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ABSTRACT

tRNA gene copy number is a primary determinant
of tRNA abundance and therefore the rate at which
each tRNA delivers amino acids to the ribosome dur-
ing translation. Low-abundance tRNAs decode rare
codons slowly, but it is unclear which genes might be
subject to tRNA-mediated regulation of expression.
Here, those mRNA targets were identified via global
simulation of translation. In-silico mRNA translation
rates were compared for each mRNA in both wild-
type and a tRNAGln

CUG sup70-65 mutant, which exhibits
a pseudohyphal growth phenotype and a 75% slower
CAG codon translation rate. Of 4900 CAG-containing
mRNAs, 300 showed significantly reduced in sil-
ico translation rates in a simulated tRNA mutant.
Quantitative immunoassay confirmed that the re-
duced translation rates of sensitive mRNAs were
tRNAGln

CUG concentration-dependent. Translation sim-
ulations showed that reduced tRNAGln

CUG concentra-
tions triggered ribosome queues, which dissipated
at reduced translation initiation rates. To validate this
prediction experimentally, constitutive gcn2 kinase
mutants were used to reduce in vivo translation initia-
tion rates. This repaired the relative translational rate
defect of target mRNAs in the sup70-65 background,
and ameliorated sup70-65 pseudohyphal growth phe-
notypes. We thus validate global simulation of trans-
lation as a new tool to identify mRNA targets of tRNA-
specific gene regulation.

INTRODUCTION

Translation of mRNA into protein represents the final stage
of the gene expression pathway in which the transcribed
mRNA is read by the ribosomal machinery, which translo-
cates along the open reading frame to interpret the encoded
peptide sequence. Its complexity can be likened to that of
an industrial production line, involving not only the ribo-
somes and hundreds of ancillary translation factors, but
also a population of transfer RNAs, of which there are 3
million in a yeast cell (1). In response to a cognate interac-
tion between the tRNA anticodon and mRNA codon, tR-
NAs bring amino acids to the actively elongating ribosome
at rates of up to 22 amino acids per second (2).

Due to genetic code redundancy, most amino acids are
encoded by a family of codons, in turn recognised by more
than one tRNA of a given amino acid-accepting type, the
so called iso-acceptors. The different tRNAs of each iso-
acceptor exhibit a particular cellular abundance dictated
by that tRNA’s gene copy number. In yeast, these vary
by as much as 11-fold within a single isoacceptor class of
tRNA (3). There is very good evidence that the concen-
tration of tRNAs defines the rate of translation of its cog-
nate codon(s), which can affect overall translational rate,
but also protein folding and mRNA secondary structure in-
teractions (4,5). For example, tRNA concentration controls
the rate of translation elongation through a run of tandem
codons of one type, and regulates the rate of translation
of individual codons whose cognate tRNA is in low abun-
dance (6–10). The frequency of ribosomal drop-off is also
increased by the translational pause caused by a rare codon
(11,12). tRNA concentration also regulates translational
+1 frameshifting through control of the length of pause
of the elongating ribosome (12–14). Most highly expressed
genes, whose transcripts form a large proportion of the tran-
scriptome (ribosomal protein mRNAs, glycolytic mRNAs)
utilise codons that are translated by the most abundant tR-
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NAs (15). This codon bias probably serves to avoid the
detriment to cellular fitness caused by ribosome queuing in
response to rare-tRNA induced ribosomal pausing.

Translation is the most resource- and energy-consuming
process in the cell, and is therefore highly regulated by a
range of protein trans factors in response to environment
and nutrient availability (16–22). However, while it is clear
that tRNA concentration can regulate the translation rate
of individual codons, the extent to which translation of any
given mRNA is regulated by tRNA concentration is un-
known. Particularly unclear is the regulatory role played
by low abundance codons; these are translated by a corre-
spondingly rare tRNAs with known effects on translation
pausing. Mathematical modelling of translation has been
used to predict that globally, translation is governed princi-
pally by ribosome limitation (23–25), presumably ensuring
that ribosomes are well-spaced on mRNAs. This can be de-
scribed as initiation-regulated translation. This reflects the
imperative that ribosome queuing incurs a fitness cost, and
therefore that most mRNA translation should be initiation-
regulated by ribosome availability. Indeed, when ribosome
profiling was used to report the effects of depleting some
types of yeast tRNA through gene deletion, no significant
effects were seen on ribosome pausing, evidence used to
argue for a minimal role for tRNA regulation of transla-
tion (26). Other studies however make the case that ribo-
some profiling does reveal pausing at non-optimal codons
in yeast (8). Furthermore, a recent study using meticu-
lous measurement of translation velocities on Neurospora
mRNAs showed clearly that non-optimal codons signif-
icantly slow translation, while abundant codon stretches
are rapidly translated (27). Supporting a regulatory role
for rare codons, modelling of translation suggests that
there are sub-populations of mRNAs whose translation are
elongation-regulated (28,29), in which codons translated by
low-abundance tRNAs play a regulatory role. These predic-
tions were experimentally validated on artificial mRNAs by
controlling the rate of initiation on reporters engineered to
contain multiple rare codons (30). However, the extent to
which rare codons can exert a regulatory influence on a wide
range of natural mRNA sequences, and the requirements
for rare codon disposition or configuration to achieve such
regulation, is unclear.

A regulatory role for tRNAs in controlling translation is
moreover strongly suggested by observations from a range
of different organisms. In yeast, a genome-wide tRNA de-
pletion initiative identified a wide range of growth phe-
notypes and transcriptional stress responses in yeast, par-
ticularly associated with deletion of tRNA genes with a
low total gene complement (31). Also in yeast, mutant glu-
tamine tRNAs cause the slowed decoding rate of tandem
CAG codons (6), and confer a pseudohyphal growth phe-
notype (32). Streptomyces bldA mutants in the tRNALeu

UAA
gene cause an inability to form aerial hyphae and produce
antibiotics, because translation of mRNAs containing the
extremely rare UUA codon is compromised (33,34). In Es-
cherichia coli, mutations in a range of tRNAs specifically
compromise phage lambda replication (35) or cause ele-
vated mutagenesis frequencies (36), while in Salmonella,
tRNA mutation of tRNAArg

UCU specifically reduce produc-

tion of fimbrae at the translational level (37). The levels of
tRNA charging will also vary in response to amino acid
starvation stress, and modelling predicts that in E. coli this
may regulate groups of amino acid biosynthetic genes (38).
More broadly, tRNA modification, which can affect tRNA
stability and translational decoding properties, may be cen-
tral to regulating particular genes, or groups of genes. Mu-
tations in the yeast TRM9 tRNA modification gene drive
altered expression of genes enriched in codons targeted
by Trm9-modified tRNAs (39). Similarly, mutations in the
eukaryotic Elongator complex, catalysing a uridine tRNA
wobble position modification, cause a range of specific phe-
notypic consequences including telomeric silencing, DNA
damage responses, transcriptional elongation and exocyto-
sis (40,41). This is likely to be due to altered translation of
sub-sets of genes containing codon targets of the Elongator-
modified tRNAs, since all Elongator phenotypes can be
complemented by extra copies of key modified tRNAs (41).

Taken together, this body of evidence strongly suggests
there is an important role played by the differential con-
centrations of tRNA species as regulators of the flux of
ribosomes along each open reading frame, and thus, the
gene-specific translational rate. To identify novel targets of
gene expression regulation by low abundance tRNAs, we
use global stochastic modelling of translation in Saccha-
romyces cerevisiae to predict the translational rate of every
mRNA. Using this model we simulate the translational rate
of each mRNA in a wild-type cell, versus that in a cell in
which the concentration of a rare glutamine tRNA has been
reduced 4-fold, mimicking the molecular phenotype of the
yeast sup70-65 allele of the tRNAGln

CUG (6). The mathemat-
ical model predicts several hundred genes that are sensitive
to tRNA-specific regulation by this tRNAGln, and we show
using a focused experimental investigation that the model
predictions are successfully validated. The use of global
modelling of cellular translation, combined with experi-
mental validation, reveals that although in global terms cel-
lular translation is remarkably resilient to changes in tRNA
concentration, nevertheless there are significant numbers of
genes whose translational rate is sensitive to the concen-
trations of rare tRNAs. We show further that translational
sensitivity to the concentration of any rare tRNA is deter-
mined not simply by the extent of use of the corresponding
codon in an mRNA, but most likely by the configuration
of those rare codons within the coding sequence, combined
with the relative contents and dispositions of other types of
rare codon in that gene. The configuration of rare codons,
and their permutation with other rare codons, is thus re-
vealed as an exquisitely sensitive modulator of gene expres-
sion.

MATERIALS AND METHODS

Mathematical modelling of translation

A stochastic model of translation was employed to simulate
translation across yeast mRNAs (29). This model, based
on the paradigmatic Totally Asymmetric Simple Exclusion
Process (TASEP), represents the mRNA as a lattice, where
each site of the lattice symbolises a codon (42,43). Ribo-
somes are then described as particles that hop onto the first
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site of the lattice, move along it translating the codons into
amino acids, and hop off the lattice at the last site. Parti-
cles are considered to have a footprint of 9 codons to repre-
sent the actual ribosome width (44). Moreover, they cannot
overtake each other, and a particle cannot initiate transla-
tion if the first 9 sites of the lattice are not free. Importantly,
ribosomes advance through the lattice following a two-state
dynamic: (1) recognition of the cognate tRNA with rate ki
proportional to the concentration of that tRNA, and (2)
translocation to the next codon with rate γ = 35 s−1, a
rate independent of the specific codon (45). Thus our model
simulates the stochastic movement of ribosomes along the
mRNA, considering the actual ribosome width in terms of
codons that they can cover, according to an exclusion pro-
cess, i.e. two ribosomes cannot occupy the same codon. Im-
portantly, the model also considers the internal biochem-
ical cycle that the ribosome undergoes between each hop-
ping event from one codon to the next. Hence, our model
more closely represents the biomechanics of the transla-
tion process in comparison to other models (24,46,47) while
preserving computational efficiency (each simulation only
takes tenths of a second). mRNA-specific translation initi-
ation rates � were derived using an integrated analysis of
experimental data using model simulation as described pre-
viously (29). The termination rate � was considered not lim-
iting and fixed equal to the fastest rate (i.e. β = γ ) (48).
In establishing the model, a series of simplifying assump-
tions were made; since there was no expectation that the
depletion of a tRNA would affect ribosome biosynthesis,
the ribosome concentration was invariant through the sim-
ulations. Likewise, tRNA charging by the aminoacyl tRNA
synthetases was not expected to be affected, a decision made
in part on the basis of experimental measurements of charg-
ing of the glutamine and histidine tRNAs in both wild-type
and sup70-65 mutant conditions (6), thus the proportions of
tRNAs in the charged condition remained fixed. Likewise
the ribosomal translocation rate (� ), following binding of
the cognate tRNA, was invariant in the model.

This model predicts the average occupancy of each codon
on the mRNA during translation, as well as the resulting
translation rate, i.e. how many proteins per unit time are
produced. Simulations were run by using a continuous time
Monte-Carlo algorithm based on the Gillespie algorithm
(49), coded in C++. Using this model, simulations for each
of the 5500 yeast open reading frames (ORFs) were run un-
til steady state was reached, after which then data were col-
lected. Two sets of simulations were performed: (i) mRNA-
specific translation initiation rates (designated �) were de-
rived using an integrated analysis of experimental data us-
ing model simulation as described previously (29). Simula-
tion of translation was carried out using a standard range of
codon-specific decoding rates as described (29), or (ii) with
the decoding rate of individual tRNAs (e.g tRNAGln

CUG) de-
creased to 25% of their wild-type value to replicate a tRNA
depletion condition. The translational rate J of any given
mRNA, equivalent to a rate of synthesis of that protein,
was recorded during the course of the simulation. Where re-
quired, J was recorded following simulation across a range
of translation initiation values of �. The codon-dependent
ribosomal density used to reconstruct the ribosome occu-

pancy profile across the mRNA was extracted by identify-
ing the codon position of the ribosomal A-site.

S. cerevisiae strains and growth conditions. Strains MLD17
(MATa/α ade1/ade1 his3-11/ his3-1 1 trp1-1/ trp1-1 ura3-
52/ ura3-52) and MLD14 (MATa/α sup70-65/sup70-65
ade1/ADE1 his3-11/his3-11 leu2-3,112/LEU2 trp1-1/trp1-
1 ura3-52/ura3-52) were kindly provided by Prof RA Singer
(Dalhousie University, Halifax, Canada) (32). Cells were
grown at 30

o
C on solid or liquid YPD (1% yeast extract, 2%

peptone, 2% glucose) (50) or, after transformation, on the
appropriate synthetic-defined (SD) or synthetic-complete
(SC) selective medium (50). Where required, glucose was
substituted with 1% galactose for gene induction.

Plasmids. Plasmids expressing HA-tagged open reading
frames under the control of GAL1 promoter (FAR7,
YIL152W, NDL1, STE18, YDL012C, ATG16, RCF1,
LCL2, TRP4, ADH1, CDC19, MCM1, OPI1 and PBP2)
were purchased from the Thermo Scientific Open Biosys-
tems Yeast ORF Collection (Thermo Fisher Scientific Bio-
sciences GmbH). To construct plasmids pYIL152-CAA,
pFAR7-CAA and pNDL1-CAA, the respective open read-
ing frames, in which all glutamine CAG codons were substi-
tuted with CAA codons, were synthesized by Eurofins Ge-
nomics and sub-cloned into the recipient plasmid BG1805
(51) by Gateway R© cloning (Life Technologies).

Over-expression of wild-type SUP70 was driven by plas-
mid pSUP70-2� (6). GCN2 alleles cloned into yeast cen-
tromeric URA3 vectors (wild-type; plasmid p722, E1522K;
p915, E1537G; p914 and M719V-E1522K; p1055 (52)) were
kindly provided by Prof G. Pavitt (University of Manch-
ester, UK) and sub-cloned into pRS413 (53) following PCR
amplification using primers AGGTCGACGGTATCGA
TTGTCCGATGAAGGTATGTAA and TAGAACTAGT
GGATCCAAGCATTCT T CACGCCATAT (listed 5′-3′).

Western blot analysis. Whole cell protein extracts were
prepared (54) from three independent yeast cultures grown
in SC + 1% galactose medium until mid-log phase. Pro-
teins were resolved on TGX stain-free pre-cast gels (Bio-
Rad) and after transfer to a low-fluorescence PVDF mem-
brane, protein content in each lane was quantified by UV
epi-fluorescence and charge-coupled device camera to al-
low normalisation of protein loading. Protein expression of
given HA-tagged yeast genes was determined using quan-
titative immuno-blot analysis, using an anti-HA primary
antibody as specified by the manufacturer (HA.11 clone
16B12, Covance), and Super Signal West Femto chemi-
luminescence kit (Thermo Scientific). Light output quan-
tified using the charge-coupled device camera in an Alpha
Innotech MultiImage II.

Northern blot analysis. Total RNA was extracted from cul-
tures identical to those used for western blot analysis, using
a Nucleospin RNA Extraction Kit (Macherey-Nagel). 5–10
�g of total RNA were used for northern blotting using the
glyoxal denaturation method (55). A specific probe for the
detection of HA-tagged overexpressed constructs was gen-
erated by PCR amplification of the BG1805 plasmid with
primers GTGGTTGATGTGTCTAGAC and GTAAGA
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TCTCATAGAACGCG (listed 5′-3′). For normalisation of
loaded and transferred RNA samples, a specific probe for
the yeast SCR1 mRNA was amplified from genomic DNA
using primers TCCTTCCTCGCGGCTAGA and CACC
TTTGCTGACGCTGG (listed 5′-3′). PCR products were
radio-labelled by random priming and RNA levels were
quantified using a Fuji FLA-3000 phosphoimager.

Flow cytometry analysis. Three independent cultures of
MLD14 and MLD17 strains (transformed with the p722
wild-type GCN2 or M719V/E1522K gcn2C allele plasmid
p1055 as described above) were grown in 5ml YPD me-
dia to mid-log phase. One millitre samples of each culture
were harvested, washed and resuspended in sterile phos-
phate buffered saline. The forward-scatter (FSC) of samples
was measured using the blue 488 nm laser in a Becton Dick-
inson LSR Fortessa Cell Analyser. Typically 20 000 cells
were analysed for each sample and the same cytometer set-
tings (photomultiplier tube values, etc) were used through-
out the experiment. The resulting data was analysed using
FlowJo (version 10). To analyse the data, a population gate
was created for the control culture containing the 95% low-
est FSC value population. By applying this gate to cultures
or strains representing the test population, the percentage
of cells with FSC larger than 95% of the wild-type popula-
tion was determined to define pseudohyphal cell chains.

Plasmid retention assay. Cytometry analysis was carried
out on cells grown in non-selective YPD medium to opti-
mise chain formation. The extent of plasmid retention was
quantified during growth on non-plasmid selective media
for the gcn2C-encoding plasmids that conferred a growth
disadvantage. Three independent cultures of yeast strains
MLD14 (sup70-65/sup70-65) and MLD17 (SUP70 wild-
type; transformed with wild-type p722 or plasmid p1055
expressing the M719V/E1522K GCN2 allele as described
above) were grown to mid-log phase in YPD media. Cells
were harvested and plated for single colonies on either com-
plete medium to quantify total colony-forming units, or on
selective medium to identify plasmid transformants. The
percentage retention of GCN2 allele plasmids could thus
be calculated. Plasmid retention in strain MLD17 was typ-
ically 59% for wild-type GCN2 transformants and 22% for
plasmids carrying the constitutively active gcn2-M719V-
E1522K allele.

RESULTS

Cell-wide modelling of translation identifies the targets of
tRNA regulation of translation

There are known examples where a tRNA can regulate the
expression of specific sets of genes, e.g. the Streptomyces
bldA tRNA that controls sporulation and antibiotic pro-
duction (34). Mutant alleles of the Saccharomyces cerevisiae
SUP70 gene encoding tRNAGln

CUG exhibit a slowed trans-
lation rate of the cognate CAG codon caused by a 4-fold
reduced abundance of tRNAGln

CUG (6) (Figure 1A). This in
turn triggers inappropriate nitrogen-starvation responses in
N-replete growth media, including the constitutive forma-
tion of pseudohyphal chains of cells in this normally single-
celled fungus (32) (Figure 1B). However it is unclear if this

reduction in the abundance of an already rare tRNA af-
fects translation rates globally, or if translation of specific
sub-sets of mRNAs are particularly prone to alterations
in tRNAGln

CUG abundance. If the latter, this group of tran-
scripts must encode a protein(s) required for suppression of
the pseudohyphal response in a wild-type cell. The identi-
fication challenge is considerable; for example, over 2500
yeast genes have between 1 and 4 CAG codons, and only
600 ORFs are CAG-free (Figure 1C). As a simple conse-
quence of codon bias, highly expressed proteins are CAG-
free. However, for CAG-containing mRNAs there is a very
weak correlation between the cellular abundance of a pro-
tein and its mRNA’s CAG content (Figure 1D). Therefore
it is likely that the absolute content of CAG codons is not
a determining factor in gene expression, but rather the po-
sition of CAG codons in the ORF (56). Slowly translated
CAG codons situated early (5′) in an ORF may cause queu-
ing of ribosomes back to the mRNA cap, inhibiting effi-
cient ribosome recruitment. However, there is no correla-
tion between position of the first CAG codon, and protein
abundance (Figure 1E). It was therefore not possible to use
bioinformatic approaches alone to predict which mRNAs
might be specifically targeted due to inefficient decoding by
tRNAGln

CUG.
We instead adopted a novel alternative approach to iden-

tify the targets of tRNAGln
CUG regulation, and simulated the

translation of all 5500 yeast open reading frames (ORF),
using a two-state ribosome model of translation (Materi-
als and Methods; Figure 2A). The rate of translation of
each ORF was simulated in the first instance using wild-type
yeast tRNA concentrations. Simulations were then repeated
using the tRNA complement of a sup70-65 mutant, in which
the concentration of tRNAGln

CUG was reduced to 25% of the
wild-type value, as determined experimentally (6).

Comparison of the rates of translation of each ORF in
wild-type and tRNA mutant backgrounds revealed that al-
though the majority of mRNAs were unaffected by the re-
duction in CAG-decoding tRNA, nevertheless there were
approximately 300 target mRNAs that the model simula-
tion predicted would be as much 2-fold down-regulated
(Figure 2B). The translation of these ORFs clearly responds
markedly to reductions in the level of the single copy yeast
tRNAGln

CUG, identifying these genes as potential targets for
regulation by a single-copy tRNA.

Specific mRNAs are regulated by rare-tRNA abundance

The model predictions (Figure 2B), generated using our
mathematical model of translation, were then validated ex-
perimentally. Proteins whose translational expression was
predicted to be compromised by the reduction in concentra-
tions of tRNAGln

CUG in the yeast sup70-65 mutant were quan-
tified in wild-type and sup70-65 backgrounds.

Accordingly, a range of 8 ORFs was selected whose ex-
pression was predicted by the simulation to be sensitive to
tRNAGln

CUG levels. One example in this group was FAR7, an
ORF of 221 codons containing 12 CAG codons. A control
group was also selected, comprising ORFs whose reading
frames in some cases contained significant numbers of CAG
codons, but whose translation was nevertheless predicted
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Figure 1. CAG codon usage in the transcriptome. (A) The CAG glutamine codon is recognised by the single copy SUP70 gene, encoding tRNAGln
CUG. The

sup70-65 allele defines a variant lacking a base-pairing interaction at the base of the anticodon stem. (B) The sup70-65 mutation causes a pseudohyphal
growth phenotype. (C) The CAG frequencies were recorded for all S.cerevisiae ORFs. (D) The cellular abundance of yeast proteins (66) was plotted against
the binned proportional content of CAG codons relative to ORF length. (E) For each yeast ORF, the position of the first (5′-most) CAG codon was
recorded and plotted against the cellular protein abundance.

by the model simulation to be insensitive to levels of the
tRNAGln

CUG. For example, MCM1 contains 29 CAG codons
in an ORF of length 286, but was nevertheless predicted to
be unresponsive to tRNAGln

CUG. CAG contents for all genes
are listed in Supplementary Table S1.

These ORFs, tagged with an HA epitope-protein A fu-
sion, were expressed in both wild-type and sup70-65 mutant
yeast under control of the GAL (galactose-regulatable) pro-
moter on a plasmid. The transformants were grown expo-
nentially, then total protein and RNA was isolated for anal-
ysis by quantitative Western and Northern blot from three
independent biological replicates, normalised for gel load-
ing in each case (Figure 3A). Northern blot phosphoimager
data was used to quantitate mRNA levels, which were used
to normalise mean protein expression levels of each of the

target ORFs. Any effects of alterations in transcription or
mRNA stability were thus excluded.

This analysis was conducted both for the test ORF set
predicted to be tRNAGln

CUG–sensitive, and for the control
tRNAGln

CUG-insensitive gene set (Figure 3B and C respec-
tively). The results clearly show that the expression levels
of the tRNACUG-sensitive ORFs are significantly reduced
across the range of genes tested (a mean of 54% relative to
the wild-type control; Figure 3B cf model predictions, Sup-
plementary Table S1) while the control set of tRNACUG-
insensitive ORFs, selected because model simulation identi-
fied their translational rate as unaffected by levels of the glu-
tamine tRNA, showed a mean expression level in the sup70-
65 mutant of 103% relative to wild-type. The measured re-
ductions in protein expression caused by the sup70-65 mu-
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Figure 2. Modelling ribosome flux on the total yeast transcriptome iden-
tifies the targets of glutamine tRNAGln

CUG regulation. (A) Mathematical
modelling of ribosome flux along each mRNA employed a Totally Asym-
metric Simple Exclusion Process (TASEP) in which ribosomal particles
of 9-codon width join a lattice representing the mRNA with rate �, and
translate the lattice, codon by codon using 2-state dynamics. These are de-
fined by cognate tRNA finding rate ki, dictated by tRNA abundance, and
translocation rate � for ribosomes charged with the cognate tRNA, not
shown in the figure (67). Ribosome then terminate with rate β. (B) The
TASEP model was used to simulate in turn each of the 5500 yeast mR-
NAs using published initiation and stepping rates (29). Simulations were
performed using wild-type tRNA concentrations, and again using a con-
centration of tRNAGln

CUG reduced to 25% of normal levels to mimic the
sup70-65 mutant as determined experimentally (6). Translation rates for
each mRNA under the two conditions are plotted.

tation (Figure 3B) were highly correlated with the original
model simulation quantitative predictions of reduced trans-
lation (Figure 2 and Supplementary Table S1), with a cor-
relation coefficient R2 = 0.63.

Taken together, the results showed clearly there are genes
in yeast that are sensitive to variations in the levels of rare
tRNAs, and that in silico simulation of translation can suc-
cessfully predict the identity of those mRNA sequences.
Moreover, the experimental validation of the model predic-
tions for control ORFs demonstrates that alone, the content
of a rare codon such as CAG in an ORF is not predictive of
its sensitivity to the concentration of its cognate tRNA.

Specific translation defects in the sup70-65 mutant are
tRNAGln

CUG-dependent

In order to confirm that the compromised translational effi-
ciency measured (Figure 3) was due to the presence of CAG
codons in the open reading frame, the mathematical model
of translation was first used to predict the effect of replac-
ing all CAG codons with the synonymous CAA glutamine
codon. As expected, for the three candidate CAG-sensitive
genes chosen, replacement of all CAG codons with CAA

Figure 3. Experimental confirmation of the targets of glutamine
tRNAGln

CUG regulation. (A) Quantitative Western blotting was performed
for target proteins (predicted to be sensitive to cellular levels of tRNAGln

CUG)
HA-tagged and expressed in either wild-type or sup70-65 mutant yeast;
three examples are shown. Triplicate biological replicates were assayed for
HA-tagged protein expression following gel loading normalisation. RNA
expression levels for each HA-tagged construct were quantified using
Northern blots, normalised for loading using an SCR1 control probe.
(B) CAG-regulated mRNAs; HA-tagged protein expression levels were
quantified in wild-type (black bars) and sup70-65 yeast (grey bars) for
eight putative targets of tRNAGln

CUG regulation (n = 3, ± standard error of
the mean). Protein expression levels were normalised using the levels of
the corresponding mRNA expression levels determined by northern blot.
(C) Non-CAG-regulated mRNAs; The same process was repeated for a
series of control ORFs, whose expression is not predicted to be responsive
to tRNAGln

CUG (n = 3, ± standard error of the mean).
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rendered the in silico translation immune to a simulated re-
duction of tRNAGln

CUG concentrations (Figure 4A).
The model predictions were then confirmed experimen-

tally. Alleles of the YIL152W, FAR7, and NDL1 genes were
synthesised in which all CAG codons were replaced by their
synonymous CAA counterpart. Expression of these CAA-
replacement alleles was assessed using quantitative West-
ern blots, normalised for mRNA concentration as before.
The results showed clearly that the expression levels of each
of the genes in the sup70-65 mutants was restored to al-
most wild-type levels, identifying the presence of the CAG
codons as the sole cause of the reduced expression in the
sup70-65 mutant (Figure 4B, compare with Figure 3B).

To further confirm the mechanism via which transla-
tional efficiency (translational rate) of these three genes is
compromised in the tRNAGln

CUG mutant, both the wild-type
and the sup70-65 mutant were separately transformed with
a multi-copy plasmid expressing a wild-type copy of the
SUP70 gene, encoding tRNAGln

CUG. This is known to com-
plement the sup70-65 pseudohyphal growth phenotype, and
normalise the CAG codon translation rate (32). As pre-
dicted, the ectopic tRNA expression in the mutant restored
the translational efficiency of both of the two tested mR-
NAs to wild-type levels (Figure 4C).

The relative rates of translation initiation and elongation gov-
ern the sensitivity of mRNA translation to rare-tRNA concen-
trations

Whereas wild-type yeast grows in single budded cell form,
a yeast sup70-65 mutant forms long, pseudohyphal chains
of cells. We show that the reduced tRNAGln

CUG concentra-
tions in the sup70-65 mutant cause reduced expression of
a specific sub-set of CAG-containing genes (Figure 3), and
we suggest that it is this failure to translate one or more
specific mRNAs at wild-type rates that triggers the forma-
tion of pseudohyphae. However, how reduced concentra-
tions of tRNAGln

CUG inhibit the translational rate of some
mRNAs is unclear. Reducing the concentration of a given
tRNA stochastically reduces the translation rate of its cog-
nate codon (6–10). Such extended translational pauses can
cause ribosomal queuing, which if they extend back to the
5′ end of the mRNA can compromise recruitment of riboso-
mal subunits to the 5′ mRNA cap, and thus translational ef-
ficiency of the mRNA (30). We therefore hypothesised that
the reduced translation rate of CAG codons produces ri-
bosome queues which inhibit ribosome recruitment on the
YIL152W and FAR7 mRNAs, explaining why they exhibit
reduced expression in the sup70-65 mutant.

If the translation rate is being limited by a rate-limiting
step at the elongation stage, forming a ribosomal queue,
then significantly reducing the rate of translation initiation
will introduce a more rate-limiting step earlier in the transla-
tion process, at the point of ribosome joining to the mRNA.
This in turn will cause the ribosomal queue to dissipate.
Using the mathematical model of translation we confirmed
that this is in fact the case by simulating translation of three
genes known to be sensitive to tRNACUG concentrations;
for each gene the ratio of translation rate in sup70-65 to that
in wild-type tends to a value of 1 as the in silico translation

Figure 4. Codon engineering of genes regulated by tRNAGln
CUG ablates their

sensitivity to rare glutamine codon concentration. (A) Three target mR-
NAs known to be under-expressed in a sup70-65 yeast were selected. In
silico, all CAG codons within each ORF were replaced by synonymous
CAA codons. Using the two-state TASEP model, their translation effi-
ciency was compared in a wild-type and sup70-65 simulation (dark and
light grey bars respectively). (B) Synthetic variants of the same three ORFs
were prepared (e.g. FAR7CAA) in which all CAG codons were replaced
by CAA. Their expression levels were compared in wild-type (dark bars)
and sup70-65 mutant yeast (light bars) using quantitative Western blot-
ting normalised for mRNA expression level as in Figure 3 (n = 3, ± SE).
For reference, the expression level of the progenitor, CAG-containing al-
lele, (Figure 3B data) is shown by the dashed lines. (C) Expression levels
of tRNAGln

CUG-sensitive target genes YIL152W and FAR7 were compared
in wild-type and sup70-65 mutant yeast using quantitative Western blot-
ting normalised by measured mRNA levels, in the presence and absence
of ectopically-expressed SUP70 wild-type tRNAGln

CUG (n = 3, ± SE). The
tRNA-encoding SUP70 gene was transformed on a multicopy plasmid to
ensure high-level tRNAGln

CUG expression.
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initiation rate is decreased. This signifies that the sup70-65
translational defect, relative to wild-type, should be masked
at low rates of translational initiation (Figure 5A).

The model simulation was then used to quantitate the
ribosome density profile across the FAR7 mRNA. In the
simulated sup70-65 background, ribosome densities at the
5′ end of the FAR7 mRNA were significantly raised at high
initiation rates (Figure 5B), indicative of ribosome queuing.
In contrast, when the in silico initiation rate was reduced,
ribosome queues were reduced, and ribosomal density at
the earliest, 5′-most, codon in the ORF was reduced to
wild-type levels in the simulated tRNAGln

CUG mutant condi-
tion. To confirm the queuing behaviour was specific for the
predicted tRNAGln

CUG-sensitive mRNAs such as FAR7, we
also simulated translation on the CAG-rich, but tRNAGln

CUG-
insensitive MCM1 mRNA. As expected, at the physiologi-
cal initiation rate, ribosome densities at the MCM1 5′ end
were identical in wild-type and sup70-65 simulations (Sup-
plementary Figure S1), explaining why Mcm1 protein ex-
pression levels in the sup70-65 mutant were indistinguish-
able from that in the wild-type (Figure 3C). The model pre-
diction was thus clear; the mutant tRNAGln

CUG induces the
formation of ribosome queues on tRNAGln

CUG-sensitive mR-
NAs such as FAR7, queues which should dissipate when the
translation initiation rate in the sup70-65 background is re-
duced, thus masking the sup70-65 mutant phenotypes.

To experimentally validate this model prediction, we em-
ployed constitutively-active mutants of the Gcn2 protein ki-
nase (gcn2C) to reduce the global rate of translation initi-
ation via phosphorylation of the essential translation ini-
tiation factor eIF2-� (52). We reasoned that reducing the
translation initiation rate would make translation initiation,
rather than translation elongation, the rate-limiting step in
translation, and prevent the formation of ribosome queues
at CAG codons that would otherwise extend to the mRNA
5′ end. This would eliminate the translational disadvantage
suffered by these mRNAs in a sup70-65 translation system,
relative to their expression level in a wild-type cell. Ame-
liorating the translational block should in turn diminish
the severity of the sup70-65 mutant phenotypes, including
pseudohyphal chain formation. We therefore transformed
a plasmid bearing a gcn2C allele into either wild-type or
sup70-65 yeast, and used cell cytometry and, separately, di-
rect counting of cell chains, to quantify the effect on the
pseudohyphal growth phenotype.

Cytometric analysis, using forward scatter as an indica-
tor of cell size, showed clearly that whereas the wild-type
population exists as single cells, a significant proportion of
a sup70-65 population is composed of cell chains exhibiting
large forward scatter (Figure 6A). Crucially, reducing the
translation initiation rate through expression of the gcn2C

allele in the sup70-65 mutant caused a significant, almost 2-
fold shift in the population away from chains and towards
single cells (Figure 6A, bar chart). That change may have
even been greater had there not been a significant loss of the
growth-inhibitory gcn2C expressing plasmid from the trans-
formed cells (Materials and Methods; 22%-59% plasmid re-
tention), caused by the requirement to grow the cells under
plasmid non-selective conditions.

Direct microscopic observation of cells allowed quantifi-
cation of a chain formation index to indicate the extent of
pseudohyphal formation in wild-type and sup70-65 strains
(6). This revealed that gcn2C expression caused at least 2-
fold reductions in chain formation in the sup70-65 mutant
(Figure 6B). Thus the cell developmental phenotype caused
by reductions in rare tRNA concentration can be signifi-
cantly reduced through down regulation of the global trans-
lation initiation rate.

It was important to verify that a gcn2C-driven reduction
in the translation initiation rate can also improve the im-
paired translation of a sup70-65-sensitive mRNA such as
FAR7, as predicted by the in silico translation simulation
(Figure 5A). A number of gcn2C constitutive alleles have
been identified, exhibiting a range of eIF2-� kinase activ-
ities and thus slowed growth phenotypes (52). These were
employed to produce a range of translation initiation rates.
In separate experiments, three different gcn2C alleles ex-
hibiting low, medium or high constitutive eIF2 kinase ac-
tivities were transformed into either wild-type or sup70-65
strains, and the translation of FAR7 mRNA monitored,
normalised relative to their mRNA levels.

The results revealed that expressing constitutively ac-
tive Gcn2 protein in the sup70-65 strain increased the
translational efficiency of FAR7 mRNA relative to that in
wild-type cells (Figure 6C). Moreover, a graded, increas-
ing response of FAR7 mRNA translational efficiency was
recorded in the sup70-65 background in response to ex-
pressing gcn2C alleles of increasing constitutive activity;
E1562K, E1537G or M719V/E1522K. Note that as the
constitutive eIF2 phosphorylation activity increases across
this series, so the translation initiation rate decreases. We
also observed that the measured content of Far7p relative to
total cell protein, (i.e. prior to ‘percentage of wild-type’ nor-
malisation, Figure 6C) increased in the mutant background
as the initiation rate decreased. Although the translation
rate of Far7p in the mutant background is expected to de-
crease with decreasing initiation rate, it does so at a slower
rate than in the wild type background, and also slower than
the average protein in the cell. Thus as the initiation rate is
reduced, Far7p content as a fraction of total cellular protein
increases in the mutant background because the absence
of ribosome queues at low initiation rates allows the FAR7
mRNA to more effectively recruit ribosomes. The physio-
logical ratio of translation efficiency of FAR7 mRNA rela-
tive to the translation efficiency of the mRNA cellular pool
is thus restored. Together, this analysis indicated that re-
ducing translation initiation rates caused an amelioration
of the elongation-inhibitory effects of slow codons within
an mRNA.

Low abundance tRNAs can act as master regulators of spe-
cific subsets of mRNAs

The demonstration that the rare glutamine tRNAGln
CUG is

able to regulate a specific set of mRNA translation events
raised the possibility that other tRNAs might exhibit sim-
ilar regulatory potential to govern the translation rate of
specific sub-sets of mRNAs. For example, the abundance of
yeast tRNAArg

CCU is known to be low enough to trigger a ri-
bosomal pause-driven ribosomal frameshift in certain con-
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Figure 5. The rate of translation elongation at CAG codons, relative to the rate of translation initiation, governs ribosome queue formation and thus
tRNACUG

Gln sensitivity. (A) TASEP simulation of translation of three tRNAGln
CUG-sensitive mRNAs was conducted across a range of values of �, the transla-

tion initiation rate (Figure 2). Simulations were conducted in either a wild-type tRNA background, or a sup70-65 tRNA background, and a ratio of these
translational efficiencies plotted against each value of the translation initiation rate. (B) These same TASEP simulations were used to record the codon-
specific ribosomal density across the FAR7 ORF to indicate the positions of ribosome queuing. The ribosomal density across the FAR7 was recorded in
a wild-type strain (filled circle symbols) and the sup70-65 mutant condition (open triangle symbols), at the physiological initiation rate of 0.3 events/s
(dashed lines, blue symbols), and again at a 6-fold slower rate of 0.05 events/s (solid lines). The ribosomal density across codons 1–30 is presented, showing
that the ribosomal density at the mRNA 5′ end in the sup70-65 mutant is greater than that in the wild-type at the high initiation rate, but that ribosome
queues dissipate at the lower initiation rate, eliminating this density differential at the 5′-most codons. (C) Codons 1–24 of the FAR7 open reading frame,
with the positions of the CAG codons indicated (underlined).

texts (12). The potential exists for it also to regulate trans-
lation elongation directly through ribosome stalling events,
causing ribosome queuing.

In order to survey the potential for all the yeast tRNAs
to regulate translation at the elongation stage via ribosome
queuing, translation of all circa 5500 yeast mRNAs was
simulated under 42 different conditions; in each, the con-
centration of a different species of tRNA was reduced to
25% of its wild-type level. In each case, the resulting mRNA
translational efficiencies were compared with those in cells
with a wild-type tRNA population as described earlier for
tRNAGln

CUG (Figure 2B). The results showed clearly that the
rare tRNAs, encoded by single copy tRNA genes, could all
exert a regulatory effect on specific groups of yeast mRNAs.
The translational rate of between 300 and 700 mRNAs was
reduced when the concentration of either tRNAGln

CUG, or any
other single copy tRNA such as tRNAArg

CCU and tRNALeu
GGA,

was reduced to 25% of its normal concentration in the sim-
ulated translation system (Figure 7A, Supplementary Table
S2).

Importantly, a similar, simulated reduction in the concen-
tration of abundant tRNAs (in this case defined as those
with a gene copy number > 4) produced no effect on trans-
lational rate of any mRNA. This indicated that translation
is extremely robust to marked changes in the concentrations
of abundant tRNAs.

Each of the sets of genes showing sensitivity to the con-
centration of a given rare tRNA did not overlap with one
another, indicating that codon content and configuration
render given mRNAs sensitive to particular rare tRNA
species. Thus some coding sequences may contain dispro-
portionate numbers of a rare codon of a given type con-
figured in a particular arrangement so as to trigger queue
formation, making that mRNA the target for regulation
by alterations in the concentration of its cognate tRNA.
To test this hypothesis, we examined whether the sensitiv-
ity of a given mRNA to reductions in the concentration of
tRNAGln

CUG was inversely correlated with a specific content
of CAG codons, combined with the absence of other rare
codons (ratio of CAG codons: other rare codons). Indeed
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Figure 6. Reductions in the global translation initiation rate ameliorate the
mRNA-specific translational inefficiencies caused by reduced tRNAGln

CUG
concentration. (A) Cell cytometry was used to assay the prevalence of pseu-
dohyphal chains that typify the sup70-65 mutant. Forward scatter mea-
surements indicated the extent of formation of large chains of cells. Pseudo-
hyphal growth was assessed in wild-type and sup70-65 yeast in the presence
of either a wild-type ectopic GCN2 allele (dark-shaded frequency plot), or
a constitutively-active gcn2c allele (light-shaded). Population sizes of large
chains and single budded cells were quantified using the cytometry data

a weak negative correlation was observed (Figure 7B), indi-
cating that ORFs containing populations of rare codons of
type i, but lacking significant numbers of other rare codon
types j,k,l may exhibit sensitivity to the concentration of
i codon-cognate tRNA. Of course, this correlation analy-
sis omits information on codon configuration and displace-
ment, probably explaining why the correlation coefficient is
relatively low. Overall the analysis reveals that low abun-
dance tRNAs, in combination with the codon content and
configuration of the open reading frame, can play a fun-
damental role in regulating gene expression at the transla-
tional level.

DISCUSSION

The role of tRNA abundance in controlling the efficiency
of mRNA translation has been the subject of much de-
bate, with some research concluding that control of trans-
lation initiation, rather than elongation, is by far the most
dominant effect on translational efficiency (26,57), or that
ribosome limitation is key to controlling translation effi-
ciency (23). The importance of these influences cannot be
overstated, nevertheless there is mounting evidence that tR-
NAs can and do regulate sub-sets of mRNAs (34). mR-
NAs may therefore fall into two classes, those that are prin-
cipally initiation-regulated, and those that are elongation-
regulated and responsive to tRNA concentration (28–30).
The challenge then is to identify which mRNAs are sensi-
tive to the concentration of any given tRNA. Only then will
it be possible to understand how dynamic changes in tRNA
concentration can control expression of some genes at the
translational level.

In this work, we investigated an unusual mutant form
of an essential, single gene copy tRNA in yeast that re-
duces the translation rate of CAG glutamine codons by
75% while still maintaining viability (6,32). This molecular
phenotype causes a constitutive pseudohyphal growth phe-
notype (Figure 1), almost certainly through tRNA-driven
changes in gene expression in the sup70-65 mutant. The
sup70-65 mutant thus represents a powerful tool to anal-
yse the effects of depleting an essential tRNA species. How-
ever, identifying the mRNA translation events sensitive to
this tRNA required a new approach. For the first time we
used global simulation of translation across all 5500 yeast
mRNAs to replicate either wild-type translation, or transla-
tion in a sup70-65 mutant background. In this way, we effec-

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
and plotted in the bar chart. (B) To confirm these observations, the degree
of pseudohyphal chains formation in wild-type or sup70-65 cells, trans-
formed with a plasmid expressing either CGN2 or gcn2c was assessed by
direct microscope observation. Pseudohyphal chains were counted, and a
chain formation index used to capture the extent of pseudohyphal growth
during growth on complete (YPD) or minimal medium (SC) (6). (C) HA-
tagged FAR7 was expressed in wild-type and sup70-65 yeast transformed
with ectopically expressed CGN2 or gcn2c genes to either maintain, or re-
duce, global translation initiation rates respectively. Three different gcn2c

alleles were used with increasing degrees of constitutive eIF2 phosphory-
lation activity (E1522K < E1573G < M719V, E1522K). FAR7 expression
was quantified using Western blotting, normalised for mRNA expression
level as in Figure 3 (n = 3, ± standard error of the mean). The Far7p ex-
pression level in the mutant sup70-65 was expressed as a percentage of the
expression level in a wild-type cell.
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Figure 7. Translation is sensitive to changes in concentrations of rare tR-
NAs. (A) Translation of all 5500 yeast ORFs was simulated using the
TASEP model representing a wild-type spectrum of tRNA concentrations,
and again for a simulated cell where the concentration of one tRNA type
was reduced to 25% of wild-type levels. The wild-type translation rate for
each ORF is plotted against the corresponding tRNA-depleted rate. This
exercise was repeated for all 42 species of yeast cytoplasmic tRNA. The
results for 6 tRNAs are presented, three types whose encoding genes are
multicopy (Gene Copy Number GCN > 4; left column), and three sin-
gle gene-copy tRNAs (GCN = 1; right column). (B) A disproportionately
high content of CAG codons within an ORF, relative to other rare codons,
together with the configuration of those CAG codons, may drive ORF sen-
sitivity to tRNAGln

CUG concentrations. To test this, for the 90 most sup70-
65 sensitive ORFs, the CAG rare codon content, normalised to content
of other rare codons, was plotted against the translation efficiency ratio
(sup70-65/wild-type) revealing a negative correlation (R2 = 0.21).

tively carried out an in silico genetic screen, identifying the
putative targets of translation regulation by the tRNAGln

CUG
(Figure 2B) and experimentally validating these predictions
using quantitative immunoblot (Figure 3). Importantly, we
were able to prove that the translation defect was depen-
dent on both the presence of CAG codons and the con-
centration of tRNAGln

CUG (Figure 4). Moreover, we identified
the mechanism responsible for the reduced rate of transla-
tion of these mRNAs; slowed CAG translation generated
ribosome queues, which the evidence indicates inhibited ef-
ficient ribosome recruitment to the mRNA 5′ end. We fur-
ther showed that this ribosome queuing could be dissipated
by a reduction in global translation initiation rates, leading
to a restoration of translation efficiency (Figures 5 and 6).
The engineered reduction in translation initiation rates as
expected caused slowed growth of the yeast, and presum-
ably reductions in the pool of available ribosomes and tR-
NAs. However, these effects apply equally to the tRNA mu-
tant and wild-type strains, with the wild-type measurements
controlling for the effect of reduced growth on the expres-
sion of the target mRNAs.

This analysis thus identifies a group of mRNAs whose
translational rate is specifically reduced in the sup70-65
background. It is assumed that the failure to efficiently
translate one or more of the proteins they encode under-
pins the pseudohyphal growth phenotype of the mutant. We
therefore examined the list of genes identified by the in sil-
ico screen for candidates known to regulate pseudohyphal
differentiation (58). Indeed, some genes with a known link
to pseudohyphal growth were also targets of regulation by
tRNAGln

CUG (e.g. HAP2, ERV25, NDL1; Supplementary Ta-
ble S1). At this stage however, it is unclear whether the pseu-
dohyphal growth phenotype has a simple monogenic basis,
or as likely, is a composite phenotype caused by simulta-
neously reducing the expression level of a number of pro-
teins. A broader question is whether expression of groups
of S. cerevisiae genes with a shared function are controlled
by single-copy tRNA abundance. However, inspection of
those target genes predicted to be underexpressed as a re-
sult of single copy tRNA depletion did not reveal signifi-
cant over-representation of any gene ontologies (data not
shown). This does not however exclude the possibility that
key transcription factors might be regulated through rare
tRNA abundance, with pleiotropic effects.

The amino acid glutamine sits at the nexus of a large num-
ber of nitrogen regulatory cell circuits, and it has been sug-
gested the glutamine tRNAs themselves may act as sens-
ing or regulatory molecules in some way, since the sup70-65
morphological phenotype indicates a deregulated response
to N-starvation (32). However, with any tRNA-driven phe-
notype, the most obvious mechanism for a phenotypic ef-
fect must be via translation itself. In that context, a thor-
ough investigation of nitrogen starvation responses in yeast
has revealed that the sup70-65 mutation prevents the nor-
mal sequestration of the Gln3 transcription factor in the
nucleus (59). Gat1 re-location to the nucleus is also blocked
under some N-starvation signalling conditions (59). Fol-
lowing a series of detailed N-starvation time-course exper-
iments that take advantage of sup70-65 temperature sen-
sitivity, the authors concluded that the most likely way in
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which sup70-65 mutant tRNA would block Gln3 dynamics
is if a component were needed for Gln3 nuclear relocalisa-
tion that ‘possessed an exquisitely specific and concentra-
tion sensitive codon bias for glutamine tRNACUG (59). We
concur with their prediction, and in this work identify 300
proteins whose translation is indeed uniquely sensitive to
CAG translation due to the configuration of CAG codons
within their encoding mRNA. Identification of Gln3 regu-
latory and trafficking proteins within our sensitive mRNA
target group can now be addressed.

Our work has identified the translation regulatory tar-
gets of a key single copy tRNA when that tRNA is signif-
icantly depleted through mutation. This prompts the obvi-
ous question of how tRNA concentrations might vary phys-
iologically in a wild-type cell to control gene expression at
the translational level. The view that concentrations of in-
dividual tRNA species are fixed, and determined only by
tRNA gene copy number is looking increasingly simplistic.
We know that the developmental regulation of the Strepto-
myces bldA tRNA is not a special case (60), since as long ago
as 1994 researchers were reporting differential regulation
of the four members of the S. cerevisiae seryl-tRNA family
in response to growth rate and carbon source (61). Differ-
ential, albeit moderate, regulation of the E. coli tRNAs in
response to growth rate has also been reported (62). More
recently, tRNA abundance in human was reported to vary
across tissue type (63,64), and in Lactococcus sp in response
to growth conditions (65). Intriguingly, in Lactococcus, it is
the concentration of low abundance tRNAs that primarily
responds to growth rate, exactly the sub-population that our
study predicts has the greatest regulatory role on mRNA
translation (Figure 7).

Our study also reveals the regulatory potential inherent
in the selection of rare codon types in each ORF. Simu-
lated depletion of each of the single copy tRNAs in yeast re-
vealed in each case several hundred genes that were transla-
tionally down-regulated in response to depletion of a single
gene copy tRNA (Figure 7). These gene sets were however
largely non-overlapping (Supplementary Table S2). Thus
evolutionary selection of particular rare codon types within
an ORF, and the potential exclusion of other rare codon
types could render an ORF sensitive to one particular rare
tRNA species. Indeed, there was some evidence that ex-
amples of this might exist; we showed that mRNAs most
sensitive to tRNAGln

CUG depletion contained a high ratio of
CAG codons relative to other non-CAG rare codons (Fig-
ure 7B). This could offer a partial explanation for why some
CAG-containing mRNAs were sensitive to tRNAGln

CUG con-
centrations, and other ORFs with a high CAG content were
insensitive (Figure 3). However, the configuration of those
CAG codons is also of paramount importance; many CAG-
containing genes are completely unaffected by the sup70-65
tRNA milieu, and we show that in one such insensitive gene,
MCM1, containing 25 CAG codons, the ribosomal density
at the 5′ end is not significantly altered in the sup70-65 back-
ground relative to wild-type, underlining the importance of
configuration.

This study has unequivocally clarified our understanding
of the regulatory role that can be played by low abundance
tRNAs. The translational pausing that results when a ri-

bosome translates a rare tRNA’s cognate codon can cause
a bottleneck in translation elongation. If this rate-limiting
step is slower than the rate of translation initiation on that
mRNA, ribosome queues will then result. Ribosome queues
that extend back to the 5′ cap of an mRNA, representing an
elongation ‘bottleneck’, will lead to reduced translational
efficiency through failure to compete for, and recruit, new
ribosomal subunits to the now occluded 5′ cap. We thus
show the crucial role in determining translational efficiency
played by the balance between initiation and elongation
rates. In addition to this fundamental insight into the con-
trol of gene expression by tRNAs, our study has also broken
new ground through the use of an in silico screen to rapidly
probe transcriptome-wide translational rate in a computer
model. This approach opens the door for completely new
analytical approaches to understanding translational regu-
lation on a system-wide scale in the future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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