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) for a resembling problem. We suggest effective pre-processing procedures and a new lower bound. We besides suggest a novel hybrid approach that approximate the optimal solution when the setup times are bounded by the completion times. Experimentation are performed on benchmark instances and the methods are compared with those suggested in the literature.

INTRODUCTION

New consuming trends, global competition and growing variety in demand in the actual economical context raises an important issue in transfer line design. In fact, shortening life cycle times imposes the consideration of reconfigurabiliy in transfer line design. The modern transfer line should be easily and costeffectively reconfigurable to address two different issues: the variability in production size and the variability in the product specifications. While the first one imposes a variation in cycle time, the second one is linked to the set of tasks involved.

To address this issue, [START_REF] Koren | Economic benefits of reconfigurable manufacturing systems[END_REF] suggested in late 1990s the novel concept of Reconfigurable Manufacturing System (RMS). A RMS could be seen as a serial line of workstations (corresponding to the stages in Figure .1). Each workstation is equipped by multiple machines operating in parallel. Part units are moved from a workstation to another thanks to a conveyor. The part is delivered then to the first available machine in a workstation from the gantry.

The RMS highly addresses the issue of production size variability. Indeed the ability to add or remove a machine in a workstation allows monitoring the cycle time with high granularity which is refereed to as scalability [START_REF] Wang | Value creation through design for scalability of reconfigurable manufacturing systems[END_REF]]. Besides RMS offers a good trade off between productivity and flexibility while Dedicated Manufacturing System are highly productive but very poorly flexible and Flexible Manufacturing System highly flexible but very expensive and almost never profitable.

Despite being scalable and profitable, RMS could not address the issue of variability in product specifications only if equipped with mono-spindle head machines. Indeed, those machines can perform a huge set of operations, each machine being equipped with a tool magazine. To perform an operation, a machine needs a specific tool. Thus, setup times between operations must be considered in addition to operation times in order to perform tool changing.

Once equipped with mono-spindle head machines, RMS addresses both the production size and product specifications variability issues: whenever one or both of these elements comes to change, the manufacturer can easily adjusts the production by performing a reconfiguration of the system which can be seen as the process of balancing the transfer line taking into consideration setup times and multiple parallel machines at each workstation. Once this operation performed, machines are then added or removed from workstations if necessary, and machines are remotely configured to perform the new sequence of operations; RMS allowing to perform those two steps rapidly and cost-effectively. There is no need of physical machine reconfiguration, since all machines are equipped with the same tool magazine and can thereby perform the same set of operations.

The problem of balancing RMS appears then to be of strategic importance for the manufacturer. In section 2 we define this problem and introduce basic notations, a lower bound and an example are introduced in section 3 then in section 4 the related work is described. A new MIP approach is presented in section 5 and a novel approximation hybrid algorithm is then introduced in section 6. An experimental study was also performed, it is showing highly promising results. It is covered in the section 7 of the paper.

PROBLEM DEFINITION

The instance of the optimization problem could be described by the following data:

• The set of operations, the corresponding times, setup times and precedence relations.

• A maximum number of workstations to be used placed serially.

• A maximum number of machines per workstation.

• A cycle time.

• A maximum number of operations to be allocated to a workstation.

The optimization problem consists then in finding an allocation of the operations to the workstations and determining a number of machines per workstation while minimizing the number of machines used and respecting the following constraints:

• The sum of the times of the operations and the induced setup times of the sequence allocated to a workstation divided by the number of machines in that workstation must not exceed the cycle time.

• Precedence constraints must be respected: when an operation i precedes an operation j, the workstation to which the operation i is allocated must be less (placed before in the line) or as the workstation to which the operation j is allocated.

• The number of workstations must not exceed the maximum number of workstations.

• The number of operations allocated to a workstation must not exceed the maximum number of operations per workstation.

• The number of machines in a workstation must not exceed the maximum number of machines per workstation.

For the rest of the paper, we use the notations presented in Set-up time to be considered when operation i is performed just before operation j in some workstation 

RELATED WORK

This problem could be seen as an assembly line balancing problem. Those problems have been well studied in the literature; however those considering parallel machines or sequence dependent setup times have rarely been considered. The originality of the problems comes from the consideration of both elements. We can only list two papers dealing with this issue with an exact approach: [START_REF] Essafi | A MIP approach for balancing transfer line with complex industrial constraints[END_REF] and (Borisovsky et al., 2012[START_REF] Borisovsky | Balancing reconfigurable machining lines by means of set partitioning model[END_REF].

Both approaches fail to solve the problem for medium to large scale instances. [START_REF] Essafi | A MIP approach for balancing transfer line with complex industrial constraints[END_REF] suggest a MIP approach while [START_REF] Borisovsky | Balancing reconfigurable machining lines by means of set partitioning model[END_REF] uses a set partitioning model coupled with a constraint generation algorithm.

The MIP approach of [START_REF] Essafi | A MIP approach for balancing transfer line with complex industrial constraints[END_REF] lies on modelling the overall sequence constituted of the concatenation of the sequences of all the workstations :it uses the variables x i,q (i for the operation and q for the position in the sequence). It can solve instances with 15 operations while the other approach [START_REF] Borisovsky | Balancing reconfigurable machining lines by means of set partitioning model[END_REF] can solve instances with up to 50 operations.

EXAMPLE AND LOWER BOUND

We first introduce a new lower bound for the problem, we then draw an example and its optimal solution.

Taking into consideration the fact that for every workstation j, its workload time (W j ) and its number of machines m j should satisfy:

W j ≤ C.m j
Then, the total workload W = j∈S W j and the total number of machines m = j∈S m j must satisfy:

W = j∈S W j ≤ j∈S C.m j = C. j∈S m j = C.m
i.e:

W ≤ C.m (1) 
Let us now assume that n > s max . Then the workload W must satisfy:

W ≥ i∈N t i + λ 1+n-smax (2) 
where λ 1+n-smax denotes the 1 + n -s max smallest setup times.

Indeed, ( 2) is true because the workload is composed of the operations times ( i∈N t i ) and the induced setup times. And since n > s max , there must be at least n -s max operations that are "not alone" at the workstation they are affected to. Any solution must then consider at least n -s max + 1 setup times. (+1 because a sequence of k operations induce exactly k setup times)

Then, we have from ( 1) and ( 2):

i∈N t i + λ 1+n-smax ≤ C.m
From this equation we deduce a new lower bound for the number of machines used if n > s max :

z lb = i∈N t i + λ 1+n-smax C (3)
If n ≤ s max , the classical lower bound for SALBP is still available :

z lb = i∈N t i C
Let us know give the example of a small instance, compute the lower bound and give an optimal solution.

The instance is described by the following data:

• The part requires the execution of 7 operations numbered from 1 to 7 (n = 7).

• At most 3 stations can be used. (s max = 3).

• Precedence constraints are given by: • M = 3, Maximum number of operations that could be allocated to a workstation.

P = {(1, 3), ( 2 
• M = 3, Maximum number of machines that could be hosted by a workstation.

• Completion times are represented in Table .2:

i 1 2 3 4 5 6 7 t i 1.5 1 3.5 1.5 2.5 3 1 Table 2 -Operations times.
• Setup times are represented in Table .3.

• C = 2.5, cycle time.
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Computing the lower bound (equation 3) gives: z lb = 7.

We describe a realizable solution by allocating to the first workstation the sequence 1, 2, 3 and 3 machines, to the second workstation the sequence 4, 5 and 2 machines and to the third workstation the sequence 6, 7 and 2 machines.

The solution is realizable since the workload divided by the number of machines for each station does not exceed the cycle time:

For station 1:(t

1 + t 2 + t 3 + t 1,2 + t 2,3 + t 3,1 )/3 = 2.5
For station 2:(t 4 + t 5 + t 4,5 + t 5,4 )/2 = 2.5

For station 3:(t 6 + t 7 + t 6,7 + t 7,6 )/2 = 2.5

Since the solution is realizable and its cost equals the lower bound, it is optimal.

A MIP FORMULATION AND PRE-PROCESSING PROCEDURES

In this section, we describe a new MIP approach based on a formulation for the sequence-dependent setup times assembly line balancing problem introduced by [START_REF] Andrés | Balancing and scheduling tasks in assembly lines with sequence-dependent setup times[END_REF] that has not been experimented and does not consider parallel machines in workstations. Besides we suggest novel preprocessing procedures that computes:

• e i : The earliest station to which operation i could be affected.

• l i : The latest station to which operation i could be affected.

• M j : The maximum number of operations that could be affected to workstation j.

We first give the pre-processing algorithms, we then describe the MIP approach for our problem.

While x denotes the earliest station to ensure that the workload of i and all its predecessors is done, the condition x < y captures the fact that x stations are

Algorithm 1 e i (i ∈ N : opération) P i := {i} ∪ {j ∈ N ; (j, i) ∈ P }(i and its predecessors).

x :

= i∈P i ti C.M y := i∈P i ti+λ 1+|P i |-x C.M while x < y do x := x + 1 y := i∈P i ti+λ 1+|P i |-x C.M
end while Return x not enough to ensure that the induced setup times are also processed. The second algorithm computing the latest workstation is quite similar to the first one but considering the successors instead of predecessors and counting from s max in stead of 1.

Algorithm 2 l i (i ∈ N : opération)

S i := {i} ∪ {j ∈ N ; (i, j) ∈ S}(i and its successors).

x :

= i∈S i ti C.M y := i∈S i ti+λ 1+|S i |-x C.M while x < y do x := x + 1 y := i∈S i ti+λ 1+|S i |-x C.M0
end while Return s max -x + 1

Once having computed e i and l i , we could review the maximum number of operations that could be affected to any workstation j as:

M j = M in(M, |{i, e i ≤ j ≤ l i , i ∈ N }|).
Another pre-processing procedure is run to remove redundant precedence constraints : (i, j) ∈ P is removed if there exists a non trivial path between i and j in the precedence graph.

We could now describe the MIP approach. This approach is based in modelling the workstations sequences. It uses the following binary variables:

• x i,j,s =       
1 If operation i is affected to workstation j in the s th position of its sequence. 0 If not. We consider the objective of minimizing the number of machines used: M in j∈S M k=1 k.v j,k under the constraints:

l(i) j=e(i) Mj s=1 x i,j,s = 1, ∀i ∈ N (4) 
This set of constraints ensures that every operation is affected to exactly one workstation at a unique position of its sequence.

i∈N,e(i)≤j≤l(i)

x i,j,s ≤ 1, ∀j ∈ S, s = 1, ..., M j (5)

This set of constraints ensures that at most one operation is affected to each position of the sequences of the workstations.

i∈N,e(i)≤j≤l(i)

x i,j,s+1 ≤

i∈N,e(i)≤j≤l(i)

x i,j,s ∀j ∈ S, s = 1, ..., m j -1 (6)
This set of constraints ensures that no position s + 1 in any workstation is taken by any operation unless the position s is also taken by some operation.

M k=1 v j,k = y j , ∀j ∈ S (7)
This set of constraints ensures that only one number of machines is chosen for every used workstation.

y j+1 ≤ y j , ∀j = 1, ..., s max -1 (8)
This set of constraints ensures that no workstation is used unless its precedent workstation is also used.

l(i) j=e(i) Mj s=1 (M.(j -1) + s)x i,j,s ≤ l(i ) j=e(i ) Mj s=1 (M.(j -1) + s)x i ,j,s ∀(i, i ) ∈ P (9)
This set of constraints ensure that precedence constraints are satisfied.

i∈N,e(i)≤j≤l(i) Mj s=1 t i .x i,j,s + i,i ∈N 2 ;i =i ,e(i)≤j≤l(i),e(i )≤j≤l(i )

t i,i .z i,i ,j ≤ C. M k=1 k.v j,k , ∀j ∈ S (10) 
This set of constraints ensure that the cycle time is not exceeded in any workstation.

x i,k,s + x i ,k,s+1 ≤ 1 + z i,i ,k , ∀i, i ∈ N 2 , i = i , k ∈ {e(i), ..., l(i)} ∩ {e(i ), ..., l(i )}, s = 1, ..., m k -1 (11) 
This set of constraints ensures that if operation i is followed by operation i zt station k then z i,i ,k is put to 1.

x i,j,si ∈N ;i =i,e(i )≤j≤l(i )

x i ,j,s+1 ≤ w i,j , ∀i ∈ N, ∀j ∈ {e(i), ..., l(i)}, s = 1, ..., m j -1 (12)

x i,j,Mj ≤ w i,j , ∀i ∈ N, ∀j ∈ {e(i), ..., l(i)} (13) 
The constraints ( 13) and ( 14) ensure that w i,j is put to one whenever operation i is positioned in the last occupied position of workstation j.

w i,j + x i ,j,1 ≤ 1 + z i,i ,j , ∀i ∈ N, i ∈ N, i = i , j ∈ {e(i), ..., l(i)} ∩ {e(i ), ..., l(i )} (14)
This constraint ensures that if operation i is positioned in the last occupied position of workstation j and operation i positioned in the first position of workstation j then z i,i ,j = 1 and consequently the setup time t i,i is considered in (10).

The MIP is experimented in Section.7.

Let's now describe a novel hybrid approach for our problem. Besides, we show that the algorithm is a 2-approximation if we assume that:

t i,j ≤ t k , ∀i, j, k ∈ N (15)
which seems to be a very reasonable and realistic assumption while considering industrial instances. (see section.7)

The algorithm consists of two steps. The first consists of solving a MIP while the second one is an exact dynamic programming algorithm for solving the ATSP:

•

Step 1 : Perform a parallel line balancing without taking setup times into consideration using a MIP approach.

•

Step 2 : For each workstation, perform a sequencing of the operations using a dynamic programming algorithm then if the number of machines in the workstations is insufficient to fulfill the cycle time, add the necessary ones. If the maximum number of machines is violated, then we return to step 1 by adding a constraint that forbids the assignment of the set of operations to the workstation. This step is described in more details in section 6.2.

The first subsection is devoted to the first step and the second subsection is devoted to the second step.We refer to this method as "BFSL" (Balance First, Sequence Last)

Let us now remark that the solution outputted by the algorithm is feasible and its overall cost (c) is given by the cost of the solution outputted by the step1 (c1) plus the number of machines added in step 2 (m). i.e c = c 1 + m besides we have c 1 ≤ c * where c * denotes the optimal solution of the RMS balancing problem (because c 1 does not take setup times into consideration).

And thanks to (15) we have m ≤ c 1 (because the number of setup times for each workstation is less or equal to the number of operations and then the workload involved by the setup times in each workstation is less or equal to the workload involved by the operations times). Those two inequations (c 1 ≤ c * , m ≤ c 1 ) finally give:

c ≤ 2.c *
which shows the approximation ratio.

6.1

Step 1: Balancing without setup times

In this step we are concerned with balancing the RMS but without taking into consideration setup-times. This is done by the following MIP that is derived from the precedent one by removing unnecessary variables and constraints. We use the following variables:

x i,j =    1 If operation i is affected to workstation j. 0 If not. y j =    1 If at least one operation is affected to workstation j 0 If not. v j,k =    1 If k machines are affected to workstation j. 0 If not.
We consider the objective of minimizing the number of machines used: M in j∈S M k=1 k.v j,k under the constraints:

l(i) j=e(i) x i,j = 1, ∀i ∈ N (16) 
This set of constraints ensures that every operation is affected to exactly one workstation.

M k=1 v j,k = y j , ∀j ∈ S (17) 
This set of constraints ensures that only one number of machines is chosen for every used workstation.

i∈N,e(i)≤j≤l(i)

x i,j ≤ M j , ∀j ∈ S (18) 
This set of constraints ensures that the maximum number of operations to be allocated to a workstation is respected.

y j+1 ≤ y j , ∀j = 1, ..., s max -1 (19) 
This set of constraints ensures that no workstation is used unless its precedent workstation is also used.

l(i) j=e(i) j.x i,j ≤ l(i ) j=e(i ) j.x i ,j , ∀(i, i ) ∈ P (20) 
This set of constraints ensures that precedence constraints are satisfied.

i∈N,e(i)≤j≤l(i)

t i .x i,j ≤ C. M k=1 k.v j,k , ∀j ∈ S (21)
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This set of constraints ensures that the cycle time is not exceeded in any workstation.

The above MIP introduces far less variables and constraints that the first MIP. Experimentation show that it can solve instances with very large set of operations.

6.2

Step 2: Sequencing operations in every workstation and adding necessary machines

From step 1, we are given the affectation of operations to the workstations with a number of machines at each workstation. We are now concerned with sequencing the operations in every workstation and since the setup times were not considered in step 1 we may be obliged to add some machines at some workstations to fill the cycle time constraint.

The sequencing problem is an ATSP where operations represent cities and set-up times distances between cities. This operation is performed with an exact dynamic programming algorithm introduced in [START_REF] Held | A Dynamic Programming Approach to Sequencing Problems[END_REF]. We compute then the workload for every workstation and determine easily the number of machines to be added. If more machines than the the maximum authorized is required then we return to step 1 and a constraint forbidding the allocation of this set of operations to the workstation is added to the linear model.

EXPERIMENTAL RESULTS

We describe in this section the experimentation being held on a 16Go RAM computer with JAVA 8 and CPLEX (v12.7.0). Three sets of instances are considered, provided by [START_REF] Borisovsky | Balancing reconfigurable machining lines by means of set partitioning model[END_REF] where P i denotes the predecessors of i.

"BFSL" and "BFSL time" denote respectively the solution and the time of the hybrid approach.

First set of instances (p14-10) have a Scholl density in [5,15]. 6 instances out of 10 have been solved to optimum. With the MIP from [START_REF] Essafi | A MIP approach for balancing transfer line with complex industrial constraints[END_REF] only 4 out of 10 instances have been solved to optimum with a time limit of 10,000 seconds. Second set of instances (p14-25) have a Scholl density in [15,25]. All instances have been solved to optimum. With the MIP from [START_REF] Essafi | A MIP approach for balancing transfer line with complex industrial constraints[END_REF] only 5 out of 10 instances have been solved to optimum with a time limit of 10,000 seconds. Third set of instances (p14-40) have a Scholl density in [25,40]. All instances have been solved to optimum. With the MIP from [START_REF] Essafi | A MIP approach for balancing transfer line with complex industrial constraints[END_REF] only 8 out of 10 instances have been solved to optimum with a time limit of 10,000 seconds.

The MIP was enable to solve instances with 20 operations within 10,000 seconds. All the instances were solved by the set partitioning model, besides the set partitioning model was able to solve instances with 50 operations.

CONCLUSION AND PERSPECTIVES

We can make some remarks from the experimentation:

• The MIP is more efficient with instances having bigger Sholl density.

• The lower bound that we present is on average at 15% of the optimal solution.

• The hybrid approach gives medium results and is very fast. The approximation ratio is satisfied.

A posterior local search improvement step would be an interesting perspective.

• The MIP that we present is more efficient than the one presented in [START_REF] Essafi | A MIP approach for balancing transfer line with complex industrial constraints[END_REF] and less efficient than the algorithm presented in [START_REF] Borisovsky | Balancing reconfigurable machining lines by means of set partitioning model[END_REF].

We have presented in this paper a new MIP, and a novel hybrid approximation algorithm and held experimentation on both Benchmark and randomly generated instances. The results are quite promising. However, we could take many directions as a continuation of this research:

• Improvement of the BFSL algorithm with posterior local search improvement algorithms for example.

• The use of polyhedral approaches lying on the MIP.

• Research could be done to show a better approximation ratio if there exists some λ ∈ [0, 1] s.t: • It will be more relevant to compare the hybrid approach with the approximate methods rather than the exact methods.

t i,
• Studying the problem in an uncertain context is a must to fill with INDUSTRY 4.0 requirements.
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 1 Figure 1 -Reconfigurable Manufacturing System: [Koren 2010]
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 2 Figure 2 -Precedence graph.
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  If k machines are affected to workstation j. 0 If not.

  Table.1.

	N	Set of operations, indexed on {1, 2, . . . , n}.
	S	Set of workstations, indexed on {1, 2, . . . , s max }
		s max denoting the maximum number
		of workstations.
	P	Set of couples (i, j) ∈ N × N such that
		i precedes j (also denoted: i << j).
	M Maximum number of operations to be allocated
		to a workstation.
	M'	Maximum number of machines to be
		in a workstation.
	C	Cycle time.
	t i	Completion time of operation i.
	t i,j	

Table 1 -

 1 Table of notations.

Table 4 -

 4 Experimentation with benchmark instances.

	Instance	d	d s	z * z lb MIP sol. MIP time MIP Gap BFSL Sol. BFSL time
	p14-10-1	7.69	8.76 11	9	11	4512	0	14	0.78
	p14-10-2	7.69	9.89 10	8	10	9558	0	11	0.69
	p14-10-4	7.69	9.89	-	9	10	10000	17.04	12	1.93
	p14-10-5	7.69	9.89	-	8	11	10000	26.06	13	0.80
	p14-10-6	7.69	9.89	-	8	11	10000	25.29	13	0.80
	p14-10-7	7.69	9.89	9	8	9	1482	0	10	1.52
	p14-10-8	8.79 12.08 11	9	11	9491.69	0	13	0.43
	p14-10-9	8.79	9.89 10	9	10	1021	0	12	0.17
	p14-10-10 7.69	8.79	9	8	9	13428.47	0	13	4.48
	p14-25-1 15.38 16.48 10	8	10	7336	0	13	1.91
	p14-25-2 14.28 21.97 10	8	10	406	0	12	1.18
	p14-25-3 10.98 21.97 10	8	10	585	0	12	2.07
	p14-25-4 10.98 18.68 10	9	10	1543	0	11	0.52
	p14-25-5 14.28 19.78 11	8	11	511	0	13	3.86
	p14-25-6 15.38 25.27 10	8	10	498	0	10	0.96
	p14-25-7 14.28 18.68 10	9	10	2772	0	12	1.82
	p14-25-8 13.18 20.87 9	9	9	1822	0	13	0.22
	p14-25-9 13.18 23.07 10	8	10	636	0	14	1.18
	p14-25-10 12.08 17.58 10	8	10	2658	0	11	1.38
	p14-40-1 19.78 36.26 11	8	11	229	0	13	1.31
	p14-40-2 21.98 29.67 9	7	9	1778.32	0	12	0.93
	p14-40-3 17.58 24.17 10	8	10	4006	0	12	0.41
	p14-40-4 18.68 29.67 10	8	10	322	0	11	0.72
	p14-40-5 14.28 26.37 10	8	10	838	0	12	1.78
	p14-40-6 17.58 38.46 10	8	10	104	0	11	1.22
	p14-40-7 17.58 26.37 9	7	9	1368	0	11	0.39
	p14-40-8 19.78 26.37 9	8	9	491	0	11	0.40
	p14-40-9 16.48 27.47 10	8	10	333.97	0	12	1.32
	p14-40-10 16.48 29.67 9	8	9	409	0	10	0.41

j ≤ λ.t k , ∀i, j, k ∈ N
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