Pendulum (LIP) [1] to describe the
humanoid behavior during locomotion. The reason why the
LIP is widely used when dealing with humanoid locomotion
is because its dynamics approximate well the motion of the
Center of Mass (CoM) of a biped robot, and the differential
equations governing the two directions of motion x and y
are linear, identical and decoupled. So, from now on, only
the sagittal component of motion will be referred to.



Consider, without loss of generality, the evolution of the
sagittal component of motion x ẋc

ẍc
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where xc is the position of the CoM, xz the position of the
Zero-Moment Point (ZMP), η =

√
g/h and h the constant

height of the CoM. In the motion model (1) we assume
controls uz are piece-wise constant over time intervals of
duration δ.

The gait generation is based on the intrinsically stable
MPC [12], where the decision variables are the ZMP ve-
locities (ẋiz, ẏiz), i = 1, . . . , N and the footstep positions and
orientations (xjf , yjf , θjf ), j = 1, . . . ,M , over a prediction
horizon Th = Nδ.

The choice of a MPC-based gait generation allows us to
give the robot a high-level task, through an appropriate cost
function to be minimized, and also to impose constraints to
enforce stability, to maintain balance and to guarantee the
kinematic feasibility of the robot motion.

A. Cost Function

In the formulation proposed here, the aim is to have the
robot track high-level reference sagittal and coronal veloc-
ities (vx, vy), and an angular velocity ω, by an appropriate
selection of ZMP velocities (ẋiz, ẏiz) and footstep positions
and orientations (xjf , yjf , θjf ). However to maintain linearity
in the MPC formulation, the footstep orientations must be
chosen before the computation of their positions [2].

Therefore, a first optimization problem is solved, minimiz-
ing a function that takes into account the reference angular
velocity ω to determine the footstep orientations θjf

M∑
j=1

(
θjf − θ

j−1
f

Ts
− ω

)2

, (2)

where Ts is the constant duration of a step, subject to the
linear constraint |θjf − θ

j−1
f | ≤ θmax, that limits to θmax the

maximum difference in orientation between two consecutive
footsteps.

Once the foot orientations are decided, the footstep lo-
cations and the ZMP velocities can be computed via the
minimization of a second cost function

N∑
i=1

(
(ẋk+iz )2 + (ẏk+iz )2+

kx(ẋk+ic − vx cos(iωδ) + vy sin(iωδ))2+

ky(ẏk+ic − vx sin(iωδ)− vy cos(iωδ))2
)
,

(3)

where the first two terms penalize the control effort, while
the last two terms are meant to minimize the deviation from
the reference velocities (vx,vy).

B. Constraints

In the following the three constraints enforced in the
proposed MPC scheme will be briefly presented. The first,
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Fig. 2. Overview of the proposed closed-loop MPC. A LIP reduced model
is used to represent the dynamics of a humanoid robot walking on flat floor.
The pendulum state is estimated from HRP-4 sensors: its CoM position and
velocity is obtained with dense visual slam from RGB-D measurements, and
its ZMP from force-sensor measurements. This state is used to compute the
MPC predictions, i.e. the future ZMP velocities and associated footsteps.
Through integration, these references converted to reference position are
then tracked by a quadratic programming controller that sends a desired
whole-body configuration to the position-controlled robot.

introduced in [12], is the stability constraint, which takes the
form

1

η

1− exp(δη)

1− exp(Nδη)

N∑
i=1

exp(iδη)ẋk+iz = xkc +
ẋkc
η
− xkz . (4)

This constraint will guarantee the boundedness of the com-
puted CoM trajectory.

In order to guarantee balance during locomotion, we must
guarantee that the ZMP is at any time instant inside the robot
current support polygon. To do so we define a rectangle with
sides dzx, d

z
y , and therefore the balance constraint takes the

form
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where Rj is the rotation matrix associated to the angle θjf .

The last constraint is to guarantee that the choice of the
next footstep is in a location that avoids self collisions and
is inside the robot kinematic limits:
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where dfx and dfy are the sides of a rectangle defining the
feasibility zone, and l is a reference distance between two
consecutive footsteps.

III. CLOSED-LOOP MPC

Decision variables (future ZMP velocities and next foot-
step locations) are computed by solving the QP formulation
of the MPC described in Sect. II, which requires an initial
state of the pendulum, defined by its CoM position and ve-
locity xc, ẋc and its ZMP position xz. Traditional MPC gait
generation typically envolves this state from an initial value
(supposed known) by forward integration of its decision
variables through a LIP motion model. This assumes that the
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Fig. 3. Reaction to a push during a real experiment with HRP-4. During the push, the ZMP-CoM pendulum estimated from SLAM and force sensor
measurements reaches the edge of the foot (red line) while the robot’s CoM is displaced forward. As a result, the MPC computes a new optimal footstep
(blue square) and computes a footstep trajectory to bring its next swinging foot there. The cartesian-regulator controls the MPC target velocity to walk
back to its initial position.

underlying system represented by the reduced LIP model is
behaving perfectly as expected. Unfortunately, real physical
systems are subject to interactions with their environment,
which can easily perturbate the state of the system (imperfect
contacts, external forces, poor tracking of the reference
pendulum by the underlying system). It is proposed here
to estimate the state of the system, and periodically use it
to compute an updated MPC solution. An overview of the
proposed closed-loop MPC is given in Figure 2. The next
sections will show how this estimation is achieved, and used
to obtain a closed-loop MPC formulation.

A. Estimation of the floating base
The robot’s floating base pose BX0 and velocity BV0 is a

prerequisite to estimating its CoM and ZMP state, see [13].
In this work, two simple estimators are considered. The
estimation model is depicted in Figure 4.

The first provides ground-truth measurement obtained
from a high-precision VICON mocap system composed of
8 infrared cameras. Reflective markers are placed on the
robot’s floating base link, forming a frame V , and tracked
by the system with high accuracy at a rate of 100Hz.

BX0 =B XV
VX0. (7)

where BXV is the transformation between the VICON
markers frame and the floating base and SXH is the trans-
formation between the camera optical frame and the robot’s
head link.

The second is obtained from the dense visual SLAM
method of [7], where RGB-D images from the robot’s Asus
Xtion sensor are used to estimate the pose of the sensor’s
optical frame S. Contrary to IMU-based estimators usually
used in walking scenarios, visual SLAM provides the full
position and orientation in a global world-frame.

BX0 =B XH
HXS

SX0. (8)

Fig. 4. This HRP-4 is fitted with a passive mechanism between its ankles
and feet soles, which provides a spring-damper compliant system. Its state
is taken into account by estimating the robot’s floating base with dense
visual SLAM and validated with a VICON tracking system, with reflective
IR markers attached to the floating base link. The ZMP is estimated from
ankle force-torque sensors. Note that here it is depicted outside of the robot’s
support polygon and triggers a step from the MPC.

Note that BXV and SXH are calibrated by Hand-Robot
calibration [14] with RobCalib software1. The transformation
between the head link and the floating base BXH depends
on an accurate kinematic tree calibration, and joint-encoder
measurements. HRP-4 is fitted with high-accuracy optical

1https://gitlab.com/i3s/robcalib

https://gitlab.com/i3s/robcalib


encoders, providing this information at control rate (200Hz).
Pose estimates obtained from both VICON and SLAM

are noisy, and its velocity is not directly estimated. The use
of the Savitzky-Golay filter [15] is proposed, for which an
open-source implementation2 is provided based on Gram-
Polynomials [16]. This filter has two main advantages: first,
when applied at the end-point of a filtering-window, no
additional delays are introduced, and the nth order derivative
can be readily obtained. Second, it can be efficiently imple-
mented as a convolution, whose weights depend on the size
of the time window, the order of Gram-polynomials, and its
derivative order.

Position can be directly smoothened by the filter. Rota-
tion smoothing for a time window consists of solving the
following maximum likelihood

R̂ = argmin
R∈SO(3)

∑
k

dgeo(R,Rk), (9)

where dgeo(R1,R2)2 = 1
2 ||logm(RT

1 R2)||frobenius.
Many methods exist for solving this problem. One of them
consists in applying a temporal convolution, followed by an
orthogonalization, which can be shown to be a 2nd order
Taylor approximation of the geodesic distance [17].

R̃ =
∑
k wkRk

UDVT = svd(R̃)

R̂ = UVT

(10)

This implies that rotation matrices can be directly
smoothened at any point in a time window by the Gram-
Savitzky-Golay convolution coefficients. Consequently, the
filtered floating base position and velocity can be readily
obtained.

B. CoM State

Knowing the floating base position and velocity, and the
kinematic and inertial model of the robot, the CoM position
is trivially obtained as Ct0. However, our MPC formulation
expects its state to be expressed w.r.t. the current support foot.
HRP-4 feet are fitted with a passive mechanical flexibility
between its ankles and the feet soles that act as a spring-
damper to protect the force sensors by reducing impacts,
and provide some mechanical compliance while walking.
The state of this mechanism is not measured but needs to
be taken into account in order to correctly express the CoM
in the support foot frame.

In the proposed MPC, the support foot is assumed to be
flat on the floor. Let’s denote by pf0 = (xf , yf , 0) the position
of the support foot in the inertial frame, and θfz its rotation
around the floor normal axis nz = [0, 0, 1]T . This frame
assumes that the support foot stays in perfect contact with
the floor, and that discrepancies in the CoM state are coming
from the robot’s passive ankle mechanism. In this frame, the
CoM is expressed as

x̃c =

[
R(θfz ) pf0

0 1

]
Ct0. (11)

2https://github.com/i3s/gram_savitzky_golay

Its velocity is also expressed in the flat support foot frame.
This implicitly embeds the state of the flexibility in the
measurement of the CoM state, as long as the real robot’s
foot sole remains in perfect contact with the floor.

C. ZMP State

The ZMP can be computed w.r.t. to the CoM as

xz = xc −
ẍc
η2
. (12)

In practice ẍc can be obtained from accelerometer measure-
ments, or by differentiating the CoM position obtained from
the above estimate twice, which proves unreliable.

Since HRP-4 is fitted with force-torque sensors under
its ankles providing measurements at control-rate (200Hz),
a more reliable expression of the ZMP can be obtained,
without the need for differentiation. The main interest is in
the ZMP expressed in the ground plane, passing through a
point p0 and orthogonal to the unit vector nz . Let (f0, τ0) be
the total contact-wrench measured by the left and right foot
force-torque sensors, expressed at the point p0. The ZMP is
defined as a point Z where the moment of the contact wrench
aligns with nz [18], that is nz × τZ = 0. Consequently

−nz × (pz × f0) + nz × τ0 = 0 (13)
−(nz · f0)pZ + (nz · pZ)f0 + nz × τ0 = 0 (14)

With the additional constraint of the ZMP being obtained in
the ground plane nz · pZ = 0, we obtain

pZ =
nz × τ0
nz · f0

(15)

D. Computing the MPC from its estimated state

Once the estimated state x̃ = (x̃c, ˜̇xc, x̃z) is computed, the
MPC is initialized with it. This means that the prediction of
the evolution of the system via the LIP model (1) over the
prediction horizon Th is performed using the estimation as
the initial condition. Moreover the cost function (3) and the
constraints (4,5,6) are built using the estimated robot state.

However, the robot state estimation x̃ is only available at
the frequency of the slowest sensor, here SLAM (30Hz) or
VICON (100Hz), both lower than the control rate (200Hz).
Hence the state is not available at every control iteration.
When no measured state is available, the initial LIP state
is computed by integration of (1). The controls ẋiz, i =
1, . . . , N , are those computed by the optimization performed
by the MPC in the previous iteration. The integration leads
to  xk+1

c

ẋk+1
c

xk+1
z

 = A

 xkc
ẋkc
xkz

+Bẋkz (16)

where the matrices A and B have the form

A =

 cosh(ηδ)
sinh(ηδ)

η
1− cosh(ηδ)

η sinh(ηδ) cosh(ηδ) −η sinh(ηδ)

0 0 1

 , (17)

https://github.com/i3s/gram_savitzky_golay


B =

 δ − sinh(ηδ)

η
1− cosh(ηδ)

δ

 . (18)

In this way, a reference whole-body control can be provided
at every iteration, by propagating the MPC solution, com-
puted either from the estimated robot state, or its integrated
internal state.

E. Choice of footstep
When the loop on the MPC is closed, its solution is com-

puted based on the estimated state (x̃c, ˜̇xc, x̃z). Hence, at any
time instant the optimal solution found by the optimization,
will in general be different from the previous one, even
in the absence of a real perturbation in the state (due to
measurement noise and uncertainties). This leads to different
optimal footstep target solutions at every MPC iteration.
When tracked with a whole-body QP controller, these abrupt
changes will be smoothened to some extent depending on
the task gains, reducing tracking precision of the swing foot
trajectory, and leading to shaky motions. To overcome this
issue, two possible solutions are considered.

The first consists in adding to the cost function (3) a term
of the form

kf

((
xjf − x̄

j
f

)2
+
(
yjf − ȳ

j
f

)2)
, (19)

that penalizes the difference between the predicted footstep
(xjf ,yjf ) and the previously chosen footstep (x̄jf ,ȳjf ). However
this also affects the other high-level tasks assigned to the
robot, e.g. the reference velocity tracking, because the robot
minimizes the difference between two footsteps therefore
making steps as short as possible.

The second option relies on the fact that the solution
found by the MPC is the optimal one, but it’s not the
unique solution that satisfies the constraints. Therefore, if the
constraints are still satisfied by keeping the previously found
footsteps with the new ZMP trajectory, it is chosen to keep it,
even if it is not the optimal in terms of cost function. In this
way we somewhat filter the continuous change of predicted
footsteps, and only the latest optimal solution of the MPC
is chosen if the previous one becomes invalid because it
violates the constraints, which guarantees robot balance.

F. Quadratic Programming Controller
The desired MPC solution is then tracked by a whole-

body quadratic controller (QP), which generates whole-body
motion for the real model. A detailed explanation of the QP
controller used in this work can be found in [19, 20]. Its
decision vector is z = (q̈,λC), where q̈ gathers the linear
and angular acceleration of floating-base coordinates, and the
generalized joint velocities. λC denotes the vector of conic
coordinates of linearized Coulomb friction cones, such that
the contact forces f are equal to SfλC with Sf the span
matrix of cone generators. The cost function includes various
tasks T that drive the whole-body state towards a desired
configuration. We consider here
• TCoM tracks the desired CoM position xc and velocity
ẋc.

• TTrajectory tracks the desired swing foot target xf .
• TCoP tracks the desired ZMP through admittance con-

trol, achieved by the embedded stabilizer.
• TPosture is a reference posture that keeps the robot

upright.
The overall QP can be summed up as follows:

z = argmin
z

N∑
i=1

wi‖Ti(q, q̇, q̈)‖2 + wλ‖λC‖2

subject to:
1) dynamic constraints
2) sustained contact positions
3) joint limits
4) non-desired collision avoidance constraints
5) self-collision avoidance constraints

(20)

Here, wi and wλ are task weights, and Ti(q, q̇, q̈) denotes
the residual of the ith task. The reader is referred to [21]
for details on the formulation of all these constraints. The
obtained reference acceleration q̈ is integrated twice to obtain
a desired joint configuration q which is then executed by the
actuators proportional-derivative (PD) controllers.

IV. EXPERIMENTS

The proposed work is based on the MPC formulation
presented in [12]. Including footstep generation into the
formulation enables an intuitive and flexible way to control
the locomotion of a humanoid robot. Walking is achieved
by specifying a reference velocity. Footsteps, CoM and ZMP
trajectories are chosen accordingly. This work has previously
been demonstrated for open-loop control of a NAO humanoid
robot, including pursuit avoidance scenarios in the presence
of obstacles [22]. However, it has never been demonstrated
applied to large-scale humanoids such as HRP-4. In this
section, we show that the MPC can be successfully applied to
such a robot while validating its closed-loop implementation.

A first experiment validates the walking performance with
a simple cartesian regulator based on SLAM localization that
makes the robot walk to specified targets in its environment.

The second experiment validates the closed-loop aspect of
the MPC by reacting to perturbations that would otherwise
make the robot fall, even in the presence of a stabilizer.

For all experiments, ground-truth floating base position is
obtained from a VICON motion capture system, and SLAM
estimations are obtained from Asus Xtion’s RGB-D frames
with D6DSLAM [7] software. A video is provided for each
experiment respectively.

A. Stabilization
The desired ZMP computed by the MPC is sent to the

embedded stabilizer of HRP-4 [23]. Its role is to compensate
deviations from a reference ZMP trajectory by accelerating
the torso in the opposite direction. This is achieved by
modifying the desired ankle joint reference. In case of a
perturbation too large to be recovered without taking a step,
the robot would normally fall. Instead, with our proposed
closed-loop MPC the robot takes a step forward, and the
stabilizer tracks the new reference ZMP (see Figures 3, 5,
and the video).
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Fig. 5. A strong push forward causes the MPC to step forward to prevent loss of balance. Left - the estimated ZMP from force-sensor measurements is
leaving the stability constraint area at time 194.7, the MPC plans a step forward to compensate. Middle - Estimation of the floating base position from
SLAM and VICON measurements along the x and y direction. Right - Estimation of the floating base velocity.

B. Drift-free cartesian space control
An additional benefit of the proposed closed-loop control

is its ability to robustly reach a target position specified
in the environment. To illustrate this, a simple cartesian
regulator was implemented to compute MPC reference veloc-
ities (vx, vy, ω) according to robot position and orientation
relative to a desired world position (xd, yd, θd). The floating
base pose (x̃b, ỹb, θ̃b), estimated with SLAM, is chosen as
the robot’s reference surface. Ground-truth measurements are
obtained as (xv, yv, θv) with the VICON tracking system. vx

vy
ω

 =

 λx(xd − x̃b)
λy(yd − ỹb)
λθ(θd − θ̃b)

 (21)

Figure 6 shows the result of HRP-4 repeatedly walking
from an initial position t0 = (0, 0, 0) towards a target
t1 = (1, 0.5, 0), then returning to its initial position before
walking to a second t2 = (1,−0.5, 0). Without feedback,
considerable drift is observed and the targets are not reached
accurately. Using the estimated robot state, the regulator
leads the MPC to walk accurately towards each target.

C. Push reaction
In the second experiment, the robot is stepping in place

with a low-weight cartesian-regulator (λx = λy = λθ = 0.2)
when it is pushed from behind, see e.g. [24][25]. The MPC
is computed from the estimated robot state (x̃c, ˜̇xc, x̃z),
obtained by the combination of SLAM and force-torque
sensors. When perturbed, the MPC decides to change it’s
desired footstep, and computes a new corresponding ZMP
velocity trajectory. This behavior emerges as a result of the
optimization: in order to find an optimal solution that satisfies
the constraints (bringing the future ZMP trajectory back
inside the support foot polygon while respecting kinematic
feasibility), the MPC has to move the ZMP forward thus
performing a step.

Figures 5 and 3 show this behavior on a real perturbation.
As can be seen from the first plot, around time 194.7s,
the perturbation becomes large enough for the ZMP to exit
the balance constraint area (defined as a sub-rectangle of
the real foot) with sufficient velocity, and the MPC has no
choice but to alter its desired footstep. The shaky behavior
of the footstep solution can be seen on the MPC footstep
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Fig. 6. HRP-4 walks to specific places in the environment. A cartesian-
regulator continuously computes MPC reference velocities based on the
robot’s position w.r.t. its target as estimated by SLAM. It’s trajectory is
validated by both VICON ground-truth data, and visual markers on the floor.
The video shows a comparative test of openloop vs closed-loop walking.

plot, as the experiment was performed without penalizing
any change of footstep. Good estimation of the floating base
position is achieved with SLAM, although additional delays
are introduced, and the velocity estimates remain quite noisy.

V. CONCLUSION

A closed-loop formulation of the intrinsically stable MPC
for humanoid gait generation [12] is proposed, where the
robot CoM position and velocity are estimated with vi-
sual SLAM, while the ZMP position is computed from
force/torque sensing. The closed-loop implementation of the
MPC allows the robot to react to external disturbances
through stepping, enhancing the overall robustness of the
control scheme. Moreover, the visual localization of the robot
in the environment, allows it to navigate with precision to
specific locations, recovering from the drift generated by un-
certainties and unmodeled interactions with the environment
(e.g. foot slipping). As extension of this work, the dense
SLAM map can be better exploited, in order to take into
account obstacles on the robot path to avoid them.
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