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ABSTRACT

Recent observations have found a valley in the size distribution of close-in super-Earths that is interpreted as a signpost that close-
in super-Earths are mostly rocky in composition. However, new models predict that planetesimals should first form at the water ice
line such that close-in planets are expected to have a significant water ice component. Here we investigate the water contents of
super-Earths by studying the interplay between pebble accretion, planet migration and disc evolution. Planets’ compositions are
determined by their position relative to different condensation fronts (ice lines) throughout their growth. Migration plays a key role.
Assuming that planetesimals start at or exterior to the water ice line (r > rH2O), inward migration causes planets to leave the source
region of icy pebbles and therefore to have lower final water contents than in discs with either outward migration or no migration.
The water ice line itself moves inward as the disc evolves, and delivers water as it sweeps across planets that formed dry. The relative
speed and direction of planet migration and inward drift of the water ice line is thus central in determining planets’ water contents.
If planet formation starts at the water ice line, this implies that hot close-in super-Earths (r < 0.3 AU) with water contents of a few
percent are a signpost of inward planet migration during the early gas phase. Hot super-Earths with larger water ice contents on the
other hand, experienced outward migration at the water ice line and only migrated inwards after their formation was complete either
because they become too massive to be contained in the region of outward migration or in chains of resonant planets. Measuring the
water ice content of hot super-Earths may thus constrain their migration history.

Key words. accretion, accretion disks – planets and satellites: formation – planets and satellites: composition –
planet-disk interactions

1. Introduction

The most common type of planet around other stars are close-
in super-Earths with orbital periods of less than 100 days (Mayor
et al. 2011; Mulders et al. 2018). These planets have roughly radii
of 1–4 Earth radii and weight up to 20 Earth masses. Addition-
ally most of these detected planetary systems are in multi-planet
systems with low mutual inclinations and low eccentricities
(Mayor et al. 2011; Moorhead et al. 2011; Xie et al. 2016; Van
Eylen et al. 2018a). The formation pathways of these systems is
still far from being completely understood.

The composition of the planet can hold important clues to its
formation pathway. If the mass of a planet is known through RV
detections and its radius through transit observations, the mean
density of it can be calculated. This gives important information
about the planetary composition through interior structure mod-
els (Valencia et al. 2007; Sotin et al. 2007; Seager et al. 2007;
Fortney et al. 2007; Selsis et al. 2007; Adams et al. 2008; Zeng &
Sasselov 2013; Buchhave et al. 2016). A planet with a mean den-
sity consistent with terrestrial planets most likely formed in the
inner regions of the disc without significant accretion of water
ice, while planets with lower densities could harbour a signif-
icant fraction of water ice. On the other hand, the observed
planetary radius can also be greatly influenced by its atmosphere.

Recent analysis of the Kepler data with follow up analysis
of the host-stars have revealed a gap in the radius distribution

of these super-Earths planets (Fulton et al. 2017). This divides
the super-Earths in two populations, one with a peak at 1.3–1.5
Earth radii and another population with a peak at 2.3–2.5 Earth
radii, separated by a gap in the distribution at about 1.8 Earth
radii.

Considering that these planets are sufficiently close to their
host star, photoevaporation of the planetary atmosphere of small
planets can destroy their entire atmospheres leaving the bare
planetary cores behind (Owen & Jackson 2012; Owen & Wu
2013, 2017; Jin & Mordasini 2018). The same process could even
also evaporate atmospheres of hot Jupiters (Baraffe et al. 2004),
even though this is under debate (Hubbard et al. 2007a,b).

Using the assumption that the observed close in super-Earths
are bare cores and that thus the measured planetary radius cor-
responds to the core radius, interior models of planets have
revealed that the planetary radius distribution is more consistent
with rocky planets than with icy planets.

In photoevaporation models, a rocky composition produces
the gap in planetary radii at 1.8 Earth radii, which seems incon-
sistent with mostly icy super-Earths (Owen & Wu 2013, 2017;
Lopez & Fortney 2014; Jin & Mordasini 2018). On the other
hand, Kurosaki et al. (2014) find that all water ice on the planet
could be evaporated away by the host star, leaving a rocky core
behind independently if water ice was originally present in the
planet or not, if the planet is below 3 Earth masses and very
close to the host star (rp < 0.03 AU).
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However, recent more detailed measurements of stellar dis-
tances and stellar radii seem to have filled in the gap at 1.8 Earth
radii to some level (Fulton & Petigura 2018), indicating that some
fraction of super-Earth planets could indeed be water rich. Tak-
ing the effect of binary stars onto the observations of planetary
radii into account, Teske et al. (2018) have shown that the radius
gap could be reduced even more. Independent observations by
Van Eylen et al. (2018b) find that the gap in the planetary radius
distribution has shifted to 2.0 Earth radii, also more consistent
with water rich super-Earths.

Another alternative to explain the valley in the radius distri-
bution was put forward by Gupta & Schlichting (2018). They
show that the planetary evolution based on a core-powered
mass-loss mechanism alone can produce the observed valley in
the radius distribution. Gupta & Schlichting (2018) also find in
their model that super-Earths should be predominately rocky, but
can contain up to 20% water. On the other hand, Vazan et al.
(2018) find that a 15% deviation in planetary radius can just be
originating from cooling effects of the planet itself.

This clearly implies that super-Earths can either be rocky
or contain a significant fraction of water ice, but more analy-
sis and observations are needed to clearly determine the fraction
of rocky versus icy super Earths. The formation of these super-
Earth systems is subject of many studies (Terquem & Papaloizou
2007; Ida & Lin 2008, 2010; Ogihara & Ida 2009; McNeil &
Nelson 2010; Hansen & Murray 2012; Cossou et al. 2014;
Chatterjee & Tan 2014; Ogihara et al. 2015; Lee & Chiang
2016; Izidoro et al. 2017, 2019), where some studies addition-
ally include tracking their composition (Alessi et al. 2017; Bitsch
et al. 2018a).

The simulations by Izidoro et al. (2017) combined the migra-
tion of already grown planets during the gas phase of the disc
with long term evolution of the system after gas disc dispersal.
During the gas-disc phase, the migrating planetary systems pile
up in resonant chains anchored at the inner edge of the disc,
which can then become unstable after the gas disc dissipates.
These instabilities lead to small mutual inclinations between the
surviving bodies, making the detection of the whole system via
transit observations very hard. When mixing, for instance, 95%
of unstable system with 5% of stable systems (which remain
in resonance and coplanar), the Kepler dichotomy that mostly
single planets are detected can be reproduced very nicely.

Expanding on this model, Izidoro et al. (2019) included the
accretion of the planetary cores via pebble accretion and found
a similar trend that allows to reproduce fairly well the Kepler
observations in terms of systems dynamical architecture and
planet multiplicity. However, as in their model planetary cores
form typically beyond the water ice line, the formed super-Earths
are mostly of icy composition. Only if already interior rocky
planets exist when icy super-Earths start to migrate inwards, is
the formation of rocky close-in super-Earths possible. In this
scenario, inward migrating icy super-Earths tend to encounter
the rocky growing planets and shepherd them inwards (Raymond
et al. 2018; Izidoro et al. 2019).

Raymond et al. (2008) proposed that a combination of planet
composition (icy or rocky) and dynamical architecture could in
principle allow to distinguish between different planet formation
models. Sato et al. (2016) studied the water delivery to planetary
embryos in the terrestrial planet region by icy pebble accre-
tion, finding that the water ice content of the planets is greatly
influenced by the inward movement of the water ice line.

It thus seems important to investigate where the first plan-
etesimals form as this has great impact on the final planetary
composition. Previous simulations seem to indicate that the

water ice line might be the dominant location for the forma-
tion of the first planetesimals (Ros & Johansen 2013; Armitage
et al. 2016; Dra̧żkowska & Alibert 2017; Schoonenberg & Ormel
2017). Naively this would imply that all formed planets at this
location should contain a large water ice content.

In this work here, we focus to calculate the water ice con-
tent of close-in super-Earth and how this allows to distinguish
between the migration and in situ formation scenario for hot
super-Earths. For this we construct a simple model that takes
planetary accretion and migration as well as disc evolution
into account. In this work we do not model planet interiors so
the word “icy” just refers to the water content of the planet,
independent of what state of matter water would be.

Our work is structured as follows. In Sect. 2 we explain our
planet formation model and we show the results of our model in
Sect. 3, were we discuss different migration and ice line evolu-
tion models as well as different pebble accretion rates. We then
discuss the implications of our findings in Sect. 4 and summarize
in Sect. 5.

2. Methods

In the following we present our model to study the composi-
tion of growing and migrating planets in evolving protoplanetary
discs. For simplicity we assume that the planetary embryos only
accrete solids and do not accrete a gaseous envelope, because
hot super-Earths have difficulty retaining their atmosphere dur-
ing the gas phase of the protoplanetary disc (Lambrechts & Lega
2017; Cimerman et al. 2017) and the very close-in hot super-
Earths could lose their atmosphere through photoevaporation
(Kurosaki et al. 2014; Owen & Wu 2017; Jin & Mordasini 2018),
giving rise to the discussion if super-Earths are rocky or icy in
the first place. As our paper aims to understand what determines
the bulk composition of the planetary core, we think no modeling
gas accretion is justified.

2.1. Disc model

We use the disc model described in Bitsch et al. (2015a), which is
based on 2D hydrodynamical simulations featuring viscous and
stellar heating. This disc model is based on an Ṁ approximation,
where the stellar accretion rate Ṁ decreases in time over 5 Myr
using a fixed α parameter of 0.0054. The decrease of Ṁ results
in a reduction of gas surface density, which in turn reduces vis-
cous heating and thus the disc’s temperature. As a consequence
the different ice lines move inwards in time, similar to previous
works (Garaud & Lin 2007; Oka et al. 2011; Baillié et al. 2015).

The evolution of the water ice line is initially very fast (top of
Fig. 1, where t0 marks the initial time and r0 the initial position),
due to the fast diminishing of viscous heating, which moves
the water ice line towards 1.2–1.3 AU in the first Myr (Bitsch
et al. 2015a). This evolution of the temperature will influence the
chemical composition of the planet. Additionally, this disc model
allows for zones of outward migration (see below), which are
exterior to the water ice line (Bitsch et al. 2015a). The same disc
model was used in the planet formation simulations of Bitsch
et al. (2015b), Bitsch & Johansen (2016), Ndugu et al. (2018) and
in the N-body simulations of Izidoro et al. (2017, 2019), Bitsch
et al. (2019).

2.2. Planetary growth

Planetary embryos can grow very rapidly by accreting pebbles
from the disc (Johansen & Lacerda 2010; Ormel & Klahr 2010;
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Fig. 1. Temperature as a function of initial orbital distance r0 and ini-
tial time t0 (top) and the pebble isolation mass as a function of initial
orbital distance r0 and time t0 (bottom) for the Bitsch et al. (2015a)
disc model. The black lines indicate the ice lines of FeS, Fe3O4, H2O,
NH3 and CO2, where the numbers mark their condensation tempera-
tures, see Table 1. The temperature initially decreases very fast due to
the decrease of viscous heating. This in turn reduces the pebble isolation
mass in the inner disc. As the outer disc (r> 6 AU) is dominated by stel-
lar irradiation, the aspect ratio and thus the pebble isolation mass remain
large.

Lambrechts & Johansen 2012; Morbidelli & Nesvorny 2012).
The growth rates in these models then crucially depend on the
amount of pebbles that are available in the disc (Lambrechts &
Johansen 2014; Bitsch et al. 2018b). Additionally, the sizes of
the pebbles influence the accretion rates as well (Lambrechts &
Johansen 2012, 2014) in addition to the evolution of the pebble
and gas surface density (Bitsch et al. 2018b).

Here, we instead use a simplified growth function that
allows planetary embryos to grow from 0.01 Earth masses to
10 Earth masses within 1 Myr at 1 AU without planet migration.
These growth rates are typical for pebble accretion (Johansen &
Lambrechts 2017). We chose 0.01 Earth masses as starting
mass of our planetary embryos, because pebble accretion takes
over planetesimal accretion at this mass range (Johansen &
Lambrechts 2017). The growth function is given by

Ṁcore =

(
Mcore

6330 ME

)2/3 ( r
1 AU

)−0.5
(

ME

Myr

)
, (1)

where the scaling with M2/3
core corresponds to the 2D Hill accre-

tion branch of pebble accretion (Lambrechts & Johansen 2012).

The radial power slope of −0.5 arises from the disc structure
dependency (Johansen & Lambrechts 2017).

Water ice pebbles sublimate when drifting inwards of the
water ice line. This reduces the amount of pebbles available to
be accreted onto the planet and also changes the size of the peb-
bles. Recent simulations have assumed that the silicate pebbles
that drift into the inner disc are only mm in size (Morbidelli et al.
2015), corresponding to the size of chondrules. This reduces the
accretion rate. We assume here that the accretion rate onto plan-
ets is reduced by a factor of 4 if the planet is interior to the
water ice line (r < rH2O). We note that the growth rate of Eq. (1)
corresponds to the unreduced growth rate as if icy pebbles are
available (r > rH2O).

Planet accretion stops at the pebble isolation mass, where the
planets start to carve a small gap in the gas surface density, gener-
ating a pressure bump exterior to its orbit. In this pressure bump,
pebbles can accumulate and do not reach the planet any more,
which thus stops accreting pebbles. The pebble isolation mass
depends on the disc’s aspect ratio, viscosity and radial pressure
gradient (Lambrechts et al. 2014; Bitsch et al. 2018c). We use
here a simplified version of the pebble isolation mass which only
depends on the disc’s aspect ratio:

Miso = 25
(

H/r
0.05

)3

ME. (2)

We note that our disc model thus implies that the pebble isolation
mass is large in the outer disc due to the larger aspect ratio. We
show the pebble isolation mass as a function of radial position
and initial time for our disc model in the bottom of Fig. 1.

The disc structure leads normally to very small aspect ratios
(around 2–2.5%) in the inner disc (within 1 AU) at late times,
which results in very small core masses of 1.6–3.0 Earth masses,
which is a bit smaller than typical super-Earth planets (bottom
of Fig. 1). In this type of model, super Earths with larger masses
can thus either form from collisions of small Earth mass bodies
in the inner disc or by larger planets that migrate inwards from
the outer disc. Bodies from the outer disc, however, have to cross
the water ice line so their composition might be more water rich
than bodies formed in the inner disc. In the following we investi-
gate the interplay between accretion and migration speed as well
as the evolution speed of the water ice line on the composition
of the planet.

In our simulations, we only evolve single planets, so that
effects of pebble filtering that could hinder the growth of
interior planets (Lambrechts & Johansen 2014), are not taken
into account (see Sect. 4). Additionally, mutual interactions
between planets can account for different migration behaviour
(see Sect. 4).

2.3. Planet migration

Planets in gaseous discs interact gravitationally with the disc,
exchanging angular momentum with the disc that leads to plane-
tary migration (for a review see Kley & Nelson 2012 or Baruteau
et al. 2014). Here we include the effects of the Lindblad and
corotation torques to calculate the planet migration rates. We fol-
low the torque formula published by Paardekooper et al. (2011),
which gives good agreement to 3D hydrodynamical simulations
(Bitsch & Kley 2011; Lega et al. 2015).

If the radial gradients in gas surface density and entropy,
determined by the disc’s temperature, are steep enough, planets
can migrate outwards. This leads to zones of outward migra-
tion attached to the water ice line in our disc model (Bitsch
et al. 2015a). In the here presented work we will additionally
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Table 1. Condensation temperatures and volume mixing ratios of the chemical species.

Species (Y) Tcond (K) vY

CO 20 0.45 × C/H (0.9 × C/H for T < 70 K)
CH4 30 0.45 × C/H (0 for T > 70 K)
CO2 70 0.1 × C/H
NH3 90 (a) N/H
H2O 150 O/H - (3 ×MgSiO3/H + 4 ×Mg2SiO4/H + CO/H

+ 2 × CO2/H + 3 × Fe2O3/H + 4 × Fe3O4/H)
Fe3O4 371 (1/6) × (Fe/H–S/H)

C (carbon grains) 500 0
FeS 704 S/H

Mg2SiO4 1354 0.75 × Si/H
Fe2O3 1357 (b) 0.25 × (Fe/H–S/H)

MgSiO3 1500 0.25 × Si/H

Notes. Condensation temperatures for molecules from Lodders (2003). (a)Condensation temperature for NH3 from Thiabaud et al. (2015). (b)For
Fe2O3 the condensation temperature for pure iron is adopted (Lodders 2003). Volume mixing ratios vY (i.e. by number) adopted for the species as
a function of disc elemental abundances (see e.g. Madhusudhan et al. 2014).

test two other migration scenarios, (i) an in situ planet formation
scenario, where the planets do not migrate and their composi-
tion is strictly given by their position relative to the ice lines
and (ii) where planets are only allowed to migrate inwards, due
to a low viscosity1. Low viscosity will saturate the corotation
torques, even when large radial gradients in entropy are present
(Baruteau & Masset 2008) and planets will still migrate only
inwards.

However, if multiple planets are present in the protoplane-
tary discs, they excite their eccentricities which can quench the
entropy driven corotation torque (Bitsch & Kley 2010) and stop
outward migration. A chain of small mass planets, where sin-
gle planets would migrate outwards, would then migrate inwards
(Cossou et al. 2013; Izidoro et al. 2017, 2019). This could have
important consequences for the composition of the individual
planets, but is not modeled here and will be investigated in future
work.

2.4. Chemical composition of planets

In order to account for the chemical composition of the planet,
we include only the major rock and ice forming species. The
mixing ratios (by number) of the different species as a function
of the elemental number ratios is denoted X/H and corresponds
to the abundance of element X compared to hydrogen for solar
abundances, which we take from Asplund et al. (2009) and are
given as follows: He/H = 0.085; C/H = 2.7 × 10−4; N/H = 7.1 ×
10−5; O/H = 4.9 × 10−4; Mg/H = 4.0 × 10−5; Si/H = 3.2 × 10−5;
S/H = 1.3 × 10−5; Fe/H = 3.2 × 10−5.

These different elements can combine to different molecu-
lar species. We list these species, as well as their condensation
temperature and their volume mixing ratios vY in Table 1. More
details on the chemical model can be found in Madhusudhan
et al. (2017) and Bitsch et al. (2018a).

We note that we only change the accretion rate of a planet
at the water ice line. For all other ice lines, the accretion rate is

1 This assumption is based on new results of disc evolution (Bai 2016;
Suzuki et al. 2016), where the angular moment is transported via disc
winds, while the midplane remains laminar with low viscosity, resulting
in inward migration of planets (Kanagawa et al. 2018; Ida et al. 2018).

unaffected. This then also implies that as the total mass a planet
accretes in each timestep is the same, the composition of the
accreted material solely depends on the planets position relative
to the ice lines. The amount of each molecule that is accreted
then follows their relative abundances to each other as stated in
Table 1. This also means that planets formed in a disc tempera-
ture range of 90–150 K accrete the largest water ice fraction by
mass in our model, corresponding to ∼35%. The exact plane-
tary composition is related to our chemical model, where the
other parts of the planetary composition by mass for planets just
formed at r > rH2O correspond to Fe3O4 (7.5%), FeS (12.3%),
Mg2SiO4 (11.9%), Fe2O3 (7.8%) and MgSiO3 (25.5%). Planets
formed at T < 90 K additionally accrete NH3, reducing the frac-
tion of all other elements inside each pebble and thus also of
the planet they accrete on. This means that planets forming at
T < 90 K will have a smaller abundance of each molecule com-
pared to planets forming just at T > 91 K, but will feature NH3.

Super-Earths are found around host stars of different types
with various metallicities and element abundances (Buchhave
et al. 2012, 2014; Brewer et al. 2018). Differences in the chemical
abundances, especially of oxygen, can lead to different formation
pathways of super-Earths (Bitsch & Johansen 2016), but we will
keep solar abundances for all chemical elements for this work.
Our model is also designed for solar type stars, but could be
easily expanded for different stellar types. We note that the max-
imum water ice fraction by mass planets can have in our model
is ∼35%, which is actually not too far away from the proposed
20% water content for super-Earths by Gupta & Schlichting
(2018). This value could also change for exoplanet systems due to
abundance differences for the different chemical elements, mak-
ing detailed stellar abundance studies of planet host stars very
important for planet formation studies.

3. Composition of planets

Even though our model allows to study the detailed composition
of planets, we will focus here only on the water ice fraction that
the planet has accreted. We are especially interested in the inter-
play between migration and the ice line evolution, so we present
in the following the different scenarios of the interplay between
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Fig. 2. Water ice fraction of the planets for a model where the water ice
line is fixed at ∼5.5 AU and the planets do not migrate. The labels of
r0 and t0 indicate where and when a planetary embryo was introduced
into the disc. The white and black lines correspond to the lines of FeS,
Fe3O4, H2O, and NH3. Only planets forming exterior to ∼5.5 AU (at
T < 150 K) can contain water ice. These planets contain by mass about
∼35% of water ice, which is the maximum allowed in our chemical
model.

migration and ice line evolution. We then also discuss scenarios
with only inward migration and different accretion rates.

3.1. No ice line evolution without planet migration

In this scenario the water ice line is fixed in time and the planets
do not migrate. The planetary composition is thus solely deter-
mined by the planetary starting position and if the planetary
embryo is initially placed inside or outside the water ice line.

In Fig. 2 we present the water ice fraction (ice to rock ratio)
of the planets formed in our model, where the water ice line is
fixed at ∼5.5 AU and the planets do not migrate. Obviously only
planets in the parts of the disc where T < 150 K contain water
ice. These planets actually contain ∼35% of water ice, which
is the maximum allowed in our model. Planets formed interior
to the water ice line then contain, by definition of our model,
no water ice at all and consist of a rocky composition. Planets
formed exterior to the NH3 ice line at 90 K contain less water
ice, because now additionally NH3 ice is accreted reducing the
amount of water ice accreted.

This already indicates that in the situation of a non evolving
disc and no planet migration that the chemical composition of
a formed planet is solely dependent on the underlying chemical
model. Additionally, it indicates that in this formation scenario
super-Earths with a presumable icy component like GJ1214b
(Fraine et al. 2013) or HAT-P-11b (Fraine et al. 2014) could
only be formed if they were scattered to the inner disc. These
two planets have eccentricities of around ∼0.2, indicating that
dynamical instabilities and scattering events might actually have
occured in these systems. Although some super-Earths may have
been scattered to the inner disk by gas giant planets (Raymond
et al. 2011), it is very unlikely this scenario can account for
the majority of super-Earths systems. Super-Earths systems have
low orbital eccentricities (∼0.1) and low inclinations of up to
a few degrees (Mayor et al. 2011; Moorhead et al. 2011; Xie
et al. 2016; Van Eylen et al. 2018a), indicating that high eccen-
tricity/inclination scattering events by outer gas giant planets
(Raymond et al. 2011) are probably very rare in these sys-
tems and can potentially not account for the majority of water
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Fig. 3. Same as Fig. 2, but planets are allowed to migrate. The purple
and red lines mark the final positions of the planets. Planets in between
the lines marked with 0.1 and 0.3 AU have a final position between
0.1 and 0.3 AU. Most planets migrate into the inner edge of the disc
at 0.1 AU. Planets forming exterior to the water ice line (r> rH2O) first
accrete water rich material, but then migrate inwards accreting mostly
rocky material resulting in a low water ice fraction of the planet. This
results in a composition gradient of the planets with respect to the water
ice line.

rich super-Earths. Super-Earths orbital eccentricities and incli-
nations are more likely outcomes of dynamical instabilities and
scattering events among low mass planets (Izidoro et al. 2017,
2019).

3.2. No ice line evolution with inward/outward planet
migration

In Fig. 3 we present the water ice fraction of the planets, where
the water ice line is fixed at ∼5.5 AU meaning that we do not
evolve the disc at all, but the planets are allowed to migrate.
Planets that originate from the outer disc accrete first water rich
material, but eventually migrate inwards across the water ice
line, where they then only accrete rocky material2. This leads
to a water fraction that can be just a few percent, even for plan-
etary embryos originating in the water ice rich parts of the disc.
Planets forming at late times are staying relatively small, so that
their migration is negligible, and they never cross the water ice
line. These planets thus accrete the maximum water fraction of
∼35% allowed in our model.

Inward migration of planets seems to be key in order to form
planets with different water content (alongside disc evolution,
see below) within the same system. Our simulations here predict
that the water ice content should be well below ∼35%, unless the
planets grow to pebble isolation mass before migrating across the
water ice line. This happens either for late formation times or if
planets form far out in the protoplanetary disc.

The mechanism of forming planets at the water ice line and
then migrating them inwards was also proposed by Ormel et al.
(2017) to explain the formation of the Trappist-1 system (Gillon
et al. 2016, 2017). A formation scenario like this would imply
that planets formed directly at the water ice line have a simi-
lar composition and thus, if no atmosphere is present, a similar
density. The densities of the planets in the Trappist-1 system are
roughly 0.6–1.0 ρE (Gillon et al. 2017), indicating that a larger

2 Our disc model allows outward migration, but as we keep the disc
structure fixed at t = 0, planets in the outer disc need to be around 20 ME
to migrate outwards (Bitsch et al. 2015a). However, before the planets
can reach these masses they have already migrated to the inner disc.
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Fig. 4. Water ice fraction of the planets for a model where the water
ice line evolves in time as indicated in Fig. 1 and the planets are not
migrating. The black and white lines correspond to the temperature at
the given time t0. As the growth of the planets takes several Myr, the
ice line sweeps over the planet’s location also if the planet is initially at
r< rH2O. Only planets forming exterior to T = 150 K can contain water
ice. These planets can contain up to about ∼35% of water ice, which
is the maximum allowed in our chemical model. In the outer part at
T < 70 K, the water ice fraction decreases again, because our chemical
model allows for more CO production which binds oxygen efficiently
resulting in a smaller water ice fraction.

fraction of water compared to Earth could be present in the
planets supporting this scenario.

The planets Trappist-1c and Trappist-1e seem to have a den-
sity similar to Earth, indicating a rocky nature of the planet,
while Trappist-1b, d, f, g and h require envelopes of volatiles in
form of thick atmospheres, oceans or ice, with a water mass frac-
tion of less than 5–10% (Grimm et al. 2018). This could imply
that the planets for Trappist-1 formed at different distances to the
water ice line and thus Trappist-1c and 1e probably very close to
it and always stayed interior to the water ice line.

3.3. Ice line evolution without planet migration

In Fig. 4 we show the water ice fraction of planets where the
water ice line evolves in time, but the planets are fixed to their
initial orbit and do not migrate. Only planets that are situated at
r> rH2O or are swept by the water ice lines’ inward movement
can contain water. Nevertheless, we observe a large diversity in
the water ice fractions for our planets. Planets that are swept by
the water ice line only at the end of their growth phase contain
a water fraction less than ∼35%. Only planets that are already at
r> rH2O or close to rH2O contain these large water fractions. Sur-
prisingly, most planets in our model either only contain a large
water fraction or no water at all.

Planets at larger orbital distances actually contain less than
∼35% water ice, even though water ice is always in solid form.
This is related to two different ice-lines that also move inwards
in time: the NH3 and the CO2 ice line. As the NH3 ice line
sweeps over the planets, they start to accrete NH3 ice. This pro-
cess reduces the water ice fraction, because the planet accretes
more different materials, but still accretes at the same growth
rate. We note that we do not include any effects of different
growth rates for the CO2 or NH3 ice lines, only for the water
ice line.

When the CO2 ice line sweeps over the planets the same pro-
cess happens, namely that planets accrete now additionally CO2
ice, reducing the water ice fraction. Additionally our chemical
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Fig. 5. Same as Fig. 4, but planets are allowed to migrate through the
disc. The yellow lines mark the final masses of the planets which around
2–3 Earth masses. Due to our disc model, planets exterior to the water
ice line (r> rH2O) migrate outwards and stay exterior to the water ice
line until disc dissipation. This thus results in very similar water ice
fractions in the planets compared to Fig. 4 where planets do not migrate.
Only planets that form close to the central star at late times have orbits
interior of 0.7 AU. Planets forming earlier and farther out are caught in
the region of outward migration, which leaves them stranded at exterior
orbits in the region of outward migration (yellow line in Fig. 7).

model increases the amount of CO when T < 70 K. This excess
CO reduces the amount of water ice, due to the binding of oxygen
in CO leaving less oxygen for the water ice. This greatly reduces
the water ice abundance in the planet (light blue in Fig. 4).

Our simulations also show that planets that are originally
interior to the water ice line can accrete water ice due to the
inward movement of the water ice line, similar as in Sato et al.
(2016). Planetary embryos that are formed at an orbital distance
down to the final position of the water ice line at 5 Myr will
accrete water in our model. The water ice fraction then depends
slightly on how fast the planets can grow in respect to the inward
movement of the water ice line. This corresponds to the planets
that are interior to the 150 K line marked in Fig. 4. Similar effects
happen for the other ice lines.

3.4. Ice line evolution with inward/outward planet migration

In Fig. 5 the water ice line evolves in time, but also the planets
are allowed to migrate. Here the water ice fraction in the cold
parts of the disc (T < 90 K) evolves due to the process mentioned
above. As the planets start to grow, they migrate through the disc.

In the used disc model of Bitsch et al. (2015a), planets
formed exterior to the water ice line can migrate outwards, if they
become large enough (see the yellow growth track in Fig. 7). In
contrast to Fig. 3 the disc evolves in time and thus the region of
outward migration shrinks in time and also smaller planets can
experience outward migration (Bitsch et al. 2015a). In this disc
model, the pebble isolation mass, which is the maximum mass
planets can grow to in our model, results in planetary masses that
can experience outward migration. Thus planets that start grow-
ing by pebble accretion once the water ice line has swept over
them, will stay in the cold part of the disc until disc dissipation
and thus they all have a large water ice content.

It seems that the water ice fraction of the planets in the case
of outward migration is very similar to the case when the planets
do not migrate at all (Fig. 4). However, the final planetary masses
are slightly lower in the migration case, because planets always
migrate to the minimum in H/r (Bitsch et al. 2013), which is also
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Fig. 6. Same as Fig. 5, but planets only migrate inwards. Planets can
then start to grow exterior to the water ice line (r> rH2O) and then
migrate inwards resulting in a water ice gradient of the planets depend-
ing on their exact formation position in respect to the water ice line.
Planets forming before 3–3.5 Myr all end up migrating to the inner edge
at 0.1 AU (red/purple lines) in contrast to Fig. 5, because planet migra-
tion is only directed inwards. The final planetary masses though, are
very similar to the previous simulations.

the minimum of the pebble isolation mass and hence planetary
mass.

Hot super-Earths with large ice content could thus only be
formed by either scattering from the outer disk into the inner
parts or by chains of planets that migrate inwards together3. We
note that even rocky planets that form early (<1.5 Myr) in the
inner disc end up at orbits exterior to 0.7 AU (see green line in
Fig. 7). This is related to the evolution of the region of outward
migration in the disc, which allows planets of around 2–5 Earth
masses to migrate outwards at the late stages of the disc evolu-
tion, even when they are in the inner disc (Bitsch et al. 2015a),
as invoked in Raymond et al. (2016) to explain the formation of
Jupiter’s core. This leads to only a small fraction of parameter
space that allows the formation of close-in rocky super-Earths.
Multi-body dynamics, on the other hand, can change the late
migration history of the growing planets and is discussed in
Sect. 4.

3.5. Ice line evolution with only inward migration

In this section, we only allow inward migration of planets and
suppress outward migration, but keep the disc evolution the same
as in the previous section and present the water ice fraction in
Fig. 6. The migration rates are calculated using αmig = 0.0001,
which describes the viscosity used for planet migration. This
value is low enough to prevent outward migration through the
entropy driven corotation torque. The planetary embryos migrate
inwards faster than the water ice line evolves. This can be seen
by two effects:
1) The planetary embryos starting interior to the water ice

line (interior to the 150 K line) never accrete water, except
in the early stages when the water ice line evolves inward
faster than the planets migrate. Even if the water ice line
sweeps eventually over the initial planetary starting posi-
tion later on, the planet will not accrete water ice, because it

3 Mutual interactions of multiple bodies increase their eccentricities,
which reduces the contribution of the entropy related corotation torque
(Bitsch & Kley 2010), which can allow the chain of planets to migrate
inwards together (Cossou et al. 2013).
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Fig. 7. Growth tracks of six planetary embryos, which start at either 1
or 5 AU, where three different growth scenarios are invoked: the normal
one (Eq. (1)) and a growth that is 4 times faster and 4 times slower. The
planets start at t = 0 Myr. The dots mark the pebble isolation mass, when
planets stop growing. The planet growing at 1 AU with slow growth
never reaches pebble isolation mass until the end of the discs lifetime.
The solid contours mark the regions of outward migration at disc ages
of 3 and 5 Myr, where planets inside of these contours can migrate out-
wards. All growth tracks are for scenarios where planets are allowed to
migrate outwards. The small tics on the top mark the position of the
water ice line at 3 and 5 Myr. The green growth track (1 AU, normal
growth) features an interesting trajectory: the planet first migrates all
the way out to 3 AU at 3 Myr, but then follows the zero torque region
(Γ0) and migrates inwards with it. The planet is thus rocky in composi-
tion (pebble isolation reached interior of 1 AU), but its final position is
exterior to the water ice line (r> rH2O).

already migrated inwards further, because the inward migra-
tion is faster than the water ice line evolution. This happens,
for example, for the planetary embryo starting at 1 AU at
t0 = 1 Myr.

2) Planetary embryos forming in the cold part of the disc
(T < 150 K) close to the water ice line do not accrete the max-
imum fraction of water ice (∼35%). Instead as they start to
grow, their migration speed increases and they can migrate
inwards of the water ice line where they then finish their
formation by accreting rocky materials, thus reducing their
water ice component.

This clearly illustrates that the evolution of the water ice line and
the migration of planets play in unison an important role in deter-
mining the water ice fraction of formed super-Earths. Planetary
systems with multiple super-Earths, where planets have different
densities are thus a signpost of the inward movement of the water
ice line or of planet migration (or both).

Additionally, it clearly shows that if regions of outward
migration are attached to the water ice line and if planet for-
mation starts at the water ice line, the born planets should have
a large water ice content. Smaller water ice contents are only
possible if planets form at or beyond the water ice line, but
then migrate inwards during their growth eventually entering the
hotter regions of the disk (T > 150 K).

3.6. Faster and slower growth rates

The results of the previous simulations imply that migration and
ice line evolution play a crucial role in determining the water
ice content of forming planets. Additionally, the accretion rate is
important, because it determines how much a planet that forms
interior to the water ice line at r< rH2O can grow before it is
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Fig. 8. Same as Fig. 5, but planets grow with a 4 times faster growth
rate (top) or 4 times slower growth rate (bottom). For faster growth rates
planets grow bigger, especially in the early stages of the disc evolution
when the pebble isolation mass is still large. Additionally the fast growth
also interior to the water ice line allows planets to reach large masses and
migrate inwards even before they are swept by the water ice line. Slow
growth shows exactly the opposite behaviour, namely that planets stay
small and that they will not migrate significantly before they are swept
by the water ice line.

eventually swept by the water ice line. In Fig. 7 we show the
growth tracks of planets featuring different growth rates and in
Fig. 8 we show the water ice content of growing planets formed
with 4 times faster (top) and 4 times slower (bottom) growth
rates.

Fast accretion allows planets that form interior, but close to
the water ice line, to grow fast enough to migrate inwards before
their location is swept by the water ice line. Therefore a clear
distinction in the water ice content related to the water ice line is
visible.

In Fig. 5 planetary embryos that are introduced before
1.5 Myr in the inner regions of the disc grow to become rocky
planets with orbits exterior to 0.7 AU. The growth track of such
a planet is shown in Fig. 7 marked by the solid green curve. If
the planets, on the other hand, grow faster, they reach a higher
pebble isolation mass at an early disc evolution stage, and attain
a mass that is too high for outward migration. The planets thus
migrate all the way to the inner edge of the disc (see the solid pur-
ple growth track in Fig. 7) and stay there until disc dissipation.
Fast growth exterior to the water ice line allows the planets to
grow bigger and they would also migrate all the way to the inner
disc, because they can not be contained by the region of outward

migration at the late stages of the disc evolution (dashed purple
line in Fig. 7).

Slower planetary accretion produces more planets with non-
zero water ice contents, because the ice line’s fast evolution
sweeps across a large fraction of the disc before planets can
migrate away. On the other hand, planets that are initially located
at r> rH2O will have a lower water ice content if they only migrate
inwards (Fig. 6), because they migrate inwards earlier into the hot
inner disc, resulting in the accretion of more rocky material like
in Fig. 5. Additionally, the planets growing slowly close to the
water ice line (bottom in Fig. 8) never migrate all the way to the
inner disc edge, as also in the nominal growth case (Fig. 5). In
fact in some cases the growth is so slow that planets in the inner
disc do not even reach pebble isolation mass (see the growth
track marked in solid yellow in Fig. 7).

We thus conclude that the pebble accretion rate can have an
important influence on the water ice content of the planets, but
as long as outward migration is allowed, this will mostly influ-
ence planets exterior to a final position of 0.7 AU, where it is very
hard to probe the water ice composition of planets via observa-
tions. Rocky planets that end up at the inner disc edge have to
form in this scenario interior to the water ice line and they have
to form early with high pebble accretion rates, as all other mech-
anisms do not allow rocky planets to migrate into the inner edge.
In the case of fast accretion rates (top in Fig. 8) some planets
(starting at r0 > 5 AU and t0 < 300 kyr) with large water ice con-
tents migrate towards the inner disc edge. However these planets
are quite massive (around 10 Earth masses), implying that they
should undergo gas accretion in some form. These planets are
then too massive to have lost their atmosphere via the interac-
tions with their host star, making a composition determination
not possible.

This result might of course change when taking multi-body
dynamics into account, because eccentricity excitations quench
the corotation torque preventing outward migration (Bitsch &
Kley 2010). On the other hand, if only inward migration is
allowed (Fig. 6) purely rocky planets and planets with different
water ice contents can easily migrate towards the inner disc edge.

We note that the N-body simulations of Izidoro et al. (2019)
actually require for the formation of rocky super-Earths a fast
enough growth for embryos initially located at r< rH2O. The
requirement of fast early growth in Izidoro et al. (2019) is due
to the outward migration of planets that are initially located at
r< rH2O and are then swept by the ice line (planets below the
H2O line at t< 1 Myr in Fig. 5) and would then accrete water
rich material.

4. Discussion

In this section we discuss first some caveats and then some impli-
cations of our model on the composition of super-Earths planets.
We show in Table 2 the summary of our simulations and their
results.

4.1. Migration

In our models, we have tested three different migration prescrip-
tions: (i) no migration (Figs. 2 and 4), (ii) nominal outward
migration (Figs. 3 and 5) and (iii) only inward migration (Fig. 6).

The radial extend in which outward migration is possible is
related to the opacity transition at the water ice line (Bitsch et al.
2013, 2014, 2015a; Baillié et al. 2015). More precise, outward
migration is possible exterior (r> rH2O) to the water ice line.
Planetary embryos forming in this region thus migrate outwards
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Table 2. Summary of our simulation results for the different models.

Ice line evolution Planet migration Water content of inner planets (r < 0.3 AU) Figure

No No Only rocky by construction, no water rich planets Fig. 2
No Yes Mostly rocky, some water rich planets originating from beyond rH2O Fig. 3
Yes No Only rocky by construction, no water rich planets Fig. 4
Yes Yes Only rocky planets, water rich planets trapped outside of 0.7 AU Fig. 5
Yes Only inwards Rocky and icy planets with composition gradient depending on r0 Fig. 6
Yes Yes Fast growth allows rocky interior planets, no inner water rich planets Fig. 8 (top)
Yes Yes Slow growth allows rocky interior planets, no inner water rich planets Fig. 8 (bottom)

Notes. Observational predictions imply that close in super-Earth planets (r < 0.3 AU) are predominately rocky, but that there are also icy super
Earths (Owen & Wu 2013; Lopez & Fortney 2014; Fulton & Petigura 2018; Jin & Mordasini 2018; Van Eylen et al. 2018b). Only the models shown
in Figs. 3 and 6 allow for rocky and ice rich inner planets within the same framework, but the water ice line of the model presented in Fig. 3 does
not evolve in time, which we deem unrealistic.

if they can reach the masses required for outward migration (this
mass is higher in Fig. 3 compared to Fig. 5). This will change
the water ice fraction of the planets significantly. Addition-
ally to that, pebble isolation happens at lower planetary masses
compared to the maximum mass what the region of outward
migration can contain (Bitsch et al. 2015b; Izidoro et al. 2019).
Planets reaching pebble isolation mass exterior to the water ice
line (up to a few AU beyond the water ice line) thus always end
up in the region of outward migration. This thus results in a water
ice fraction of ∼35% of planets formed just exterior to the ice
line (see Fig. 5). The formed planets in our simulations seem to
stay in the outer disc, however, mutual interactions can influence
their migration and allow them to migrate inwards (see below).

This implies that if low mass planets are formed close to
the water ice line and they can migrate outwards through the
entropy related corotation torque then their water ice content is
close to the maximum allowed by the chemical model. Planets
formed in this way should thus have the same planetary com-
position and density, if their masses are similar. Early inward
migration during the gas-disc phase on the other hand would
also alter planetary densities, depending on the starting posi-
tion of the embryo in respect to the ice lines. This additionally
implies that a system like Trappist-1, where planets have slightly
different densities (0.6–1.0 ρE Gillon et al. 2017), is more likely
to have formed through the inward migration of planets formed
at the water ice line than through planets that initially migrate
outwards after forming at the water ice line.

4.2. Multiple growing embryos

In our model we follow the growth of single planets, while
in reality many planetary systems actually consist of multiple
planets. This implies that the growing planets compete for solid
material as they grow. In the pebble accretion scenario, the peb-
ble flux is subsequently reduced for inner planets by the outer
accreting planets (Lambrechts & Johansen 2012). The inner
planets thus have less material available and grow slower than
the outer planets. However, this filtering is very inefficient for
just one single planet, but as soon as many planets are present its
effects become much stronger (Lambrechts & Johansen 2014).
Additionally, when the outer planets reach pebble isolation mass,
they block the flux of pebbles to the inner systems and can starve
the inner embryos quenching their growth (Lambrechts et al.
2014; Morbidelli et al. 2015; Bitsch et al. 2018c, 2019; Izidoro
et al. 2019).

In addition, the pebbles in the outer disc (at r> rH2O) are
supposed to be larger due to the larger fragmentation velocity

of water ice grains compared to silicate grains (Wada et al.
2009; Gundlach & Blum 2015) as well as through condensation
(Ros & Johansen 2013; Schoonenberg & Ormel 2017). These
larger pebbles are easier accreted and allow the planets to grow
faster compared to the inner disc where pebbles are supposed to
be only mm in size, corresponding to the size of chondrules. We
have taken this effect into account in our simulations by reducing
the growth timescale by a factor of 4, if no water ice is available.
The faster growth in the outer disc can also explain why Jupiter
in our own solar system grew so big compared to the terrestrial
planets (Morbidelli et al. 2015).

If multiple planetary embryos are present in a disc over a
large radial extend in the disc spanning from interior to exterior
to the water ice line, the planetary embryos exterior to the water
ice line will grow faster and starve the inner planetary embryos
(Izidoro et al. 2019; Bitsch et al. 2019). The then formed super-
Earths are water rich in the Izidoro et al. (2019) scenario due
to outward migration that keeps the embryos at r> rH2O until
they reach pebble isolation mass. Thus, it is of crucial impor-
tance where the first planetary embryos form: interior (Saito &
Sirono 2011; Ida & Guillot 2016) or exterior (Dra̧żkowska &
Alibert 2017) to the water ice line as this then determines the
final composition of the planets.

In the N-body simulations of Izidoro et al. (2019) the plane-
tary embryos forming exterior to the water ice line do not only
grow faster, but they also migrate towards the inner edge of the
protoplanetary disc, even though outward migration is possible.
The reason why planets migrate towards the inner edge in multi-
body simulations (see also Izidoro et al. 2017 and Raymond et al.
2018) is that the mutual interactions between the planets increase
their eccentricity which then quenches the entropy driven coro-
tation torque (Bitsch & Kley 2010) resulting in inward migration.
Additionally, some of the growing planets reach masses (e.g. due
to collisions) which are larger than the pebble isolation mass and
also larger than the maximum mass the region of outward migra-
tion can contain and thus migrate inwards. Both effects are not
taken into account in the here presented simulations.

On the other hand, if planets only migrate inwards, the
exact formation location of the first embryos in respect to the
water ice line might not matter that much as even embryos that
are originally located at r> rH2O migrate across the water ice
line and then accrete predominately rocky material, resulting in
super-Earths with a low water ice content (Fig. 6).

The study by Raymond et al. (2018) focuses on already
formed planets of up to several Earth masses that migrate
inwards from interior and exterior to the water ice line to
form close-in super Earth systems. They find that the innermost
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super-Earth in a tightly packed system can be rocky, if it formed
interior to the water ice line. Combining studies of growth of
multiple embryos with different migration prescriptions might
thus help to understand the formation pathway of super-Earths
and will be investigated in a future study.

4.3. Core heating by 26Al decay

The early solar nebular was enriched with 26Al which decays
to 26Mg with a halftime of 700 kyr, releasing enough energy
to evaporate water ice from pristine planetesimals in the solar
system (e.g. Grimm & McSween 1993; Monteux et al. 2018).
Planets formed from these water poor planetesimals by mutual
collisions would then also remain dry. This could apply also
to planetary embryos formed exterior to the water ice line
(r> rH2O). For pebble accretion, this picture is slightly different.
The pebbles are so small that heating by 26Al is inefficient and
they would keep their water content. However, as the pebbles are
accreted by the planet, they will also deliver some 26Al, which
could then contributes to the total heating of the planet poten-
tially allowing the water to evaporate. The pebble sizes on the
other hand can determine the efficiency of the melting process
of the planetary embryo in itself (Lichtenberg et al. 2019a).

On the other hand, if the planet forms on time scales com-
parable or longer than the radioactive decay time of 26Al, water
rich pebbles will not deliver 26Al (because it already decayed) to
the planet, so that the planet can become water rich by the accre-
tion of water rich pebbles. This also applies to planets formed
originally interior to the water ice line, but are then swept by the
water ice line as the disc evolves.

This implies that if early formed planets can evaporate their
water atmosphere through 26Al heating, they have to form fast
enough while the effects of 26Al heating are still active. If the
planets form too late, or accrete most of their mass after 1 Myr,
26Al heating might not prevent the planet from accreting a sig-
nificant water content. On the other hand, internal heating of the
planet itself after 1 Myr could evaporate some of the water and
the atmosphere itself (Gupta & Schlichting 2018).

Lichtenberg et al. (2019b) showed that additionally the total
amount of 26Al plays a crucial role in determining the planets
fate if they are formed by planetesimal accretion. Low 26Al con-
tents allow water rich planets to form, while a larger 26Al content
only allows the formation of water poor planets. This clearly
indicates that the process of 26Al heating in planet-formation
simulations should be taken into account in future work. Our
here presented simulations though show that different water con-
tents of planets could be achieved instead by different migration
prescriptions.

4.4. Solar System formation

The terrestrial planets in the solar system are extremely water
poor, indicating that they formed in the hotter regions of the pro-
toplanetary discs, where water ice was not available (Izidoro &
Raymond 2018). Earth’s water, which matches the D/H and
15N/14N ratios of carbonaceous chondrite meteorites (Alexander
et al. 2012) is thought to have been delivered by water-rich plan-
etesimals that were gravitationally scattered into the inner Solar
System either by asteroidal embryos (Morbidelli et al. 2000;
Raymond et al. 2007) or by Jupiter during its growth and/or
migration (Walsh et al. 2011; Raymond & Izidoro 2017; O’Brien
et al. 2018).

The planetary embryos that formed the Earth were most
likely quite small (about Mars mass), so that they have not

migrated far and thus originated from a region around 1 AU.
However, in most disc models (Oka et al. 2011; Bitsch et al.
2015a; Baillié et al. 2015), the water ice line sweeps this
region during the gas disc evolution. This would allow plane-
tary embryos forming in this region to become water rich, even
if they do not migrate (see Fig. 4). A solution to this problem
was presented by Morbidelli et al. (2016), who suggested that
Jupiters core blocks the influx of water rich pebbles to the inner
disc when it reaches pebble isolation mass thus starving the
inner system. So even when the water ice line position would
sweep the inner system, there would be no pebbles available
to accrete for the interior embryos. The embryos in the inner
disc thus only accrete rocky material at the beginning of their
growth.

4.5. Rocky super-Earths or waterworlds

Detailed observations of planetary radii have revealed a gap in
the radius distribution of transiting super-Earths at about 1.8
Earth radii (Fulton et al. 2017; Fulton & Petigura 2018). Utiliz-
ing additionally RV measurements to determine the bulk density
of the super-Earths allows to speculate about the origin in the
planetary radius gap. The most popular theory to explain the
radius gap is related to the photoevaporation of the planetary
atmospheres by their host star in combination with a predomi-
nately rocky planetary composition (Owen & Wu 2017; Jin &
Mordasini 2018). This relation in itself is thus also build heavily
on interior planet modelling, where also the long term evolution
of the core itself can cause uncertainties up to 15% in radius
(Vazan et al. 2018).

Alternatively the gap could also be explained directly by
cooling from the planet itself (Gupta & Schlichting 2018). In
their simulations, super-Earths could have water contents up to
20%, implying that they formed exterior to the water ice line
and then migrated inwards before their formation was complete,
while the explanation due to photoevaporation requires only a
very small water ice content inside the planets. This difference
is probably caused by the differences in the interior modeling of
the planets.

If most close-in (r < 0.3 AU) super-Earths are completely dry,
then planetary embryos either only form interior to the snow
line, which is at odds with the solar system and cold Jupiters
in general. Alternatively it could imply that the water ice of peb-
bles or planetesimals evaporates as the planet forms (Mordasini
et al. 2015). This however, is also at odds with the solar system
due to the icy nature of Uranus and Neptune. On the other hand,
the model by Kurosaki et al. (2014) implies that close-in super-
Earths (with distances up to 0.03 AU) could additionally lose
their whole water ice content through photoevaporation mak-
ing them predominately rocky even if they were formed with a
large water ice content as long as they do not exceed 3 Earth
masses.

Additionally, the valley in the radius distribution observed
by Fulton et al. (2017) and Fulton & Petigura (2018) is not empty
and could also be shifted to larger planetary radii (Van Eylen
et al. 2018b), implying that water rich super-Earths could exist to
a significant fraction. In our model, the water ice content is deter-
mined by the migration and accretion of the planet and the water
ice line evolution. As the disc becomes older, the water ice line
moves interior to 1 AU at the end of the gas disc’s lifetime. Late
planet formation thus reduces the parameter space for the forma-
tion of purely rocky super-Earths, implying that the formation
of purely rocky super-Earths probably happens early during the
gas-disc phase, if planet migration is directed mostly inwards.
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Hot super-Earths that form in situ can not harbour any signifi-
cant water ice content, because the water ice line does not evolve
all the way down to 0.1 AU for reasonable parameters of disc
models (Garaud & Lin 2007; Oka et al. 2011; Bitsch et al. 2015a;
Baillié et al. 2015). In situ formation is thus in contradiction to
the observations, because the valley in the radius distribution is
not empty, implying some super-Earths can harbour water. Only
migrating planets that formed exterior to the water ice line at
r> rH2O can form hot super-Earth with a significant water ice
content, where the exact water ice content depends on the migra-
tion speed, accretion rate and water ice line evolution (Figs. 5
and 6). This implies that systems of water rich hot super-Earths
on low eccentricity orbits are signposts of inward planet migra-
tion during the gas-disc phase. This is for example the case for
the planets in the Trappist-1 system, where the planets feature a
water-ice content of 5–10% (Grimm et al. 2018).

It is thus important to measure precisely planetary radii and
masses to determine the planet’s bulk composition as it can give
important clues about planet formation and the migration history
of the system.

5. Summary and conclusions

In this paper we present a disc evolution and planetary growth
model that allows us to calculate the water ice fraction of formed
planets. We have investigated an interplay between planetary
migration, planetary accretion and ice line evolution on the com-
position of planets. Our main findings are summarized as follows
(see also Table 2):
1) If the water ice line does not evolve in time and if planets

do not migrate, the water ice fraction of a planet is solely
determined by its starting position in respect to the water ice
line (Fig. 2). This scenario would imply that close-in super-
Earths (r < 0.3 AU) should all be rocky.

2) If the water ice line does not evolve in time, but planets
are allowed to migrate, water rich super-Earths can exist in
the inner planetary systems, if migration is inwards. Only
planets that form exterior to the water ice line (r> rH2O)
can contain water and their water ice content is then deter-
mined by a competition between growth and migration speed
(Fig. 3).

3) If the water ice line evolves in time, but planets are formed
in situ, their water ice content is determined by their rela-
tive position to the water ice line (Fig. 4). Even if planets
are initially interior to the water ice line, they can contain a
significant fraction of water ice, because of the inward move-
ment of the water ice line (Sato et al. 2016). Slow accreting
planets that are originally interior to the water ice line will
thus have a larger water ice fraction than fast accreting plan-
ets originally placed interior to the water ice line, because the
slow accreting planets accrete most of their material after the
water ice line has swept across their orbit. A fast accretion
of planets interior to the water ice line can thus prevent the
formation of water rich planets as invoked in Izidoro et al.
(2019) to form rocky super-Earths.

4) In disc models that allow outward migration due to the
entropy related corotation torque, outward migration exists
exterior to the water ice line (r> rH2O) due to the transition in
opacity at the water ice line (Bitsch et al. 2013, 2014, 2015a;
Baillié et al. 2015). The pebble isolation mass to which plan-
ets accreting pebbles can grow, however, is always smaller
than the maximum planetary masses that can undergo out-
ward migration. Thus planetary embryos originating from
exterior to the water ice line (r> rH2O) accrete the maximum

fraction of water ice possible in our model (Fig. 5), similar
to the planets in the model where planet migration is arti-
ficially turned off (Fig. 4). These fully formed water rich
planets can then migrate inwards in systems of multiple bod-
ies as the disc evolves and form systems of close-in water
rich super-Earths (Izidoro et al. 2017, 2019; Raymond et al.
2018).

5) In the scenario where the ice line moves and planets migrate
only inwards, the water ice content of planets that are origi-
nally placed interior to the water ice line is for most planets
negligible, due to the faster inward migration of planets
compared to the water ice line evolution. Planets formed
originally exterior to the water ice line (r> rH2O) can have
different water ice content, depending on their initial posi-
tion relative to the water ice line and their inward migration
speed.

6) Faster growth of planetary seeds can allow planets to become
too massive to be contained in the region of outward migra-
tion at the end of disc dissipation. These planets stay at the
inner edge of the disc and the fast growth model allows
the formation of rocky massive inner super-Earths. However,
the formation of water rich inner super-Earths is not possi-
ble. A slow planetary growth prevents rocky planets to form
efficiently and they thus also do not migrate efficiently into
the inner edge of the disc. Icy super-Earths are parked at
in the region of outward migration as for nominal growth
(Fig. 8).

7) As the water ice line does not evolve all the way to the central
star, water rich hot super-Earths can not have formed in-
situ and must have migrated or scattered inwards. Water rich
super-Earths on low eccentricity orbits are thus a signpost
of planet migration. In combination with the observations of
planetary radius gap and its interpretation (Fulton et al. 2017;
Fulton & Petigura 2018; Owen & Wu 2017; Jin & Mordasini
2018) which proposes that there are some icy super-Earths,
this implies that inward planet migration during the gas-disc
phase might be the norm for these super-Earths. The exact
migration history (inward migration in chains of planets or
inward migration as single planets during the early gas disc
phase) can thus be told by the water ice content of the planet.

Our simulations indicate that the water ice content of hot super-
Earths is a function of their migration speed and direction.
Super-Earths with a high water content probably underwent out-
ward migration close to the water ice line until they were fully
formed before migrating inwards (in chains of resonance) or
originate from far out in the discs, while super-Earths with a low
water ice content formed close to the water ice line and migrated
inwards during the early gas disc phase. The water ice content of
hot super-Earths could thus reveal important information about
the early migration history of the planet relative to the water ice
line.

Acknowledgements. B.B. thanks the European Research Council (ERC Start-
ing Grant 757448-PAMDORA) for their financial support. S.N.R. thanks the
Agence Nationale pour la Recherche for support via grant ANR-13-BS05-0003-
002 (grant MOJO). A.I. thank FAPESP for support via grants 16/19556-7 and
16/12686-2. We also thank an anonymous referee for her/his comments that
helped to improve the manuscript.

References

Adams, E. R., Seager, S., & Elkins-Tanton, L. 2008, ApJ, 673, 1160
Alessi, M., Pudritz, R. E., & Cridland, A. J. 2017, MNRAS, 464, 428
Alexander, C. M. O., Bowden, R., Fogel, M. L., et al. 2012, Science, 337, 721
Armitage, P. J., Eisner, J. A., & Simon, J. B. 2016, ApJ, 828, L2

A109, page 11 of 12

http://linker.aanda.org/10.1051/0004-6361/201935007/1
http://linker.aanda.org/10.1051/0004-6361/201935007/2
http://linker.aanda.org/10.1051/0004-6361/201935007/3
http://linker.aanda.org/10.1051/0004-6361/201935007/4


A&A 624, A109 (2019)

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47,
481

Bai, X. N. 2016, ApJ, 821, 80
Baillié, K., Charnoz, S., & Pantin, É. 2015, A&A, 577, A65
Baraffe, I., Selsis, F., Chabrier, G., et al. 2004, A&A, 419, L13
Baruteau, C., & Masset, F. 2008, ApJ, 672, 1054
Baruteau, C., Crida, A., Paardekooper, S. J., et al. 2014, in Protostars and Planets

VI (Tucson: University of Arizona Press)
Bitsch, B., & Johansen, A. 2016, A&A, 590, A101
Bitsch, B., & Kley, W. 2010, A&A, 523, A30
Bitsch, B., & Kley, W. 2011, A&A, 536, A77
Bitsch, B., Crida, A., Morbidelli, A., Kley, W., & Dobbs-Dixon, I. 2013, A&A,

549, A124
Bitsch, B., Morbidelli, A., Lega, E., & Crida, A. 2014, A&A, 564, A135
Bitsch, B., Johansen, A., Lambrechts, M., & Morbidelli, A. 2015a A&A, 575,

A28
Bitsch, B., Lambrechts, M., & Johansen, A. 2015b, A&A, 582, A112
Bitsch, B., Forsberg, R., Liu, F., & Johansen, A. 2018a, MNRAS, 479, 3690
Bitsch, B., Lambrechts, M., & Johansen, A. 2018b, A&A, 609, C2
Bitsch, B., Morbidelli, A., Johansen, A., et al. 2018c, A&A, 612, A30
Bitsch, B., Izidoro, A., Johansen, A., et al. 2019, A&A, 623, A88
Brewer, J. M., Wang, S., Fischer, D. A., & Foreman-Mackey, D. 2018, ApJ, 867,

L3
Buchhave, L. A., Latham, D. W., Johansen, A., et al. 2012, Nature, 486, 375
Buchhave, L. A., Bizzarro, M., Latham, D. W., et al. 2014, Nature, 509, 593
Buchhave, L. A., Dressing, C. D., Dumusque, X., et al. 2016, AJ, 152, 160
Chatterjee, S., & Tan, J. C. 2014, ApJ, 780, 53
Cimerman, N. P., Kuiper, R., & Ormel, C. W. 2017, MNRAS, 471, 4662
Cossou, C., Raymond, S. N., & Pierens, A. 2013, A&A, 553, L2
Cossou, C., Raymond, S. N., Hersant, F., & Pierens, A. 2014, A&A, 569, A56
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