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Abstract

The deposition of Single-Molecule Magnets (SMMs) on surfaces is a mandatory step 

toward their possible use as data-storage units or qubits. In this study we report the 

structural and magnetic characterization of two parent compounds of a well-known 

SMM called DyPyNO, ([Dy(hfac)3(PyNO)]2 with hfac = hexafluoroacetylacetonate and 

PyNO = pyridine-N-oxide), that are targeted to be deposited on gold surfaces. Thio-

substitution of the pyridine ring of these dimers is expected to provide good anchoring 

group toward deposition on gold. We have investigated two significantly different 

geometries of the anchoring groups in dimers 1 and 2. Interestingly, despite these 

strong differences, SMM behavior is remarkably well-preserved in the polycrystalline 

material offering possibilities to graft these SMMs on surface.
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1. Introduction 

Single-molecule magnets (SMMs) are molecules able to act as magnets at the 

molecular scale.[1, 2] Their unique magnetic behavior can be used in functional 

devices, mainly in the field of low-temperature molecular magnetic data storage.[3-6] 

The exploitation of SMMs in this area of research requires being able to assemble 

them in ordered arrays, where each bit of information can be easily addressed. Thus 

technological applications with SMMs as key molecular components will require the 

formation of monolayer or thin film coverage on adapted substrates. The two main 

routes to do so are physical [7] or chemical deposition. [8, 9] The latter is possibly 

more adapted to the formation of monolayers because on-surface auto-organization 

of the molecules can occur. Such self-assembled monolayers (SAM) of SMMs were 

mainly reported on molecules functionalized by thio-methyl groups in order to graft 

them on Au(111) surfaces.[10-13]

Some of us previously reported a series of Dy-based SMMs (called DyPyNO)[14] that 

can be physic-sorbed as thick-films on surfaces by sublimation techniques.[15] 

Chemical tuning of this molecular platform allows to organize the SMMs in a 3D 

molecular material,[16] to optimize their SMM behavior by ligand substitution[17, 18] 

and to transfer this enhancement on molecular thick films.[18] It also allows to test 

their dependence toward DyIII isotopic substitution [17] and even to produce devices 

with electric driven reversible luminescent modulation.[19]

In order to deposit DyPyNO as SAM on gold it has to be substituted by thio-based 

groups. However, the magnetic behavior of lanthanide-based SMMs is extremely 

sensitive to small geometric molecular changes.[5, 20-30] The objective of this work is 

to study the possibility of thio-substitution of DyPyNO and the influence on its SMM 

behavior.

Two different ligands were used, with different length and orientation of the anchoring 

groups that may provide different grafting ability. First one is 3-methylsulfanyl-pyridine 

N-oxide (L1) and reaction with [Dy(hfac)3(H2O)2] (hfac- = hexafluoroacetylacetonate) 

provides [Dy(hfac)3(L1)2]2, latter called 1. The second one is 4-methylcarbodithioate-

pyridine N-oxide (L2) and provides [Ln(hfac)3(L2)2]2 latter called 2. This ligand may 
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induce stronger sulfur bonding with the gold surface (two available sulfur atoms) as 

well as an enhanced spacing between the gold surface and the hfac- ancillary ligands.

2. Materials and methods

Reagents: All other reagents were purchased from Aldrich Co., Ltd. and used without 

further purification.

X-ray crystallography: Single crystals of 1 and 2 were mounted on APEXII AXS Bruker 

diffractometer form CDIFX (ISCR diffractometry center). It is equipped with a CCD 

camera and a graphite monochromated Mo-Kα radiation source (λ = 0.71073 Å). Data 

were collected at 150K. Structure solving was done via direct methods using SIR-97 

[31] and refined trough WinGX interface [32] using SHELXL program.[33] 

Crystallographic data can be found in supplementary materials. All data were 

deposited to the Cambridge Structural Data Base under CCDC 1819460 and CCDC 

1819461 for 1 and 2, respectively.

NMR: 1H NMR spectra were recorded with a Bruker Ascend 400 spectrometer. 

Chemical shifts are reported in parts per million referenced to TMS for 1H NMR 

spectroscopy.

Powder X-ray diffraction: X-ray powder diffractogramms were collected using a 

Panalytical X’Pert Pro diffractometer equipped with an X’celerator detector in θ-θ 

mode with Cu-Kα (λ = 1.54 Å). The calculated patterns were produced using Mercury 

3.0 (Figure S1).

TGA/TDA analysis: Analyses were performed using a PerkinElmer Pyris Diamond 

thermal analyzer with a 5°C/min heat rate under N2 atmosphere (100mL.min-1)

Magnetic measurements: Static and dynamic magnetic measurements were 

performed on single-crystals picked one by one in the preparation mixtures. They were 

then ground and pressed in pellets to avoid crystallite orientations. Measurements 

were performed on a Quantum design MPMS magnetometer equipped with a RSO 
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probe. All measurements were corrected from the contribution of the sample holders 

and their diamagnetic contribution subtracted according to Pascal’s constants.

Ab-initio calculations: Wavefunction-based calculations were carried out on 1 and 2 by 

using the SA-CASSCF/RASSI-SO approach, as implemented in the MOLCAS quantum 

chemistry package (see SI for more details).

3. Experimental

Precursor synthesis: Dy(hfac)3(H2O)2 precursor were synthesized according to reported 

methods.[34]

Scheme 1. Synthetic scheme for the design of L1 and L2.

3-methylsulfanyl-pyridine N-oxide (L1): 420 mg of 3-nitropyridine-N-oxide were 

placed in 2 mL of acetic acid. 3.6 mL of acetyl bromide are added. After 3h of stirring at 

80°C, the mixture is cooled at room temperature and then put in ice before 

neutralization with NaOH 10 M then Na2CO3. The aqueous phase is extracted four 

times with CH2Cl2. The organic phases are combined then dried with MgSO4. After 
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evaporation of the organic solvent under vacuum, the resulting 3-bromopyridine-N-

oxide powder is used for the next step without further purification (Yield: 452 mg, 87 

%). The 452 mg of 3-bromopyridine-N-oxide are dissolved in 5 mL of EtOH then an 

ethanoic solution of NaCH3S (182 mg) was added. The suspension was stirred under 

reflux for 1h, cooled at room temperature and filtered. The filtrate is diluted with 

water and extracted with 4×20 mL of Et2O. Finally the residue is purified on alumina 

chromatography using a 3:1 CH2Cl2/MeCN eluent to give a colorless powder (yield: 

275mg, 75%). 1H NMR: 2.94 (3H, s); 7.68 (1H, dd), 8.09 (2H,m), 8.51 (1H, dt) in DMSO 

d6. 

N-Oxy-pyridine-4-carbodithioic Acid Methyl Ester (L2): This ligand was obtained 

according to the reported experimental procedure.[35] 

Complexes synthesis: Compound 1 was obtained using the following procedure: 0.1 

mmol of 3-methylsulfanyl-pyridine N-oxide (L1) was dissolved in 10ml of CHCl3 and 

added drop by drop to a 10 ml CHCl3 solution of 0.1 mmol of [Dy(hfac)3(H2O)2]. The 

resulting solution was stirred at room temperature for five minutes and covered by a 

layer of n-heptane. After storing at 2°C for several days single crystal suitable for X-ray 

diffraction were obtained. The same procedure was used for the synthesis of 2. 

4. Results and discussion

4.1. Crystal structure description

Single-crystal X-ray diffraction measurement on 1 reveals that it crystallizes in 

monoclinic P21/n space group. The main structural parameters are listed in Table S1.

The asymmetric unit of the compound is made of one DyIII ion, three hfac- 

ligands and one 3-methylsulfanyl-pyridine N-oxide ligand (L1). Its oxygen atom (O7) 

links two DyIII ions in a μ2 mode (Figure 1a). A center of inversion is located in the 

middle of the double bridge and makes the two DyIII ions equivalent. The Dy-Dy 

distance is 4.02(8) Å. Each DyIII is eight coordinated by six oxygen atoms (O1, O2, O3, 

O4, O5 and O6) from hfac- ligands and two oxygen atoms (O7) from L1. 
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Figure 1. (a) Representation of 1 (dysprosium, dark green; fluorine, light green; sulfur, yellow; oxygen, 

red; carbon, grey) . (b) View of the crystal packing along a axis. (c) and (d) different views of the 

coordination environment of the DyIII atom.

The bond lengths of Dy-O(hfac-) are in the range 2.32(6)-2.37(2) Å, while Dy-O(L1) 

are 2.38(3) Å (Table S2). CSM analysis [36, 37] shows that the coordination 

environment of the DyIII ion is very close to a square antiprism (D4d) geometry (CSM = 

0.618) (Figures 1c and 1d and Table S3). The two planes of the square antiprism are 

made of O1, O2, O5, O6 and O3, O4, O7, O7 atoms, respectively. Each dimer is well 

isolated and the shortest interdimer Dy-Dy distance is 11.17(9) Å (Figure 1b).

Single-crystal X-ray measurement on 2 highlights that it crystallizes in triclinic P-

1 space group. The main structural parameters are listed in Table S4. The substitution 

of L1 for 4-methylcarbodithioate-pyridine N-oxide (L2) in the coordination process 

affords a very similar dimer (Figure 2). 
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Figure 2. (a) Representation of 2 (dysprosium, dark green; fluorine, light green; sulfur, yellow; oxygen, 

red; carbon, grey). (b) View of the crystal packing along a axis. (c) and (d) different views of the 

coordination environment of the DyIII atom.

Similar coordination modes are observed, as well as similar intradimer Dy-Dy 

distances (4.05(2) Å, see Table S5 for distances and angles), and similar coordination 

polyhedron (square antiprism). CSM factor is only slightly lower (CSM = 0.345) 

indicating an even more symmetric D4d environment in 2 (Table S6). Overall the only 

noticeable difference is the shortest interdimer Dy-Dy distance that is smaller on 2 (Dy-

Dy = 9.08(7) Å). 

TGA/DSC analyses (Figure S2) clearly demonstrate that both complexes are 

stable to at least 200°C and have very good sublimation properties (90% brutal weight 

loss) that make them suitable for surface deposition. This is a very similar behavior to 

the one of DyPyNO that has permitted its controlled deposition on surfaces. [15, 18]

4.2. Magnetic measurements

Static and dynamic magnetic susceptibility measurements were performed on 

polycrystalline samples of 1 and 2 embedded in grease. The room temperature values 

of the χMT products are 26.38 and 27.23 emu.K.mol-1 at 300 K, for 1 and 2, 

respectively. This is slightly lower than the expected 28.34 emu.K.mol-1 for two isolated 
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DyIII ions.[38] The curves decrease as the temperature is lowered because of the 

progressive depopulation of the mJ levels of the J = 15/2 multiplet of the DyIII [38] 

and/or because of intramolecular Dy-Dy antiferromagnetic interaction as highlighted 

on related compounds (Figure S3). [14-18, 39, 40]

Ab-initio calculations confirm these findings. In the frame of the effective spin S 

= 1/2, antiferromagnetic Dy-Dy coupling is found to be Jtotal = -2.65 cm-1 and -2.99 cm-1 

for 1 and 2, respectively. These values are obtained by considering the relative angles 

and distances between the molecular anisotropy axes as shown on Figure 3 (dipolar 

contribution, Jdip) [41] and the magnetic interaction computed (exchange contribution, 

Jexch).[17] For 1 values decompose as Jtotal = Jdip + Jexch = -2.52 - 0.125 cm-1 and for 2, Jtotal 

= Jdip + Jexch = -2.49 - 0.50 cm-1. These values as well as the orientation of the easy 

magnetic axes are close to what obtained on DyPyNO (Jtotal = Jdip + Jexch = -2.44 - 0.25 = -

2.69 cm-1) and similar dimers. [14, 17, 42-45]

Figure 3. Representation of the easy magnetic axes on various orientation of 1 (left) and 2 (right).
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Dynamic magnetic behavior was investigated from 1.8 K to 14 K in the 0.1-1500 Hz 

frequency range in the absence of external field. Strong frequency dependence of the 

in-phase (χM’) and out-of-phase (χM”) component of the magnetization is observed 

(Figures 4-5, S4-S5).

The relaxation times τ were extracted by fitting χM” vs frequency curves (values 

in Tables S7-S8) using an extended Debye model. The Arrhenius plot (ln(τ) vs T-1) is 

reported in Figure 6. Two main regimes can be evidenced. A thermally activated 

relaxation (Orbach-like relaxation, with τ = τ0exp(-Δ/kT)), above 10K and a 

temperature-independent one (quantum tunneling-like relaxation with τ = τtunneling) 

below 2K. Any attempts to consider other relaxation modes failed as over-

parametrization occurs. [46] It is worth noting that on DyPyNO pure Orbach relaxation 

was found only above 15K using very high frequencies (10-70kHz). In this study, we use 

a conventional ac susceptometer and we were not able to isolate such a pure 

relaxation regime. However it can be clearly seen from Figure 6 that the thio-

substitution (compounds 1 and 2) of the bare dimer (DyPyNO) does not damage the 

energy barrier for spin reversal at high temperature. At low temperature, the 

temperature-independent regime is affected and τtunneling = 0.07 and 0.04s are 

observed on 1 and 2, respectively (0.38s on DyPyNO).
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Figure 4. Temperature dependence of the out-of-phase component of the magnetization measured in 

absence of external static field on 1 (top) and 2 (bottom) for frequencies ranging from 1 to 1500 Hz 

(form red to blue).

The distribution of the relaxation times τ can be extracted from the Cole-Cole plots of 

the in-phase and out-of phase components of the magnetization that were normalized 

over the isothermal susceptibility (χT) (Figure S6 and Tables S9-S10). This allows 

estimating α, considering that α = 0 for a single relaxation time (perfect SMM) up to α 

= 1 for an infinity of relaxation times (spin glass). The highest α values are 0.23 and 

0.27 for 1 and 2, respectively, suggesting a relatively narrow distribution of the 

relaxation times. The relaxing fractions are 91% and 97% for 1 and 2. In the high 

temperature region (T = 10K), α is as low as 0.15 and 0.08 for 1 and 2. This confirms 

that the dimers tend to adopt an almost pure relaxation process in this temperature 

region. Relaxing fractions are still very good (90% and 80% for 1 and 2).

Overall, we recall that on a structural point of view the only significant 

differences between the two derivatives are a weak intermolecular Dy-Dy distance 
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change (9.08(7) Å in 2 and 11.17(9) Å in 1) and slight symmetry change of the 

environment of the DyIII ion (CSM = 0.345 for 2 and 0.618 for 1). On the static magnetic 

point of view the Dy-Dy distance change is too weak to induce any sizeable variation in 

the total exchange value, Jtotal, via its dipolar component, Jdip. 

Figure 5. Frequency dependence of the out-of-phase component of the magnetization measured in 

absence of external static field on 1 (top) and 2 (bottom) for temperatures ranging from 1.8 to 14K (blue 

to red).

Only weak change is seen on the low temperature relaxation time that diminish 

as the coordination environment of the DyIII get more symmetric when passing from 1 

to 2. 

This counter-intuitive conclusion is however in agreement with recent findings that 

highlight that the coordination symmetry around a given lanthanide ion is not the main 

factor that governs its relaxation. Indeed both electrostatic contribution [22, 47-49] 
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(especially its quadrupolar expansion) and spin-phonon coupling are much more 

relevant in tailoring the magnetic behavior of lanthanide-based SMM. [50] 

Consequently, one can say that the two different thio-substitutions on the pyridine 

ligand modify, but in a reasonable way, the magnetic features of the original dimer 

DyPyNO. The low temperature τtunneling is slightly diminished but high temperature 

energy barrier seems to be preserved in the investigated frequency range. This offers 

the possibility to test both derivatives for surface deposition with a reasonable 

success. Consequently we are confident that 1 and 2 could be suitable derivatives for 

surface grafting.

Figure 6. Representation of the relaxation times measured on 1 (squares) and 2 (triangles) and 

comparison with the already reported compound DyPyNO (circles).[12]

Conclusions

In conclusion we report here, two derivatives (1 and 2) of a well-known SMM, 

(DyPyNO), targeted to be deposited on gold surfaces. The substitution of the pyridine 

ring by the anchoring groups fulfills our objectives and very slightly modifies dimer’s 

SMM properties. Almost no differences were found in the two substitutions; this 

highlights the magnetic robustness of the DyIII core of these dimers. Indeed, given the 

different geometries of the anchoring groups in 1 and 2 it would be interesting to 
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investigate their surface deposition ability on gold. We are currently testing these 

possibilities. 
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