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Abstract

A word is called a palindrome if it is equal to its reversal. In the paper
we consider a k-abelian modification of this notion. Two words are called
k-abelian equivalent if they contain the same number of occurrences of each
factor of length at most k. We say that a word is a k-abelian palindrome if it is
k-abelian equivalent to its reversal. A question we deal with is the following:
how many distinct palindromes can a word contain? It is well known that
a word of length n can contain at most n + 1 distinct palindromes as its
factors; such words are called rich. On the other hand, there exist infinite
words containing only finitely many distinct palindromes as their factors;
such words are called poor. It is easy to see that there are no 1-abelian poor
words, and there exist words containing Θ(n2) distinct 1-abelian palindromes.
We analyze these notions with respect to k-abelian equivalence. Our main
results concern poor words: We show that in the k-abelian case there exist
infinite words containing finitely many distinct k-abelian palindromic factors.
We also make some observation concerning rich words, namely, we show that
there exist finite rich words containing Θ(n2) distinct k-abelian palindromes
as their factors. Therefore, for poor words the situation resembles that of
usual palindromes, while for rich words it is similar to the 1-abelian case.
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1. Introduction

The palindromicity of words is a widely studied area in formal languages.
When a model of a computation is introduced, among the first questions is
to ask whether the set of palindromes (or some infinite subset of it) can be
recognized by the model. In other words, can the model identify whether it
is irrelevant if words are read from left to right or from right to left? It is
folklore that deterministic finite automata cannot do that. On the other hand
it is among the simplest tasks for push-down automata, or on-line log-space
Turing machines. A slightly different approach is to look at palindromic
factors of words. They can be viewed as measuring how much the word
is locally independent of the reading direction of a factor. The notion of
palindromic complexity for infinite words was introduced in [12], and further
formalized in [2, 9]. It has been studied extensively ever since.

A problem related to our question of counting palindromes in a word is
the problem of counting maximal repetitions in a word of length n, that is,
runs in a word. It was shown in [23] that the maximal number of runs in
a word is linear in n. Subsequently, there was a lot of research performed
to find the bound [11], which led to a conjecture that this number is less
than n. Recently, the conjecture has been proved with a remarkably simple
argument, considering numerious attempts to solve it [7]. Not only runs, but
also various other questions concerning counting squares in a word have been
considered, see, e.g., [17, 18, 24].

We recall that a word is a palindrome if it is equal to its reversal. It
is well known that the maximal number of palindromes a word of length n
can contain is equal to n+ 1, and such words are called rich in palindromes
[14]. In some papers the same class of words was called full words (see, e.g.,
[4, 9]). Lately, there is an extensive number of papers devoted to the study
of rich words and their generalizations (see, e.g., [10, 16]). This notion can
be extended to infinite words: an infinite word is rich if each of its factors
is rich. For example, Sturmian words are known to be rich. Note also that
Sturmian words can be characterized via palindromic closures [13].

Recently the notion of palindromic poorness has been considered in [8,
15]. Namely, an infinite word is called poor in palindromes if it contains
only finitely many distinct palindromes. In particular, it has been shown
that there exist poor words with the set of factors closed under reversal.
Besides that, in [15] the authors found the minimal number of palindromes
an infinite word satisfying different conditions (uniform recurrence, closed
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under reversal, etc.) can contain. In a related paper [27] words avoiding
reversed subwords were studied.

In this paper the k-abelian version of the notion of a palindrome is stud-
ied. Two words are called abelian equivalent if they contain the same number
of occurrences of each letter, or, equivalently, if they are permutations of
each other. In the recent years there is a growing interest in abelian prop-
erties of words, as well as modifications of the notion of abelian equivalence
[1, 6, 22, 26, 29]. One such modification is the notion of k-abelian equiv-
alence: two words are called k-abelian equivalent if they contain the same
number of occurrences of each factor of length at most k. For k = 1, the
notion of k-abelian equivalence coincides with the notion of abelian equiva-
lence, and when k is greater than half of the length of the words, k-abelian
equivalence means equality. Therefore, the notion of k-abelian equivalence is
an intermediate notion between abelian equivalence and equality of words.
For more on k-abelian equivalence we refer to [20, 21].

In analogy with normal palindromes, we say that a word v is a k-abelian
palindrome if its reversal is k-abelian equivalent to v. For example, the word
aabaaabbaa is a 3-abelian palindrome. We are interested in the maximal and
minimal numbers of k-abelian palindromes a word can contain.

For k = 1, clearly, each word is an abelian palindrome, since it is abelian
equivalent to its reversal. Therefore, there are no infinite 1-abelian poor
words. But for k > 1 this no longer holds. We build infinite k-abelian
poor words for k > 1 and sufficiently large alphabets. In fact, we provide a
complete characterization of pairs (k,Σ) for which k-abelian poor words over
the alphabet Σ exist (see Theorem 1).

Since a word of length n contains at most 1 + n(n+1)
2

factors in total, a
k-abelian rich word of length n cannot contain more than Θ(n2) k-abelian
palindromes. However, we show that it can indeed contain Θ(n2) inequiva-
lent k-abelian palindromes, where the constants in Θ(n2) depend on k (see
Theorem 2).

The minimal and maximal numbers of inequivalent palindromes in the
case of equality, k-abelian equality and abelian equality are summarized in
Table 1 (here C is a constant). We remark that in the minimal case, that
is for poor words, infinite words are considered, while in the maximal case,
that is for rich words, only finite words are considered. The message of the
table is that in the big picture k-abelian equivalence behaves like equality for
poor words, while it behaves like abelian equivalence for rich words.
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equality k-abelian abelian

poor C C ∞
rich n+ 1 Θ(n2) Θ(n2)

Table 1: Minimal and maximal numbers of palindromes in the case of equality, abelian
and k-abelian equivalence.

2. Definitions and notation

Given a finite non-empty set Σ (called the alphabet), we let Σ∗ and Σω,
respectively, denote the set of finite words and the set of (right) infinite words
over the alphabet Σ. We will always assume |Σ| ≥ 2. A word v is a factor
(resp., a prefix, resp., a suffix ) of a word w, if there exist words x, y such
that w = xvy (resp., w = vy, resp., w = xv). The set of factors of a finite or
infinite word w is denoted by F (w). The prefix and suffix of length k of w
are denoted by prefk(w) and suffk(w), respectively. When the length is not
important, we use the notation pref(w) and suff(w) to denote any prefix or
suffix of w. Given a finite word u = u1u2 · · · un with n ≥ 1 and ui ∈ Σ, we
let |u| = n denote the length of u. The empty word is denoted by ε and we
set |ε| = 0. An infinite word is called recurrent if each of its factors occurs
infinitely often in it. An infinite word w is called uniformly recurrent if for
each v ∈ F (w) there exists N such that v ∈ F (wi · · ·wi+N) for every i. In
other words, in a uniformly recurrent word each factor occurs with bounded
gaps.

For each v ∈ Σ∗, we let |u|v denote the number of occurrences of the
factor v in u. Two words u and v in Σ∗ are said to be abelian equivalent,
denoted u ∼ab v, if and only if |u|a = |v|a for all a ∈ Σ. For example, the
words aba and aab are abelian equivalent. Clearly, abelian equivalence is an
equivalence relation on Σ∗.

Let k be a positive integer. Two words u and v are k-abelian equivalent,
denoted by u ∼k v, if |u|t = |v|t for every word t of length at most k. This is
equivalent to the following conditions:

• |u|t = |v|t for every word t of length k,

• prefk−1(u) = prefk−1(v) and suffk−1(u) = suffk−1(v) (or u = v, if |u| <
k − 1 or |v| < k − 1).
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For instance, aabab ∼2 abaab, but aabab ≁2 aaabb. It is easy to see that
k-abelian equivalence implies k′-abelian equivalence for every k′ < k. In
particular, it implies abelian equivalence, that is, 1-abelian equivalence.

For a finite word v = v1 · · · vn we let vR = vn · · · v1 denote its reversal. A
word v is a palindrome if v = vR. A word is a k-abelian palindrome (or briefly
k-palindrome) if v ∼k vR. The empty word ε is considered as a palindrome
and a k-palindrome.

An infinite word is k-abelian palindromic poor (briefly k-poor) if it con-
tains finitely many k-abelian palindromes.

There are obvious constructions of k-poor words. For instance, one can
take (abc)ω that contains only four k-palindromes (ε, a, b, c) for k ≥ 2. It
is more interesting to restrict to certain families of infinite words. Here we
consider two such restrictions, that apply on the set of factors of the infinite
word: closed under reversal and closed under k-abelian reversal (a set of
words L is said to be closed under k-abelian reversal if for every u ∈ L, there
exists u′ ∈ L such that u′ ∼k u

R).
A word of length n is called k-abelian palindromic rich (briefly k-rich), if

it contains at least n2/4k inequivalent k-abelian palindromes. Notice that the

total number of factors contained in a word of length n is equal to 1+ n(n+1)
2

.
Therefore, for a fixed k, a k-abelian rich word contains the number of k-
palindromes of the same order as the total number of factors when n tends
to infinity.

We emphasize that for poor words we consider infinite words, and for
rich words we consider finite ones, and this is caused by the nature of the
problem. Indeed, for poor words, since there exist infinite words containing
only finitely many palindromes, all their factors have a uniformly bounded
number of palindromes. On the other hand, the closed under reversal condi-
tion is not applicable to finite words, since it would imply a growing number
of palindromes. Concerning rich words, an infinite word could easily con-
tain infinitely many palindromes, so we are interested in maximal number
of palindromes in finite ones. In the next two sections we consider k-abelian
poor and rich words, respectively.

3. k-abelian poor words

In this section we show that there exist k-abelian palindromic poor words.
This holds for almost all values of k and |Σ|, and we characterize those.
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k\|Σ| 2 3 4 . . .

1 - - - -

2 - ⊖ + +

3 - + + +

4 ⊖ + + +

5 + + + +

. . . + + + +

Table 2: The classification of (k, |Σ|) for the existence of k-poor words.

Theorem 1. Let S1 = {(1, l)|l ∈ N} ∪ {(2, 2), (3, 2)}, S2 = {(2, 3), (4, 2)}.
I. For (k, |Σ|) /∈ S1∪S2 there exist uniformly recurrent k-abelian palindromic
poor words over Σ having a set of factors that is closed under reversal.
II. For (k, |Σ|) ∈ S1 there are no k-abelian palindromic poor words over Σ.
III. For (k, |Σ|) ∈ S2 there exist k-abelian poor words, but there are no k-
abelian palindromic poor words over Σ having a set of factors that is closed
under k-abelian reversal.

We emphasize that the theorem gives complete classification of pairs (k, l)
for existence of k-poor words for the three cases: the set of factors closed
under reversal, the set of factors closed under k-abelian reversal, and without
any restrictions.

The results can be summarized in Table 2. Here + means that there exist
k-abelian poor words having a set of factors that is closed under reversal over
an alphabet Σ, − indicates that there are no k-abelian poor words over Σ, and
⊖ means that there exist k-abelian poor words, but only with a set of factors
that is not closed under k-abelian reversal. In what follows, we will write
(k, l)-poor words for k-abelian poor words over an alphabet of cardinality l
for brevity.
Proof. First we prove Part I of the theorem by providing constructions of
poor words, and then prove the non-existence for Parts II and III of the
theorem.
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3.1. Proof of Part I

We remark that the existence of a (k, l)-poor word implies the existence
of a (k′, l′)-poor word for each k′ ≥ k and l′ ≥ l. Indeed, for l′ > l to
build a (k, l′)-poor word from a (k, l)-poor word one could split any letter
into several letters in any way (i.e., for a chosen letter a, some occurrences
of a are substituted by one of the l′ − l new letters). The word remains
k-poor, and closure under reversal condition and uniform recurrence can be
preserved. For k′ > k, the statement follows from the fact that every k′-
abelian palindrome is also a k-abelian palindrome for any k ≤ k′. Therefore,
it is enough to build (5, 2)-, (3, 3)- and (2, 4)-poor words.

To construct uniformly recurrent k-abelian poor words we will use a self-
avoiding fractal curve (see Fig. 1).

Let ∆ = {A,B,C,D}. Each letter in this alphabet is assigned a drawing
instruction; here the arrow denotes a line segment of length 1 in the direction
of the arrow:

A : →
B : ↑
C : ←
D : ↓

.

An infinite word w = w1w2 · · · ∈ ∆ω can be translated into a polygonal
line visiting points of the lattice Z

2 by interpreting letters of w as drawing
instructions. We start at the origin (x0, y0) = (0, 0). At step n, we are
at a point (xn−1, yn−1) and we draw a line segment corresponding to the
letter wn, so that we come to a point (xn, yn). For example, for the letter
A, we draw a horizontal line segment of length one “to the right”, so that
(xn, yn) = (xn−1 + 1, yn−1).

It will be convenient to represent points with complex numbers. Let
zn = xn + iyn. Define the morphisms ρ : ∆∗ → ∆∗ and Z : ∆∗ → (Z[i],+)
by ρ(A) = B, ρ(B) = C, ρ(C) = D, ρ(D) = A, Z(A) = 1, Z(B) = i,
Z(C) = −1, Z(D) = −i. Then Z(ρ(u)) = iZ(u): the morphism ρ rotates a
curve by 90 degrees counterclockwise. Now the points zn can be expressed
as zn = Z(prefn(w)).

Lemma 1. There exists a uniformly recurrent word w ∈ ∆ω with the follow-
ing properties:
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(i) F (w) is closed under the map u 7→ ρ2(uR);
(ii) consecutive letters of w correspond to orthogonal segments, i.e., for

all n, wn+1 ∈ {ρ(wn), ρ
−1(wn)};

(iii) the curve associated to w is self-avoiding, i.e., the points zn are
distinct.

Proof. We construct one such word w as the fixed point starting with A of a
morphism ϕ:

ϕ :

A 7→ ABA

B 7→ BCB

C 7→ CDC

D 7→ DAD

.

Alternatively, w can be obtained as the limit of a sequence of finite words
(un) defined by a recurrence formula:

u0 = A

un+1 = unρ(un)un

.

This follows from the identity un = ϕn(A), which is obtained by a straight-
forward induction, using the fact that ϕ and ρ commute.

One has

w = ABABCBABABCBCDCBCBABABCBABABCBCDCBCB · · ·

and a part of the curve associated with w is represented on Fig. 1.
As ϕ is a primitive morphism, the word w is uniformly recurrent [3,

Theorem 10.9.5]. It is clear from the recurrence formula that the words un

are palindromes, and this can also be deduced from the fact that ϕ preserves
palindromicity. Therefore the set of factors of w is closed under reversal.
It is also closed under ρ, as ρ(un) occurs in un+1. Property (i) follows.
Property (ii) is easily proved by induction. We now prove Property (iii) by
contradiction.

Assume that zm = zn for some m < n, and take such a pair (m,n) with
n −m as small as possible. It is clear that n −m 6= 1, as |zm+1 − zm| = 1,
and also that n −m 6= 2, as |zm+2 − zm| =

√
2 by Property (ii). Therefore

n−m ≥ 3.
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•
z0

Figure 1: The self-avoiding curve corresponding to the word u5 with the drawing instruc-
tions A: →, B: ↑, C: ←, D: ↓
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Let m′ and n′ be the integers closest to m/3 and n/3, respectively. Then
|m− 3m′| ≤ 1 and |n− 3n′| ≤ 1, so that |zm − z3m′ | ≤ 1 and |zn − z3n′ | ≤ 1.
We have:

|z3n′ − z3m′ | = |(z3n′ − zn) + (zm − z3m′)| ≤ |z3n′ − zn|+ |zm − z3m′ | ≤ 2.

Now observe that Z(ϕ(u)) = (2+ i)Z(u) (it is sufficient to check it when
u is a letter). It follows that z3m′ = (2 + i)zm′ and z3n′ = (2 + i)zn′ , so that

|zn′ − zm′ | = |z3n′ − z3m′ |
|2 + i| ≤ 2√

5
< 1.

As zm′ and zn′ are lattice points, it follows that zm′ = zn′ . But

0 <
n−m− 2

3
≤ n′ −m′ ≤ n−m+ 2

3
< n−m,

in contradiction with the minimality of n−m.

Now, in order to build k-abelian poor words, we apply morphisms to the
word w constructed in Lemma 1 (for each of the cases (5, 2), (3, 3) and (2, 4)
we provide a morphism):

τ2,4 :



















A 7→ ab

B 7→ cd

C 7→ ba

D 7→ dc

τ3,3 :



















A 7→ abcca

B 7→ abbca

C 7→ accba

D 7→ acbba

τ5,2 :



















A 7→ aabbaabaa

B 7→ aabbabaaa

C 7→ aabaabbaa

D 7→ aaababbaa

.

Since w is uniformly recurrent, the words τk,l(w) are uniformly recurrent.
Observe that, in all three cases, τk,l(C) = (τk,l(A))

R and τk,l(D) = (τk,l(B))R.
It follows that τk,l(ρ

2(uR)) = (τk,l(u))
R for every word u ∈ ∆∗. Since, by

Property (i) of Lemma 1, F (w) is closed under u 7→ ρ2(uR), we conclude
that the sets of factors of the words τk,l(w) are closed under reversal.

We will now prove that τk,l(w) is k-abelian poor over an l-letter alphabet.
The proofs are similar for the three cases.

For the case (2, 4), suppose that τ2,4(w) contains a 2-abelian palindrome v
of length at least 3. Take a factor v′ inside v which is a full image of τ2,4 (i.e.,
possibly you have to crop a prefix and a suffix of v of length at most 1). By
Property (ii) of Lemma 1, consecutive letters of w are never equal, so that the
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factors ab, ba, cd and dc occur only as images of letters of w (and not across
two images), so v′ contains the same number of occurrences of ab (resp., ba,
cd, dc) as v. Since v is a 2-palindrome, then v′ contains the same number
of occurrences of factors ab and ba, and the same number of occurrences of
factors cd and dc. So, the corresponding factor τ−1

2,4 (v
′) of w contains the same

number of occurrences of A and C, and the same number of occurrences of
B and D. This gives a self-intersection of the corresponding curve, which
contradicts Property (iii) of Lemma 1 (note that v′ 6= ε as |v| ≥ 3).

For the case (3, 3), suppose that τ3,3(w) contains a 2-abelian palindrome
v of length at least 7. Take a factor v′ of v which is a full image of τ3,3 and
contains the same middle 3-factors bcc, bbc, cbb, ccb as v (i.e., possibly you
have to crop a prefix and a suffix of v of length at most 3 or extend it with a
letter a to the left or to the right). As in the proof of (4, 2) case, the factors
bcc, bbc, ccb and cbb occur only inside the images of letters of w, so v′ contains
the same number of occurrences of bcc (resp., bbc, ccb, cbb) as v. Since v is a
3-palindrome, then v′ contains the same number of occurrences of factors bcc
and ccb, and the same number of occurrences of factors bbc and cbb. So, the
corresponding factor τ−1

3,3 (v
′) of w contains the same number of occurrences

of A and C, and the same number of occurrences of B and D. This gives a
self-intersection of the corresponding curve, which contradicts Property (iii)
of Lemma 1 (note that v′ 6= ε as |v| ≥ 7).

The proof for the case (5, 2) is essentially the same as the proof for the
case (3, 3), using middle 5-factors instead of 3-factors, so we omit the details.

3.2. Proof of Part II

Assume now that (k, |Σ|) ∈ S1 = {(1, l)|l ∈ N} ∪ {(2, 2), (3, 2)}. Here we
should prove that there are no k-abelian poor words. For k = 1 (i.e., the
abelian equivalence) each word is an abelian palindrome, since every word is
abelian equivalent to its reversal. Therefore, all factors of any infinite word
are abelian palindromes, and hence there are no abelian palindromic poor
words.

In the 2-abelian binary case, 2-palindromes are exactly the words starting
and ending in the same letter. Indeed, the condition is necessary. Conversely,
without loss of generality let a word v start and end with a, and let it
contain m blocks of b’s. Then v contains m occurrences of the factor ab and
m occurrences of the factor ba. Factors aa and bb do not affect 2-abelian
palindromicity; hence v is a 2-palindrome. Since any infinite binary word
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contains infinitely many factors starting and ending with the same letter,
there are no 2-abelian poor binary infinite words.

In the 3-abelian binary case the proof is similar, just a bit more technical.
We omit the details of the proof.

3.3. Proof of Part III

Finally, assume that (k, |Σ|) ∈ {(2, 3), (4, 2)}. Here we should prove that
there exist k-abelian poor words, but there are no k-abelian poor words with
the set of factors closed under k-abelian reversal.

The proofs of the two cases are similar, although the case (4, 2) requires
a more thorough analysis. We start with the case (2, 3).

First we introduce rewriting rules which do not affect the 2-palindromicity:

(1) for x ∈ Σ, substitute xx→ x,
(2) for x, y ∈ Σ, substitute xyx→ x.

Claim (i). Let v be a word, and let v′ be obtained from v by applying a
rewriting rule (1) or (2). Then v is a 2-palindrome if and only if v′ is a
2-palindrome.

Indeed, after applying the rewriting rule (1), the multiset (the set with
multiplicities) of factors of length 2 of v′ is obtained from the multiset of
factors of length 2 of v by removing one factor xx. Clearly, the resulting set
coincides with its reversal if and only if the original set does. After applying
the rewriting rule (2), the multiset of factors of length 2 of v′ is obtained from
the multiset of factors of length 2 of v by removing two factors xy and yx.
Again, the resulting set coincides with its reversal if and only if the original
set does. The claim follows.

Now take a ternary word v and apply rewriting rules until the word does
not contain factors of the form xx and xyx. We call the resulting word the
reduced form of v. We note that the reduced form of v is unique.

The following claim is straightforward:

Claim (ii). 1. The reduced form of any ternary word is a factor of (abc)∞ or
(cba)∞.

2. If u is the reduced form of a ternary word v, then the reduced form of
vR is uR.

3. If two ternary words are 2-abelian equivalent, then they have the same
reduced form.

4. A ternary word is a 2-palindrome if and only if its reduced form is
empty or a letter.

12



Now assume that an infinite ternary word w with its set of factors closed
under 2-abelian reversal does not contain 2-palindromes of length greater
than N for some integer N . Take a factor v = wi · · ·wi+N of length N + 1.
Since the set of factors of w is closed under 2-abelian reversal, there exists an
occurrence of v′R = wj · · ·wj+N for some v′ ∼2 v. Without loss of generality
we can assume that j > i and that the reduced form of v is a word u of the
form (abc)mpref(abc) for some m ≥ 0. Then the reduced form of v′R equals
uR. Now consider the factor wi · · ·wj+N ; it starts and ends with a, and so
does its reduced form. Again without loss of generality, we can assume that
its reduced form is of the form (abc)ra for some r ≥ 0. We will now show
that the factor wi · · ·wj+N has a suffix ws · · ·wj+N , s < j, which is reduced
to a, and hence is a 2-palindrome. To see that, first note that the reduced
form of any non-empty binary word over {b, c} is one of the words b, c, bc, cb.
Then, consider all the suffixes of wi · · ·wj+N beginning with a. The reduced
form of any two consecutive such suffixes is of the form (abc)la, and the
values of l differ by at most 1 (notice that there can be some suffices of the
form (acb)ta, these can be considered as negative powers). So, considering
consecutive prefixes starting with a, we go from nonnegative l = r ≥ 0 to
l = −m < 0, each time increasing or decreasing l by at most 1. So, at some
point we have l = 0, which corresponds to a 2-palindrome. The length of
this 2-palindrome is greater than N , a contradiction.

On the other hand, clearly, the word (abc)ω is 2-abelian palindromic poor,
although its set of factors is not closed under 2-abelian reversal.

Now we continue with the case (4, 2). First we introduce rewriting rules
which do not affect 4-palindromicity:

for x, y ∈ Σ, substitute
(1) xxx→ xx (when this occurrence of xxx is not a prefix or suffix in v)
(2) xxyyxx→ xxyxx
(3) xyxyx→ xyx
(4) xyxxyx→ xyx
(5) xxyxxy → xxy
(6) yxxyxx→ yxx

Claim (iii). Let v be a binary word, and let v′ be obtained from v by applying
one of the rewriting rules (1)–(6). Then v is a 4-palindrome if and only if v′

is a 4-palindrome.

Proof of Claim (iii). To prove the claim for rule 1, we need to consider a
few cases. If xxx occurs as a factor of yxxxx, xxxxy or xxxxx, then after
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applying the rewriting rule (1), the multiset of factors of length 4 of v′ is
obtained from the multiset of factors of length 4 of v by removing one factor
xxxx. Clearly, the resulting set coincides with its reversal if and only if the
original set does. If xxx occurs as a factor of yxxxy, then after applying the
rewriting rule (1), the multiset of factors of length 4 of v′ is obtained from
the multiset of factors of length 4 of v by removing factors yxxx and xxxy
and adding a factor yxxy. Again, the resulting multiset coincides with its
reversal if and only if the original one does.

The proofs for the rules (2)–(6) are simpler than the proof for the rule
(1), since we do not have to consider any cases, so we just write how the
multiset of factors of length 4 changes. It is straightforward to see that the
resulting multiset coincides with its reversal if and only if the original one
does. Besides that, those reductions keep the prefix and the suffix of length
3. Denote the multiset of factors of length 4 of a word u by MF4(u). Then:

(2) MF4(v
′) = MF4(v)− xxyy − yyxx− xyyx+ xxyx+ xyxx

(3) MF4(v
′) = MF4(v)− xyxy − yxyx

(4)–(6) MF4(v
′) = MF4(v)− xxyx− xyxx− yxxy

Here, e.g., after applying the rule (2) the multiset of factors changes as
follows: we remove one copy of each of the factors xxyy, yyxx, xyyx, and
add one copy of each of the factors xxyx and xyxx.

In all the cases the resulting set coincides with its reversal if and only if
the original set does. The claim follows.

Now take a binary word v and apply rewriting rules until the word does
not contain factors of the forms of the lefthandside parts of the rules (1)–(6).
We call the resulting word the reduced form of v (we will prove later that the
reduced form is indeed unique).

Claim (iv). 1. The reduced form of any binary word v is a factor of (aababb)∞

or (bbabaa)∞ (possibly starting or ending with xxx instead of xx), or a short
word of the form aaabaa, aabaa, aaabaaa or aabaaa, up to renaming letters.

2. A binary word v is a 4-palindrome if and only if its reduced form is a
palindrome of length not greater than 7.

Proof of Claim (iv). 1. The proof is summarized on Fig. 2. In this tree
we show all possible words starting with a (starting with b is symmetric),
and on each edge we mark the rule applied. We find out that the tree has
only finitely many branches corresponding to the reduced forms. Now all
possible reductions are obtained as follows: each branch can be cut in any
place, and if terminated with a factor of the form xx for some x ∈ {a, b},
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then one extra copy of x can be added. So, the reduced form of any binary
word v is a factor of (aababb)∞ or (bbabaa)∞, possibly starting or ending with
xxx instead of xx, or one of the short words from the list corresponding to
terminating branches.
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Figure 2: Reductions of words for (k, l) = (4, 2).

2. Consider a 4-palindromic factor v. Without loss of generality its re-
duced form u is a factor of (aababb)∞, possibly starting or ending with xxx
instead of xx. 4-palindromic factors of (aababb)∞ have maximal length 4,
since each factor of length greater than 4 contains one of the factors aaba,
abab, babb, bbaa, and no factor of (aababb)∞ contains the reversals of these
factors. Possible starting or ending with xxx instead of xx increases the
length of the 4-palindrome by at most 2. Considering the two terminating
branches from Fig. 2, we get the maximal length of the 4-palindrome 7 (cor-
responding to the first terminating branch extended by a: aaabaaa). Any
4-palindrome of length at most 7 is a palindrome, since the suffix of length
3 is the reversal of the prefix of length 3. Claim (iv) is proved.

Claim (v). If v ∼4 u, then the reduced forms of v and u coincide.

Proof of Claim (v). To prove the claim it is enough to notice that none
of the rewriting rules (1)–(6) changes the prefix and the suffix of length 3,
nor the difference between the number of each of factors of length 4 and
their reversals. And these define the reduced form uniquely. In fact, these
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differences define the power of aababb in the reduced form. The claim is
proved.

As a direct consequence of the claim above one gets that the reduced form
of v is unique and does not depend on how the rewriting rules were applied.

Now we will prove that the word has to contain long palindromes. The
proof is similar to the proof for the case (2, 3), although in the case (4, 2)
there are a few technical details to verify via case study.

Assume that an infinite binary word w with its set of factors closed under
4-abelian reversal does not contain 4-palindromes of length greater than N
for some integer N . Take a factor v = wi · · ·wi+N of length N + 1. For
technical reasons we assume that it does not start or end with xxx for x ∈ Σ.
Since the set of factors of w is closed under 4-abelian reversal, there exists an
occurrence of a factor v′, v′ = wj · · ·wj+N ∼4 v

R. Without loss of generality
we can assume that j > i and that the reduced form u of v is a factor of
(aababb)∞, i.e., u = zmpref(z) for some m ≥ 0 and some conjugate z of
aababb. We will give the proof for the case z = aababb, the proofs for other
conjugates are symmetric. Now consider the factor wi · · ·wj+N ; its reduced
form is (aababb)raa for some r ≥ 0.

Similarly to the case (2, 3), it is not hard to see that there exists a suf-
fix ws · · ·wj+N , s < j which begins with aab (the same length 3 prefix as
wi · · ·wj+N) and which is reduced to a word without factors of length 6 of
(aababb)∞ or (bbabaa)∞. To see this, consider the consecutive suffices be-
ginning with aab, then the reduced form of these suffices are of the form
(aababb)laa with the values of l differing by at most 1 (possibly with neg-
ative values corresponding to factors of (bbabaa)∞). Therefore, the suffix
ws · · ·wj+N corresponds to the power l = 0. With not too technical case
study one can show that the reduced form of ws · · ·wj+N is a palindrome of
length at most 5, and hence ws · · ·wj+N is a 4-palindrome. The length of
this 4-palindrome is greater than N , a contradiction.

On the other hand, clearly, the word (aababb)ω is 4-abelian palindromic
poor, although its set of factors is not closed under 4-abelian reversal. So,
there exists a binary 4-abelian palindromic poor word, but not with the set
of factors closed under (4-abelian) reversal.

Remark 1. We emphasize that the word τ2,4(w) from our construction in
the case (2, 4) contains only five 2-palindromes: ε, a, b, c, d, which is clearly
the minimal possible number.
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Remark 2. In the conference version [19] of this paper other examples of
k-abelian poor words have been provided. Those examples are based on a
different idea; namely, our constructions are modifications of the so-called
sesquipowers, see, e.g., [25, Chapter 4]. The examples are recurrent, but not
uniformly recurrent. Here we provide the constructions without proofs, and
for the proofs we refer to [19].

We construct an infinite recurrent (2, 4)-poor word as follows:

U0 = abca abda acda,

Un = Un−1(abca)
22

n

(abda)2
2
n

(acda)2
2
n

UR
n−1.

(1)

The required word is obtained as the limit u = limn→∞ Un:

u = abca abda acda(abca)4(abda)4(acda)4adca adba acba(abca)16(abda)16 · · ·
To prove that it contains only finitely many 2-abelian palindromes, we

showed that each factor of length greater than 12 contains either unequal
numbers of occurrences of factors bc and cb, or unequal numbers of occur-
rences of factors bd and db, or unequal numbers of occurrences of factors cd
and dc.

An infinite recurrent (3, 3)-poor word can be constructed as follows:

V0 = bbacc aabcc bbcaa,

Vn = Vn−1(bbacc)
22

n

(aabcc)2
2
n

(bbcaa)2
2
n

V R
n−1.

The word is given by the limit v = limn→∞ Vn:

v = bbacc aabcc bbcaa(bbacc)4(aabcc)4(bbcaa)4aacbb ccbaa ccabb(bbacc)16 · · ·
The proof is based on the fact that each sufficiently long factor contains

either unequal numbers of occurrences of factors bac and cab, or unequal
numbers of occurrences of factors abc and cba, or unequal numbers of occur-
rences of factors bca and acb, and hence is not a 3-palindrome. In other words,
two letter factors of the case (2, 4) are now replaced by suitable three-letter
factors over ternary alphabet.

An infinite recurrent (5, 2)-poor word can be constructed as follows:

W0 = bbbabaaabbb bbbabbaabbb bbbabaabbbb,

Wn = Wn−1(bbbabaaabbb)
22

n

(bbbabbaabbb)2
2
n

(bbbabaabbbb)2
2
n

WR
n−1.

The word is given by the limit w = limn→∞ Wn. The proof is similar
to the previous two examples; here the specific factors are five-letter binary
words abaaa, abbaa, abaab and their reversals.
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4. k-abelian rich words

In this section we show that there exist words of length n which have the
number of inequivalent k-abelian palindromic factors of the same order as
the total number of their factors Θ(n2). In this sense these words contain
“many” k-palindromes and hence are considered as rich.

Theorem 2. Let k be a natural number, k ≥ 2. There exists a positive
constant C such that for each n ≥ k there exists a word of length n containing
at least Cn2 k-abelian palindromes. Actually, we can choose C = 1/4k.

Proof. The word is defined by

v = al(bak−1)m,

where l ≥ k− 1 and m are chosen to give maximal number of k-palindromes
among words of this type. We let ⌊r⌉ denote the closest integer to r, we can
take m = ⌊n−k+1

2k
⌉. Let us count the number of inequivalent k-palindromes

in the word v = v1 · · · vn, n = km+ l. The k-palindromes are the following:

• Starting from position 1, we get the following k-palindromes

– ε (empty word)

– v1, v1v2, . . . , v1 · · · vl (l k-palindromes consisting of only a’s)

– v1 · · · vl+k, v1 · · · vl+2k, . . . , v1 · · · vl+mk (m k-palindromes starting
with ak−1, of length l+ ik and containing i letters b, i = 1, . . . ,m)

• Starting from each position j, j = 2, . . . , l − k + 2, we get the fol-
lowing new k-palindromes: vj · · · vl+k, vj · · · vl+2k, . . . vj · · · vl+mk (m k-
palindromes starting with ak−1, of length l− j + 1+ ik and containing
i letters b, i = 1, . . . ,m)

• Starting from each position j, j = l − k + 3, . . . , l + 1, we get
the following new k-palindromes: vj · · · v2l−j+2, vj · · · v2l−j+2+k, . . . ,
vj · · · v2l−j+2+(m−1)k (m k-palindromes starting with al+1−j, of length
2l − 2j + 3 + (i− 1)k and containing i letters b, i = 1, . . . ,m)

It is not hard to see that all the above k-palindromes are distinct up to
k-abelian equivalence; in fact, they are abelian inequivalent. So, in total we
have (l+1)(m+1) = (n−mk+1)(m+1) distinct k-palindromes. Considering
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this as a function of m, we get that this function takes a maximal value when
m = n−k+1

2k
. Since all numbers are integer there, the actual maximal number

of k-palindromes given by this construction is given by taking the closest
integer value, i.e., m = ⌊n−k+1

2k
⌉ (since the function is quadratic in m). Note

that the condition l ≥ k − 1 is always satisfied then. Taking these values
and taking into account the condition n ≥ k, we derive that the number of
k-palindromes is (l + 1)(m+ 1) ≥ n2/4k.

We remark that in the Θ(n2) number of k-palindromic factors the con-
stant actually depends on k, so it makes sense when n is large relatively to
k.

5. Conclusions

We have considered the numbers of k-abelian palindromes in finite and
infinite words. These numbers are always between a constant and a quadratic
bound, corresponding to so-called poor and rich words. Our main result
was a construction of infinite words containing only finitely many k-abelian
palindromes. This construction was based on a self-avoiding fractal curve and
could be modified for different pairs (k, l), where k was a constant in k-abelian
equivalence and l was the size of the alphabet. For the remaining pairs, to
show that such an infinite poor word does not exist, we used a different
approach, based on rewriting rules preserving k-abelian palindromicity. We
also gave an example showing the existence of rich finite words, that is words
containing the maximal number of k-abelian palindromes up to a constant
multiplicative factor. The bound we found is n2/4k, that is of order Cn2,
where C is a constant independent of n.
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