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A challenging problem in the domain of gamma-ray spec-
trum analysis is the rapid detection of artificial radionuclides,
which are present at low activity levels. We introduce in this
paper new algorithms for activity estimation based on spectral
unmixing techniques, which aim to decompose a measured
spectrum into individual spectra of radionuclides. We propose
to tackle the activity estimation problem as an inverse problem,
where individual activities appear as mixing weights related to
individual spectra. In contrast to standard approaches, this allows
us to account for the full spectrum of each radionuclide (i.e.
peaks and Compton continuum). In this article, we investigate
different approaches to solve the underlying spectral unmixing
problem: standard regularized least squares regression (LS) and
a novel regularized maximum likelihood estimation that allows
to precisely account for the true Poisson statistics of the physical
process underlying the detection. Both methods implement the
non-negativity constraint to enforce the fact that the activity
of radionuclides cannot be negative. Experimental results on
simulated and measured spectra are presented and compared
to standard methods, it is shown that the proposed approach
leads to more accurate estimations, especially when the counting
rate is low, which gives a significant advantage for the rapid
detection.

Index Terms—gamma-ray spectrometry, spectral unmixing,
inverse problem.

I. INTRODUCTION

GAMMA-RAY spectrometry is one of the main technics
used for measuring the activity concentrations of ra-

dionuclides in environmental samples because it is direct, non-
destructive, rapid and multi-elementary. It particularly plays a
central role to monitor the radiological environment or perform
radioecology studies, which are some of the goals of The
French Institute for Radiation Protection and Nuclear Safety
(IRSN)1. More precisely, radioactivity in environmental sam-
ples is measured in the laboratory of environmental radioac-
tivity metrology (LMRE), which is in charge of emergency
preparedness. This task mandates the rapid measurements in
case of an incident or an accident with releases so as to give
rapid and reliable information to the population, as described
in [1].
In this context, a gamma-ray spectrum is the histogram of
the number of detected events as a function of the energy
deposited by the gamma-ray or X-ray in the detector. Due
to the possible interactions between photons and the material

1https://www.irsn.fr/EN/Pages/home.aspx

of the detector (see for instance [2] for more details). The
spectrum obtained for one photon has two main components:
a peak at the photon energy, called total absorption peak,
and a continuum at lower energy, called Compton continuum.
Depending on its decay scheme, a radionuclide can emit
several photons and its individual spectrum thus comprises
several peaks and associated continua. Finally the spectrum
obtained with the measurement of an environmental sample
(by HPGe detector) as shown in Figure 1 is the sum of the
individual spectra of each radionuclide and the background
spectrum. Radionuclides are classically identified thanks to
their characteristic peak energy and quantified from the peak
surface related to the activity via the detection efficiency.
We introduce a novel spectral unmixing algorithm that pre-
cisely take into account the exact Poisson statistics of the
measured spectra. More precisely, spectral unmixing can be
regarded as an inverse problem where a given gamma spectrum
is composed of M channels:

x = [x1, ...xM ] (1)

For ∀i ∈ M , the Poisson process of radioactive decay leads
us to model the problem as:

xi ∼ P([Φa]i + bi) (2)

We note the spectral signatures of each radionuclide with
Φ = [φ1, ...φN ] and a = [a1, ...aN ] for their mixing weights,
where N is the number of radionuclides. In (2), [Φa]i is the
sum of the counting rates for each radionuclide on the ith
channel. Similarly, bi stands for the counting rate of back-
ground spectrum on the ith channel. The aim is to decompose
the measurement x into individual spectra of radionuclides
and the background spectrum b (see Figure 1). The spectral
signatures Φ and a background spectrum b being known in
advance, the activity estimation problem is therefore equivalent
to finding the mixing weights a.
A well-known challenge of the gamma-ray spectral analysis is
the low statistics of the counting rate, which has attracted more
attention in the field of rapid detection and rapid characteri-
zation of sources under emergency conditions. For example,
the 137Cs is an artificial radionuclide present in environmental
samples in France. In practice, the detection of 137Cs takes
more than a week after the sampling. The objective of this
study is to improve the gamma-ray spectral analysis and focus
particularly on the artificial radionuclides at low statistics.
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Fig. 1: Gamma-ray spectrum model

Fig. 2: Calculation of net area

A. State of the art

A common strategy used to analyze gamma-ray spectrum
is the peak area calculation. For example, Genie2000 from
Canberra is a commercial software based on a step of peak
research followed by a Gaussian fit to get the peak surface.
This process is usually based on Region of interest (ROI) as
described in [3].

As shown in Figure 2, the net area nN is calculated by
correcting from the background with:

nb =
p

2b
(nb1 + nb2) (3)

The performance of this approach is limited. Firstly, the
calculation of net areas considers the counting distribution is
approximately Gaussian, which is not valid at low statistics
since an radioactive source emits photons randomly according
to Poisson process. Secondly, a gamma-ray spectrum consists
of photon-peaks and Compton continua, the problem of inter-
ference between individual spectra is difficult to handle with
this peak-based analysis.
Peak-based analysis is a popular approach that has been
implemented [4] to further account for the exact Poisson
statistics of the measurements. However, this technique only
relies on region of interest at the vicinity of related peaks and
does not take into account the entire spectrum. [4] however
shows the benefit of taking care of the Poisson statistics. The
application of full-spectrum analysis of gamma-ray spectrum

[5] uses re-weighted least squares for spectral unmixing of
gamma-ray spectra. In this article, the authors demonstrated
that compared to the standard peak-based analysis, using the
full spectrum improves the sensitivity and reduces the time of
measurement.
Activity estimation problem in gamma-ray spectrometry has
been also studied in [6], which considers activity estimation as
a sparse regression problem. In this article, the authors propose
to estimate the number of individual electrical pulses and their
arrival times. Other contributions of the activity estimation in
the field of machine learning algorithms were also applied
to gamma-ray spectral analysis as presented in [7], where
peak energy data are applied to neural networks. In [8], the
measured spectra are used to anomaly detection in gamma-ray
spectra. However, approaches based on neural networks do not
allow to precisely account the physical model underlying the
detection.

B. Contribution

In this paper, we investigate a new approach for the es-
timation of the activity of radionuclides from gamma-ray
spectra. The proposed approach relies on spectral unmixing
techniques, which have been introduced independently in the
field of remote sensing and hyperspectral imaging [9], [10].
In contrast to peak-based algorithms, spectral unmixing allows
to make profit of the full spectrum of each radionuclide
(i.e. peaks and Compton continuum). Accounting for all the
information carried out by the spectrum should allow to
improve activity estimation by lowering interferences between
radionuclides’spectra.
The paper is organized as follows: Section II explores the use
of unmixing algorithms for radioactivity estimation. To this
end, two approaches are evaluated: i) a standard regularized
least-squares estimator and ii) a novel regularized maximum
Poisson likelihood estimator. In Section III, spectral unmixing
is applied to simulated spectra, where we evaluate the estima-
tion performance of the proposed algorithms. Comparisons are
carried out with standard methods. Next, experimental results
on real spectra are presented in Section IV. Section V provides
conclusions and perspectives of this work.

II. ACTIVITY ESTIMATION ALGORITHMS

In this section, we study algorithms for activity estimation
in gamma-ray spectrometry. Recall the model described in
(2), we formulate the linear combination of each individual
spectrum in the following matrix form:

y = Φa+ b (4)

The mixing weights a is an array with non-negative entries,
which is a property that will be enforced in the unmixing
process. The estimation of a from a measured spectrum x
can be addressed by minimizing a distance between x and
the model y. For that purpose, we investigate two different
approaches: a standard least squares approach and a new
Poisson statistics-based method.
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A. Least squares unmixing algorithm

Spectral unmixing can be tackled as a standard regression
problem. In this context, a classical approach consists in
finding the solution a that minimizes the least squares error:

âLS ∈ argmin
a≥0

1

2
‖Φa+ b− x‖22 (5)

Because of the non-negativity constraint, there is no closed-
form expression for this problem. However, it can be recast as
a generic inverse problem of the form:

â ∈ argmin
a

f(a) + g(a) (6)

In the present unmixing problem, this can be recast as:

âLS ∈ argmin
a

i.a≥0 +
1

2
‖Φa+ b− x‖22

where the regularization term i.A≥0 is the characteristic func-
tion of the convex set (i.e. non-negative orthant) {a ≥ 0}. It
is precisely defined as follows:

i.a≥0 =

{
0, if a ≥ 0

∞, otherwise
(7)

Since this function is non-differentiable, solving the problem
in (5) cannot be performed with standard gradient descent
algorithms but requires the use of recently introduced proximal
algorithms [11]. In brief, one can tackle this optimization
problem with the Forward-Backward splitting (FBS) algorithm
[12] since it verifies the following properties:
• The fidelity term is differentiable, and its gradient is

defined as:

∇f(a) = ΦT (Φa+ b− x)

Furthermore, the above gradient is Lipschitz with con-
stant L = ‖ΦT Φ‖2, where ‖ . ‖2 stands for the spectral
norm of a matrix (i.e. its largest eigenvalue).

• The regularization term is convex and admits a proximal
operator [11], which is generically defined as:

proxg(x) = argmin
y

g(y) +
1

2
‖y − x‖22 (8)

The proximal operator of the non-negativity constraint
(7) is simply defined as the orthogonal projection onto
the non-negative orthant:

proxi.a≥0 =

{
0, if a < 0

a, otherwise
(9)

In the sequel, we make use of an accelerated version of
the FBS algorithm coined FISTA [13]. The algorithm is
summarized in Algorithm 1. This algorithm is guaranteed to
converge to the unique minimum of (5) when the gradient
step γ ≤ 1/L. In practice, the algorithms stops when the
relative variation of a between two consecutive iterations is
lower than 10−12.

Algorithm 1 Pseudocode of FISTA with constant stepsize

Input:
Fix the step size 0 < γ < 1/‖ΦT Φ‖2
Fix the number of iterations: kmax
Initialization:
a0 = 0, t1 = 1, a1

y = a0

while k < kmax do
ak = prox i.a≥0

(
aky − γΦT (Φaky + b− x)

)
tk+1 =

1+
√

1+4t2k
2

ak+1
y = ak +

(
tk−1
tk+1

)
(ak − ak−1)

end while

B. Poisson unmixing algorithm

From a statistical perspective, the least squares approach is
equivalent to a maximum likelihood estimate assuming that the
underlying noise is additive, white and Gaussian. To further
account for the precise Poisson statistics of the spectroscopic
measurement, we introduce a novel estimator that combines
the maximization of the likelihood related to the Poisson
statistics along with the non-negativity of the activities to be
estimated. Therefore the probability of a given energy channel
i to measure xi counts is given by:

P
(
Xi = xi

∣∣∣[Φa]i + bi

)
=
λxii e

−λi

xi!
(10)

where λi = [Φa]i+ bi. Thanks to the statistical independence
of each channel, the joint probability or likelihood for the
different channels is then given by:

P
(
X = x

∣∣∣Φa+ b
)

=
∏
i

λxii e
−λi

xi!
(11)

Maximizing the likelihood is equivalent to minimizing the neg-
log-likehood, which leads to the following Poisson statistics-
based activity estimator:

âPoisson ∈ argmin
a≥0

∑
i

[Φa]i + bi− xi log ([Φa]i + bi) (12)

which can be recast in the following vector formulation:

âPoisson ∈ argmin
a≥0

Φa+ b− x� log (Φa+ b)

where � is the Hadamard product.
In contrast to the optimization problem that defines the least
squares estimator, the above minimization problem cannot be
solved with the FBS algorithm since none of the two terms
is differentiable. Fortunately, both terms admit a proximal
operator, which makes the application of first-order primal-
dual algorithms such as the Chambolle-Pock (CP - see [14])
algorithm possible. The description of the CP algorithm to
compute âPoisson is given in Algorithm 2. In this pseudo-
code, as defined in (8), the proximal operator of the neg-log-
likelihood f of the joint Poisson distribution of the measure-
ments is:

proxλf (y) =
y + b− λ+

√
(λ− y − b)2 + 4λx

2
− b (13)
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Algorithm 2 Pseudocode of chambolle-pock algorithm

Input:
Fix the parameters: σ, τ > 0 and στ < 1/‖ΦTΦ‖2.
Fix the number of iterations: kmax
Initialization:
a0 = 0, ā0 = a0, u0 = Φa0

while k < kmax do
v = u(k) + σΦā(k)

u(k+1) = v − σ prox (1/σ)f

(
v
σ

)
a(k+1) = prox i.a≥0

(
a(k) − τΦTu(k+1)

)
ā(k+1) = a(k+1) + θ(a(k+1) − a(k))

end while

where x and b stand for the measured spectrum and the
background spectrum. Similarly to the FBS algorithm, the
convergence of the CP algorithm is ensured to convergence
στ < 1/‖ΦTΦ‖2 and θ = 1. The step parameters σ and τ
are chosen with σ = 10−4 → 10−3 and τ = 0.9/(σ ∗L) for a
better convergence rate. The choice of σ is related to the total
number of counts in the mesured spectrum. σ = 10−4 → 10−3

is suitable for simulated spectra and real spectra that we used
in this work. The stop criterion of the algorithm is as the FBS
algorithm with relative variations of a lower than 10−12.

III. NUMERICAL EVALUATION ON SYNTHETIC DATA

In this section, we evaluate the estimation performance of
the proposed algorithms with simulated gamma-ray spectra. In
contrast to standard unmixing problems that involve additive
Gaussian noise, the Poisson nature of the measurements’
statistics makes it highly dependent on the actual mixing. In
the context of gamma-ray spectrometry, the ability to estimate
precisely the mixing weight of a given radionuclide will
therefore strongly depend on the contribution of the others. To
further highlight the performances of the unmixing methods,
the following mixing scenarios are investigated:
• Case 1: we consider the mixture of 2 radioactive sources

with different energies: 200 keV and 500 keV, 1000
keV and 500 keV. In this case, it will be possible
to assess the impact of the Compton contribution of
a given radionuclide on the determination of another
radionuclide.

• Case 2: we investigate a typical routine aerosol filter sam-
ple with 5 radionuclides: 7Be , 22Na ,40K ,137Cs ,210Pb.
The mixing weights are fixed to customarily observed
values. In this test, we further evaluate the ability to
estimate the level of a low-activity artificial radionuclide
such as 137Cs for different total count numbers.

A. Description of the simulations

Each individual spectral signature of radioactive sources is
defined by its radioactive decay process and the detection
efficiency of the measurement, depending on the detector

and the counting geometry. In this work, the simulations are
performed with the Monte Carlo N-particle (MCNP) Transport
Code, a software package for simulating radiation transport de-
veloped by Los Alamos National Laboratory [15]. The sample-
detector configurations are simulated for a HPGe detector (60
percent of relative efficiency) and a 60 mL cylindrical counting
geometry.
For case 1, the spectral signatures of sources with specific
energies are simulated with MCNPX (MCNP eXtended). For
case 2, the simulations are composed of mixtures of realistic
spectral signatures of radionuclides. We make use of MCNP-
CP (A Correlated Particle Radiation Source Extension of a
General Purpose Monte Carlo N-Particle Transport Code) [16]
to compute their individual spectral signatures. It simulates
physics of nuclear decay and the subsequent emissions.

B. Experiments on the combination of two radioactive
sources

We consider the mixture of two radioactive sources at
500 keV, noted φ1, and 200 keV/1000 keV, noted φ2. The
measured spectra are defined as follows:

x ∼ P(φ1a1 + φ2a2 + b) (14)

where a1 and a2 stand for the individual activities (mixing
weights) of the sources. b is the spectrum of the background
radiation. As shown in Figure 3-a and Figure 3-b, we generate
simulations as follows: a1 for source 500 keV kept fixed
and we change a2 for 200 keV/1000 keV. Next, we simulate
30 gamma-ray spectra for each linear combination level by
random Poisson process as described in (14).
In order to compare the performance of the algorithms to those
of spectral analysis based on the calculation of peak areas,
we perform a peak area determination process according
to algorithms discussed in [3]. For comparison purposes, it
should be noted that the mixing weight is not a good measure
for quantifying the activity levels of different sources due
to the different Compton continuum levels of source 200
keV and 1000 keV. One way to overcome this problem is to
use the net area (defined in [3]) of the peaks associated to
radioactive sources, this is done by converting the estimated
mixing weights into net areas of peaks respectively.
The performances of these three estimators are compared
in Figure 3, the first column for mixtures of 500keV and
200 keV, the second column for mixtures of 500keV and
1000 keV. Error bars are computed based on Monte Carlo
simulations with relative error defined by ‖a−â‖‖a‖ . The median
values and confidence intervals between percentile 25 and
percentile 75 are displayed.

Results
• The estimated values obtained with the three estimators

are compared to the real simulated values in Figure
3-c,d for source 500 keV and Figure 3-g,h for source
200 keV/1000 keV. The confidence intervals between
percentile 25 and percentile 75 of each estimator show
that, the Poisson unmixing yields lower uncertainty
compared to least squares unmixing and peak-based
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(a) Mixture of radioactive source 500 keV and 200 keV (b) Mixture of radioactive source 500 keV and 1000 keV

(c) Estimation of source 500 keV (mixed with 200 keV) (d) Estimation of source 500 keV (mixed with 1000 keV)

(e) Estimation relative error of source 500 keV (mixed with 200 keV) (f) Estimation relative error of source 500 keV (mixed with 1000 keV)

analysis. For further quantitative accuracy analysis, the
relative error bars of each estimator are illustrated in

Figure 3-e,f for source 500 keV and Figure 3-i,j for
source 200 keV/1000 keV. It has to be pointed out that,
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(g) Estimation of source 200 keV (h) Estimation of source 1000 keV

(i) Estimation relative error of source 200 keV (j) Estimation relative error of source 1000 keV

Fig. 3: (a) (b) show the linear combination model of mixtures of 500 keV and 200/1000 keV. (c) (d) Illustration of estimated
values for source 500 keV. (e) (f) with respect to relative errors comparison purpose for source 500 keV. (g) (h) Illustration of
estimated values for source 200/1000 keV. (i) (j) with respect to relative errors comparison purpose for source 200/1000 keV.
The results are plotted as a function of the net areas of 200/1000 keV.

the Poisson unmixing provides more accurate estimations
with lower uncertainty.

• The results show that the estimation performance of each
algorithm improves when the radioactivity level increases
(see the evolution of estimation relative error for source
200 keV and 1000 keV in Figure 3-i,j). Compared to
the source 500 keV, we get larger relative errors for
200 keV/1000 keV with low couting rate. This confirms
again the limitation in low activity measurements.

• The peak-based analysis cannot detect the source of 200
keV (see Figure 3-g), however, it can be detected in the
case of 1000 keV (Figure 3-f). We can conclude that,
comparing to the estimator considering only the peak,

the proposed spectral unmixing estimators using the full
spectrum improves the estimation performance, which
provides significant benefits when the peak of a source
is located under the continuum of other sources.

C. Realistic simulations of routine aerosol samples

The comparisons are carried out on simulated spectra that
are composed of 5 radionuclides: 7Be, 22Na, 40K, 137Cs,
210Pb. These 5 radionuclides are the most commonly found
in standard aerosol samples. The level of counting rate of
each radionuclide is fixed to values that are customarily in real
data.Hence, these data simulate a realistic setting to test the
proposed unmixing methods. As described in (15), we simulate
the measured spectra with the simulated spectral signatures Φ
and a background radiation spectrum b. After fixing the mixing
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(a) Estimation of 7Be (b) Estimation of 22Na

(c) Estimation of 40K (d) Estimation of 137Cs

(e) Estimation of 210Pb

Fig. 4: Estimation relative error obtained by Poisson unmixing and LS unmixing, the gray region represents the range of counts
numbers in real spectra that we measured for aerosol samples.

weights of each radionuclide a, the counting time is changed
in the simulation process with a factor β.

x ∼ P([Φa+ b]× β) (15)

We generate also 30 simulations for each mixture using
random Poisson processes. Next, we apply the least squares
unmixing and Poisson unmixing algorithms to the simulated
spectra. The estimation performances have been therefore
assessed for the 5 radionuclides in Figure 4 with relative error
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Fig. 5: Estimation of 137Cs in the case that activity levels of other radionuclides and background radiation are fixed. Estimation
results for Monte-Carlo simulations are compared to the real values of the mixing weight of 137Cs.

bar defined by ‖a−â‖
‖a‖ . The results are illustrated with the

median value of Monte-Carlo simulations and the confidence
intervals given by percentile 25 and percentile 75.

Results
• Compared to least squares unmixing, we get lower

relative errors with the Poisson unmixing for 7Be, 22Na,
40K and 137Cs, which are composed of peaks and
significant continuum contributions. The results obtained
for 210Pb indicate that both estimators have similar
performances for estimating a spectrum which consists
of dominant peak.

• With respect to the number of counts carried out by the
factor β, the realistic levels in experimental measurements
are illustrated in gray regions of Figure 4. The analysis
shows the advantage of Poisson unmixing in the task of
activity estimation in the environmental samples.

As mentioned previously, the activity estimation at low statis-
tics is a difficult problem to handle in the spectral analy-
sis. We evaluate more precisely the estimation of the low-
activity radionuclide 137Cs. For this purpose, we perform a
scenario of simulations with 5 radionuclides described at the
beginning of this section, the counting rate of 137Cs ranges
from 0 to a realistic level in practice. Figure 5 plots the
estimation performance of 137Cs while the mixing weights
of other radionuclides are fixed. The results demonstrate that
the Poisson unmixing improves the estimation performance for
low-activity source.
The results shown in this section with simulated data confirm
the good performance of using spectral unmixing approach.
Further experiments on real spectra will be performed in the
next section.

IV. EXPERIMENTAL RESULTS WITH REAL SPECTRA FROM
AEROSOL SAMPLES’ MEASUREMENTS

In this section, we aim to validate the proposed approaches
for real data. We focus on the measurement of aerosol samples
which is a part of the surveillance network in the laboratory.
In the framework of the radiological environmental monitoring
program in France or for research purpose in radioecology,
we are concerned with measuring levels of radioactivity in
environmental samples. In France, 137Cs is an artificial ra-
dionuclide present in the environment due to the global fallout
(atmospheric nuclear weapon tests and Chernobyl accident)
and in the air due to resuspension phenomenon. The aerosol
filters are collected weekly by the 10 high flow (800 m3.h−1)
air samplers of the OPERA-Air network. Their volume higher
than 120 000 m3 enables to determine the 137Cs activity
concentration in the air at trace level around 0.1 µBq.m−3.
It is well known that rapid detection of artificial radionuclides
is mandatory for emergency preparedness. In practice, we de-
tect the presence of 137Cs from the measurement of an aerosol
sample more than one week after the sampling. It is of interest
to evaluate the different approaches with short-time counting
statistics. For this purpose, a scenario of measurements is
performed in the laboratory with an aerosol sample. These
measurements are performed half an hour after the sampling
in a continuous manner with defined counting times for 8
days. The progressive measurements are described in Table.
I. These measured spectra are subsequently analyzed with
proposed spectral unmixing algorithms and Genie2000 used
in the laboratory. Since spectral signatures are required for the
spectral unmixing algorithms, a spectral library is simulated
for the detector and geometry used in this experiment.
The contribution of this section is as follows: firstly, we discuss
the choice of spectral signatures since the subset of active
radionuclides is unknown in practice. Next, the results are
compared with those performed with Genie2000.
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TABLE I: Successive measurements with increasing counting
times carried out on an aerosol filter sampled on 19/04/2019
8:46:00

Start time Counting time(s)

s1 19/04/2018 09:10:53 1800
s2 19/04/2018 09:41:42 1800
s3 19/04/2018 10:12:30 1800
s4 19/04/2018 10:44:11 3600
s5 19/04/2018 11:45:03 3600
s6 19/04/2018 12:46:59 5400
s7 19/04/2018 14:20:23 10800
s8 19/04/2018 17:22:17 54000
s9 20/04/2018 08:41:41 28000
s10 20/04/2018 16:29:59 240000
s11 23/04/2018 11:44:44 320000

A. Dimension of spectral library

As discussed in the previous section, the spectral unmixing
process aims to estimate the mixing weights of spectral
signatures. However, finding the optimal subset of spectral
signatures is important to estimate mixing weights more
accurately. In the context of this experiment, it is well
known that we can detect several short-lived radionuclides
after the sampling, which decay very fast as time goes on.
Accordingly, the first measurement (Figure 6-a) contains more
contributions comparing to the last measurement (Figure 6-b).
The last measurement Figure 6-b corresponds to a routine
aerosol measurement: the predominant peak at 477 keV is
characteristic of 7Be, a cosmic-ray induced radionuclide. It
gives also rise to the Compton continuum from 165 to 313
keV. Other peaks enable to identify and quantify other natural
radionuclides: 40K at 1460 keV or 210Pb at 46 keV. 137Cs
and 22Na can also be determined at trace level thanks to their
respective peak at 662 keV and 1274 keV.
Consequently, the real subset of active spectral signatures

for each measurement is different. In order to study the
impact of the dimension of the spectral library when we use
spectral unmixing estimators, we apply the two algorithms
with spectral signatures according to:

• 7Be, 22Na, 40K, 137Cs, 210Pb, so that the measured
spectra are supposed to be separated to these 5
radionuclides: Φ5 = [φ1, ...φ5].

• 7Be, 22Na, 40K, 137Cs, 210Pb, 208Tl, 212Bi, 212Pb, 214Bi,
214Pb, with respect to Φ10 = [φ1, ...φ10].

As results, Figure.7 illustrates the estimated mixing weights
for the 11 measured spectra with both strategies for spectral
signatures choice. Comparing both experiments, we get more
stable estimated values with Φ10 = [φ1, ...φ10]. However, in
the case of Φ5 = [φ1, ...φ5], the estimated values we obtained
with the two estimators converge in the last measurement.
More specifically, as discussed in other spectral unmixing
applications, badly chosen spectral signatures can introduce
a bias on the estimation. To confirm this assumption,
quantitative analysis with simulations have been carried
out as described in (15). Spectra s1 → s11 have been

simulated with similar activity levels than the measurements.
Considering the mixing weights of 7Be, 22Na, 40K, 137Cs,
210Pb as constants, we simulate other natural radionuclides
with realistic decreasing levels. Figure 8 compares the
estimation performance of these 5 natural radionuclides
using Φ5 = [φ1, ...φ5] and Φ10 = [φ1, ...φ10] for simulated
spectra.

Results
• As shown in the first column of Figure 8, by using Φ5 =

[φ1, ...φ5] to unmix spectra in which other radionuclides
decay quickly, the spectral unmixing provides bias in the
first measurements.

– For 7Be, 22Na and 40K (respectively Figure 8-
a,c,e), Poisson unmixing tends to over-estimate the
activities with respect to the least squares unmixing.
Statistically the Poisson unmixing is more sensitive
to the choice of spectral library. The reason is,
firstly, the logarithmic scaling in the likelihood term
introduces more significant residual errors (7Be at
high activity levels), secondly, Poisson unmixing
aims to precisely fit the measured spectrum with
the full spectrum (22Na and 40K with significant
continuum contributions).

– The 137Cs(Figure 8-g)impacted by continua of other
radionuclides and present at low activity level is
more overestimated by least squares unmixing.

– The estimation of 210Pb (Figure 8-i]) which is dom-
inated by the peak, is less impacted by the spectral
library.

• The results obtained with a more complex spectral library
Φ10 = [φ1, ...φ10] are shown in the second column
of Figure 8. The estimation is more accurate with this
second strategy.

In summary, we obtained similar results than those for real
spectra. It highlights that the accurate identification of spectral
signatures is the precondition for the spectral unmixing.

B. Comparisons with peak calculation analysis

We compare the results of the proposed spectral unmixing
estimators with those of Genie2000 used in the laboratory.
As discussed previously, we use the results obtained with
spectral signatures in dimension of 10, which is more suitable
for spectral unmixing of the measured spectra. We focus
on the results of the 5 concerning radionuclides and two
natural radionuclides 212Bi and 214Bi. The estimated values
are compared in Figure 9 and Figure 10.

Results
• Figure 9-a,b,c,d show the results for 7Be, 22Na, 40K,

210Pb. At the end of the measurements, the mixing
weights estimated by Poisson unmixing and LS unmxing
are closed to those obtained with Genie2000. This is
motivated by the sufficient counting rate obtained with
the last measurement during 4 days (as shown in the
inset of each figure).
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(a) spectrum s1 (b) spectrum s11

Fig. 6: Measured spectra for s1 and s11

Fig. 7: The estimated mixing weights for each measured spectrum(Φ5 = [φ1, ...φ5] on the left, Φ10 = [φ1, ...φ10] on the
right). Results for the last measurement are presented in the top of the figures.

• As shown in Figure 9-e,f, the activity of short-lived
radionuclides decreases in the first two days after the
sampling. This is confirmed by the similar results
obtained with three estimators.

• Figure 10 indicates that, the 137Cs has not been detected
in the end of the measurements with least squares unmix-
ing. Contrarily, we obtain similar estimated values with
Poisson unmixing and Genie2000. This may be motivated
by a bias introduced by the background spectrum, since
at low statistics, the least squares unmixing introduces a
peak as a false peak in the background spectrum. The
analysis shows that, 137Cs , present at the lowest activity
level, is identified and quantified with Poisson unmixing
algorithm four days before the usual method Genie2000.

In this section, we can conclude from the experiments on real

measurements that, firstly, for spectral unmixing estimators,
the lack of knowledge of active radionuclides leads to under-
fitting or over-fitting the model which introduce a bias to
the results. Secondly, Poisson unmixing yields significant
improvement for estimating radioactivity, especially when the
counting rate is low, which is a key advantage for the rapid
detection of anomaly in the air.

V. CONCLUSION

We present in this paper activity estimation algorithms
based on spectral unmixing, which exploit the full spectrum
of radionuclides and introduce the measured spectrum with
pure spectral signatures known in advance. We formulate
the spectral unmixing problem by inverse problem to
estimate mixing weights of each radionuclide in the measured
spectrum. We propose two estimators: least squares regression
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approach using FISTA algorithm and Poisson unmixing based
on Poisson statistics using Primal-dual algorithm.
Results on simulated and real spectra provide good
performance with the least squares unmixing and the Poisson
unmixing. The latter which precisely takes into account the
Poisson statistics of the physical process underlying the
detection, presents significant advantages when the counting
rate is low. In the context of rapid detection which leads
to measuring low level activity in environmental samples,

an important advantage is that the time for detection and
identification has been reduced for artificial radionuclides.
The discussion in section IV concerning the problem of
spectral library dimension emphasizes the importance of
using an optimal spectral library with spectral unmixing
estimators. This opens perspectives on estimating jointly the
set of active radionuclides: the aim is to select in the complex
spectral library, the smallest number of radionuclides that
best fit the measured spectrum.

(a) Estimation of 7Be with Φ5 (b) Estimation of 7Be with Φ10

(c) Estimation of 22Na with Φ5 (d) Estimation of 22Na with Φ10

(e) Estimation of 40K with Φ5 (f) Estimation of 40K with Φ10
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(g) Estimation of 137Cs with Φ5 (h) Estimation of 137Cs with Φ10

(i) Estimation of 210Pb with Φ5 (j) Estimation of 210Pb with Φ10

Fig. 8: Results on simulations with similar activity levels of the real spectra for s1 → s11. The first column according to
spectral signatures Φ5 = [φ1, ...φ5], the second column according to Φ10 = [φ1, ...φ10]. The estimated mixing weights are
compared to real values for the 11 spectra and the results of s11 on the right of each figure.

(a) (b)
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(c) (d)

(e) (f)

Fig. 9: The results obtained by net peak area analysis of Genie2000 are converted to mixing weights by ai = Snet
i

Snetφi
(Sneti:

the measured net area of ith radionuclide, Snetφi : the net area of ith spectral signature). The results are plotted as a function
of the ending time of each measurement.

Fig. 10: Estimation of 137Cs. The least squares unmixing provides zero as mixing weight for 137Cs at the end of the
measurements. The estimated value obtained by Poisson unmixing is presented with error bar that we obtained in the simulations.
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