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A FIRST AND SECOND VIEW ON LIEB-YNGVASON AXIOMATIZATION OF THERMODYNAMICS

The first part of this work is devoted to a survey of Lieb and Yngvason's axiomatization of the second principle of Thermodynamics, that clarifies and strengthen the premises of an approach by Constantin Carathéodory in the early 20th century to understand the entropy principle. In the second and final part we intend to generalize the theory by considering a geometry that allows for non-convex state spaces. One purpose of this work is to elucidate to what extend the concavity of entropy is a fundamental property of the second law of thermodynamics, or rather a consequence of other properties of the state space. Another is to discuss the existence of a well-defined temperature field and the Planck's principle with a minimal number of axioms and for state spaces as general as possible.

Introduction

The second principle of thermodynamics is one of the few laws of physics that was never contradicted, as stated by Einstein famous quote:"Thermodynamics is the only physical theory of universal content which, within the framework of the applicability of its basic concepts, I am convinced will never be overthrown". Nonetheless its logical premises and rational foundations are still matter of research and controversy.

Our approach relies an axiomatic formalism for equilibrium thermodynamics as devised by Elliot Lieb and Jakob Yngvason [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF] in the last two decades (see [START_REF] Lieb | A fresh look at entropy and the second law of thermodynamics[END_REF] for a friendly survey, and [START_REF] Thess | The entropy principle: thermodynamics for the unsatisfied[END_REF] for a recent textbook). This article begins with a review of the key constructs of the theory and in particular the five general axioms, and carries on with a series of generalizations of the geometry of the state space. Indeed, we propose to consider the fundamental axioms in the light of a generalized notion of convexity, which allows us to focus on the most important properties of the entropy function, as well as on the fundamental logical relation of "adiabatic accessibility" without restricting ourselves to certain preestablished geometries for the space of states. In particular, we show that the Carathéodory principle can hold without the necessity of an underlying notion of concave entropy function, with concavity being recovered in the particular case of state spaces assumed as convex subsets of the Euclidean space. As a consequence, a local notion of stability, as well as of unstable states, is also proposed. The purpose of this paper is also to introduce the notion of temperature with a minimal number of axioms and in the most general as possible geometry of the state space. Planck's principle is also discussed along these lines.
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1.1. The axiomatic approach of Carathéodory. In this work we follow an axiomatic approach whose main goal is to formulate the essential logical bricks of classical thermodynamics of equilibrium states and deduce from them the second principle. This road should be considered as a certain achievement of the axiomatic approach initiated by Constantin Carthéodory in the beginning of the XXth century. Here "classical" means that there is no mention of statistical or quantum mechanics, and "thermodynamics of equilibrium states" means that no attempt is made to define entropy and temperature for systems out of equilibrium, i.e. which are either time-dependent or not isolated from their environment. In other words equilibrium systems involve neither time nor fluxes in their description. Note however that the quasi-static process (meaning here a succession of equilibrium states) taking place between two equilibrium states may be reversible or irreversible, though, we insist, in equilibrium thermodynamics the processes themselves are not described, and by no way matter of analysis.

To fully achieve their goal, Lieb and Yngvason introduce 16 axioms: seven general axioms, further three for simple systems, five for thermal equilibrium and one more for mixtures and reactions. The principal aim of the theory described in [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF] is to determine precisely which changes are possible and which are not, under well-defined conditions. Specifically, the principal question the authors intend to answer rigorously is the following: "using only the existence of equilibrium states and the existence of certain processes that take one into another, when can it be said that the list of allowed processes is characterized exactly by the increase of an entropy function?". In the present work, we focus only on the general axioms. Note that in the spirit of Giles [START_REF] Giles | Mathematical foundations of thermodynamics[END_REF] we also assume the Comparison hypothesis, that Lieb and Yngvason intend to prove in [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF] as a consequence of the 16 axioms and of the underlying convexity of the state space.

1.2. On the fundamental laws. To begin, let us present the three laws of thermodynamics, as they constitute the basis of classical thermodynamics of equilibrium states. They read:

The 0 th law states that thermal equilibrium between states is a transitive relation. This law is stated in the form of an axiom for thermal equilibrium in [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF]. Basically it states that if T 1 , T 2 and T 3 are equilibrium states of three systems such as T 1 is in thermal equilibrium with T 2 , and T 2 is in thermal equilibrium with T 3 , then T 3 is also in thermal equilibrium with T 1 . This law strongly resembles the first axiom of Euclidean geometry (ca. 300 BC), that is, things equal to the same thing are equal to one another [START_REF] Pogliani | Constantin Carathéodory and the axiomatic thermodynamics[END_REF].

The 1 st law is related to the conservation of energy, and builds a bridge between mechanics and thermodynamics. It will be recalled in the next section. We remark that historically the first law came after the second, as recalled in [START_REF] Stueckelberg De Breidenbach | Thermocinétique phénoménologique galiléenne. Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften[END_REF], since Sadi Carnot work "Réflexions sur la puissance motrice du feu et les moyens propres à développer cette puissance" (1824) was known about 20 years before the work of Joule (and independently by Mayer) at the origin of the first principle, "The Mechanical Equivalent of Heat" (1842). 1The 2 nd law has several formulations. Three of the most famous formulations are:

• Clausius: No process is possible, the sole result of which is that heat is transferred from a body to a hotter one. • Kelvin (and Planck): No process is possible, the sole result of which is that a body is cooled and work is done. • Carathéodory: In any neighborhood of any state there are states that cannot be reached from it by an adiabatic process. Note that in each formulation of the second law, there are certain words that lack precise mathematical definition, such as "heat", "hot", "cold" and "adiabatic". To overcome this, we will consider the second law just as the existence of entropy as a function S with three fundamental properties: monotonicity, additivity and extensivity, with respect to state coordinates (classicaly, internal energy 2 U and volume of the subsystems V i ). Notice that in the other formulations of the second law, the existence of the entropy is simply postulated. 1.3. On the importance of concavity. Concavity of the entropy function is usually taken for granted in classical approaches of thermodynamics (see [START_REF] Lebon | Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers[END_REF] for a good review of the coexisting approaches to the second principle). It is indeed a key property for at least three reasons. First, it is related to the stability of equilibrium states, as concave functions satisfy S(U + ∆U,

• • • ) + S(U -∆U, • • • ) ≤ 2S(U, • • • ),
hence an arbitrary variation ∆U will not increase the entropy of the system. Second, because the physical consequence of concavity is to render physical coefficients non negative (such as heat capacity or thermal expansion). The third reason, presumably most critical, is that concavity S is equivalent to the principle of increase of entropy (PIE, first formulated by Clausius in 1865). Consider two systems A = (U 1 , • • • ) and B = (U 2 , • • • ) enclosed in a single isolated container. Let 0 < t < 1 and let us combine a fraction t of system A and (1 -t) of system B. The PIE states that whenever the combined system t(U 1 ,

• • • ) + (1 -t)(U 2 , • • • ) reaches its equilibrium, then its entropy S(t(U 1 , • • • ) + (1 -t)(U 2 , • • • )) must be not less than the initial sum of the en- tropies of the systems, S (t(U 1 , • • • )) + S ((1 -t)(U 2 , • • • ))
. But this statement, provided the aforementioned property of extensivity yields precisely the concavity of S, as

S (t(U 1 , • • • )) + S ((1 -t)(U 2 , • • • )) = tS(U 1 , • • • ) + (1 -t)S(U 2 , • • • ) ≤ S(t(U 1 , • • • ) + (1 -t)(U 2 , • • • )).
The reciprocal statement is also valid: provided a concave entropy function, the PIE holds true. This principle is sometimes referred to as the maximum entropy principle, as entropy reaches a maximum in the final state of equilibrium (dS = 0 and S ≥ 0). Note however that maximum entropy is achieved only for isolated time translation symmetry, being the very notion of time arrow itself a consequence of the second law (see, e.g., [START_REF] Stueckelberg De Breidenbach | Thermocinétique phénoménologique galiléenne. Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften[END_REF]).

2 Defined as follows [START_REF] Lebon | Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers[END_REF]: "Considering a macroscopic system as agglomerate of individual particles, the internal energy can be viewed as the mean value of the sum of the kinetic and interacting energies of the particles." systems. For these reasons, in this work we are interested in analyzing the concavity of entropy, and as will be done in the last section, to show that concavity is just a particular case of some more general properties that follow from the general axioms.

Let us also remark that the issue of stability and concavity of entropy is also discussed in the framework of astrophysics in, e.g. [START_REF] Kaburaki | Should entropy be concave?[END_REF], where a particular feature is the occurence of negative heat capacities.

1.4. Adiabatically closed systems at equilibrium. As last remark we state the most general form of the second law. Provided an entropy function exists (which is the purpose of Lieb and Yngvason's theory), the most general entropy change is made of an external and internal parts, and satisfies

dS = (dS) ext + (dS) int , with (dS) int ≥ 0.
In this work we are concerned with adiabatically closed systems for which no heat and mass transfer take place from the outside, and hence (dS) ext = 0. Moreover we consider these states at equilibrium, meaning that all sources and fluxes in the system are zero (such as velocity, heat flux, diffusion flux of a chemical substance, for instance). Note that for adiabatically closed systems, there might still be an exchange of mechanical power (i.e., work) between the system and its exterior during an adiabatic process between two equilibrium states. According to Thess [START_REF] Thess | The entropy principle: thermodynamics for the unsatisfied[END_REF] all kinds of thermodynamic process (including work) performed inside the system and with its exterior (by means of every available real or fictitious devices) and that results in the sole "change of a weight in the graviational field" should be called a Lieb-Yngvason's machine, to represent "symbolic representation of all experimental and computational devices which can be used to analyze the adiabatic accessibility of thermodynamic states".

Thus entropy increases between two states at equilibrium if irreversible processes take place (classically associated with a non-negative energy dissipation), and dS = 0 if the processes are reversible. In the axiomatic theory we presented, these states are said adiabatically equivalent.

Preliminary notions on thermodynamics

In order to develop our theory, we have to establish the axioms with which we are going to work and make important definitions.

2.1. Notations and definitions. We start by defining a thermodynamic system Ω as a certain quantity of matter which can exchange energy with its surroundings in the form of work (those systems are referred to as adiabatically closed systems). In other words, a thermodynamic system is a set in 3 dimensional Euclidean space, with some macroscopic properties (local or global), one of them being the internal energy. Now suppose that there is a rational being, which we will refer to as the observer, who can make experiences of arbitrary complexity. Let x ∈ Ω be the spacial coordinates of the thermodynamic system and let s ∈ [t 0 , t 1 ] be the proper time of the observer. The observations made can be registered as a function that depends on the proper time of the observer and on the position in thermodynamic system O(s, x). Let us better describe this function of the observer. Let ξ(x) be a function that records the results of a certain experience depending on the position. The set of different experimental measures recorded by the observer is referred to as the thermodynamic coordinates. Examples of thermodynamic coordinates are the empirical temperature, pressure, volumes, enthalpy, and internal energy. So, for a fixed s on the proper time of the observer, O(s, x) = ξ 1 (x), • • • , ξ n (x) is the observer function. Note that only the observation depends on time, the property observed is just a numerical value, which merely depends on the position. Definition 2.1 (Thermodynamic state). We define a thermodynamic state of a given thermodynamic system, as the observation made by the observer, X = ξ 1 (x), • • • , ξ n (x) = O(x) for some fixed s in the observer's proper time.

Studying the space of all possible states in some thermodynamic system is very complicated, therefore, instead of that, we will only address to states in equilibrium.

Definition 2.2 (Equilibrium states).

A state X is said to be at equilibrium if and only if, X is an homogeneous state at a proper time s, i.e. ,∃c ∈ R n :

∀x ∈ Ω, O(s, x) = ξ 1 (x), • • • , ξ n (x) = c,
and ∀s ∈ [t 0 , t 1 ], O(s, x), remains constant in time, as long as the external conditions are unchanged. We denote, Γ, the equilibrium state space, as the set equilibrium states of some thermodynamic system Ω.

For simplicity, we will abbreviate equilibrium thermodynamic state to state and similarly, equilibrium state space to state space.

Remark (Minus-first law). The very existence of equilibrium states is truly postulated and is sometimes called the "minus first" law of thermodynamics [START_REF] Brown | The origins of time-asymmetry in thermodynamics: The minus first law[END_REF]: "An isolated system in an arbitrary initial state within a finite fixed volume will spontaneously attain a unique state of equilibrium." This is in general taken for granted in all thermodynamics theories. Failure of this law is due to fluctuations, and hence admitting this law, we tacitly consider a suitably defined time-scale.

This state space is equipped with the operations of composition (or product), scaling and division.

Definition 2.3 (Composition of state spaces). The composition of n state of spaces, Γ 1 , • • • , Γ n , is the Cartesian product of the state spaces Γ 1 × • • • × Γ n , which elements are of form (X 1 , • • • , X n ), with X i ∈ Γ i , i = 1, • • • , n.
It is important to note that the Cartesian product is associative and commutative. The physical meaning of a compound system is the composition of two or more physically independent simple systems, which can interact with each other for a period of time, and change each other state.

There are two types of properties that can be observed, the intensive and the extensive ones. Intensive properties do not depend on the mass of the system, whereas extensive properties are directly proportional to the mass, by a scaling factor t. For example, the volume is an extensive property since it varies in proportion the mass, but the pressure is an intensive property because stays intact when we increase the mass of the thermodynamic system. Definition 2.4 (Scaled copies). Let Γ be a state space, and X ∈ Γ a state of a thermodynamic system. A scaled copy of Γ, tΓ, with t > 0, is the set of points tX where tX

= (ξ 1 , • • • , ξ n , tξ 1 , • • • , tξ m ) where ξ i , i = 1, • • • , n are intensive properties, and ξ j , i = 1, • • • , m are extensive properties.
An intuitive way to look at scaled copies, is just to imagine that we have for example 1 liter of water as the state space Γ, the scaled copy tΓ, with t > 0 is just t liters of water.

Another operation that can be made in every system is the division. This operation represents the placement of a membrane, that divides the given system into two subsystems and that are not allowed to exchange of matter between them. However this membrane can be placed and removed without interfering with the observer's observations of the system, because we are considering only the states of equilibrium at a macroscopic level. An example might help us to better understand this idea. Let us then consider a glass with 1l of water at 25 • C. As we are considering only the states of equilibrium, we can put a membrane / interface that separates the liquid in such a way that we have a state of 0.3l of water at 25 • C, and another state at 0.7l of water at 25 • C. In this way, we can divide a thermodynamic system into countably many subsystems. However, we are not interested in systems with infinite subsystems. To avoid it, let n the maximum number of subsystems that we are interested for our system. As we have seen before, the fact that we introduce a membrane in our system will not change the macroscopic properties of such system, and therefore, we can establish the following equivalence relation ∼ n :

(t 1 X, • • • , t i X) ∼ n (t 1 X, • • • , t j X) (2.1)
if and only if i k=1 t k = j k=1 t k and i, j ≤ n. It should be noted that, the quotient space Γ/ ∼ n ∼ = Γ since we are not adding or removing points, we are only associating points from different state spaces to already existing points on Γ. Note also that this still valid for compound states, in the sense that, if we have X ∼ n Y and Z, then (X, Z) ∼ n (Y, Z), because X and Y are basically the same point in the quotient space. The use of this relation of equivalence allows us to establish as we will see, a relation of order between elements that initially would not belong to the same set.

2.2.

The first law of thermodynamics. Simple systems are the building blocks of all thermodynamic systems that we are considering, since they can be seen as scaled products of simple systems.

As we have seen in Definition 2.1 and Definition 2.2, Γ is a subset of R m where m is the number of observations that the observer does. But instead of the observer making arbitrary experiments we can restrict to the essential ones, such as internal energy and work experiments (those whose parameters can be adjusted by mechanical (or electric or magnetic) actions.

In this case, a simple system is characterized by the fact that it has exactly one energy coordinate, denoted by U and can have n ≥ 1 work coordinate, denoted by V , since the most common work coordinate is the volume. This means that Γ is a subset of R n+1 . Some examples of simple systems are for instance one mole of water in a container with a piston, or a half mole of oxygen in a container with a piston and in a magnetic field.

From now on, we will consider mostly simple systems, which means that the observations made by the observer are relative to the work coordinates

V = (V 1 , V 2 , • • • , V n ) and the internal energy U , that is, our states have n + 1 coordi- nates (U, V 1 , • • • , V n ).
The fact that we choose U and V as the coordinates is that we need to be capable of specifying states in a one-to-one manner. For example U and V are better coordinates for water than the enthalpy, H, and the pressure, P , because U and V are capable of uniquely specifying the division of a multi-phase system into phases, while the enthalpy H and the pressure P do not have this property.

To make the codification of entropy into a relation of order, we must first introduce the first law of thermodynamics. First let us assume the existence of a work 1-form δW which describes the work that is done by the system, δW = n i=1 P i dV i . We write δW instead of dW because the integral of δW might depend on the path that joins the endpoint points. We assume that the pressure exists since it is a mechanical quantity and from empirical data, we know that pressure depend on energy and work coordinates.

In order to introduce the first law of thermodynamics, we have to introduce a concept that is not easy: heat. Heat will not really be needed in our theory because we shall consider only adiabatic processes, which physically means that there is no heat transfer between the inside and outside of the system. In this way, we assume, even with a merely expository purpose, the existence of a heat 1-form δQ defined as δQ = n i=1 Q i dV i . In the same way that work depends on the path taken, we assume that the heat also depends on the path, i.e., both δW and δQ are in no sense exact.

Taking into account what was introduced earlier, the first law of thermodynamics states that for closed systems: dU = δQ -δW which establishes a relation between the internal energy of a system and the energy supplied to the system, both in the form of heat and in the form of work.

Remark (Carathéodory's formulation of the first law). Carathéodory stated the first law as follows: "the work performed by a system in any adiabatic process depends only on the end states of the system", i.e., there exists U , called internal energy of the system, such that dU = -δW.

(2.2)

3. Lieb-Yngvason axiomatic approach to the second law of thermodynamics Definition 3.1 (Adiabatic accessibility). Given a state space Γ, the adiabatic accessibility between the elements of the quotient space Γ/ ∼ n , for all n ∈ N.

The relation X ≺ Y encodes the state Y ∈ Γ from X ∈ Γ such that (2.2) holds true on any path connecting X to Y in Γ Note that with this definition, it is possible to establish a relation between state spaces that are different, such as Γ and tΓ × (1 -t)Γ.

Remark. One can understand "adiabatic accessibility" by saying that it requires a physical process from equilibrium state A to equilibrium state B with the sole result being the displacement of a weight, whereby it is a concept intrinsically scaledependent, as it appeals to macroscopic objects such as weights in a gravitational field [START_REF] Marletto | Constructor Theory of Thermodynamics[END_REF]. In particular the axiomatic approach we present following Carathéodory typically applies to macroscopic objects and certainly fails for quantum-discrete systems, as emphasized by Axiom 4 below.

When we write X ≺ Y we say that Y is adiabatically accessible from X, or in short, that X precedes Y .

Notation. If X ≺ Y and Y ≺ X we say that X and Y are adiabatically equivalent and write:

X A ∼ Y. If X ≺ Y but Y ⊀ X then
we say that Y is stricly adiabatically accessible from X and we write:

X ≺≺ Y.
Remark (Reversible and irreversible processes). A thermodynamic process is irreversible if the entropy of its neigborhoud increases, whereas it is said reversible if its entropy remains unchanged. Therefore strict adiabatic accessibility does not necessarily means that the process is irreversible (because it is only a pointwise condition, see [START_REF] Thess | The entropy principle: thermodynamics for the unsatisfied[END_REF] for more details).

Definition 3.2 (Entropy principle or the second law of thermodynamics).

There is a real-valued function on all states of all systems (including compound systems), called entropy and denoted by S such that:

(1) Monotonicity: When X and Y are comparable states then

X ≺ Y if and only if S(X) ≤ S(Y ).
(2) Additivity and extensivity: If X and Y are states of some (possibly different) systems and if (X, Y ) denotes the corresponding state in composition of the two systems, then the entropy is additive for these states,i.e.,

S((X, Y )) = S(X) + S(Y ).

S is also extensive, i.e., for each t > 0 and each state X and its scaled copy tX, S(tX) = tS(X).

Additivity and extensivity properties are, besides the very existence issue of the entropy function, usually taken for granted in most thermodynamics formalisms (see [START_REF] Lebon | Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers[END_REF]). For instance, following the "log"-definition of entropy in statistical mechanics, additivity immediately follows from the product of the probability measures and the log law. To the knowledge of the authors, Lieb and Yngvason'approach is the only one that allows for proving these properties, as well as existence, by postulating five simple and reasonable axioms. Proof of these properties can be found in [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF].

3.1. General axioms of the theory. Now that we have established the ground definitions of this theory, we are able to introduce the axioms. This axiom results from the junction of axioms 1 and 5 of [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF]. The idea is that using only work (which is redundant in this situation) we can go from a state to itself, or put a membrane to separate two portions of the thermodynamic system. For example, if we have a glass with 1l of water at 20 • C it is obvious that we can transform this state into itself. Another example is that only with work, we can split 1l of water at 20 • C into a glass in two glasses of water, one with λl (0 < λ < 1) of that same water, and another with 1 -λl also of the same water

Axiom 1 (Reflexivity). If X ∼ Y then X A ∼ Y ,
Axiom 2 (Transitivity). If X ≺ Y and Y ≺ Z implies X ≺ Z.
Suppose we have 1l of water at 20 • C, if we move, we are supplying energy to the interior of the system, through work, being possible to obtain 1L of water at 25 • C, likewise if we start with 1l of water at 20 • C we can obtain , for example, 1L of water at 20 • C. What this axiom tells us is that if the case illustrated above is possible, then it is also possible to start with 1l of water at 20 • C and obtain only 1l of water at 20 • C. See [START_REF] Lieb | A fresh look at entropy and the second law of thermodynamics[END_REF] for more illustrative examples.

Axiom 3 (Consistency). If X ≺ X and Y ≺ Y implies (X, Y ) ≺ (X , Y )
Let us imagine that we have the state of the simple system that can be expressed by 1l of water at 20 • C and this allows to reach, through adiabatic processes, the state described by 1l of water at 25 • C. Likewise, the state of the simple system described by 1L of whiskey at 20 • C precedes adiabatically the state of 1l of whiskey at 25 • C. This axiom tells us that the state of the system composed of 1l of water and 1l of whiskey at 20 • C (they are not mixed, they are only allowed to exchange energy) precedes adiabatically the state of the system composed of 1L of water and 1L of whiskey at 25 • C. holds for a sequence of 's tending to zero and some states Z 0 , Z 1 , then

X ≺ Y.
The idea behind this axiom is that if the relation of order gets into any perturbation, however small, then the relation holds for the case where the system has no perturbation. An example would be that if a grain of sand in a glass with 1l of water does not influence the fact that we can heat the water from 20 • C to 25 • C, however small the grain, then it is also possible to heat the liter of water from 20

• C to 25 • C.
A great advantage of these axioms is the fact that they do not use notions related to the statistical behavior of the movement of atoms, taking a more fundamental approach, appealing to an idea that is more general, in a sense, than atoms, which relies on axioms related by logical propositions.

However it is necessary to make some comments regarding two axioms. The first has a restrictive character. The A4 isn't valid at the quantum scale, because the scales are discrete, and we are assuming that in some sense, the scaling of states is continuous. The second comment, is about the A5. This axiom gives a notion of continuity in our abstract set.

Cancellation law.

The first theorem that we are able to prove with all this axioms is the cancellation law, which is an important theorem, because is a partial converse of A3, and plays a crucial rule in the main theorem of [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF].

Theorem 3.1 (Cancellation law). Assume properties A1-A5, then the cancellation law holds as follows. If X, Y, Z and W are states of four (possibly distinct) systems then

(X, W ) ≺ (Y, Z) and W A ∼ Z ⇒ X ≺ Y
The proof of this statement follows the lines of [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF] where the case W = Z was proven. The cancellation law will show crucial in the proof of the additivity of entropy. [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF] is to prove the comparison hypothesis using the axioms that we have already presented, plus nine more technical axioms. Such an effort is made for the comparison hypothesis because this is the link between the axioms we present and the entropy principle. In the present work, to avoid excessive axiomatization and since our aim is to depart from convex state spaces, we assume, as in [START_REF] Giles | Mathematical foundations of thermodynamics[END_REF], that the comparison hypothesis holds true.

The comparison hypothesis. The main goal in

Also the comparison hypothesis will show crucial in the proof of the additivity of entropy. Moreover we emphasize that the CH most probably fails for states away from equilibrium and hence uniqueness of entropy is not guaranteed [START_REF] Lieb | The entropy concept for non-equilibrium states[END_REF].

Definition 3.3 (Comparison hypothesis).

We say that the comparison hypothesis holds in a state space Γ if any two states of this space are comparable, i.e., ∀X, Y ∈ Γ, X ≺ Y or Y ≺ X.

3.4.

Lieb-Yngvason main result about the entropy principle. The main results of [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF], valid for multiple copies of a single state space are now stated. Theorem 3.2 (Equivalence of entropy and the assumptions A1-A5+CH: single system; [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF]). Let Γ be a state space and let ≺ be a relation on the multiple scaled copies of Γ. The following statements are equivalent.

(1) The relation ≺ satisfies axioms A1-A5, and Comparison hypothesis holds for all multiple scaled copies of Γ. (2) There is a function S on Γ that characterizes the relation in the sense that if

t 1 + • • • + t n = t 1 + • • • + t m (for all n ≥ 1 and m ≥ 1) then (t 1 Y 1 , • • • , t n Y n ) ≺ (t 1 Y 1 , • • • , t m Y m )
holds if and only if

n i=1 t i S(Y i ) ≤ m j=1 t j S(Y j ). (3.1)
The function S is uniquely determined on Γ, up to an affine transformation, i.e., any other function S * Γ on Γ satisfying (1) is of the form S * Γ (X) = aS(X) + B with constants a > 0 and B.

To make the dependence of the canonical entropy on X 0 and X 1 explicit, we write S(X) = S (X | X 0 , X 1 ) ,

where S(X 0 ) = 0 and S(X 1 ) = 1.

With this theorem, and some results that we obtained in the proof, we can now prove the equivalence between the A1-A5 and the entropy principle, namely the additivity and the extensivity. The following result is stated and proved in [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF], however with a rather elliptic proof that we here present with all details. Theorem 3.3 (Addditivity and extensivity of the entropy function; [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF]). Consider a family of systems fulfilling the following requirements:

(1) The state spaces of any two systems in the family are disjoint sets. i.e, every state of a system in the family belongs to exactly one state space. (2) All multiple scaled products of systems in the family belong also to the family.

(3) Every system in the family satisfies the comparison hypothesis. For each state space Γ of a system in the family let S Γ be some definite entropy function on Γ. Then there are constants a Γ and b Γ such that the function S, defined for all states in all Γ's by S(X) = a Γ S Γ (X) + b Γ for X ∈ Γ, has the following properties:

(1) If X and Y are in the same state space, then X ≺ Y if and only if S(X) ≤ S(Y ).

(2) S is additive and extensive, i.e.,

S(X, Y

) = S(X) + S(Y ) (3.3)
and, for t > 0,

S(tX) = tS(X) (3.4) 
4. First view: convexity and Carathéodory's principle Constantin Carathéodory was a Greek mathematician from the German mathematics school, who in the beginning of the XXth century has developed a theory (with the help of Max Born) on the axiomatic approach to thermodynamics [START_REF] Carathéodory | Untersuchungen über die grundlagen der thermodynamik[END_REF] (see also [START_REF] Eisenschitz | The principle of Carathéodory[END_REF][START_REF] Pogliani | Constantin Carathéodory and the axiomatic thermodynamics[END_REF]). In particular, his theory avoids imaginary machines, imaginary cycles and non-trivial concepts such as flux of heat, but he focuses on the geometric behavior of certain differential equations, the Pfaffian, and its solutions, which isn't as trivial as our approach. Unlike every theory that came before, he gave a clear mathematical description of the second law of thermodynamics which was: "In the neighborhood of any equilibrium state of a system, there exists states that are inaccessible by reversible adiabatic processes". With this approach, it can be proved [START_REF] Frankel | The geometry of physics: an introduction[END_REF] that Kelvin's formulation, "In no quasi-static cyclic process can a quantity of heat be converted entirely into its mechanical equivalent of work " (a purely physical approach), implies the Carathéodory's formulation. In this section we want to prove that Carathéodory's principle, under certain considerations, does not imply the concavity of the entropy function. To this aim, we will first recall the results of [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF], and in a second step present some new results that generalizes previous ones. From now on, we always assume A1-A5 and the comparison hypothesis.

Let us begin with some classical definitions about convex sets and functions.

Definition 4.1 (Convex set and function).

A subset A of R n is said to be convex if the line segment connecting two points of A is fully contained in S, i.e., ∀x, y ∈ S, (1 -t)x + ty ∈ A whenever 0 < t < 1.

Let f : A ⊂ R n → R. The set x, µ : x ∈ A, µ ≥ f (x) ⊂ R n+1
is called the epigraph of f . We define f as a convex function if the epigraph of f is convex. Similarly, we define f to be concave function if -f is a convex function.

Notice that this definition of a convex function is equivalent to: a function

f : A ⊂ R n → R is called convex if f (tx + (1 -t)y) ≤ tf (x) + (1 -t)f (y) for al
x, y ∈ A and t ∈ (0, 1), and similarly concave if f (tx + (1 -t)y) ≥ tf (x) + (1t)f (y) for al x, y ∈ A and t ∈ (0, 1). Now we are able to state the seventh axiom in [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF], that is our sixtieth axiom.

Axiom 6' (Convex combination). Assume X and Y are states in the same convex state space Γ. For t ∈ [0, 1] let tX and (1 -t)Y be the corresponding states of their t-scaled and (1 -t)-scaled copies, respectively. Then the point (tX, (1 -t)Y ) in the product space tΓ × (1 -t)Γ satisfies

(tX, (1 -t)Y ) ≺ tX + (1 -t)Y, (4.1) 
where the right-hand side of this equation, is the ordinary convex combination of points in the convex set Γ.

4.1. Concavity and the Carathéodory's principle. All statements and proofs of this section are originally found in [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF].

Let Γ and Γ be two systems (for instance Γ is a compound system of two liquids and Γ the resulting mixture). One important subspace of Γ is the forward sector A X := {Y ∈ Γ : X ≺ Y }, the set of all states that are adiabatically accessible from X ∈ Γ. As we will see, forward sectors inherit the convexity of Γ.

Theorem 4.1 (Forward sectors are convex with A6 ; [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF]). Let Γ and Γ be state spaces of two systems, with Γ a convex state space.Assume that A1-A5 hold for Γ and Γ and, in addition, A6 holds for Γ Then the forward sector of X in Γ , defined above, is a convex subset of Γ for each

X ∈ Γ For λ ∈ [0, 1] define S λ := {X ∈ Γ : ((1 -λ)X 0 , λX 1 ) ≺ X} ⊂ Γ.
Lemma 4.1 (Convexity of S λ with A6 ; [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF]). Suppose that X 0 and X 1 are two points in Γ with X 0 ≺≺ X 1 . Assume that the state space Γ satisfies A6 in addition to A1-A4. Then:

(1) S λ is convex. (2) If X ∈ S λ 1 , Y ∈ S λ 2 , and 0 ≤ t ≤ 1, then tX + (1 -t)Y ∈ S tλ 1 +(1-t)λ 2 .
Theorem 4.2 (Concavity of the entropy function with A6'; [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF]). Let Γ be a convex state space. Assume A6 in addition to A1-A5, and the comparison hypothesis for multiple scaled copies of Γ. Then the entropy S Γ (X) := sup{λ : ((1 -λ)X 0 , λX 1 ) ≺ X} is a concave function on Γ. Conversely, if S Γ is concave, then A6 necessarily holds. Now we will establish a relation between the existence of irreversible processes and the Carathéodory's principle. This result is important because we know from our real world experience that irreversible processes do exist. Theorem 4.3 (Equivalent formulations; [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF]). Let Γ be the state space that is a convex subset of R n+1 and assume that the A1-A5 and A6 holds on Γ. Consider the following two statements.

(1) Existence of irreversible processes: For every point X ∈ Γ there is a point Y ∈ Γ such that X ≺≺ Y . (2) Carathéodory's principle: In every neighborhood of every X ∈ Γ there is a point Z ∈ Γ such that X A ∼ Z is false. Then the existence of irreversible processes implies the Carathéodory's principle. And, if the forward sectors in Γ have interior points, then the reciprocal is also true.

The trouble with A6 (and with A4

). As explained in [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF] this axiom can to some extend be accepted for single-element gases or liquids, as it states that the mixture of two systems with different, say, energies and volumes can yield by an adiabatic process a combined state showing energy and volume coordinates as simply the sum of those of the initial systems. A first drawback of Axiom 6' is that it is questionable for solids, as the interpretation given for gases and liquids fails to be clear. A second drawback is that Axiom 6' fails in case of spontaneous ignition. Indeed, spontaneous combustion follows from slow oxidization reactions, that depends on the surface of contact between two elements, say, oxygen and some oil. Consider for instance a container with a volume v A of oxygen and v B of oil, and another with a volume v A > v A of oxygen and v B of oil. Let us assume that the surface of contact between the two substances is an increasing function of 0 ≤ λ ≤ 1. Then the convex combination of the work coordinate (λv A + (1 -λ)v A , v B ) will not always be possible without loss of energy in the compound system due to self ignition, as the latter depends on the surface of contact Γ between oil and oxygen that by an adiabatic process can be rendered arbitrarily large (as the process is adiabatic, the released heat results in an increase of the temperature). Note that self combustion also takes places simply as the volume of some fat solid increases (one famous example are pistachio seeds). These two examples show that there are limit systems for which the theory fails. In the first example the system given by (v A , v B , Γ) becomes unstable for a critical Γ. But the instability results from the fact that a convex combination has been taken, i.e., a process such that the surface of contact increases together with the volume of oxygen. It would therefore be interesting to consider other paths between the two states, than the mere convex combination: this will be done in the next section by means of a generalized axiom of C-convexity. It will also be shown that such a limit case is found at the boundary of the not necessarily convex state space. In the second example (mere linear increase of the volume of a substance) one sees that Axiom 4 fails for a critical volume. Hence this type of limit cases should also be found on the boundary of the state space. Note that failure of A4 is precisely what occurs in the study of non-equilibrium processes [START_REF] Lieb | The entropy concept for non-equilibrium states[END_REF].

As a matter of fact, Axiom 6' assumes implicitly convexity of the state space, and this is clearly a restriction to the types of systems and processes that can be studied with this formalism. In the next section we will relax slightly this axiom.

Second view: failure of concavity

After presenting the results found in [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF], we will state some original results that generalizes some of the previous ideas and results. The first generalization is about the notion of convex set, that is a set whose points are joined by a curve in the set of all line segments in R n+1 , and every points on those curves are in the convex set. Generalizations of convexity are well known, as found for instance in [START_REF] Rapcsak | Geodesic convexity in nonlinear optimization[END_REF] and [START_REF] Roberts | Convex functions[END_REF].

The generalized notion of the convexity we will introduce will allow us to move away from the Euclidean geometry, i.e., concerned with straight segments, that we consider as a mathematical limitation following from A6 . Instead, in order to consider state spaces that are not convex (for instance, as will be done in future work, for n + 1-dimensional C 1 -manifolds) we introduce a curve-based geometry and focus only on those properties that allow us to generalize the second principle. Note that this kind of geometries obviously occurs in thermodynamics as far as constitutive law are introduced (i.e., 0 = F (X) for some constitutive function F ).

Extending convexity. Definition 5.1 (Generalized convexity). A Let C be a set of curves

γ : [0, 1] → R n . A set A ⊂ R n is said to be a C-convex set if any two points of A are endpoints of a curve γ ∈ C and γ ([0, 1]) ⊂ A. Definition 5.2 (Generalized convex function). Let A ⊂ R n be a C-convex set. A function f : A → R is said to be C-convex if,
for any two points in A and a curve γ ∈ C connecting this two points, we have,

f (γ(t)) ≤ tf (γ(0)) + (1 -t)f (γ(1)) (t ∈ [0, 1]) .
(5.1)

Similarly, f is a C-concave function if, for any two points in A and a curve γ ∈ C connecting this two points, we have,

f (γ(t)) ≥ tf (γ(0)) + (1 -t)f (γ(1)) (t ∈ [0, 1]) . (5.2) 
The next definition will establish the main property that we are interested in in this article.

Definition 5.3 (Adiabatic endpoint map). A map γ : [0, 1] → Γ is said to be an (adiabatic) endpoint map if ((1 -t)γ(0), tγ(1)) ≺ γ(t) is true for every t ∈ [0, 1].
Now we are ready to introduce the new axiom. Axiom 6. Let C := {γ : γ is differentiable and (tγ(0), (1 -t)γ( 1)) ≺ γ(t)}. We assume that Γ is C-convex and for every X interior point of some curve in C joining two states in Γ, X ∈ int(Γ) and there is a ball B ε (X) of radius ε > 0 and centered at X, such that this ball is a subset of the union of all curves γ ∈ C that contain X as an interior point.

From now on, when we mention the set C, we will always be referring to the set {γ : γ is differentiable and (tγ(0), (1 -t)γ( 1)) ≺ γ(t)}.

There are two remarks that are important to make, the first is that γ = (1t)X + tY is just a special case if they obey to the property of being an endpoint map, which means that A6 generalizes A6 . And the second, is that the reason why we added an extra condition besides C-convexity of the state space, is more for a technical reason: it is related to the question: "doesn't C-convexity imply the extra condition?". The answer is no unless the convex surface is C 2 ; indeed in [START_REF] Zamfirescu | Many endpoints and few interior points of geodesics[END_REF] the author proves that there are particular situations in which the second part of the axiom does not hold.

According to [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF], "It is an important stability property of thermodynamical systems, however, that the entropy function is a concave function of the state variables -a requirement that was emphasized by Maxwell, Gibbs, Callen and many others.". Knowing this, our goal in this section is the study of concavity with A6 and if the relation between existence of irreversible processes and the Carathéodory's principle, still holds. Lemma 5.1. Let Y = γ(t) with γ ∈ C such that γ(0) = Z and γ(1) = X, and Proof. By A6 we know that (tX, (1 -t)Z) ≺ Y . But by A1 we have that Y A ∼ (tY, (1 -t)Y ). But we know that Y ≺ Z, which means that (tY, (1 -t)Y ) ≺ (tY, (1 -t)Z). By transitivity, we get that (tX, (1 -t)Z) ≺ (tY, (1 -t)Z), and by the cancellation law, this means that tX ≺ tY . By scaling, A4, X ≺ Y .

0 < t < 1. Suppose that Y ≺ Z. Then X ≺ Y .
Theorem 5.1. For every X ∈ Γ, A X is C-convex. Proof. Let Y 1 , Y 2 ∈ A X .
By A6, we know that there is a curve γ ∈ C joining Y 1 and Y 2 . Without loss of generality, since we assuming the comparison hypothesis, we can say that Y 1 ≺ Y 2 . By Lemma 5.1., we know that Y 1 ≺ γ(t) for all t ∈ [0, 1]. With A2 we can conclude that X ≺ γ(t) for all t ∈ [0, 1], which means that γ([0, 1]) ⊂ A X , and therefore A X is C-Convex.

Lemma 5.2. The entropy function is a C-concave function, i.e., (1 -t)S (γ(0)) + tS (γ(1)) ≤ S (γ(t)) , for all 0 ≤ t ≤ 1.

Proof. By A6, ((1 -t)γ(0), tγ(1)) ≺ γ(t), that yields by (3.1), (1-t)S (γ(0)) + tS(γ(1)) ≤ S (γ(t)), which means that S is a C-concave function. Proof. Because of A6 in every interior point of Γ there is a small ball, i.e, a ball centered at the interior point with radius bigger than 0 and smaller than the radius of the neighborhood, where all the curves γ ∈ C behave like line segments because the curves are differentiable. As we have seen before, if γ behaves like a line segment than the entropy function is locally concave on that ball. This result means that at every interior point, the system is stable, since assuming a compound system made of two copies of this system, then a slight increase (decrease) of energy on the first (second) results by concavity in

S(U + ∆U, • • • ) + S(U -∆U, • • • ) 2 ≤ S(U, • • • ), (5.3) 
therby stability by the second principle (i.e., (U ± ∆U, • • • ) are not equilibrium states unless ∆U = 0, because otherwise this would contradict (5.3) by axiom A6).

Lemma 5.4 (Local concavity). We can extend the concavity of the entropy function S to any closed convex subset of Γ.

Proof. Let C ⊂ Γ be a convex subset of Γ and E = {(X, µ) : X ∈ C, µ ≤ S(X)}.

By the definition of concave functions, S : C → R is concave if E is convex. By the Tietze-Nakajima theorem, that can be found in [START_REF] Tietze | Über Konvexheit im kleinen und im großen und über gewisse den Punkten einer Menge zugeordnete Dimensionszahlen[END_REF], if we manage to prove that E is connected, closed and locally convex, then E is convex. Without loss of generality, let us assume that ∀X ∈ C, S(X) > 0.

• Connectivity: E is path connected because C is path connected, i.e., we want to find a path between two arbitrary points P = (Y, p), Q = (Z, q) ∈ C, by the definition of the set E it is easy to see that the line segments that join (Y, 0) to (Y, p) and (Z, 0) to (Z, q) are inside E, and since C is path connected, this means that there is a path connecting (Y, 0) to (Z, 0), which implies that there is a path connecting (Y, p) to (Z, q), therefore E is path connect which implies that E is connected.

• Closure: E is closed in R n+2 because C is closed and S is continuous.
• Local Convexity: Choose a point (X, S(X)) with X ∈ C. Since S is locally concave this means that for a certain ball B ε (X) ⊂ C, with radius ε > 0 and centered in X, {(X, µ) : x ∈ B ε ∩ C, µ ≤ S(X)} is convex, which implies that E is locally convex.

Note that, with A6 , the entropy function, was concave in all state space. In contrast, with A6, Γ may not be convex, which mean that the entropy function may not be concave everywhere.

Lemma 5.5 (Forward sectors are closed in Γ). Assume the axioms A1-A6 and the Comparison Hypothesis. Let X ∈ Γ, then A X is closed in Γ.

Proof. Let γ be a curve that passes through an interior point W of A X and Y , where Y is an arbitrary point on the boundary of A X . Consider a sequence of points Y n that tends to Y and Y n ∈ A X , for every n. Since S is continuous, then S(Y n ) → S(Y ) and S(Y n ) ≥ S(X). It can be proven easily that S(Y ) ≥ S(X) and therefore Y ∈ A X . This leads us to define a local stability around a point in our space as being the largest ball centered at that point, where the intersection of this ball with the state space is a convex. Definition 5.4 (ε-stability). Let Γ be the state space and X be a selected state in Γ. We say that X is ε-stable if there is a ball with radius ε > 0 and centered at X, which is the largest ball whose intersection with Γ is a convex set. If there is no such ball, we say that X is unstable.

Notice that every point in the interior of Γ is stable. However the behavior at ∂Γ is more complicated, since the points of ∂Γ where the curvature is negative are unstable and the points where curvature is not negative, are stable. The proof for this theorem can be found on [START_REF] Roberts | Convex functions[END_REF], and we will not write it here because we would it is classical, and would need more definitions and results than those presented here. Theorem 5.2 (Carathéodory's Theorem). Let Γ be the state space that is a C-Convex subset of R n+1 and assume that the axiom A6 holds on Γ. Consider the following two statements.

(1) Existence of irreversible processes: For every point X ∈ Γ there is a point Y ∈ Γ such that X ≺≺ Y . (2) Carathéodory's principle: In every neighborhood of every X ∈ Γ there is a point Z ∈ Γ such that X A ∼ Z is false. Then the existence of irreversible processes implies the Carathéodory's principle. And, if the forward sectors in Γ have interior points, then the reciprocal is also true.

Proof. (1) ⇒ (2): Suppose that for some X ∈ Γ there is neighborhood, N X of X such that N X is contained in A X , the forward sector of X. By the entropy principle and the definition of a forward sector, if we restrict the domain to A X , S(X) is the minimum. Since X is an interior point, then there is a small ball containing X such that S is concave on that ball, but this means that for all states Y inside that ball, S(Y ) is the same as S(X), because X is an interior point of A X . Now we want to prove that every state on the forward sector of X has the same entropy as X. Let Z be an arbitrary state in A X . Since A X is C-convex, that means that there is a curve joining X to Z. For every state that is an interior point of that curve, we can find a convex set A X such that the state is in that set and there are two other convex sets associated to different interior points of the curve such whose intersection, with the former is nos empty. Since the intersection is not empty, this implies that along the curve the entropy will always be the same for every state on that curve, which implies that Z as the same entropy as X.

(2) ⇒ (1): Conversely, let us suppose that there is a state X 0 whose forward sector is given by A X 0 = {Y : Y A ∼ X 0 }. Let X be an interior point of A X 0 , i.e., there is a neighborhood of X, N X , which means that there is a neighborhood of X, N X in which the points of that neighborhood are adiabatically equivalent to X 0 , however, and hence to X, since X ∈ N X .

Recall that the Carathéodory' principle is one of the formulations for the second law of thermodynamics. A question we can ask is that, if the second law holds as well as this principle, would the entropy function be concave in all state space Γ? Lemma 5.7. Let S : Γ ⊂ R n+1 → R the entropy function. If Γ is not a convex set then S is not a concave function.

Proof. This is a simple corollary of the property that orthogonal projections of convex functions are convex sets.

All previous results can be summarized in the following theorem.

Theorem 5.3 (Main Theorem). Assume A1-A6 and the comparison hypothesis. Then:

• The second law of thermodynamics holds (Theorem 4.2).

• The existence of irreversible processes implies the Carathéodory's principle (Theorem 5.2). • The Entropy function needs not to be concave on the whole state space (Lemma 5.7).

6. Further notions: temperature and the Planck's principle 6.1. Temperature. In order to define the temperature from the existence of an entropy function we need an additional axiom.

Axiom 7. It is assumed that (i) Let X ∈ Γ. There exists a K ⊂ R n+1 convex such that A X = Γ ∩ K;

(ii) At any point of ∂A X ∩ Γ there exists a tangent hyper-plane which is not parallel to the inter energy coordinates (U ).

If Γ is an open set, item (ii) implies that the part of ∂A X that lies in ∂Γ might not be as smooth as the interior part. In particular it can show corners in ∂Γ. Moreover, we recall that the validity of (ii) at almost every point of ∂A X ∩ Γ is a consequence of the convexity of A X assumed in (i). It is extended to all points by (ii).

From now on, we will denote the tangent plan of A X on X by Π X . We say that X is on the positive energy side of Π X if the internal energy of X is greater than the the the internal energy of the projection of X on Π X . Let {L n } be a countable collection of intervals which:

We cannot prove the Planck's Principle for every Γ, however, we can prove it for two special cases. Lemma 6.2. If Γ is the state space of a simple system, if the forward sector A X for one X ∈ Γ is on the positive energy side of the tangent plane Π X , and for every X = (U 0 , V 0 ) ∈ Γ, we have that

A X ∩ {(U, V 0 ) : U ∈ R} = {(U, V 0 ) : U ≥ U 0 } ∩ Γ, ( 6.1) 
then the same holds for all states in Γ.

Proof. For brevity, let us say that a state X ∈ Γ is 'positive' if A X is on the positive energy side of Π X , and that X is 'negative' otherwise. Let I be the intersection of Γ with a line parallel to the U -axis, i.e., I = {(U, V ) : U ∈ R} for some V ∈ R n . If I contains a positive point, Y , then it follows immediately that all points, Z, that lie above it on I (i.e., have higher energy) are also positive.

On the other hand if a point point Y is positive then every point X below Y is positive, because if X was negative, Y could not be a point in A X , since Y is on the positive side. So we conclude that all points on I have the same 'sign'. Since Γ is connected, the coexistence of positive and negative points would mean that there are pairs of points of different sign, arbitrarily close together. Now if X and Y are sufficiently close, then the line I Y through Y parallel to the U -axis intersects both A X and its complement. (This depends on the fact that Π X has finite slope withe respect to work coordinates.) A2 and the fact that A X ∩ {(U, V 0 ) : U ∈ R} = {(U, V 0 ) : U ≥ U 0 } ∩ Γ imply that any point in ∂A X ∩ I Y has the same sign, this implies also to Y .

There special cases where A X ∩ {(U, V 0 ) : U ∈ R} = {(U, V 0 ) : U ≥ U 0 } ∩ Γ is verified. The first is for Γ convex as pointed out on [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF]. The second case is for Γ ⊂ R 2 open, where Γ can have any shape as far as it satisfies all previous axioms A1-A7. Theorem 6.2 (Planck's principle in R 2 ). If two states, X and Y , of a simple system, whose state space is Γ an open subset of R 2 , have the same work coordinates, then X ≺ Y if and only if the energy of Y is no less than the energy of X.

Proof. We just need to prove that for every X = (X 0 , V 0 ) ∈ Γ, if the assume forward sector is on the positive side of Π X , then

A X ∩ {(U, V 0 ) : U ∈ R} = {(U, V 0 ) : U ≥ U 0 } ∩ Γ. (6.2)
The left side of (6.2), denoted J X is relatively closed in Γ. It is not larger than the right side because A X lies above the tangent plane that cuts the line L = {(U, V 0 ) : U ∈ R} at X. If it is strickly smaller than the right side of (6.2), by Lemma 6.1 there is a point Y ∈ {(U, V 0 ) : U ≥ U 0 } ∩ Γ such that X and Y do not lie on the same interval L n . Now consider the curve γ ∈ C joining X and Y . Since Γ is open, for every t ∈ [0, 1] there exists a ε > 0 such that B ε (γ(t)) ⊂ Γ. Now we must prove that there is a point Q ∈ γ([0, 1]) such that two distinct points Z, W ∈ γ([0, 1]) have the same work coordinate and Z, W ∈ B ε (Q). Suppose that for every Q ∈ γ([0, 1]) every two distinct points Z, W ∈ γ([0, 1]) ∩ B ε (Q) have different work coordinates. Since γ is differentiable, then the projection of γ in the work coordinates is strictly monotonic, but we have said that X and Y are different points in γ that have the same work coordinate, therefore, this projection cannot be strictly monotonic, and consequently this means that there is a point Q ∈ γ([0, 1]) such that two distinct points Z, W ∈ γ([0, 1]) ∩ B ε (Q) with the same work coordinate, exist. Since B ε (Q) ⊂ Γ, then Z and W lie on the same interval L n . Without loss of generality let us assume that W has higher energy than Z. Let W be the set of all W that verify the properties described above. The question now is whether for every W ∈ W, W ∈ A X or not.

If there is a W ∈ W such that W ∈ A X , then a corresponding Z have the property that Z ∈ A X by Lemma 6.1. Let t 1 and t 2 be the parameters where γ(t 1 ) ∈ ∂A X and γ(t 2 ) = W . Since Z ≺≺ γ(t 1 ), z ≺ γ(t 2 ) and γ is C-concave, then S γ([t 1 ,t 2 ]) has a minimum in (t 1 , t 2 ) which will be a local minimum of S γ([0,1]) , and consequently that X A ∼ Y , which implies that Y ∈ A X ∩ {(U, V 0 ) : U ∈ R}. If for every W ∈ W we have that W ∈ A X , then we will prove that Y ∈ A X . We want to construct a sequence of P n such that P n ∈ A X and P n → Y . Now lets construct the sequence P n . Let P 0 = W , and by definition P 0 ∈ A X . Suppose that P n ∈ A X . Consider γ where γ(τ n ) = P n , and let [X, P n ] denote the line segment connecting X and P n in R 2 . Notice that the projection of γ restricted to the B ε (P n ) has higher internal energy than all points in [X, P n ] ∩ B ε (P n ) or not. If we consider the first case, then let P be such that P ∈ B ε (P n ) ∩ [X, P n ] and there is a point P n+1 in γ [τn,1] restricted to B ε (P n ) with the same work coordinate. Notice that τ n+1 > τ n and that P n+1 ∈ A X . The fact that P n+1 ∈ A X results of the fact that P ∈ K and B ε (P n ) ⊂ A X , and the Lemma 6.1. Now consider the latter case. Since γ ∩ ([X, P n ] \ {P n }). In this case τ n+1 > τ n and P n+1 ∈ A X because P n+1 ∈ K and P n+1 ∈ Γ. Now that we have constructed P n , notice that P n → Y by the monotone convergence theorem. Since A X is closed and P n ∈ A X for every n ∈ N, then Y ∈ A X , which implies that Y ∈ A X ∩ {(U, V 0 ) : U ∈ R}. Then we have that A X ∩ {(U, V 0 ) : U ∈ R} = {(U, V 0 ) : U ≥ U 0 } ∩ Γ.

We would like to thank J.-C. Zambrini, D. Masoero and C. Léna for stimulating discussions.

  where ∼ is the same equivalence relation as the one used in (2.1).

Axiom 4 (

 4 Scaling invariance). If X ≺ Y , then tX ≺ tY for all t > 0 This axiom tells us that the order relation is invariant for the amount of matter in the systems, i.e., if we can get 1L of water at 25 • C from 1L of water at 20 • C, then we can also obtain 2L of water at 25 • C from 2L of water at 20 • C. Axiom 5 (Stability). If, for some pair of states, X and Y , (X, Z 0 ) ≺ (Y, Z 1 )

Figure 1 .

 1 Figure 1. The figure to the right represents a state space with A6 and the figure to the left represents a state space with A6.

5. 2 .

 2 Local stability. Lemma 5.3 (Pointwise concavity). The entropy is locally concave in every interior point of Γ.

Figure 2 .

 2 Figure 2. In the figure to the left X is stable point and in the figure to the right Y is unstable.

[τn, 1 ]

 1 on the work coordinate is a compact set, and that the composition of the projection on the work coordinate and γ[τ 0 ,1](t) is a monotone function, because of the properties of W . In particular we want that τ n+1 > τ n . Now, either the curve γ[τn,1] 

[τn, 1 ]

 1 is differentiable, and consequently continuous, by the intermediate value theorem, we get that γ[τn,1]must intersect at least one time, [X, P n ] \ {P n }. In this case we consider P n+1 to be an element of γ[τn,1] 

It would also be justified to restate the order of the laws (originally proposed by Helmholtz), since the first law is rigorously proven by Noether's theorem as a consequence of continuous
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• ∪ n L n = {(U, V 0 ) : U ≥ U 0 } ∩ Γ • is the minimal collection. When defining a temperature field (not necessarily continuous, see next theorem), the fact that T + and T -are non-negative is a consequence of the following lemma. Note that the existence of a tangent plane with finite slope implies that A X ∩ L n is not empty. Lemma 6.1. Let X = (U 0 , V 0 ) ∈ Γ such that X ∈ L n , where L n is an interval of the collection described above and assume that its forward sector A X is on the positive energy side of Π X . Then

such that the forward sector of its limit point X ∞ contains only X ∞ itself in violation of A2. Theorem 6.1 (Existence of a temperature field). Let Γ be an open set of R n+1 . Assume A1-A7 and the comparison hypothesis. Then a temperature field can be defined in the interior of the state space, that corresponds to the conventional (in particular, non-negative), temperature in all but countable states.

Moreover, if Γ is not open, the claim also holds in any convex subset of Γ.

Proof. It is a classical property of convex functions that left-and right pointwise derivatives exist at every point in the interior of Γ, where the entropy is locally concave. Let us call them T + and T -. We define T = (T

It is immediate by Lemma 6.1 that T + and T -are non-negative. It is also well known that the points where T + = T -are at most countable. This proves the claim.

We conclude this section be remarking that it is possible to prove that T + = T - at every interior point, provided a series of 4 axioms is assumed (T 1, T 2, T 4 and T 5 in [START_REF] Lieb | The physics and mathematics of the second law of thermodynamics[END_REF]). 6.2. Planck's principle. Another important aspect of a thermodynamic theory is the Planck's principle, which says, as we have mentions in the introduction, that no process is possible, the sole result of which is that a body is cooled and work is done. In mathematical terms, combined with our definition of adiabatic accessibility, this can be stated as: "If two states, X and Y , of a simple system have the same work coordinatees, then X ≺ Y if the energy is no less thean the energy o X." Conjecture 6.1. The Planck's principle holds for every Γ satisfying A1-A7 and the Comparison Hypothesis.