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Abstract. In this work, we aim to measure the impact of hash func-
tions on the password cracking process. This brings us to measure the
performance of password enumerators, how many passwords they find in
a given period of time. We propose a performance measurement method-
ology for enumerators, which integrates the success rate and the speed
of the whole password cracking process. This performance measurement
required us to develop advanced techniques to solve measurement chal-
lenges that were not mentioned before. The experiments we conduct
show that software-optimized enumerators like John The Ripper-Markov
and the bruteforce perform well when attacking fast hash functions like
SHA-1. Whereas enumerators like OMEN and PCFG-based algorithm
perform the best when attacking slow hash functions like bcrypt or Ar-
gon2. Using this approach, we realize a more in-depth measurement of
the enumerators performance, considering quantitatively the trade-off
between the enumerator choice and the speed of the hash function. We
conclude that software-optimized enumerators and tools must implement
academic methods in the future.

Keywords: password · hash function · cracking conditions

1 Introduction

Passwords are for a long time one of the weakest point in digital identity security.
NIST guidelines [19] tells us that ”Memorized secrets SHALL be salted and
hashed using a suitable one-way key derivation function”. Such functions are
designed to be time and memory costly to hash a password. However, the impact
of the hash function on an offline password cracking process has not been studied.

Before our work, even if the time influence has once been mentioned [27],
we were not able to get and understand the performance of enumerators and
password cracking software depending on the hash function. For example, what
is the real impact on enumerators performances when switching from SHA-1 to
bcrypt?

Contributions of this work are useful to choose a good hash function knowing
the threat in terms of enumerators (defender side) and to choose a good set of
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enumerators knowing the hash function used to protect passwords (attacker side,
password crackers, pentesters).

To measure the impact of the hash function, we aim to measure the perfor-
mance of the whole offline cracking process, which is composed of the candidate
generation by an enumeration algorithm, the candidate hashing and the search
for its fingerprint in the targeted dataset. The performance on a period of time
is defined as the number of found passwords in that period.

The most popular academic enumerators categories are Probabilistic Context-
Free Grammars (PCFG) [15, 28, 30] and Markov chains models [9, 16, 18]. These
models are probabilistic, as they assign probabilities to passwords to measure
their strength, whereas very fast enumerators are also implemented in free soft-
ware like John The Ripper (JtR) [21] and Hashcat [24]. These enumerators are
optimized for their runtime performance. The faster the hash function is, the
more we can test candidates in a period of time. Slowest enumerators gener-
ate better quality candidates compared to the fastest ones. It makes sense since
slowest enumerators are probabilistic, and propose candidates in decreasing or-
der of probability. There is then a trade-off between the speed of the enumerator
and the quality of candidates it generates. We think that the choice of the hash
function affects the performance, however it is unclear how the speed of the
hash function impacts the performance of the password cracking process. For
instance, until which speed of the hash function a naive strategy like bruteforce
is viable?

In previous works, probabilistic enumerators were usually compared using the
guess number metric [9, 30, 27]. This metric makes sense as long as enumerators
aim to measure the password strength. From the moment when they are used to
crack passwords, it becomes inadequate because the candidate generation speed
of the enumerator must be taken into account.

Our contributions:

– We propose a methodology to measure the performance of enumerators in a
password cracking context by considering the cost of processing candidates.
Since this measurement can not be directly done, we then need to measure
separately the success rate and the frequency of the process.

– Measuring the success rate and the frequency of the process are challenging
tasks. We present advanced techniques used to conduct these measurements,
since there is a sort of Heisenberg effect: measuring a phenomenon has an
influence on the value itself. Such techniques have never been presented
before and will certainly be useful for future works.

– Experiments on leaked databases with this performance measurement show
that fast cryptographic hash functions are unsuitable for password storage,
because even the most naive strategies (like bruteforce) perform very well
against them. They also show that academic enumerators are very useful
against slow hash functions. To make them even more performing, developers
should implement them in their password cracking tools.

This paper is organized as following. First, we present the background and re-
lated works 2. Then we introduce our password cracking modelling 3. In section 4
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we explain how we compute the performance using success rate and frequency
measurements. Section 5 contains the results of performance measurements on
two publicly leaked passwords using two different hash functions. Then, in sec-
tion 6, we expose different scenarios in where our work has concrete interests.
We conclude in section 7.

2 Background

2.1 Related Works

Password strength evaluation is an active research topic [6, 5, 7, 26]. Probabilistic
passwords models have been studied by Ma et al. in [16] where they introduced a
probability-threshold to plot graphs rather than guess-number graphs. However,
it is not sufficient since it does not depend on the hash function and enumeration
speed, which are required to compute the performance of passwords attacks.

Different cracking strategies have been studied by Ur et al. in [27], where they
compare algorithms like PCFG, JtR, Hashcat, Markov from [16] and a strategy
from password recovery professionals. They found that professionals are more
efficient against complex password policies at a high number of guesses, while
automatic approaches perform best at low numbers of guesses. They ended up by
providing a Password Guessing Service [25] where they offer to analyze a list of
plaintext passwords and return the score for each approach they support. Once
again, they do not take care of the enumeration speed nor the hash function to
compare enumerators.

2.2 Enumerators

Several enumerators have been proposed by academic researches, but few are
currently implemented in the most well-known password cracking software. For
example, John The Ripper and Hashcat include a Markov model-based enumera-
tor that has been originally introduced in [18]. However, the remaining proposed
enumerators are distributed in standalone versions, meaning they are not ac-
tually cracking passwords. Instead, they only generate candidates that might
be actual passwords. These candidates should then be gathered by a password
cracking software to do the rest of the process: hash them and search for a match.

Bruteforce: this is the most naive and the most known enumerator. Basi-
cally, bruteforce will output the words incrementing the characters one by one
using a defined alphabet. In this paper, we run our own C implementation of
the bruteforce algorithm.

Markov Models: they are probabilistic models that can be applied to words,
for which the probability of a character at a given position depends on the pre-
vious characters. The software will learn probabilities on a dataset and will then
output newly-created words according to these probabilities. In this paper, we
consider two enumerators based on Markov models implementations: John The
Ripper’s Markov mode [1] and OMEN [8]. The main differences between
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Fig. 1: Distribution of hash functions usage in password leaks since 2011. Source:
haveibeenpwned.com

them is that OMEN outputs candidates in approximately decreasing probabili-
ties order. Also, OMEN has an adaptive strategy which reorders the sets of next
candidates based on the success rate of previous ones.

Probabilistic Context-Free Grammars: Weir et al. [30] are the first to
use PCFGs for passcracking. Kelley et al. and Komanduri [13][15] have modified
Weir’s PCFGs by adding string tokenization and by assigning probabilities to
terminals that have not been seen in the training dataset. The implementation
used in this paper is the Weir’s one and can be found on Github [29]. For easier
reading, we will write ”PCFG” referring as the Weir et al. algorithm.

In this paper, we make use of these four enumerators: bruteforce, JtR-Markov,
OMEN and PCFG. They only generate candidates as they do not hash them or
search for them in the targeted database. We don’t make use of Hashcat and
John The Ripper password cracking features, only the Markov-based enumerator
of John The Ripper.

2.3 Hash Functions

Fast functions like MD5, SHA-1, SHA256 are often used in the leaks that hap-
pened the last 10 years. Figure 1 is an overview of the distribution of used hash
functions in passwords leaks since 2011: MD5 and SHA-1 remain very used even
if we observe an increase of the usage of bcrypt. These figures are not represen-
tative as it is more likely that poorly-protected services are also using fast hash
functions. However, this provides a lower bound of the bcrypt usage.

Moreover, these hash functions are deterministic, which means that two same
words have the same hash. It is unwanted since multiple users having the same
password would have the same hash. A common counter-measure is to use a
salt [17], a randomly-generated word which is appended to the passwords before
hashing, and stored aside the hash value. Attackers are then forced for each



Performance of Password Guessing Enumerators Under Cracking Conditions 5

candidate to apply the salt value before hashing, slowing down the speed of
the attack and making pre-computation-based attacks [11, 20] impracticable.
The leaked databases on which we experiment in this paper are not salted.
Nevertheless, our model still apply since we don’t use pre-computed tables and
usage of a salt multiply the cost of the attack by the number of users.

Password-specific hash functions like bcrypt [23], Scrypt [22] or Argon2 [4],
winner of the Password Hashing Competition [3], have been proposed to replace
fast hash functions. They are designed to break the usage of massive parallel pro-
cessing units by requiring a big memory and time amounts to compute one hash.
Moreover, they handle themselves the salt value, making easier for developers
to manage and store passwords.

In this paper we consider two hash functions: the first, SHA-1, due to its wide
usage according to publicly leaked passwords datasets (especially in Linkedin).
SHA-1 will represent the set of cryptographic hash functions (MD5, SHA-1,
SHA2, SHA-3, ...), since these functions are similar for our study. The second
is bcrypt, the reference function to store passwords, with a cost factor of 10
which is the default cost factor for PHP’s password hash() function at the time
of writing. Since Argon2, Scrypt and bcrypt are for our study very similar, we
only consider bcrypt since it is more commonly used than Argon2 and Scrypt.

2.4 Datasets

Here are presented the publicly accessible datasets used in this paper. Note
however that there exists many more datasets that can be used for such a study.
The ones we used are enough to illustrate our modelling, as it does not aim to be
exhaustive. Further works can be conducted on more datasets. A list of recent
leaks can be found at [12].

Rockyou: The most used dataset, probably because in plaintext and easily
accessible. Rockyou is a company providing services to social networks and video
games. The leak happened in 2009. It contains more than 32 million of passwords
(14 million unique).

LinkedIn: This leak comes from the LinkedIn social network. The hack hap-
pened in 2012. Four years later, the entire database were published, containing
more than 160 million of passwords (60 million unique). The passwords were
hashed with SHA-1, without salt.

It should be mentioned that the relevance of one password cracking strategy
highly depends on the training and target datasets.

3 Cracking Process Modelling

3.1 Context

The cracking process, at the level of a single candidate, can be resumed in 3
steps:

(i) generate a candidate
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(ii) hash it
(iii) search for a match in the target database

In practice, searching for a match in step (iii) is negligible, even when a fast
hash function is used. Indeed, most password cracking tools use a probabilistic
structure, similar to a Bloom filter with only one hash function, to store the
hashed passwords list in memory. We assume that step (iii) takes no time. Then
according to the hash function in step (ii), the bottleneck of the process is either
step (i) or (ii).

3.2 Formalization of the Performance

Even if in practice we compute a discrete version of this password cracking
process, it remains a continuous process since the time is continuous, which
explains the usage of integrals. Let first consider the performance at the level
of a single candidate. For any i ∈ N, let ti be the instant where we finish to
process the ith candidate of the enumeration, gi the gain of this candidate, i.e.
its number of occurrences in the dataset D and ci the time to process it (steps
(i), (ii), (iii)), i.e. ci = ti− ti−1. The performance will be P (ti−1, ti) = gi. Thus

P (ti−1, ti) = ci
gi

ci
=

∫ ti

ti−1

g(t)

c(t)
dt,

where c(t) = ci and g(t) = gi.

Note 1. this model includes the parallelization of the process, since g(t) and c(t)
could be measured on multiple cores.

Let t1 and t2 be any instants such that t1 < t2. The performance in the

period ]t1, t2] will be P (t1, t2) =
∫ t2
t1

g(t)
c(t)dt, where c(t) = ci and g(t) = gi, for

any ti−1 < t ≤ ti.
The frequency is by definition the number of processed candidates between

t1 and t2. We get the formula F (t1, t2) =
∫ t2
t1

1
c(t)dt. We also define the success

rate as the ratio between the number of passwords found in the period ]t1, t2]

and the number of processed candidates in the same period: S(t1, t2) = P (t1,t2)
F (t1,t2)

.

Comparison between enumerators performance We show here how to
compare two enumerators depending on the speed of the used hash function.
For each candidate i, ci = cig + cih + cid where each term corresponds respectively
to one step of the cracking process (generate, hash and search). We show in our
experiments that cid is negligible for any enumerator, then ci ≈ cig + cih. Let E1

and E2 be two enumerators we want to compare. We have two cases:

– case a) a slow hash function is used. Then ci = cig + cih ≈ cih for any i
and F1(t1, t2) ≈ F2(t1, t2). P1(t1, t2) > P2(t1, t2) when S1(t1, t2) > S2(t1, t2),
the enumerator E1 outperforms E2 when it has a better success rate.
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– case b) a fast hash function is used. Then ci = cig + cih ≈ cig for any

i and P1(t1, t2) > P2(t1, t2) when S1(t1,t2)
cg,1

> S2(t1,t2)
cg,2

. The enumerator with

the best ratio between the success rate and the enumerator speed has the
best performance. We have a trade-off between success rate and speed.

Previous works consider the success rate from the beginning corresponds to
the case a), we have a slow hash function. Indeed in this case, the enumerator
speed is not very important and the best performance is obtained with the best
success rate. In case b), when a fast hash function is used, the enumerator E1

should have a best success rate than the enumerator E2 but a worse performance
if E2 is a faster enumerator. For instance, if E2 has twice better success rate
than E1 but a hundred times slower enumerator, the performance of E2 is fifty
times better than E1, in a same period the enumerator E2 finds fifty times
more passwords than E2. In that case, measuring only the success rate is clearly
insufficient.

3.3 Estimating the Performance

In practice, we can’t measure directly the performance, since it would be very
expansive in time and uninteresting to compute the gain g(t) for every t. One
solution is to estimate the frequency and the success rate in small periods and
derive an estimation of the performance. We will perform these measures for
each interval of one second: P (j, j + 1) = F (j, j + 1) S(j, j + 1).

Firstly, as we already stated, the measurement of cg(t) has an impact on its
value. We want then to have the less measurements possible while keeping a
good enough accuracy. cg(t) does not vary much between j and j + 1, then we
suppose cg(t) to be constant in that period. For that, we note cg its value, and
take the mean of cg(t) as its value. Secondly, we can consider ch to be constant
given a hash function, because passwords size is almost always smaller than the
input size of the compression function.

If we note c = cg + ch in the interval ]j, j + 1], then we have F (j, j + 1) = 1
c

the frequency of the enumerator during that period.
Let now consider a period of k seconds ]t1, t2 = t1 + k] , we have

P (t1, t2) =
k−1∑
l=0

P (t1 + l, t2 + l + 1)

as it is computed in the previous researches with the guess number comparisons,
called the ”Cumulative Distribution Function (CDF)”.

4 How to Measure Performances of the Cracking Process

While the time cost to generate a candidate has too briefly been highlighted
in a previous work [27], the computation of the performance has never been
considered. We show that S and F must be computed separately. An estimation
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Table 1: N value for measuring time for each enumerator

Enumerator bruteforce JtR-Markov OMEN PCFG

N 109 4× 106 105 104

of these two values is enough. Furthermore, it makes possible the study of them
separately, which is a work that can be done in a foreseeable future.

Nevertheless, as mentioned in [27], due to the fact that some enumerators
are very fast, computing S(j, j + 1) and F (j, j + 1) in practice is very challeng-
ing. The measurements that have been performed are now presented. First of
all, none of the enumerators implementations provide the measurement of the
time between candidates. OMEN embeds the success rate measurement. For the
remaining ones, we need to make our own measurements using different tech-
niques depending on the implementation. Since time is not considered in the
success rate measurement, we may use different techniques depending on the
enumerator.

Number of candidates in a period. The 3 steps ((i), (ii) and (iii)) must
be taken into account when measuring the number of candidates. However, steps
(ii) and (iii) take constant times given a hash function, we then only need to
analyze the generation step. Measuring times between each candidates until
reaching one second is a very costly process. We instead estimate this number of
candidates by measuring the time to generate a fixed number N of candidates.
Then we compute the time spent to hash these candidates by multiplying the
number of candidates with the time to hash one candidate. For example, in
average, PCFG generates ≈ 8 × 104 candidates per second, OMEN 106, JtR-
Markov 2 × 107 and bruteforce 1.6 × 109 (note however that these times are
not constant during enumeration, hence are presented here to have a glance on
enumerators speed). In our experiments, we chose N such that times required
to generate N candidates are about 0.1 second (at beginning) to have both a
good estimation of C(t) and an acceptable number of floating point numbers to
store. Our values of N for each enumerator can be found in Table 1.

Success rate measurement. To measure the success rate, we want to have
for each candidate, its rank and its gain (how many times it appears in the
dataset). There are two ways of measuring the success rate: by running the enu-
merator and counting occurrences in the dataset, or backwardly by computing
for each password of the dataset, its rank in the enumeration if the enumer-
ator has an index function. The former can be applied to every enumerators.
However, it requires to run them, which is a long process, especially if we want
to benchmark them for a long time. The latter however is doable only for few
enumerators: bruteforce and JtR-Markov since the rank of a word is predictable
and easily computable (index function). Since the time is not considered, using
different techniques to measure the success rate of enumerators is not an issue.
Once we get all the gains, we can compute the success rate for any period of
time using the number of candidates for that period. For that, we search the
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Fig. 2: LinkedIn dataset using SHA-1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

0

20

40

60

80

Time in seconds

Bruteforce JtR-Markov OMEN PCFG

Fig. 3: LinkedIn dataset using bcrypt with
a cost factor of 10

rank of the first generated candidate of the given period, and compute the sum
of gains corresponding to candidates of this period. The rank can be computed
by summing the number of candidates for all previous periods of one second.

Performance Computation. Once we get the success rate and the number
of candidates for every period, the computation of the performance is straight
forward P = F × S.

5 Experimental Results

In this section we present the experiments of the performance computation for
four enumerators, the bruteforce, John The Ripper-Markov mode, OMEN and
the PCFG-based enumerator, over the datasets LinkedIn and Rockyou, and using
two hash functions, SHA-1 and bcrypt (cost 10). To be able to compare plots with
previous researches and across datasets, rather than plotting the performance,
we plot the percentage of cracked passwords from the beginning. We can then
compare how they perform between each other over time and across datasets.
We still took [10] for hash functions benchmarks. For SHA-1, 1/ch ≈ 12.5× 109,
and for bcrypt with a cost of 10, which is the default cost factor for PHP’s
password hash() function at the time of writing, 1/ch ≈ 700. Note that the
benchmarks in Hashcat uses a cost 5 bcrypt, which means 25 rounds of the
internal key-derivation function. Thus, ch for a cost-10 bcrypt is 25 times smaller,
giving 23× 103/25 ≈ 700.

On Figure 2, showing how enumerator perform over LinkedIn with the SHA-
1 function, JtR-Markov and PCFG cracked about 60% of passwords after four
hours, while OMEN cracked around 43% and the bruteforce around 36%. Brute-
force, even though it is the most naive method, still has good results. PCFG
is surprisingly good since it exploits the high number of passwords sharing the
same grammatical structure in this dataset: 37% of passwords share the top
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Fig. 4: Rockyou dataset using SHA-1
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Fig. 5: Rockyou dataset using bcrypt with
a cost factor of 10

five most frequent structures. However using bcrypt (Fig. 3), enumerators per-
formances are completely disrupted. Because of the poor quality candidates of
the bruteforce, the whole process spends its time to hash candidates which give
mediocre success rates. After four hours, bruteforce cracked less than 1% of
the dataset, while PCFG still performed great by cracking 43% of passwords.
OMEN is better placed than before, cracking more than 18% of the dataset.
Finally, JtR-Markov is worse than OMEN, finding only 11% of passwords after
four hours. On Rockyou using SHA-1 (Fig. 4), JtR-Markov cracked 15% pass-
words more than on LinkedIn after four hours, while OMEN cracked 23% more
than on LinkedIn, and the bruteforce 12% more. However, PCFG perform sim-
ilar than on LinkedIn using SHA-1. On Rockyou using bcrypt (Fig. 5), results
are similar than with LinkedIn using bcrypt: even though enumerators cracked
not the same number of passwords, their performances are in the same order.
The ”steps” of the OMEN curves on all figures is due to the fact that it gener-
ates sets of candidates of same length. When OMEN switches the length of the
candidates, it suddenly cracks many more passwords.

These four graphics highlight the impact of the hash function concerning the
performance of the cracking process. They confirm our hypothesis that hacker
enumerators are well-performing using fast hash functions while academic enu-
merators perform better using slow hash functions. One special mention to the
PCFG-based enumerator which performs quite well on LinkedIn using SHA-1.
Finally, experiments on each dataset can be easily adapted to other hash func-
tions or to other parameters, like the cost of bcrypt. We could also choose the
algorithm depending on the used hash function from the beginning. With the
rise of memory-hard functions usage like bcrypt or Argon2, it will be even more
interesting to have software-optimized academic enumerators implemented in
password cracking tools.
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It is important to note that the performance of enumerators highly depends
on the dataset, and that OMEN becomes better than PCFG when attacking
more complex datasets where passwords are longer and having more complex
structures, like when keeping only strong passwords (longer than 8 characters,
include all four characters classes). We also observed that enumerators perform
differently on particular password composition policies, like the basic, complex,
longbasic and longcomplex as defined in [27]. Results suggest that the beginning
of the cracking session is decisive enough to determine which enumerator will
perform the best on the targeted dataset.

6 Impacts of our Contributions

We present here the usages that can be made of our contribution and results,
for different actors of the computer security community.

Password guessing researchers. Imagine a scenario where you are a pass-
word guessing researcher who wants to build a new enumerator. Since you aim
to attack passwords, you have to take care of the time cost of the enumeration
algorithms you build. Concretely, you have to measure both their success rate
and their frequencies in password cracking conditions, as we did in section 4.

Then, you have a concrete proof that your enumerators are worth implement-
ing them since you have measured their performances as if they were integrated
in password cracking software. You could bring that proof in your future pub-
lications to encourage password cracking tools developers to implement your
solution.

Furthermore, since you independently measured success rate and frequencies
during a cracking session, you can independently analyze the behaviors of the
success rate or the frequency during the enumeration. Thanks to that, you have
a clearer understanding on your enumerator performance.

Then you are able to propose different enumerators settings regarding the
attacked dataset. If your measurements show that a set of parameters provides
good results against a given dataset, you can be pretty confident that this set of
parameters will also provides good results against a similar dataset (for example
where the password composition policiy is similar). Moreover, you can implement
a strategy in your enumerator that adapt the enumerator settings depending on
the found passwords. For example, if you found a lot of passwords of length 6,
your enumerator can for a while only generate passwords of length 6.

Password cracking tools developers. Imagine once again a scenario
where you are a developper of a password cracking tool and want to implement
and optimize better enumerators in your tool. Using our comparison methodol-
ogy, you are able to compare existing enumerators as if they were integrated in
your software. For example, on both attacked datasets in section 5, PCFG is not
really impacted when using bcrypt instead of SHA-1. Implementing it directly
in your cracking tool would make it even more efficient in such contexts.

Therefore, based on the hash function used in the targeted dataset, your tool
can select different enumerators at the beginning of the cracking session. You
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can select those which are known to be more efficient against fast hash functions
when you detect such functions, and similarly for slow hash functions. That
way, the first steps of a cracking session can be run without user interaction.
You can then crack a non-negligible part of weakest passwords automatically.
Moreover, you can implement an adaptive strategy to select enumerators during
the same single cracking session: based on previous performances of the running
enumerator, your tool can change the enumerator for a one that is more likely
to be efficient. For example, if a lot of found passwords share the same base
structure, your tool benefits to switch to a PCFG-based algorithm since its
performance is high on such passwords (provided that this algorithm performs
well on the used hash function).

Security community & CISO. Imagine a scenario where your are a CISO,
system administrator of a company or an university, and that you want to im-
prove the security of your infrastructure and users. The results of our research
emphasize on the importance of a good hash function to protect passwords.
Cryptography-oriented hash functions are unsuitable for password hashing since
they allow to most of attacks to be very efficient even if their success rate is low.
Therefore, it is essential for you to protect passwords using a dedicated hash
function that has been designed for it, like bcrypt or Argon2d. Nevertheless
speed performance of the hash function also depends on the hardware [14]. Ded-
icated hardware (ASIC or FPGA) focuses particularly on hash functions used
in cryptocurrencies mining (typically SHA-256 but also Scrypt) [2].

Nonetheless, the results also show that a slow hash function is not enough to
offer a very good protection for passwords. For example, PCFG still perform well
against bcrypt-protected datasets. The only remaining protection to such attacks
is by ensuring a good password strength before registering it in the database.
That is why it is important for you to provide, when users register, a satisfying
password composition policy that aims to increase the spread of passwords in
their universe. Our work can also be used as a leverage to recommend or force
the usage of slow hash functions and the usage of password strength meters in
organizations services.

7 Conclusion

Our study proves the importance of the speed of the enumerator and the hash
function in the performance measurement of a password cracking process. Thanks
to that, it becomes possible to evaluate how efficient a slow memory-hard func-
tion is against the different enumeration strategies of the literature.

Even if we observe an increase of the bcrypt and Argon2d usage, recent
passwords database leaks still confirm the high usage of cryptographic hash
functions like SHA-1 and its siblings. We recommend the usage of dedicated
slow and memory-hard hash functions to protect passwords.

We bring the technical challenges out when computing the performance of
enumerators in password cracking context. Firstly, we highlight the impossibil-
ity to compute both the number of found passwords and the time to generate
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the required candidates without altering their values. Even if we only measure
the latter it remains a complicated task. Then we provided a methodology to
estimate these values accurately enough.

When the enumerator has an index function, as in [18], we have a big ad-
vantage since it becomes possible to compute the success rate of the enumerator
without running it. However it has not been considered when recent enumerators
have been designed. In the other case, we need to run the algorithm and measure
its success rate along the enumeration.

Our experiments over two publicly leaked passwords lists show unexpected
results. First, we observe that bruteforce is still useful against fast hash functions.
Secondly, the PCFG-based algorithm is nearly as good as JtR-Markov against
LinkedIn using SHA-1, meaning that it would be better than JtR-Markov if
it was optimized. In OMEN paper [9], authors showed that it was better than
PCFG on the Rockyou dataset. However we show that considering the cost of
generating candidates, PCFG becomes better in all presented experiments.

We showed that JtR-Markov is really relevant when using a fast hash func-
tion like SHA-1, while probabilistic enumerators like OMEN and PCFG-based
algorithms perform better than others using slow hash function like bcrypt.

If PCFG and OMEN were optimized for password cracking, results would
change only against fast hash functions, where OMEN, PCFG and JtR-Markov
would be more distinguishable. We encourage Hashcat and John The Ripper de-
velopers to implement such algorithms in further versions of their tools. Hashcat
developers have already took a step in that way since the version v5.0.0 by in-
troducing the feature ”slow candidates” which aims to facilitate the integration
of slow enumerators proposed by academics.

More generally, the security community, especially in the field of password
protection, lack of researches on password enumerator performances. Nowadays,
the usage of fast hash functions remains too high. However, slow hash functions
are more likely to be used in the near future. Therefore, our study is relevant
and should be extended with future works that take into account the password
cracking context in order to be closer to the attacker environment.

Thanks
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