
Box Particle Filtering for SLAM with Bounded Errors

Peng Wang, Philippe Xu, Philippe Bonnifait, and Jianwen Jiang

Abstract— This paper proposes a set-membership based
method for Simultaneous Localization and Mapping (SLAM). A
Box Particle Filter (BPF) is exploited and improved to estimate
robot states and feature positions, with interval Constraint
Propagation (CP) to reduce box sizes and decrease uncertainties
in estimates. Buffers are also used to get q-satisfied results
when empty estimations arise, on the one hand. On the other
hand, through buffer contraction, historical estimations can be
improved. Illustrations of the proposed method are given over
simulations and experiments, with comparisons with a Particle
Filter (PF) based method. The results show that the proposed
method can reach the same SLAM accuracy as PF based
method with much fewer particles. Moreover, this approach
is more robust to high level uncertainties.

I. INTRODUCTION

In this paper, BPF with CP and buffers is applied to
do SLAM with feature maps. According to [1], SLAM
involves a front end and a back end. The front end mainly
deals with sensor perceiving and signal processing, while the
back end mixes geometry, graph theory, optimization, and
probabilistic theory to construct a model of the environment
and concurrently maintain consistent robot state estimations.
Mainstream SLAM solutions are either solely probabilistic
estimation based techniques (EKF SLAM [2], FastSLAM
[3]), or a combination with other theories (graph SLAM [4],
semantic SLAM [5]). Each solution can perform well under
certain hypotheses where the a priori noise probabilistic
distribution is known.

Set-membership based SLAM is another solution. Inter-
vals or boxes are used as basic operands which drastically
reduces the adverse effects of non-linearity and the prior dis-
tribution is no longer a requirement. The first set-membership
based SLAM algorithm was proposed in [6] and extended
in [7] with a matching step. As measurements are not
directly represented as boxes, an approximation step is used
to eliminate the effects of non-convex regions, which leads
to extra computing burden. But consistent and guaranteed
results were shown in both papers. Porta [8] formalized the
SLAM problem as a typical kinematic problem. Therefore,
the constraints over robot poses and landmarks could be

This work was supported by NSFC (61703387), Anhui Provincial Natural
Science Foundation (1708085QF159) and the Fundamental Research Funds
for the Central Universities (BJ2100100039)

P. Wang is with the Department of Automatic Control and Sys-
tems Engineering, University of Sheffield, S10 2TN Sheffield, UK
Peng.Wang@Sheffield.ac.uk

Ph. Xu and Ph. Bonnifait are with Sorbonne Universités, Université de
Technologie de Compiégne, CNRS, Heudiasyc, 60 203 Compiégne, France
{philippe.xu, philippe.bonnifait}@hds.utc.fr

J. Jiang is with the Department of Automation, University
of Science and Technology of China, 230027 Hefei, China
jjwen@mail.ustc.edu.cn

well modeled. Experimental results showed that all valid
solutions could be maintained, even though there was still
an overestimation issue. Jaulin first [9] introduced CP into
set-membership based SLAM applied to a submarine robot.
An envelope of the robot trajectory and an interval feature
map were built. But as Jaulin mentioned, with strong outliers,
CP may lead to empty sets, which could potentially cause
the loss of robot states. More set-membership based SLAM
methods can be found in [10].

Though with the advantages of generality, simplicity and
reliability, set-membership based SLAM methods still suffer
from drawbacks like overestimation, computational cost, and
empty sets occurring in the process. To deal with these
problems, BPF that has been mainly used for positioning
comes as a potential solution.

BPF is a set-membership variant of the traditional PF. It
was first introduced in [11] to handle interval data by using
interval analysis and constraint satisfaction techniques. The
application of BPF in vehicle global localization showed that
10 particles reached almost the same localization accuracy
as the traditional PF with 3000 particles. Since then, many
researchers applied BPF in different areas. In [12], the
Bernoulli BPF was introduced and applied in tracking a
single target. By carefully designing, Bernoulli BPF can
track the target accurately and is computationally more
efficient compared to Bernoulli PF. A crowd tracking BPF
was proposed in [13]. They generalized the conventional
way of computing the likelihood function when the state
vector consists of kinematic states and extent parameters.
Experimental results showed that the tracking accuracy and
computational time of BPF were quite competitive. The
authors in [14] applied BPF to a vehicle positioning problem
with GPS signals and a 3D map. Together with SIVIA and
q-relaxed technique, good positioning results were obtained
even with GPS signal losses. In [15], the authors introduced
a regularization step after resampling and correction steps to
improve the robustness of the traditional BPF. Its application
in terrain navigation showed that with 200 particles (com-
pared to 5000 particles in PF), the method could significantly
improve the localization accuracy.

In this paper, we show how BPF can be applied to
solve SLAM problems. This approach can report the same
accuracy as classical PF, while using fewer particles and
being much more robust to uncertainty. In addition, we
introduce a way to extend BPF with buffers, which can
reduce box sizes furthermore.

The paper is organized as follows. In section II, the
problem to be solved is formulated based on intervals. The
BPF SLAM algorithm is introduced in section III. Section

IV provides extension of BPF with buffer contraction. In
Section V, two sets of experimental results are provided for
comparison between the proposed algorithm and PF based
method. Section VI concludes the paper.

II. PROBLEM DESCRIPTION

A. Dynamic Model

Classical SLAM problem can be formalized as{
xk+1 = f(xk,uk,mk),

yjk = g(xk, l
j
k,nk),

(1)

where f and g are possibly nonlinear dynamic and measure-
ment models, xk the robot state vector, uk the input vector,
yjk the observation vector, ljk the j-th observed feature stored
in a feature map. mk and nk are respectively the system and
observation noises.

In classical SLAM methods, all variables involved in f and
g are real numbers. But either in BPF or CP, the fundamental
operands are intervals or boxes. Thus, (1) is rewritten as{

[xk+1] = [f]([xk],uk, [mk]),

[yjk] = [g]([xk], [l
j
k], [nk]),

(2)

in which, [f] and [g] are inclusion functions, [xk+1] and [xk]
are box state vectors, [yjk] is the box observation, [ljk] is
the j-th box feature position, [mk] and [nk] are box noises.
Sizes of the boxes at the initial stage can be arbitrarily large
in order to include all feasible values. Note that as uk is
normally known, we do not apply interval on it. But it can
be replaced by an interval if needed.

Based on (2), the objective is to exploit BPF to estimate
robot states and feature positions. The size of boxes is
reduced by using CP while all feasible values are maintained.

B. PF Based SLAM

PF is one of the probabilistic estimation based SLAM
method, and FastSLAM [3] is among the most popular
featured map based algorithms. The key idea of FastSLAM
lies in using a set of particles X = {〈x[i], w[i]〉}i=1,··· ,N
to ultimately estimate the posterior p(x0:k|u1:k, z1:k), where
x = (x0:k, l1:M)T with l1:M = [l1k, · · · , lMk] the state
vector, and u1:k and z1:k are the corresponding inputs and
measurements.

The estimation of the joint distribution of x0:k and l1:M
are complex and computationally consuming. Murphy intro-
duced factorization of the SLAM posterior in [16], which
enabled computing posterior distributions of x0:k and l1:M
as follows:

p(x0:k, l1:M |u1:k, z1:k) =
p(x0:k|u1:k, z1:k)p(l1:M |u1:k, x0:k),

(3)

which now acts as a basic paradigm for PF based SLAM.
We also make the same independent assumption in BPF as
in FastSLAM.

III. BPF BASED SLAM

A. Basic Interval Arithmetic

1) Interval and Inclusion Function: The key contribution
of interval arithmetic lies in that intervals become the basic
operands rather than single numbers. An interval is normally
defined as [x] = [x, x] = {x ∈ R|x ≤ x ≤ x}. Given
intervals [x], [y], and an operator ♦ ∈ {+,−, · · · , /},
[x]♦ [y] is defined as the smallest interval that includes
all feasible values for x♦y. For example, consider a box
[x] = ([x] , [y] , [z]). The center of the box can be computed
by mid([x]) = (x̂, ŷ, ẑ), with x̂ = (x+ x)/2, ŷ = (y + y)

/
2,

and ẑ = (z + z)/2. The volume of the box is computed by
|[x]| = |[x]| · |[y]| · |[z]|, with |[x]| = x− x.

Intervals can be applied to elementary functions or com-
posite functions derived from combination of elementary
functions and basic operators with the help of inclusion
function. Consider a function f : Rn → Rm , an inclusion
function [f] is defined as f([x]) ⊂ [f]([x]) , ∀[x] ⊂ Rn.

2) Constraint Satisfaction Problem (CSP): Though box
guarantees that no feasible values are removed, it brings po-
tential overestimation problem. CSP is usually used to reduce
box size. When there are constraints among components of
a vector x, CSP can be described as finding a solution set
X = {x ∈ [x] |h (x) = 0}, where [x] is the feasible domain
and h(x) = 0 is the constraint. A contractor C is used
to reduce the size of [x] and get [xc] = C([x]), where
X ⊂ [xc] ⊂ [x] [14]. The forward-backward contractor is
the most popular contractor. Normally, whether the box size
is reduced significantly or not depends on the constraints and
innovations used to finish contraction.

3) Q-satisfied Intersection: While computing the inter-
section of multiple boxes, one of the risk is resulting with
empty box. Q-satisfied intersection [17], which exhaustedly
finds the non-empty intersection of the maximum num-
ber of boxes, is a dual operation of q-relaxed intersection
that is used in sub-paving background. Given m boxes
[x]1, · · · , [x]m with the constraints that at least one of them
is non-empty, the q-satisfied intersection of them is defined
as

[x] =
⋂q

j=0
[x]j , (4)

in which, q = max{1, · · · ,m} s.t.
⋂q
j=0 [x]j 6= ∅.

For a given set of m boxes {[x]1, · · · , [x]m}, let q be the
maximum number such that there exists at least one subset
of size q of boxes for which the intersection is not empty,

q = max

|A|
∣∣∣∣∣∣A ⊆ {1, . . . ,m} ,

⋂
j∈A

[x]j 6= ∅

 . (5)

Let A1, . . . , Ak be the resulting k > 0 subsets of size q. We
define the q-satified intersection [x] as the box hull of the
set {A1, . . . , Ak}, i.e., the smallest box containing this set :

[x] = boxhull ({A1, . . . , Ak}) =
⋂{q}

[x]1,...,m. (6)

The q-satisfied intersection operator is noted
⋂{q}.

(a) (b)

Fig. 1. Particle initialization: (a) Traditional BPF; (b) BPF in this paper

B. The BPF Based SLAM Algorithm

SLAM problem described by (2) can be briefly rep-
resented as iteratively updating the robot state and fea-
ture positions {[xk],Lk = [[l1], [l2], · · · , [lk]]} based on
past robot state, input and observations {[xk−1],uk,Zk =
[[z1], [z2], · · · , [zk]]}. But as the propagation continues, box
sizes can either be very large or result in empty sets which
causes a failure of the SLAM.

By combining BPF and CP together, large boxes can be
effectively reduced and the diversities in box sizes provide a
redundancy mechanism to avoid empty sets, resulting in an
accurate and guaranteed SLAM result.

1) Initialization: In traditional BPF, the algorithm is ini-
tialized by performing a sub-paving of a box, whose size
can be determined by an initial covariance matrix. Each
box represents a particle. The intersection of the initial
particle boxes is empty. Such initialization can easily lead
to particle vanishment, i.e., only small boxes around true
states are informative. In this paper, we first generate N
Gaussian points with an expectation equal to the initial
state expectation. Centered on these points, N boxes are
generated. The size of each box should be large enough
to cover initial states, which is reasonable and achievable.
The weight of each particle is initialized as wi0 = 1/N ,
i ∈ {1, 2, · · · , N}. Initialization schemes of the traditional
BPF and the one proposed in this paper is shown in Fig. 1.

2) Prediction: For particle i , suppose that the robot state
at time k is [xik]. Using the dynamical model, we can get a
prediction of the robot state at k + 1 as[

xi,0k+1

]
= [f]([xik],uk), (7)

in which, the superscript 0 is used to distinguish the predicted
state to these obtained from contraction, which are denoted
by superscript j.

3) Measurement Correction: Suppose that m = mn+me

features are observed. After feature association, there are mn

new features and me features that are already registered in
the current map. For the existing features {[li,jk+1]}

me

j=1
, the

corresponding measurements are {[zi,jk+1]}
me

j=1
. With [xi,0k+1]

and the measurement model in (2), me feature predictions
are generated as given by (8):

{[yi,jk+1]}
me

j=1
= [g]([xi,0k+1], {[l

i,j
k+1]}

me

j=1
). (8)

Intersections of {[zi,jk+1]}
me

j=1
and {[yi,jk+1]}

me

j=1
are innova-

tions, which are defined as

{[ri,jk+1]}
me

j=1
= {[zi,jk+1] ∩ [yi,jk+1]}

me

j=1
. (9)

For each set {[xi,0k+1], [r
i,j
k+1]}, there exists a CSP given as

{xi,jk+1 ∈ [xi,0k+1], l
i,j
k+1 ∈ [li,jk+1]|g(x

i,j
k+1, l

i,j
k+1)− ri,jk+1 = 0}.

(10)
We solve this problem with a forward-backward contractor
and get me states after contraction. Together with [xi,0k+1] , we
get me + 1 box estimates of xik+1. Intuitively, a reasonable
estimation should be

[xik+1] =
⋂me

j=0
[xi,jk+1]. (11)

But because the influence of noise, [xik+1] could be empty.
We used q-satisfied approach to get a non-empty box.

[xik+1] =
⋂q

j=0
[xi,jk+1], (12)

where q = max{1, · · · ,me + 1} s.t.
⋂q
j=0 [x

i,j
k+1] 6= ∅.

4) Likelihood and Weight Updates: In traditional BPF,
likelihood is defined as the ratio of the state box sizes after
and before contraction. In a SLAM scenario, we also have to
consider the size changes of the features boxes. Therefore,
the likelihood Ai is computed by:

Ai = Air
∏me

j=1
Ai,jf . (13)

in which, Air = |[^xik+1]|/|[xik+1]| is the likelihood compo-

nent decided by robot state, Ai,jf = |[
^

l
i,j

k+1]|/|[l
i,j
k+1]| is the

likelihood component decided by feature j, and [
^

x
i

k+1] and

[
^

l
i,j

k+1] are the robot state and feature position boxes after
contraction.

Particle weight is then updated by wik+1 = wikA
i.

5) State Estimation: The weight normalization and resam-
pling steps are the same as traditional BPF. By nature, inter-
val analysis based methods do not provide point estimates.
In order to compare to PF, we use (14) to compute a point
estimate,

x̂k = mid
(⋃N

i=1
[xik]

)
. (14)

We use (14) because the resulted point contains more
information about innovations than the weighted centre in
traditional BPF. The reason is that in a weighted centre way,
boxes with small size changes before and after contraction
get higher weights, therefore their centres contribute more
in the final point estimate. But small size changes implicate
less benefits from innovation. As innovations are the most
important (even the only) way to shrink box sizes, it is better
to properly take advantages of innovations. (14) tends to
”uniformaly” integrating information from each box, which
intuitively contains more information from innovations.

The above steps constitute the main body of the BPF
SLAM algorithm, which is shown in algorithm 1.

Algorithm 1 BPF SLAM Algorithm
1: Initialization
2: Set k = 0 and generate N boxes {[xik]}Ni=1 with the

same weights equal to 1/N .
3: for i = 1, · · · , N do
4:

[
xi,0k+1

]
= [f]

([
xik
]
,uik
)

//prediction

5: {[zi,jk+1]}mj=1 //Measurement, m = me +mn

6: if me > 0 then
7:

[
xik+1

]
← q-satisfied estimation //Eq.(8) - (12)

8: Ai = Air
∏me

j=1A
i,j
f //likelihood

9: wik+1 = wikA
i //weight update

10: wik+1 ← wik+1

/∑N
j=1 w

j
k+1

11: x̂k = mid(
⋃N
i=1

[
xik
]
) //state estimation

12: Neff = 1
/∑N

i=1

(
wik
)2

, if Neff < Nth, resample.

13: if mn > 0 then
14: register mn new features {[li,j

k+1
]}mn
j=1.

15: (OPTIONAL BUFFER)
16: k = k + 1, goto step2 until k = kend.

IV. EXTENSION WITH CONTRACTION ON
BUFFERS

The main advantage of BPF SLAM is to have guaranteed
results. However, the resulting boxes may remain too large.
We propose to buffer a certain amount of historical data and
do CP in the buffer to reduce the sizes of the boxes.

Robot state box [xik], feature position boxes {[zjk]}
mk

e

j=1
and input uk need to be buffered. Therefore, each particle i
maintains three buffers to store historical data.
Bir = {[xik−sc+1], [x

i
k−sc+2], · · · , [xik]} is the robot state

buffer at k, where sc is the buffer size.
Bif = {[Zik−sc+1], [Z

i
k−sc+2], · · · , [Zik]} is a feature po-

sition buffer, in which Zit = [zi,jt]
mt

e

j=1 are observations of
existing features at t, and sf =

∑k
t=k−sc+1m

t
e is the total

number of feature observations. It should be noted that the
size of Bif in this paper is considered as sc rather than sf .
Bu = {uk−sc+1,uk−sc+2, · · · ,uk} is the input buffer at

k with the size of sc, which is the same for all particles.
As SLAM is a dynamic process, the amount of data in

a buffer increases step by step until the buffer reaches its
maximum size sc. When the buffer is full, the oldest so data
in each buffer are discarded. Theoretically, so can be any
value in {1, 2, · · · , sc}. The final value should be decided
according to real application requirements.

Buffer size is a very important parameter to be determined.
We found out that the size of a buffer is not proportional
to the amount of box size reduction. That is because as
the buffer size becoming larger, the risk of inconsistent
contraction results increases. So the buffer size should not
be too large, which benefits both consistent contraction and
computation speed.

With the buffers, two CSPs can be built up. The state to

Algorithm 2 On Buffer Contraction Algorithm
Input: Bir, Bif , Bu, loop times n

1: while loop < n do
2: for t = k − sc+1 : 1 : k−1 do
3: [x̃it+1]− [f]([x̃it], ũt, [m

i
t]) = [εx] //CtcFwd

4: for t = k − 1 : −1 : k − sc + 1 do
5: [x̃it+1]− [f]([x̃it], ũt, [m

i
t]) = [εx] //CtcBwd

6: for t = k − sc + 1 : 1 : k do
7: [g]([x̃it], {[̃l

i,j
t]}

mt
e

j=1, [n
i
t])− {[z

i,j
t]}

mt
e

j=1 = [εx]

8: for t = k − sc + 1 : 1 : k do
9: if [x̃it] 6= ∅ then

10: [xit] = [x̃it]
11: else
12: [xit] = α[xit] //α is a constant bigger than 1
13: for t = ts : 1 : tf do //(tf − ts is the related feature

number)
14: if [̃lit] 6= ∅ then
15: [lit] = [̃lit]
16: else
17: [lit] = β[lit] //β is a constant bigger than 1

return {[xih]}kh=k−sc+1, {[lih]}
tf
h=ts

state CSP equation is given as (15),

{xik+1 ∈ [xik+1],x
i
k ∈ [xik]|f(xik,uik)−mi

k+1 = εx}, (15)

and the state to feature CSP equation is shown as (16),

{xik ∈ [xik], l
i,j
k ∈ [li,jk]|g(xik, l

i,j
k)− zi,jk = εy}, (16)

in which, εx and εy are expected errors. Contraction in
the buffer can then be done by using the forward-backward
contractor. It should be noted that during contraction, empty
sets could rise up. It happens partly because the size of the
current box is too small. Therefore, when empty sets arise,
we enlarge box sizes to decrease the possibility of resulting
in empty sets. The reason why we can do this is because
the enlarged boxes can later be decreased during further
contraction. Details are given in algorithm 2.

Now, the buffer extended version of BPF SLAM is to add
algorithm 2 to the end of algorithm 1 (step 15).

V. EXPERIMENTS AND ANALYSES

A. Dynamic Model and Measurement Model

In this paper, we consider a SLAM scenario in which a
wheeled mobile robot is equipped with a dead reckoning
system and a laser scanner. The dynamic model can then be
written as xk+1 = xk + T · vk · cos (θk + T · ωk/2) +mxk

yk+1 = yk + T · vk · sin (θk + T · ωk/2) +myk

θk+1 = θk + T · ωk +mθk

(17)
where [vk, ωk]

T
= uk are inputs, [xk, yk, θk]

T
= xk

constitute the robot state vector, [mxk,myk,mθk]
T

= mk

are the corresponding noises, and T is the sampling period.

Suppose that the position vector of a feature is denoted as
li = [lix, l

i
y]
T , i ∈ N+, then the measurement model can be

written as dk =

√(
(xk − lix)

2
+
(
yk − liy

)2)
+ ndi

lkθ = atan2
(
yk − liy, xk − lix

)
− θk + nθi

(18)

in which, dk is the distance between the robot and feature
li, lkθ is the azimuth angle of li in the robot coordinate,
[ndi, nθi] = nk are the corresponding measurement noises.

B. Experiments and Analyses

The proposed BPF and CP based SLAM algorithm (BPF-
CP) has been tested in simulation and in indoor experiments.
A classical PF SLAM has been implemented for comparison
purposes. A laptop with ubuntu 16.04 LTS OS, 4GB RAM,
and 2.20GHz*4 processor was used to process data.

1) Simulation: A simulated feature map (Map-1) from
[18] was adopted. The map was originally used to implement
fastslam 2.0, which is known as one of the most popular
PF based SLAM method. The results are compared with
fastslam 2.0 directly using codes from [19]. We also used
an interval operation toolbox pyibex [20].

In order to compare BPF-CP to PF SLAM, we set the
parameters of both methods so that the resulting root mean
square error (RMSE) is about the same level. Table I shows
the parameters and the resulting RMSEs. We can see that
with almost similar accuracy, PF needs very small noise
variances, while BPF can cope with much larger uncertainty.
We can also note BPF-CP needs much smaller number of
particles.

Fig. 2(a) and Fig. 2(b) show the final results of BPF-CP
and fastslam 2.0, respectively. Fig. 2(c) shows the final boxes.
We can conclude that most box sizes are reduced while the
true values stay inside the boxes which shows the very good
consistency of the method. We can also see that the size of
the state boxes can increase and decrease. Both q-satisfied
technique and the enlargement when empty boxes arise are
responsible for increase, but boxes normally decrease when
contraction is applied.

2) Real experiments: To test BPF-CP algorithm using real
data, we conducted gmapping in the teaching building No.3
(about 50 m by 35 m) of USTC by using a Pioneer 3-DX
mobile robot. The robot was equipped with a dead reckoning
system to record linear and angular velocities, and a SICK
laser scanner producing 541 points with a FOV of 270◦.
We then randomly sampled 1500 point features to build up
Map-2. Feature locations were decided by the grid map built
up by gmapping. The velocities and scans were kept the
same. We processed these data by using our algorithm and PF
based algorithm. Table II shows the parameters and RMSEs
of the two methods. The results show that we reach the same
conclusion as in the simulation. The final SLAM results are
shown in Fig. 3.

As there are many features, boxes are overlapping. We
provide the box size reductions of the robot states in Fig. 4.
One can notice that position and heading show significant

(a)

(b)

(c)

Fig. 2. Simulation SLAM results: (a) Results by fastslam; (b) Results by
BPF-CP; (c) Final boxes with blue and red for before and after contraction

TABLE I
SIMULATION PARAMETERS OF THE TWO ALGORITHMS

BPF-CP values PF values
state box 50· control cov. [0.32 0;

U([xr], [yr], [θr])a 0 32]
feature box 40· meas. cov. [2.02 0;

U([xf], [yf]) 0 0.122]
box num. 5 particle num. 50

buffer 8 buffer None
discarding 8 discarding None

RMSE 1.21 RMSE 3.09
pose (m) pose (m)
RMSE 1.15 RMSE 0.85
θ (rad) θ (rad)
RMSE 1.82 RMSE 3.18

feature (m) feature (m)

aU(·) means intervals bounds subject to uniform distributions.

TABLE II
PARAMETERS AND PERFORMANCE OF THE TWO

ALGORITHMS

BPF-CP values PF values
state box 50· control cov. [0.052 0;

U ([xr] , [yr] , [θr])b 0 0.52]
feature box 40· meas. cov. [0.12 0;

U
([
xf

]
,
[
yf

])
0 1.02]

box num. 5 particle num. 50
buffer 8 buffer None

discarding 8 discarding None
RMSE 0.63 RMSE-pose (m) 0.75

pose (m) pose (m)
RMSE 0.02 RMSE 1.05
θ (rad) θ (rad)
RMSE 0.62 RMSE 0.76

feature (m) feature (m)

bU(·) means interval bounds subject to uniform distributions.

size reduction before and after the buffer contraction which
highlights the interest of this stage.

We can conclude from this analysis that with less particles
than a PF, BPF-CP provides good results in terms of accu-
racy and consistency, without any requirement on the prior
distribution.

3) Computation time analysis: The q-satisfied robust
method (to cope with empty boxes) and CP on the buffers
(to decrease the box sizes, refer to Fig. 4) have an impact in
terms of computation. Table III shows the computation time
in seconds of BPF-CP, BPF and PF, respectively. We have
repeated five times each simulation and experiment and then
report the average time. With our sotware implementation,
we can see that BPF alone is more efficient than PF with
the same number of particles. BPF-CP with buffers has a
computation time in the same order of magnitude as a PF
with 200 particles. This indicates that the BPF-CP is not too
heavy in terms of computation and the efficiency of this new
approach is quite competitive.

TABLE III
COMPUTATION TIME COMPARISON

Setting BPF-CP BPF PF
50 particles 200 particles

Simulation (s) 282.64 26.62 86.24 300.48
Experiment (s) 1947.18 839.77 1896.40 2024.94

(a)

(b)

Fig. 3. Experimental SLAM results: (a) Results by fastslam; (b) Results
by BPF-CP

(a)

(b)

Fig. 4. Robot state box size comparisons before and after contraction: (a)
Position box sizes; (b) Theta size

VI. CONCLUSION

In this paper, we have shown how to use BPF to solve
SLAM problems. In addition, we have also extend this
approach with buffers, which helps a lot to reduce the
uncertainty. A strong advantage of this approach is that it
is robust to high level uncertainties thanks to the q-satisfied
strategy that has been added in this framework. We have
also demonstrated thanks to simulation and real experiments
that BPF-CP can lead to the same performance as PF with
a computational time that is equivalent.

A perspective is to design more efficient buffer policies
and contraction strategies to improve the efficiency of the
algorithm to make it suitable for online SLAM processes,
with possible solutions lie in parallel computing and buffer
sharing.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrill, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid and J.J. Leonard, Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age, IEEE
Transactions on Robotics, vol. 32, 2016, pp 1309-1332.

[2] H. Durrant-Whyte and T. Bailey, Simultaneous localization and map-
ping: part I, IEEE robotics & automation magazine, vol. 13, 2006, pp
99-110.

[3] S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit, J. Nieto, and E.
Nebot, FastSLAM: An efficient solution to the simultaneous localiza-
tion and mapping problem with unknown data association, Journal of
Machine Learning Research, vol. 4, 2004, pp 380-407.

[4] Y. Latif, C. Cadena, and J. Neira, Robust loop closing over time for
pose graph SLAM, The International Journal of Robotics Research,
vol. 32, 2013, pp 1611-1626.

[5] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, Proba-
bilistic data association for semantic SLAM, in Proc. of the 2017 IEEE
International Conf. on Robotics and Automation, Singapore, 2017, pp
1722-1729.

[6] M. Di Marco, A. Garulli, S. Lacroix, and A. Vicino, Set membership
localization and mapping for autonomous navigation, International
Journal of robust and nonlinear control, vol. 11, 2001, pp 709-734.

[7] M. Di Marco, A. Garulli, A. Giannitrapani, and A. Vicino, A set
theoretic approach to dynamic robot localization and mapping, Au-
tonomous robots, vol. 16, 2004, pp 23-47.

[8] J. M. Porta, CuikSlam: A kinematics-based approach to SLAM,
in Proc. of the 2005 IEEE International Conf. on Robotics and
Automation, Barcelona, 2005, pp 2425-2431.

[9] L. Jaulin, A nonlinear set membership approach for the localization
and map building of underwater robots, IEEE Trans. on Robotics, vol.
25, 2009, pp 88-98.

[10] B. Vincke, A. Lambert, and A. Elouardi, Guaranteed simultaneous
localization and mapping algorithm using interval analysis, in Proc.
of 13th International Conf. on Control Automation Robotics & Vision,
Singapore, 2014, pp 1409-1414.

[11] F. Abdallah, A. Gning, and P. Bonnifait, Box particle filtering for
nonlinear state estimation using interval analysis, Automatica, vol. 44,
2008, pp 807-815.

[12] A. Gning, B. Ristic, and L. Mihaylova, Bernoulli particle/box-particle
filters for detection and tracking in the presence of triple measurement
uncertainty, IEEE Trans. on Signal Processing, vol. 60, 2012, pp 2138-
2151.

[13] A. De Freitas, L. Mihaylova, A. Gning, D. Angelova, and V. Kadirka-
manathan, Autonomous crowds tracking with box particle filtering and
convolution particle filtering, Automatica, vol. 69, 2016, pp 380-394.

[14] V. Drevelle and P. Bonnifait, Localization confidence domains via set
inversion on short-term trajectory, IEEE Trans. on Robotics, vol. 29,
2013, pp. 1244-1256.

[15] N. Merlinge, K. Dahia, and H. Piet-Lahanier, A Box Regularized Par-
ticle Filter for terrain navigation with highly non-linear measurements,
IFAC-PapersOnLine, vol. 49, 2016, pp. 361-366.

[16] K. Murphy, Bayesian map learning in dynamic environments, in Proc.
of 13th International Conf. on Neural Information Processing Systems,
Denver, 2000, pp 10151021.

[17] P. Wang, Q.B. Zhang, and Z.H. Chen, A grey probability measure
set based mobile robot position estimation algorithm, International
Journal of Control, Automation and Systems, vol. 13, 2015, pp 978-
985.

[18] https://openslam.org/
[19] http://www-personal.acfr.usyd.edu.au/tbailey/software/slam simulations/
[20] http://www.ensta-bretagne.fr/desrochers/pyibex/

