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Abstract

Large-eddy simulations (LES) of fully developed channel flows are performed using re-

laxation filtering as a subgrid-scale model in order to investigate the performance of the LES

methodology for wall-bounded flows. For this, LES are carried out using different spatial

resolutions, and then for channels flows at different Reynolds numbers. The accuracy of the

results is discussed both a priori and a posteriori, by examining the transfer function of the

dissipation mechanisms associated with molecular viscosity and relaxation filtering in the

wavenumber space, the quality of the discretization of the dominant turbulent scales based

on velocity snapshots and integral length scales, the convergence of the velocity profiles with

respect to the grid, and their consistency with data from Direct Numerical Simulation of

the literature. In the first step, a channel flow at a friction-velocity-based Reynolds num-

ber Reτ = 300 is computed using fourteen grids with mesh spacings 15 ≤ ∆x+ ≤ 45 in

the streamwise direction, 0.5 ≤ ∆y+ ≤ 4 at the wall in the wall-normal direction, and

5 ≤ ∆z+ ≤ 15 in the spanwise directions, in wall units. A very good accuracy is obtained

for ∆x+ = 30, ∆y+ = 1 and ∆z+ = 10. In the second step, three channel flows at Reynolds

numbers Reτ = 350, 600 and 960 are simulated using grids with mesh spacings smaller

than, or equal to the mesh spacings reported above. The results are shown to be reliable,

and demonstrate that the Reynolds number effects are well captured in the present LES of

wall-bounded turbulent flows.

Keywords : large-eddy simulation, relaxation filtering, channel flow, spatial resolution,

Reynolds number
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1 Introduction

Over the last two decades, computational fluid dynamics has become an efficient tool for the

study of wall turbulence. In particular, wall-bounded flows at ever-higher Reynolds numbers

have been simulated, which enabled the effects of the Reynolds number on flow statistics and

coherent structures to be discussed [1]. It remains, however, difficult to reproduce the features of

wall-bounded flows numerically, because wall turbulence is strongly influenced by the dynamics

of the small scales developing close to the wall, which exhibit strong anisotropy and complex

interactions with larger scales. These small scales must therefore be accurately calculated in

simulations. This has been done in most cases using Direct Numerical Simulation (DNS) for

channel flows [2, 3, 4, 5, 6, 7, 8] and boundary layers [9, 10, 11, 12, 13]. Unfortunately, as

the Reynolds number increases, the computational cost of a DNS is rapidly prohibitive. As an

illustration, note for instance that twenty years have elapsed between the DNS by Kim et al. [2]

and by Hoyas et al. [8] for channel flows at Reynolds numbers differing by one decade only.

In order to reduce the numerical cost, Large Eddy Simulations (LES), in which only the

largest eddies are resolved, can be used. The effects of the under-resolved eddies are then taken

into account by a so-called subgrid-scale model, which classically relies on the assumptions that

the large scales carry energy, and that the small scales have mainly dissipative effects [14].

Depending on the possible near-wall resolution, wall-modelled or wall-resolved LES can be per-

formed. In the first approach, only the outer part of wall-bounded flows is resolved, whereas the

inner part is modelled [15]. In this way, very high Reynolds numbers can be reached [16], but the

near-wall structures are not captured. In the second approach, both the outer and inner parts

of the flows are computed at the expense of the computational cost. Accordingly, the range of

Reynolds numbers affordable with wall-resolved LES is much smaller, and falls within the range

of Reynolds numbers considered in DNS [17, 18, 19, 20]. The cost is however significantly lower

using LES. For example, the number of grid points is about 10 times smaller in the LES of a

boundary layer performed by Schlatter et al. [20] than in a DNS.

In wall-resolved LES, various numerical parameters such as the inflow and boundary con-

ditions, the grid resolution, the subgrid-scale model and the discretization schemes can affect

the calculation of the near-wall turbulent structures. It is consequently necessary to validate

the simulation methods carefully. Regarding the impact of the inflow conditions, for example,

Schlatter & Örlü [13] have reviewed data from several DNS of boundary layers, and pointed out
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some differences in basic integral quantities and in flow statistics. They showed in particular

that flow features are significantly influenced by the inflow parameters and the boundary-layer

tripping [21]. Such difficulties do not exist for fully-developed channel flows, where periodic

conditions are imposed in the streamwise direction where turbulence is homogeneous. It ap-

pears therefore particularly interesting to study the quality of the LES of wall-bounded flows by

simulating channel flows. This is the case for instance in the papers by Rasam et al. [22] and by

Vuorinen et al. [23], who examined the effects of subgrid-scale model and grid resolution, and

of a space discretization method, respectively.

In the present work, turbulent channel flows are simulated by LES using relaxation filtering

as a subgrid-scale model. This LES approach was proposed by Visbal & Rizzetta [24], Mathew et

al. [25] and Bogey & Bailly [26], among others. It consists in filtering the flow variables every

n-th time step using a high-order low-pass filter at a strength σ between 0 and 1, in order to relax

turbulent energy from the smallest discretized scales, characterized by wave numbers close to the

grid cut-off wave number, while leaving larger scales mostly unaffected. In practice, the filtering

is usually applied every time step at a fixed strength σ ≃ 1 in order to ensure numerical stability,

redwhich is not guaranteed when low-dissipation and/or centered discretization schemes are

used. Note, however, that dynamic procedures can be built to adjust the parameters of the

filtering to the flow characteristics, e.g. in Tantikul & Domaradzki [27]. In previous studies,

the validity of the LES approach was explored for a Taylor-Green vortex flow [28], free shear

layers [29] and jets [26, 30, 31, 32]. The approach has also been successfully employed for a flow

around an airfoil [33] or for a turbulent boundary layer [19]. Here, the performance of the LES

method is investigated for wall-bounded flows by simulating fully developed channel flows on

grids at different spatial resolutions and for different Reynolds numbers. The first objective is to

determine for which mesh spacings accurate results, converged with respect to the grid, can be

obtained. The second one is to check that Reynolds number effects [30, 34] on wall turbulence

are reproduced. For this, velocity profiles and spectra obtained near the wall, and in particular

in the buffer-layer region, where small scales play an important role, will be presented, and

comparisons with DNS data of the literature will be provided. Transfer functions associated

with molecular viscosity and relaxation filtering will also be shown in the wavenumber space.

The paper is organized as follows. The LES performed for a channel flow at different spatial

resolutions are presented in section 2. The LES of channel flows at different Reynolds numbers

are reported in section 3. Finally, concluding remarks are given in section 4.
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2 LES of a turbulent channel flow at different spatial resolutions

2.1 Parameters

Large-eddy simulations of a turbulent channel flow are performed by solving the three-dimensional

compressible Navier-Stokes equations on Cartesian meshes. The channel flow is at a Reynolds

number of Reτ = uτh/ν = 300 and a Mach number of M = U0/c = 0.4, where U0 is the cen-

terline velocity, c is the speed of sound, h is the channel half-width, uτ =
√

τw/ρ is the friction

velocity, τw is the wall shear stress, and ν and ρ are the kinematic molecular viscosity and the

density of the flow. The streamwise, wall-normal and spanwise coordinates are denoted by x, y

and z, respectively. The sizes of the computational domain in the streamwise, wall-normal and

spanwise directions are Lx = 12h, Ly = 2h and Lz = 6h. The walls of the channel are located

at y = 0 and y = 2h, where a no-slip condition is imposed. Periodic boundary conditions are

implemented in the x and z directions. The spatial derivatives are computed using an explicit

4th-order 11-point redcentered finite-difference scheme [35]. Time integration is performed with

an explicit 4th-order 6-step Runge-Kutta algorithm [36]. An explicit 6th-order 11-point redcen-

tered filter [37] is applied every time iteration to the density, momentum and pressure variables

with a strength σ = 1 in order to remove spurious grid-to-grid oscillations, whose wavelength

is equal to twice the mesh spacing, and to relax subgrid-scale energy. redSince centered finite

differences and a low-dissipation time integration scheme are used, the filtering is necessary to

ensure numerical stability.

It is applied sequentially in the three spatial directions x, y and z. The filtering of the

variable φ in the direction α yields, for instance, the following filtered variable

φ̃(αi) = φ(αi) − σD(φ)|i (1)

where αi is the coordinate of the ith grid point, and D is the filtering operator

D(φ)|i =

N
∑

j=−N

djφ(αi+j) (2)

based on the filter coefficients dj . The damping function D∗ = F(D) in the Fourier space of

the filter used in the present LES is represented in figure 1 as a function of the wavenumber

k normalized by the grid spacing ∆. It is equal to 1 for the highest wavenumber taken into

account by the grid, namely k∆ = π, corresponding to λ = 2∆, whereas it is smaller than 10−2
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for k∆ . π/2, and even than 10−5 for k∆ . π/4. Therefore, the grid-to-grid oscillations are

completely removed by the filtering, whereas the larger scales are very weakly affected.
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Figure 1. Damping function of the explicit 6th-order 11-point filter [37] used for the relaxation
filtering, as a function of the normalized wavenumber k∆, where ∆ is the grid spacing.

The influence of the spatial resolution is examined by performing fourteen simulations on

grids with different mesh spacings, which are given in table 1 in wall units. In all cases, the mesh

spacings in the streamwise and spanwise directions, ∆x and ∆z, are constant. On the contrary,

the mesh spacing in the wall-normal direction is stretched from the wall at an expansion ratio

r ≃ 4% in order to save computational time. The mesh spacings at the wall and at the center of

the channel are denoted by ∆yw and ∆yc, respectively. The effects of the mesh spacing in the x, y

and z directions are investigated by considering three sets of grids. In the five grids referred to as

gridX45, gridX35, gridX30, gridX25 and gridX15, the mesh spacings are ∆y+
w = 0.95, ∆y+

c = 15

and ∆z+ = 7.5, whereas ∆x+ decreases from 45 down to 15. In gridY4, gridY2, gridY1 and

gridY0.5, they are equal to ∆x+ = 15, ∆y+
c = 15, ∆z+ = 7.5, whereas the mesh spacing at the

wall in the y direction reduces from ∆y+
w = 3.7 to 0.47. Finally, in gridZ15, gridZ12.5, gridZ10,

gridZ7.5 and gridZ5, the mesh spacings are ∆x+ = 15, ∆y+
w = 0.95, ∆y+

c = 15, and ∆z+ = 15,

12.5, 10, 7.5 and 5. Note that gridX15, gridY1 and gridZ7.5 are one and the same case. For

the comparison, the mesh spacings in the LES of a channel flow performed by Viazzo et al. [17],

and in the LES of turbulent boundary layers carried out by Gloerfelt & Berland [19] and by

Schlatter et al. [20] are reported in table 1. redThe mesh spacings in the DNS of Kim et al. [2],

Moser et al. [3], del Alamo et al. [6] and Hu et al. [7] are also given. They are significantly larger

in the LES than in the DNS, especially at the wall where the normal mesh spacings are around

∆y+
w = 1 in the former case, but close to or smaller than ∆y+

w = 0.1 in the latter.

Concerning the number of points in the present grids, it varies because of the fixed sizes of

the computation domain, yielding 87 ≤ nx ≤ 257, 85 ≤ ny ≤ 161 and 129 ≤ nz ≤ 385. In each
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case, the time step ∆t is chosen such that CFLy = c∆t/∆yw = 0.8 is obtained, ensuring the

stability of the explicit time integration.

Table 1. Parameters of the grids used for the LES of the channel flow at Reτ = 300 and for LES
redand DNS in the literature: mesh spacings ∆x+ in the x direction, ∆y+

w and ∆y+
c in the y

direction at the wall and at the center of the channel, and ∆z+ in the z direction, in wall units;
stretching ratio r of the mesh spacing in the y direction.

case ∆x+ ∆y+
w ∆y+

c ∆z+ r (%)

gridX45 45 0.95 15 7.5 4.4
gridX35 35 0.95 15 7.5 4.4
gridX30 30 0.95 15 7.5 4.4
gridX25 25 0.95 15 7.5 4.4
gridX15 15 0.95 15 7.5 4.4

gridY4 15 3.7 15 7.5 3.5
gridY2 15 1.9 15 7.5 4.0
gridY1 15 0.95 15 7.5 4.4

gridY0.5 15 0.47 15 7.5 4.5

gridZ15 15 0.95 15 15 4.4
gridZ12.5 15 0.95 15 12.5 4.4
gridZ10 15 0.95 15 10 4.4
gridZ7.5 15 0.95 15 7.5 4.4
gridZ5 15 0.95 15 5 4.4

redLES of Viazzo et al. [17] 31.4 0.88 51.84 15.7
redLES of Gloerfelt & Berland [19] 37 0.98 14.7 2

redLES of Schlatter et al. [20] 25.3 <1 14.2 10.8

redDNS of Kim et al. [2] 12 0.05 4.4 7
redDNS of Moser et al. [3] at Reτ = 395 and 590 ≤ 10 ≤ 0.04 ≤ 7.2 ≤ 6.5

redDNS of del Alamo et al. [6] at Reτ = 950 7.6 0.03 7.6 3.8
redDNS of Hu et al. [7] 16.88 ≤ 0.12 ≤ 9.42 8.44

2.2 Dissipation transfer functions

In this section, the quality of the present LES is assessed a priori by comparing the contri-

butions of the dissipation mechanisms, namely molecular viscosity and relaxation filtering, in

the simulations. For that purpose, their respective transfer functions are plotted against the

normalized wavenumber k∆, where ∆ is the mesh spacing, as proposed in Bogey et al. [32].

These functions, when multiplied by the turbulent energy spectrum E(k), provide the spectral

density of energy dissipation. For molecular viscosity, the latter quantity is known to be νk2E(k)

yielding a transfer function equal to νk2, and to ν(k∆)2/∆2 when expressed as a function of the

normalized wavenumber k∆. For the relaxation filtering applied every time step, the transfer

function is found to be σD∗(k∆)/∆t, where D∗(k∆) is the damping function of the filter defined

and plotted in previous section, and σ is the filtering strength. In the LES, the key issue is to

determine whether, given a specific mesh spacing, the scales well calculated by the numerical
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methods, which here are the scales discretized by at least 5 points per wavelength, are mainly

dissipated by viscosity or by the relaxation filtering. The second case is not desirable because it

may result in the excessive damping of the largest turbulent scales and in the artificial reduction

of the effective flow Reynolds number [30].

The transfer functions are calculated for the simulations performed using gridX meshes,

including gridX15 also known as gridY1 and gridZ7.5, with ∆y+
w = 0.95 at the wall and a

time step ∆t = 0.8∆yw/c. They are represented in figure 2 as a function of the normalized

wavenumber k∆, for the mesh spacings ∆+ = 7.5, 15, 30 and 45, in wall units. These values

are chosen because ∆+ = 7.5 and ∆+ = 15 correspond to the mesh spacings in the z direction

and in the y direction at the center of the channel, and ∆+ = 15, 30 and 45 are equal to the

mesh spacing in the x direction using gridX15, gridX30 and gridX45, respectively. One curve is

obtained for the relaxation filtering, whose normalized transfer function does not depend on the

mesh spacing. On the contrary, four curves are found for the transfer function associated with

molecular viscosity, which varies as 1/∆2, and consequently moves upwards with decreasing ∆

or increasing grid resolution.

For ∆+ = 7.5, the transfer function associated with molecular viscosity is above that of the

relaxation filtering for k∆ < 1.1, and below for k∆ > 1.1. This indicates that the wavelengths

discretized by more than λ/∆ = 2π/1.1 = 5.7 points are mainly dissipated by viscosity, whereas

the shorter wavelengths are damped by the filtering. For ∆+ = 15, a similar behaviour is

noticed, with two transfer functions intersecting at k∆ = 1.0, or λ/∆ = 6.3. For these two

grid resolutions, the well-calculated scales are therefore mainly affected by viscous dissipation,

and not by the subgrid dissipation provided by the relaxation filtering. For ∆+ = 30, the

transfer function of molecular viscosity is higher than that of the filtering for wavenumbers

k∆ < 0.48. For higher wavenumbers, the two transfer functions are relatively close up to the

value k∆ = 0.95, from which that of the filtering predominates. For ∆+ = 45, similarly, the

transfer function of molecular viscosity is above that of the filtering for k∆ < 0.35, and below

for k∆ > 0.35. This suggests that for ∆+ = 30 and 45, the well-calculated scales characterized

by wavelengths λ/∆ = 2π/0.48 < 13 and λ/∆ = 2π/0.35 < 18, respectively, are significantly

damped by the filtering.

The dynamics of the turbulent scales computed in the LES using gridX30 and gridX45

with ∆x+ = 30 and 45 can consequently be expected to be governed not only by the physical

mechanisms associated with molecular viscosity, but also by the relaxation filtering. This does
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not appear, however, to be the case using gridX15 and gridX25 in which the mesh spacings in

the three spatial directions satisfy ∆+ < 30.

In the two other sets of simulations carried out using gridY and gridZ meshes, the mesh

spacings are all smaller than 15 wall units. Based on the results above, this should ensure that

the scales well calculated in these LES are not dissipated by the filtering.
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Figure 2. Representation of the dissipation transfer functions obtained for a mesh spacing ∆ in
the LES of the channel flow at Reτ = 300 using a time step ∆t = 0.8∆yw/c with ∆y+

w = 0.95, as
a function of the normalized wavenumber k∆: gris relaxation filtering, and molecular viscosity
for ∆+ = 45 ∆+ = 30, ∆+ = 15, ∆+ = 7.5.

2.3 Flow visualisation

Following the a priori study of the LES quality, suggesting that some of the LES in this work

may not be accurate, the simulation results are now analyzed a posteriori in order to assess

their convergence with respect to the grid resolution. This point is first discussed qualitatively

by visualising the turbulent structures developing close to the wall in the buffer layer, which

must be correctly computed in the LES of wall-bounded flows as mentioned in the introduction.

For this, snapshots of velocity fluctuations in a plane at a distance to the wall of y+ = 16 are

examined for the LES using gridZ5, gridX45 and gridZ15. The first grid is the finest grid with

∆x+ = 15 and ∆z+ = 5. The two others are the coarsest grids in the streamwise and the

spanwise directions, respectively, with ∆x+ = 45 in the first case and ∆z+ = 15 in the second

case, which may lead to the insufficient discretization of the flow turbulent structures.

Streamwise and wall-normal velocity fluctuations obtained using gridZ5 with ∆x+ = 15,

∆y+
w = 0.95 and ∆z+ = 5 are represented in figures 3(a) and 3(b). In the streamwise velocity

field, elongated structures are found, coloured in black and grey indicating low-speed and high-

speed fluid. These structures correspond to high-speed and low-speed streaks [39], which are
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approximately 1000 wall units long and 100 wall units wide. In the wall-normal velocity field,

a great number of structures consisting in pairs of black and grey regions elongated in the

streamwise direction, where black and grey denote fluid moving toward the wall and away from

the wall, are noted. These structures are induced by quasi-streamwise vortices [39], which

are from 200 to 400 wall units in length and about 50 wall units in diameter. The turbulent

structures observed in figure 3 have sizes which are substantially larger than the mesh spacings.

They are consequently well discretized by the grid. Furthermore, these structures look very

similar to those in the velocity snapshots obtained using DNS by Jiménez [40] at y+ = 16 for

a channel flow at Reτ ≃ 1000. The LES using gridZ5 therefore seems to be well resolved at the

wall.

(a) (b)

Figure 3. Snapshots of streamwise and wall-normal velocity fluctuations u and v obtained at the
same time at y+ = 16 using gridZ5 where ∆x+ = 15, ∆y+

w = 0.95 and ∆z+ = 5: (a) streamwise
velocity (black: u < U − urms, white: U − urms < u < U + urms, grey: u > U + urms,
where U is the mean streamwise velocity), (b) wall-normal velocity (black: v < −vrms, white:
−vrms < v < vrms, grey: v > vrms).

Snapshots of velocity fluctuations provided by the LES using gridX45 with ∆x+ = 45,

∆y+
w = 0.95 and ∆z+ = 7.5 are shown in figure 4. Compared to the results obtained with

∆x+ = 15 in figure 3, there are less differences for the streamwise velocity in figure 4(a) than

for the spanwise velocity in figure 4(b). In the former case, similar high-speed and low-speed

streaks are found, which can be explained by the fact that they remain much longer than the

streamwise mesh spacing ∆x+ = 45. In the latter case, on the contrary, the turbulent structures

are more numerous and longer than those in figure 3(b), and have lengths typically between 400

to 500 wall units. The quasi-streamwise vortices developing close to the wall thus appear to be

poorly resolved by the grid.

Finally, snapshots of velocity fluctuations given by the LES using gridZ15 where ∆x+ = 15,

∆y+
w = 0.95 and ∆z+ = 15 are displayed in figure 5. The streaks and the quasi-streamwise

vortices are up to 200 and 100 wall units wide, respectively. They are wider than those obtained
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(a) (b)

Figure 4. Snapshots of streamwise and wall-normal velocity fluctuations u and v obtained at
the same time at y+ = 16 using gridX45 where ∆x+ = 45, ∆y+

w = 0.95 and ∆z+ = 7.5:
(a) streamwise velocity, (b) wall-normal velocity; same color scales as in figure 3.

using ∆z+ = 5 in figure 3, indicating that they are insufficiently discretized in the spanwise

direction. In particular, the width of quasi-streamwise vortices should be around 50 wall units,

which is only about 3 times the spanwise mesh spacing ∆z+ = 15.

(a) (b)

Figure 5. Snapshots of streamwise and wall-normal velocity fluctuations u and v obtained at
the same time at y+ = 16 using gridZ15 where ∆x+ = 15, ∆y+

w = 0.95 and ∆z+ = 15:
(a) streamwise velocity, (b) wall-normal velocity; same color scales as in figure 3.

2.4 Integral length scales

In order to check the suitability of the LES resolution, characteristic length scales are calculated

from the velocity fluctuations in the buffer region, and they are compared to the mesh spacings

∆x and ∆z. The integral length scales in the streamwise and spanwise directions are defined,

respectively, by


























L
(x)
uu =

∫ ∞

0
Ruu(x, 0)dx

L
(z)
uu =

∫ ∞

0
Ruu(0, z)dz

(3)
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where

Ruu(x, z) =
u′(x0, y0, z0)u′(x0 + x, y0, z0 + z)

u′2(y0)
(4)

is the correlation function obtained for the streamwise velocity fluctuations at the wall distance

y+
0 = 16. The overbar denotes averaging over time and over all the positions (x0, z0) because

turbulence is homogeneous in the x and z directions.

In order to obtain reliable values of integral length scales, the correlation functions Ruu(x, 0)

and Ruu(0, z) are computed from the results obtained with the finest grid, namely gridZ5 with

∆x+ = 15, ∆y+
w = 0.95 and ∆z+ = 5. They are represented in figure 6 as a function of

separation distances normalized by wall units. They both tend to zero as the separation distance

increases, as expected. The correlation function in the streamwise direction decreases slowly and

monotonically, and becomes smaller than 0.1 for a separation distance of about 600 wall units,

which is not shown in in the figure. The correlation function in the spanwise direction decreases

much faster than the previous one, and presents negative values for z+ ≥ 40. The integral length

scales are then estimated by integrating the correlation functions up to x = Lx/2 for Ruu(x, 0),

and up to z+
max = 40 where Ruu(0, z+

max) = 0 for Ruu(0, z). Integrating Ruu(0, z) further in z,

where the function is negative, would indeed artificially reduce the value of L
(z)
uu

+
. Finally, the

integral length scales are found to be L
(x)
uu

+
= 210 and L

(z)
uu

+
= 20, in wall units.

0 100 200 300
−0.2

0

0.2

0.4

0.6

0.8

1

x+, z+

R
uu

Figure 6. Correlation functions obtained for the streamwise velocity fluctuations u at y+ = 16
from the LES using gridZ5 where ∆x+ = 15, ∆y+

w = 0.95 and ∆z+ = 5: Ruu(x+, 0) in the x
direction, Ruu(0, z+) in the z direction; separation distances in wall units.

The ratios of the integral length scales with different mesh spacings ∆x+ between 15 and 45

and ∆z+ between 5 and 15 are calculated, and reported in table 2. In the streamwise direction,

the ratio L
(x)
uu /∆x is equal to or larger than 4.6 for all values of ∆x+. In the spanwise direction,

on the contrary, the ratio L
(z)
uu/∆z is only of 4 for ∆z+ = 5, of 2.7 for ∆z+ = 7.5 and of 2 or less

for ∆z+ ≥ 10. Based on these results, and considering from figure 1 that a minimal resolution
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of about 4 mesh spacings is required for a proper computation, the grids described in section 2.1

appear fine enough in the streamwise direction, but may be too coarse in the spanwise direction.

In particular, for ∆z+ > 10, the spanwise integral length scale is discretized by less than two

grid points, which is likely to affect the LES results significantly.

Table 2. Ratios L
(x)
uu /∆x L

(z)
uu/∆z between the integral length scales obtained from velocity u at

y+ = 16 in the LES using gridZ5 and mesh spacings for different values of ∆x+ and ∆z+.
∆x+ Lx/∆x

45 4.6
35 6.0
30 7.0
25 8.4
15 14

∆z+ Lz/∆z

15 1.4
12.5 1.6
10 2.0
7.5 2.7
5 4.0

2.5 Mean and fluctuating velocity profiles

The convergence of the results with respect to the grid is investigated by examining the profiles

of mean streamwise velocity U+ = U/uτ and of rms streamwise velocity fluctuations u+
rms =

√

u′2/uτ , represented as a function of the wall distance y+ = yuτ/ν.

The results provided by the LES using gridY4, gridY2, gridY1 and gridY0.5 are shown in

figure 7. The velocity profiles obtained with ∆y+
w = 3.7, 1.9 and 0.95 differ, whereas those

obtained with ∆y+
w = 0.95 and 0.47 are very close, which suggests grid convergence for ∆y+

w =

0.95. It can be noted that in the simulations carried out with ∆y+
w = 3.7 and 1.9, the values of

U+ and u+
rms are appreciably underestimated. This is particularly the case for the peak value

of rms velocity fluctuations in figure 7(b), highlighting the importance of the first grid point in

the y direction near the wall.

The mean and rms velocity profiles obtained in the simulations gridZ where ∆z+ varies

between 5 and 15 are presented in figure 8. Overall, the profiles do not change much with the

spanwise mesh spacing for ∆z+ ≤ 10, but discrepancies are observed for ∆z+ > 10, which is in

agreement with the conclusions of the analysis of section 2.4. Convergence is thus practically

reached for ∆z+ = 10. Moreover, with respect to the well-resolved LES, the values of mean and

rms streamwise velocities in the under-resolved LES with ∆z+ = 12.5 and 15 are overestimated,

respectively, in the outer part of the flow and in the buffer region.

The results obtained in the cases gridX with 15 ≤ ∆x+ ≤ 45 are plotted in figure 9. For

both mean velocity and rms velocity fluctuations, the profiles are very similar for ∆x+ ≤ 30,

indicating grid convergence, as expected given the results of section 2.2. For ∆x+ > 30, as
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Figure 7. Representation (a) of the mean value and (b) the rms fluctuations of streamwise
velocity obtained in the LES using black gridY4, black gridY2, black gridY1, black gridY0.5, as
a function of the wall distance using wall units.
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Figure 8. Representation (a) of the mean value and (b) the rms fluctuations of streamwise
velocity obtained in the LES using black gridZ15, black gridZ12.5, black gridZ10, black gridZ7.5,
gris gridZ5, as a function of the wall distance using wall units.
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previously using coarse grids in the z direction, the values of mean and rms velocities are higher

than those found using fine grids.
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Figure 9. Representation (a) of the mean value and (b) the rms fluctuations of streamwise
velocity obtained in the LES using gridX45, gridX35, gridX30, gridX25, gris gridX15, as a
function of the wall distance using wall units.

2.6 Spanwise velocity spectra

Spanwise spectra ϕuu(kz) of the streamwise velocity fluctuations at y+ = 16 are computed for the

LES performed using gridZ15, gridZ10 and gridZ7.5 with a streamwise mesh spacing ∆x+ = 15,

and spanwise mesh spacings ∆z+ = 15, 10 and 7.5. They are represented in figure 10 as a

function of the spanwise wavenumber kz, normalized by wall units. They all slowly increase with

wavenumber at low wavenumbers, reach a maximum around a value kmax
z

+ = 0.038 indicated by

a vertical grey line. Besides, at high wavenumbers, they exhibit a very sharp decrease beyond

k+
z = 0.07, 0.1 and 0.15, respectively, for ∆z+ = 15, 10 and 7.5. In the three cases, these

wavenumbers correspond to wavelengths λz = 2π/kz discretized by approximately λz/∆z = 6

points. Therefore, the sharp decreases can be attributed to the effects of the relaxation filtering,

which is designed to damp wavelengths shorter than about 5 mesh spacings.

In the three LES, the dominant components in the velocity spectra are centered around

kmax
z

+ ≃ 0.038, yielding λmax
z

+ ≃ 166. This length scale gives an estimate of the size of the

turbulent structures contributing the most to the kinetic energy at the wall. The components

on the right side of the peak exhibit lower levels than those on the left side, but they extend

over a wider range of wavenumbers, namely from k+
z = 0.4 to approximately 1.5 in the LES

using gridZ7.5, and thus contribute significantly to the total energy. This wavenumber range is

reduced for smaller mesh spacings ∆z+. In particular, it lies between about k+
z = 0.4 and 0.7
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Figure 10. Representation of the power spectral densities of the streamwise velocity fluctuations
obtained at y+ = 16 in the LES using gridZ15, gridZ10, and gridZ7.5, as a function of the
spanwise wavenumber k+

z using wall units; gris k+
z = 0.038.

for ∆z+ = 15, suggesting that a non-negligible portion of the energy is artificially damped in

the LES using gridZ15.

3 LES of channel flows at different Reynolds numbers

3.1 Parameters

Three large-eddy simulations of turbulent channel flows at a Mach number of M = 0.5 and

at Reynolds numbers of Reτ = 350, 600 and 960, referred to as Re350, Re600 and Re960, are

performed. The Mach number is slightly higher than the Mach number of M = 0.4 considered

in section 2. However, both are low enough so that compressibility effects are very weak, and

that the flow features do not appreciably depend on the Mach number [45]. In the three LES,

the dimensions of the computational domain are Lx × Ly × Lz = 12h × 2h × 6h, where h is

the half-width of the channel. The grids used contain from 8.1 million points for Re350 up to

68 million points for Re960. Their main parameters are given in table 3. In the Re350 case,

the mesh spacings in wall units are ∆x+ = 17 and ∆z+ = 8.5 in the streamwise and spanwise

directions, and ∆y+
w = 0.97 at the wall and ∆y+

c = 16 at the center of the channel in the wall-

normal direction. In the Re600 and Re960 cases, the streamwise and spanwise mesh spacings

are ∆x+ = 25 and ∆z+ = 10. They are slightly larger than those in the Re350 case in order

to keep computational costs at a reasonable level. In the y direction, the mesh spacing at the

wall is ∆y+
w = 0.97 for Re600, and ∆y+

w = 0.93 for Re960, and the mesh spacing at the center

of the channel is ∆y+
c = 10 in both cases. These values are smaller than, or at least equal to

the maximal mesh spacings required according to the study conducted in previous section for
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a channel flow at Reτ = 300. The same resolution requirements most probably apply to the

present LES, because the near-wall properties of channel flows, when scaled by ν and uf , are

nearly independent from the Reynolds number for Reτ ≤ 1000 [1].

Table 3. LES of channel flows at varying Reynolds numbers Reτ : Mach number M , number of
grid points nx × ny × nz, and mesh spacings ∆x+ in the x direction, ∆y+

w and ∆y+
c in the y

direction at the wall and at the center of the channel, and ∆z+ in the z direction, in wall units;
stretching ratio r of the mesh spacing in the y direction.

case Reτ M nx × ny × nz ∆x+ ∆y+
w ∆y+

c ∆z+ r (%)

Re350 350 0.5 247 × 133 × 247 17 0.97 16 8.5 4.4
Re600 600 0.5 285 × 185 × 355 25 0.97 10 10 4.4
Re960 960 0.5 457 × 261 × 571 25 0.93 10 10 4.4

As reported in table 4, time integration in the Re350 simulation is performed using an explicit

fourth-order six-step Runge-Kutta algorithm [36]. The CFL number CFLy = c∆t/∆yw at the

wall in the wall-normal direction, where ∆t is the time step, is equal to 0.8. In the Re600 and

Re960 simulations, a semi-implicit third-order six-step Runge-Kutta scheme is used in order to

reduce computational time. A detailed description of the scheme can be found in a previous

paper [38]. The CFL number CFLz = c∆t/∆z in the spanwise direction is equal to 1.0, yielding

a CFL number CFLy = 11 at the wall. The number of time iterations is nit = 480, 000, 24,000

and 35,000, and the duration of the simulations is TLESU0/h = 490, 203 and 165, respectively,

for Re350, Re600 and Re960.

Table 4. LES of channel flows at varying Reτ : time integration algorithm, CFL numbers
CFLy = c∆t/∆yw in the y direction and CFLz = c∆t/∆z in the z direction, time duration TLES

scaled by the centerline velocity U0 and the channel half-width h, number of time iterations nit.
case algorithm CFLy CFLz TLESU0/h nit

Re350 explicit RK [36] 0.8 0.1 490 480,000
Re600 semi-implicit RK [38] 11 1.0 203 24,000
Re960 semi-implicit RK [38] 11 1.0 165 35,000

The numerical methods for spatial differentiation and relaxation filtering are identical to

those used for the LES of section 2. The spatial derivatives are approximated with an explicit

4th-order 11-point finite-difference scheme [35], while an explicit 6th-order 11-point filter [37] is

applied to the flow variables at every iteration with a strength σ = 1.

3.2 Dissipation transfer functions

Since the aim is to investigate the possibility of studying Reynolds number effects in turbulent

channel flows using LES with relaxation filtering, the magnitude of the dissipative mechanisms
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in the simulations are compared in the same way as in section 2.2, in order to ensure that the

effective flow Reynolds number is not artificially reduced. The transfer functions associated

with molecular viscosity and relaxation filtering are thus computed for the three LES based on

the largest mesh spacing, that is ∆x in the streamwise direction, yielding ν(kx∆x)2/∆x2 and

σD∗(kx∆x)/∆t, respectively. They are represented in figure 11 as a function of the normalized

wavenumber kx∆x. For the Re350 case in figure 11(a), the transfer function associated with

viscosity is above that of filtering for kx∆x ≤ 1.0, and below for kx∆x ≥ 1.0. Viscous effects are

consequently stronger than the filtering effects for components discretized by more than λx/∆x =

2π/1.0 = 6.3 points per wavelength, and weaker for shorter components. Similarly, in the Re600

and Re960 cases in figures 11(b) and 11(c), viscosity is dominant for components with more

than λx/∆x = 5.7 points per wavelength. These results show that in the present simulations,

molecular viscosity provides dissipation of most of the large turbulent scales. Reynolds number

effects are therefore expected to be well reproduced.
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Figure 11. Representation of the dissipation transfer functions obtained in the LES (a) Re350,
(b) Re600 and (c) Re960 as a function of the normalized streamwise wave number kx∆x: relax-
ation filtering, molecular viscosity.

3.3 Flow visualization

In order to illustrate the fine discretization of the near-wall structures in the LES, snapshots of

the velocity fluctuations obtained at a distance to the wall of y+ = 18 are presented in figure 12

for the Re600 and Re960 cases. The results of the former case in figures 12(a,c) and those of

the latter in figures 12(b,d) look similar to each other.

For both Reynolds numbers, the streamwise velocity fields in figures 12(a,b) show regions

of low-speed and high-speed fluid, elongated in the streamwise direction, corresponding to the

near-wall streaks [39]. As for the wall-normal velocity fields in figures 12(c,d), they exhibit a
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great number of structures, also elongated in the streamwise direction. These structures are

arranged in pairs of regions with fluid moving toward and away from the wall, and they are

induced by quasi-streamwise vortices [39].

(a) (b)

(c) (d)

Figure 12. Snapshots of velocity fluctuations u and v obtained at the same time at y+ = 18:
(a,b) streamwise velocity (black: u < U − urms, white: U − urms < u < U + urms, grey:
u > U + urms, where U is the mean streamwise velocity), (c,d) wall-normal velocity (black:
v < −vrms, white: −vrms < v < vrms, grey: v > vrms), from cases (a,c) Re600 and (b,d) Re960.

3.4 Mean and fluctuating velocity profiles

The profiles of mean streamwise velocity U+ = U/uτ obtained in the Re350, Re600 and Re960

cases are presented in figure 13 as a function of the distance to the wall y+ = yuτ/ν. For

y+ ≤ 100, the profiles are superimposed. They follow the mean velocity laws U+ = f(y+)

typically found in turbulent boundary layers, represented by dots, namely the linear law U+ = y+

for y+ ≤ 5 in the viscous sublayer, and the logarithmic law U+ = ln(y+)/κ + B with κ = 0.41

and B = 5 for 30 < y+ < 100 in the so-called logarithmic layer. These values of κ and B fall

within the range of values given by numerical and experimental studies [42].

For 5 < y+ < 30, the velocity profiles deviate from the two analytic curves. This is expected

because this region, named the buffer layer, corresponds to a transition zone between the viscous

sublayer and the logarithmic layer.
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Finally, for y+ ≥ 100, the well-known outer-layer wake deviation of the mean velocity profile

with respect to the logarithmic law is observed. Slight differences appear between the three

LES, because the velocity profiles in this flow region scale with outer variables [41].
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Figure 13. Representation of the mean streamwise velocity obtained from cases Re350, Re600
and Re960, as a function of the wall distance using wall units; U+ = y+ for y+ ≤ 10 and
U+ = ln(y+)/κ + B with κ = 0.41 and B = 5 for y+ ≥ 10.

The profiles of rms streamwise velocity fluctuations u+
rms = urms/uτ calculated from the

Re350, Re600 and Re960 simulations are represented in figure 14(a) as a function of the distance

to the wall y+ in wall units. They are very similar for 5 ≤ y+ ≤ 50 in the buffer region. The

peak of rms velocity is located at y+ ≃ 14.5, and slightly increases with the Reynolds number,

as observed, for example, in the DNS of Hu et al. [7] for channel flows at Reτ = 90 − 1440.

Another change is noted for y+ ≥ 50, where the profiles present a hump growing in magnitude

and shifting toward higher values of y+ as the Reynolds number increases.

The rms velocity profiles are re-plotted in figure 14(b) as a function of y/h. In that case,

they strongly differ near the wall, whereas they are very close farther away for y/h > 0.2. In

the outer flow region, the fluctuating streamwise velocity thus appears to follow a similarity law

when a mixed scaling based on uτ for the velocity scale and h for the length scale is used.

3.5 Comparison with reference data

The mean and fluctuating velocity profiles obtained in the Re350, Re600 and Re960 cases are

compared with the reference DNS data provided by Moser et al. [3] and del Alamo et al. [6] for

turbulent channel flows at Reτ = 395, 590 and 950. These Reynolds numbers are not exactly

identical to those of the LES, but they are fairly close to them, which should allow relevant

comparisons to be made. redIt can be noted that the mesh spacings are significantly larger in

the LES than those in the DNS, which are indicated in table 1. This leads to a substantial
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Figure 14. Representation of the rms streamwise velocity fluctuations u+
rms obtained from cases

Re350, Re600 and Re960, as a function of the wall distance (a) y+ and (b) y/h.

reduction in the number of grid points. For instance, the LES grid in the Re960 case contains 68

million points, when 2.7 billion points are used in the DNS of del Alamo et al. [6] at Reτ = 950.

The profiles of mean streamwise velocity and of rms streamwise, wall-normal and spanwise

velocity fluctuations given by the Re350 computation and the DNS at Reτ = 395 are presented

in figure 15. The LES and DNS results are very similar for y+ ≤ 50. For larger distances to

the wall, the fluctuation levels are slightly stronger in the DNS than in the LES, which may

be due to the higher Reynolds number in the DNS. The mean and fluctuating velocity profiles

from the Re600 simulation and the DNS at Reτ = 590 are shown in figure 16. The agreement

between the LES and the DNS results is excellent in all cases. In particular, the hump around

y+ = 200 pointed out in section 3.4 in the LES profile of rms streamwise velocity fluctuations

also appear in the DNS corresponding profile. Finally, the velocity profiles from the Re960 case

and the DNS at Reτ = 960 are given in figure 17. Here again, the LES and DNS results are in

very good agreement.

These successful comparisons with DNS data demonstrate that the present LES of turbu-

lent channel flows are reliable, and properly take into account Reynolds number effects both

qualitatively and quantitatively.

3.6 Velocity spectra

Finally, power spectral densities ϕuu of the streamwise velocity fluctuations are computed in the

buffer region at a distance to the wall of y+ = 18 for the Re350, Re600 and Re960 cases. They are

represented as a function of the spanwise wavenumber kz in figure 18(a) using a normalization

by inner scales. For low wavenumbers k+
z ≤ 0.02, there are strong differences between the results
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Figure 15. Representation (a) of the mean streamwise velocity and (b) the rms velocity fluctu-
ations u+

rms, v+
rms and w+

rms, obtained from case Re350 and from gris the DNS of Moser et

al. [3] at Reτ = 395, as a function of the wall distance using wall units.
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Figure 16. Representation (a) of the mean streamwise velocity and (b) the rms velocity fluctu-
ations u+

rms, v+
rms and w+

rms, obtained from case Re600 and from gris the DNS of Moser et

al. [3] at Reτ = 590, as a function of the wall distance using wall units.
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Figure 17. Representation (a) of the mean streamwise velocity and (b) the rms velocity fluctua-
tions u+

rms, v+
rms and w+

rms, obtained from case Re960 and from gris the DNS of del Alamo et

al. [6] at Reτ = 950, as a function of the wall distance using wall units.
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from the three LES, which will be discussed below. For k+
z ≥ 0.02, the spectra are very close,

those from the Re600 and Re960 simulations even being superimposed. They are rather flat

between k+
z = 0.02 and 0.035, and decrease at higher wavenumbers. The slope of the curves

does not vary much between k+
z ≃ 0.06 and 0.15, and then becomes steeper. The latter collapse

is due to the relaxation filtering, which affects wavelengths shorter than 5∆z, corresponding to

wavenumbers k+
z ≥ 0.15 for Re350 and k+

z ≥ 0.12 for Re600 and Re960.

The very good fit of the velocity spectra obtained at different Reynolds numbers for k+
z ≥ 0.02

in figure 18(a) using an inner normalization illustrates the independence of the small turbulent

structures in the buffer region, namely the near-wall streaks, from the outer scales of the flow.

The dominant components in this spectral region are located at k+
z = 0.02 − 0.035, which

indicates that the spanwise scale of the most energetic streaks ranges from λ+
z = 180 to 300.

These values are higher than the spanwise separation of about 100 wall units classically found

in the literature for turbulent boundary layers [43]. They are however similar to those measured

by Tomkins & Adrian [44], who obtained dominant spanwise scales between λ+
z = 200 and 400

in a turbulent boundary layer at Reτ = 426.

The results provided by the LES for low wavenumbers k+
z ≤ 0.02 are now examined. In

this spectral region, strong components clearly emerge for k+
z = 0.003 − 0.005 in the Re960

case and for k+
z = 0.005 − 0.01 in the Re600 case, with magnitudes two times smaller in the

second simulation. In the Re350 case, no significant peak is observed, and the levels are again

two times smaller than those of the Re600 case. An higher Reynolds number thus results in

the amplification of low-wavenumber components, which do not scale using wall units. On the

contrary, when normalized using outer units as in figure 18(b), the spectra are in good agreement

for spanwise wavenumbers in the range 3 ≤ kzh ≤ 6, corresponding to spanwise wavelengths

h ≤ λz ≤ 2h. The low-wavenumber components are consequently related to the outer scales of

the flow.

4 Conclusion

In this paper, LES of fully developed channel flows using relaxation filtering as subgrid model are

reported. The simulations are performed using different grid resolutions and for various Reynolds

numbers, in order to assess the validity of the LES approach for turbulent wall-bounded flows.

For the LES at a fixed Reynolds number Reτ = 300 carried out with different spatial resolu-
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Figure 18. Representation of the power spectral densities of the streamwise velocity fluctuations
obtained from cases Re350, Re600 and Re960 as a function of the spanwise wavenumber kz using
(a) inner units and (b) outer units.

tions, the mean and rms velocity profiles are found not to change significantly with the grid for

mesh spacings ∆x+ ≤ 30 in the axial direction, ∆y+ ≤ 1 in the wall-normal direction at the wall

and ∆z+ ≤ 10 in the spanwise direction, in wall units. The severe limitation on ∆y+ at the wall

is expected because of the need to take into account the small scales developing close to the wall.

Based on the calculation of integral length scales and spectra, the constraint on ∆z+ is shown to

be due to the necessity to sufficiently discretize the scales dominating in the spanwise direction.

In the present LES, more than 4 mesh spacings, which corresponds approximately to the limit

above which the scales are not damped by the filtering, are required. Finally, the constraint

on ∆x+ is explained in the light of the dissipation transfer functions associated with molecular

viscosity and relaxation filtering. It is indeed found that a part of the resolved turbulent scales

may be affected by the filtering for ∆x+ ≥ 30 in the present simulations.

For the LES of channel flows at Reynolds numbers Reτ = 350, 600 and 960 performed

using fine grids, the results are shown to be reliable, and agree very well with DNS results of

the literature. This demonstrates that the Reynolds number effects are well captured in the

simulations. In particular, the emergence of a hump in the outer part of the profiles of rms

velocity fluctuations as the Reynolds number increases is accurately reproduced. The shapes

of the streamwise velocity spectra in the buffer region also change with the Reynolds number.

High-wavenumber components in the spectra scale using inner units, whereas low-wavenumber

components scale using outer units.

The present study indicates that the LES method based on relaxation filtering can be used

to simulate fully turbulent wall-bounded flows, provided that, as should be the case in all
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simulations, care is taken to ensure that grid resolution is sufficient and that largest scales are

not overly affected by numerical dissipation.
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[13] Schlatter P, Örlü R. Assessment of direct numerical simulation data of turbulent boundary

layers. J Fluid Mech 2010;659:116-126.

[14] Sagaut P. Large Eddy Simulation for incompressible flows - An introduction, third edition.

Springer-Verlag, Scientific Computation series, 2005.

[15] Piomelli U, Balaras E. Wall-layer models for large-eddy simulations. Annu Rev Fluid Mech

2002;34:349-374.

[16] Chung D, McKeon BJ. Large-eddy simulation of large-scale structures in long channel flow.

J Fluid Mech 2010;661:341-364.

[17] Viazzo S, Dejoan A, Schiestel R. Spectral features of the wall-pressure fluctuations in turbu-

lent wall flows with and without perturbations using LES. Int J Heat Fluid Flow 2001;22:39-

52.

[18] Suh J, Frankel SH, Mongeau L, Plesniak MW. Compressible large eddy simulations of

wall-bounded turbulent flows using a semi-implicit numerical scheme for low Mach number

aeroacoustics. J Comput Phys 2006;215(2):526-551.

[19] Gloerfelt X, Berland J. Turbulent boundary layer noise: direct radiation at Mach number

0.5 J Fluid Mech 2012;723:318-351.

[20] Schlatter P, Li Q, Brethouwer G, Johansson AV, and Henningson DS. Simulations of

spatially evolving turbulent boundary layers up to Reτ = 4300. Int J Heat Fluid Flow

2010;31:251-261.

26
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Highlights

• LES of channel flows are performed for different grids and Reynolds numbers

• the performance of the LES method using relaxation filtering is thus assessed

• good agreement is found with Direct Numerical Simulation results

• the LES results are shown to converge with decreasing the mesh spacings

• Reynolds number effects are shown to be well captured in the LES
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