
HAL Id: hal-02060021
https://hal.science/hal-02060021

Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clone-Based Encoded Neural Networks to Design
Efficient Associative Memories

Hugues Wouafo, Cyrille Chavet, Philippe Coussy

To cite this version:
Hugues Wouafo, Cyrille Chavet, Philippe Coussy. Clone-Based Encoded Neural Networks to Design
Efficient Associative Memories. IEEE Transactions on Neural Networks and Learning Systems, 2019,
30 (10), pp.1-14. �10.1109/TNNLS.2018.2890658�. �hal-02060021�

https://hal.science/hal-02060021
https://hal.archives-ouvertes.fr

1

Abstract—In this paper, we introduce a neural network model

named Clone based Neural Network (CbNN) to design associative

memories. Neurons in CbNN can be cloned statically or

dynamically which allows to increase the number of data that can

be stored and retrieved. Thanks to their plasticity, CbNN can

handle correlated information more robustly than existing models

and thus provides better memory capacity. We experiment this

model in Encoded Neural Networks also known as Gripon-Berrou

neural networks. Numerical simulations demonstrate that

memory and recall abilities of CbNN outperform state of art for

the same memory footprint.

Index Terms— Associative Memories, Neural Networks,

Content Addressable Memories.

I. INTRODUCTION

he human brain is a powerful machine able to realize

complex operations like abstracting, memorizing and

reasoning. It processes information through a

complex hierarchical associative memory

organization distributed across complex neural network (NN).

These memorizing and processing capabilities associated with

very high power efficiency of the brain are major features which

scientists try to understand and mimic. Numerous

computational models have been explored, providing the

promise of practical applications in many domains (computer

sciences, electronics…). Several neural networks have been

proposed that are able to first memorize associations between

data, and then retrieve a given data (or its associated label) when

receiving an altered version of it. Systems with such capabilities

are referred as associative memories [1][2]. Hopfield neural

networks (HNNs)[3], Boltzmann machines [6], Kohonen maps

[4], Willshaw networks [6] or Cogent Confabulation models [7]

are models classically used to design such memories. Many

studies have been performed to enhance their capacity (i.e., the

maximal amount of data that can be stored and then retrieved).

In this paper, we introduce a neural network model named

Clone based Neural Network (CbNN) to design associative

memories. The main advantage of CbNNs is that they can

handle correlated information more robustly than other existing

models do. This is achieved by cloning neurons to increase the

quantity of data that can be stored. In other words, the neural

network is customized to adapt itself to the data distribution.

In this work, we experiment CbNNs in Encoded Neural

Networks (ENN), also known as Gripon-Berrou neural network

[8]. This ENN model is interesting from theoretical point of

view, since it is a kind of “clustered” version of Willshaw, that

offers much more capacity, and moreover it is closer to real

biological neuron networks.

This paper is organized as follows. Section II presents

existing models and architectures for associative memories.

Section III, introduces the ENN model and describes its

evolutions. Section IV formally defines the concept of CbNN

and details the different steps for the storage and retrieval

processes. Section V and Section VI describe the different

variants for the main classes of CbNNs while comparing their

performances (storage capacity, recall ability). Finally, Section

VII compares the best static and dynamic CbNN variants.

II. RELATED WORKS

Two main neural network topologies are traditionally

proposed in the literature: either the neurons are connected

through multiple layers in a directed graph (i.e., feed-forward

models [9]) or the connections between neurons form a cycle

(i.e., recurrent models [3][4]).

Deep learning has brought back feed-forward networks in the

spotlight through classification applications. However only few

considerations from this domain are relevant since hereby we

focus on recurrent models to design associative memories.

Hence in [10], the authors show how to combine several

networks to improve the number of retrievings. The basic idea

is to select the final retrieved data once a consensus is obtained

(i.e., once each copy of the network has voted). Each copy is

trained to be a predictor and different combinations of learning

parameters (i.e., synaptic weights) are considered. This idea of

relying on a set of elements to design associative memory is one

of the core principle of our work. However, instead of using

different learning method parameters in each network, we

propose to clone neurons or sub-networks. In [11] the authors

propose to use a learning step based on a meta-heuristic

(“annealed synaptic dilution”) under a limited number of

synapses to design associative memory. The proposed approach

considers fitness and degree of neurons to determine the

probability to add new connections. In our work, we propose a

competition between clones of neurons which is based on a

heuristic to compute a fitness metric. In [12], the authors

propose an algorithm for deep learning models called Elastic

Weight Consolidation (EWC). By mimicking the mammalian

brain inner work, this algorithm tries to strengthen the synaptic

weights during the learning step. The proposed model has been

Hugues Wouafo, Student Member, IEEE, Cyrille Chavet, Senior

Member, IEEE and Philippe Coussy, Senior Member, IEEE

Lab-STICC (UMR CNRS 6285)

Clone-based Encoded Neural Networks to

Design Efficient Associative Memories

T

This work has received a French government support granted to the

CominLabs excellence laboratory and managed by the National Research

Agency in the “Investing for the Future” program under reference ANR-10-

LABX-07-01.

H. Wouafo, is with Université Bretagne Sud, Lorient, France. He was Post-

Doc in Lab-STICC laboratory, France.

C. Chavet, is with Université Bretagne Sud, Lorient, France. He is associate

professor in Lab-STICC laboratory, France.

P. Coussy, is with Université Bretagne Sud, Lorient, France. He is full

professor in Lab-STICC laboratory, France.

2

designed in order to preserve, or more precisely to adjust non-

binary weights. As it will be exposed later in this paper, this

weight preservation proposed by EWC is an inherent concept

of our binary weighted model, but since we only consider

binary values there is no need for weight consolidation. In [13],

a machine learning model referred as Differentiable Neural

Computer (DNC) is introduced. This model splits memory and

computation in two separate entities, with a unique memory

interface to refresh concurrently all the synaptic weights once

the learning step is done. However, these memory accesses

(read or write) add significant overhead to the overall

performance of the system.

Recurrent models which are traditionally used to design

associative memories are less addressed in the recent literature.

The underlying principle is to create internal states allowing to

exhibit dynamic behavior while retrieving stored messages

from a part of it. Hopfield networks [3] have been defined such

that their dynamic convergence is guaranteed. However, their

efficiency (i.e., the number of stored data divided by the total

number of data to store) tends to zero when the amount of stored

data grows; this is even true when considering scale free

topology [14][15][16]. In [13], the authors introduce an

architecture based on an Associative Memory and Recall

(AMR) model. The idea is to take advantage of several

Hopfield-inspired networks gathered in a recursive and

recurrent topology. Some of the underlying concepts of this

publication could be similar to our cloning approach. However,

if this proof-of-concept is interesting, the paper does not expose

enough information to perform fair comparisons. Recently,

binary cluster-based neural networks named Encoded Neural

Networks ENNs have been proposed [8]. The approach was

motivated both by biological considerations and ideas from

information theory. This model offers a greater or equal

capacity than classical recurrent models. ENNs use binary

weights, and their neurons are gathered into groups, named

clusters, such that a neuron in a given cluster can only be

connected to neurons of the other clusters. Thanks to their

binary weights and to a simple retrieval process, ENNs allow to

design energy efficient Content Addressable Memories

(CAM)[19]. However, as shown in [20] they only achieve an

optimal performance when stored data are uniformly and

identically distributed. Unfortunately, in practice, data mostly

have non-uniform distribution which hence degrades ENN

efficiency severely. Several approaches have been proposed to

overcome these limitations at the cost of an important increase

in terms of complexity and memory cost [20] (see section III

for details).

In [10], we introduced a Clone-based Neural Network

(CbNN) model. Cloning consists in replicating the neurons in

the network in order to improve ENN results: several entities

named clones may represent the same neuron. Using clones

does not only allow to increase the number of data that a

network can store and retrieve, but it also allows CbNNs to

adapt to the data distribution and thus to compete with [20]. The

concept of clones has been reused in [22] through neuron

duplication to improve the work from [20]. However, in [10]

our work was restrained to static allocation of clones.

In this paper, we target two major improvements compared

to the work introduced in [10]: the network can be itself cloned

(cloned networks are referred as sub-networks), and the clones

can be dynamically allocated. In other words, during the storing

step, the CbNN adapts itself in terms of number of sub-

networks and number of clones, depending on the input data

values to minimize the risk of retrieval error. The

network/neuron cloning combination, which can be performed

statically or dynamically, results in a large variety of models.

To clearly introduce these different models, an extensive

taxonomy of the CbNN model in the ENN context is proposed

and variants are compared in terms of storage capacity and

recall ability. Our experiments show that the best variants

outperform the state-of-the-art models, for the same memory

cost or widely reduce the memory cost for a given efficiency

level. Before exploring these models, we first remind the

original ENN basics and analyze its strengths and weaknesses.

III. ENCODED NEURAL NETWORKS: PRINCIPLES AND

LIMITATIONS

A. Encoded Neural Network basics

An ENN [8] is based on binary sparse model. The main idea

is to divide up sets of neurons into disjoint clusters. A depicted

in Fig. 1, a cluster contains a subset of neurons from the

network. Neurons that belong to the same cluster cannot be

connected to each other. However, any neuron of a given cluster

can be connected to any neuron in any other cluster. More

precisely, the network consists of N binary neurons arranged

into � equally-partitioned clusters. Therefore, each cluster

contains � = �/� neurons. An ENN with such configuration is

noted ���(�, �).
In this model data are called messages. An ENN(C, L) can

store and retrieve a message m with C symbols, each symbol

containing
 = log�(�) bits. Considering such message, each

symbol is associated with a specific cluster in the network. The

symbol value serves to trigger the activation of a specific

neuron in the cluster. Therefore, each neuron represents a

specific symbol value and a neuron is activated by setting its

state to 1 (when the value it is associated with is presented to

the network).

Initially ENNs do not have any stored information (i.e., all

the weights in the network are set to 0). During the “storage”

step, the network memorizes all the input messages. To store a

message, the activated neurons (i.e. the set of neurons

corresponding to the values of the input message symbols) are

connected to each other and form a neural clique [23] (thanks

to the use of binary weighted connections). To memorize a

connection between one neuron i in the cluster j, �(�,�) and one

neuron i' in the cluster j’, �(��,��), each active neuron locally

stores the value 1 in its corresponding synaptic weight w (i.e. ���(�,�); �(��,��)� = ���(��,��); �(�,�)� = 1). Once all the messages

stored, this associative memory can be used to retrieve partially

erased messages (see Fig. 1 for a pedagogical example).

The retrieval process, also named decoding step, recovers a

message when some of its symbols are unknown (because of an

erasure). This iterative process is based on two steps: a Scoring

step, followed by a Local Winner Takes All (L-WtA) step. This

process is able to detect which neuron, in a cluster associated

3

with a missing part of the message, is the most stimulated one

[24] (i.e., the neuron that is most likely the one missing in the

erased input message).

Fig. 1 An example of an ENN(3,3) with three stored messages (cliques): [0,0,0],

[0,2,2] and [2,2,0]. Nota bene [0,2,0] forms a clique even if the corresponding

message has not been explicitly stored.

Equation (1) defines the scoring function used to compute the

score �������(�,�)� of a neuron �(�,�)at time t+1. This score

depends on two parameters: (1) the state values of all the

neurons i' from all the other clusters j’ (i.e. �(��,��)) computed at

the time instant t (i.e., in the previous iteration of the decoding)

and (2) the corresponding synaptic weights (i.e., value of ���(�,�); �(��,��)�) that have been stored during the storage

process (see Eq. (2)).
 ∀	� ∈ !0. . � $ 1%, & ∈ !0. . � $ 1%, �������(�,�)� = '� ��(�,�)� (

) max-./.01��'���(��,��)� ∗ ���(�,�); �(��,��)�	�	31�
��4-,565�

(1)

'�����(�,�)� = 7		1		�8	�������(�,�)� = max-.�90 :�������(�,�)�;0														<=>?@���? (2)

The decoding is successful when at the end of the process

there is only one active neuron in each cluster. A successful

decoding may require a few iterations. When the decoding is

over, the clusters which originally had no selected neuron are

provided with the selection of a neuron or a group of neurons.

The final answer of an ENN is defined by the set of neurons that

were activated.

Fig. 1 shows the overview of an ENN(3,3) in which 3

messages have been stored ([0,0,0], [0,2,2] and [2,2,0]) during

the storage step. Let consider this network must decode the

message [?,2,0] where the first symbol is unknown (i.e. the

neuron in the cluster C0 is unknown). The neurons n(2,0) (square-

2) and n(0,0) (square-0) will remain active at the end of the

decoding step since they are both connected to the neurons n(2,1)

(round-2 in C1) and n(0,2) (triangle-0 in C2). Therefore, in this

example, the false clique/message is [0,2,0] while the searched

1 The capacity is called diversity in [9].

clique/message is [2,2,0]. The four notable properties of a

binary associative memory are:

- The global density, i.e. the percentage of weights that

are set to 1 in the network.

- The degree, i.e. the number of the weights that are set to

1 for a given neuron.

- The memory size |B|, i.e. the total number of synaptic

weights in the network which is equal to the size of the

memory in bits to store those weights:

|B| = �² ∗ � ∗ (� $ 1)2 	 (3)

- The capacity	�EF, i.e. the maximal number of messages

a network can store and retrieve1:

�EF = (� $ 1) ∗ �²2 ∗ �� log� :��;	 (4)

More details can be found in [8] for the model and in [25] for

the fully-binary model. The ENN has a storage capacity of the

order N2/(log N)2 messages for N neurons, while the standard

Hopfield model has a capacity of N/(2 log N) when the

messages are independent and identically distributed (i.i.d).

B. Performance evaluation

Since our goal is to proposed more performant ENN-inspired

model, we need to define a metric for fair comparisons between

models. Hence, to measure the performance of an ENN a

Retrieval Error Rate (RER, i.e. the number of successful

retrievals over the total number of trials) is used. In this paper,

each point in RER results, is the average of 5000

storing/decoding error rates for a given number of data (with

average deviation when it is relevant).

In an associative memory, the failure of a retrieval happens

because some stored messages share the same set of values for

the same symbols. In an ENN, this comes when several neurons

from one cluster are connected to the same neuron in other

clusters. Hence, when the decoding step starts, if that cluster is

erased (i.e. it contains no active neurons), then several neurons

might remain active in that cluster when the decoding step

stops. This means that either all the remaining active neurons

are part of the stored cliques (which look like the searched

clique i.e. true ambiguities) or they are part of a blend between

stored and not stored cliques (i.e. false cliques [8]).

The RER of the ENN depends on the number of stored

messages and the distribution of those messages [20]. On one

side, the RER increases with the number of stored messages.

On the other side, for the same number of stored messages, the

ENN gets a lower RER when those messages are uniformly

distributed, compared to a non-uniform distribution (e.g.

Gaussian distribution).

Fig. 2 shows the RER of an ENN (8,32) where ENN-Uniform

is a network that memorized messages with a uniform

distribution, while ENN-Gaussian is a network that memorized

messages with a Gaussian distribution (mean 16, standard

deviation 5). For 500 stored messages, and an erasure set to

50%, the RER of ENN-Uniform is 30% while the RER of ENN-

Gaussian is 94%. As mentioned before, each point of these

curves is the mean value of 5000 MATLAB simulations. In the

4

sections V and VI, all the RER curves have been generated by

using the same method.

Fig. 2 RER evaluation of an ENN (8, 32) for different message distributions

C. State-of-the-art approaches to handle non-uniform

distributions in ENNs

Two solutions are proposed in [20] to improve performance

of ENNs for non-uniform distributions of stored messages.

These methods consider messages that are binary vectors and

each symbol is a binary sub-vector. Before their storage,

messages are recoded following different processes.

The first approach, named adding bits, consists in adding a

group of bits to each symbol of the message to store. These

added bits can either be: (1) randomly generated or (2) the least

recently used sequence. With this solution the symbols to be

stored become larger. As a consequence, the corresponding

ENN is bigger to store the same amount of messages (de facto,

more neurons and clusters are required to store the messages).

The second approach, named Huffman, consists in

performing Huffman encoding [26] of the messages. Huffman

encoding is a lossless data compression technique that consists

in defining a codeword for each value that the symbols can take

depending on the distribution. This method requires to

determine the frequency (or the probability) of occurrence of

the values from the set of messages to memorize. The sizes of

the codewords depend on the values: the most frequent values

have reduced sizes compared to the less frequent ones. The

codewords are stored in an additional dictionary. Hence during

the storing step the messages are encoded, and ENN stores these

codewords instead of the messages. As the messages (i.e., the

codewords) can have different sizes, the latter are extended to

the size of the longest codeword by adding random bits.

A first improvement of the ENN models for non-uniform

distributions without requiring any offline storage (i.e., with no

dictionary), has been proposed by using clone neurons [10]. In

this work, the clones were assigned before any storage (i.e.,

static allocation was considered). Hence, multiple instances of

the same neuron exist in the network and are associated with

the value of the symbol related to that neuron. Therefore, the

degree a classical neuron would have is now distributed

amongst its clone instances. The clones have a lower degree

compared to neurons they are associated with. The proposed

model competes with Huffman for the same memory cost (the

extra-cost of the Huffman dictionary being excluded). This

concept of clones has been reused in [22] through neuron

duplication to improve the work from [20].

In the next section, Clone-based Neural Networks are

introduced, formally defined and detailed.

IV. CLONE-BASED NEURAL NETWORKS: DEFINITIONS AND

PRINCIPLES

A. Basic definitions

Definition 1: A clone is an instance of a neuron. A neuron

may have one or several clones.

Definition 2: A bundle is a subset of clones of the same

neuron. A neuron may be associated with one or several

bundles.

Definition 3: A sub-network regroups a bundle of each

neuron in each cluster. In other words, each cluster contains sets

of clones instead of neurons. Each neuron is associated with one

bundle in each sub-network exactly. the CbNN may contain one

or several sub-networks.

The CbNN is defined by a set of parameters (see Table 1):

- The number of sub-networks G,

- The number of clusters for each sub-network �,

- The number of neurons associated with each cluster �,

- The number of clones representing those neurons in each

cluster H.

In order to synthetize the notation, all these parameters are

combined in a single relation I(G, �, �, H) allowing to define all

the CbNN variants.

Fig. 3 An example of a CbNN I(4,3,3,9)
Fig. 3 shows an overview of a CbNN I(4,3,3,9) containing

4 sub-networks. Each sub-network has 3 clusters (C0, C1, C2).

Every cluster contains 3 neurons and each neuron may be

instantiated by any clone of its bundle. In this example, each

bundle holds 3 clones. Therefore, each cluster contains

C*L=3*3=9 clones and each neuron may be represented by G*(H/�)=4*(9/3)=4*3=12 clones.

A CbNN I(G, �, �, H) has G sub-networks, each one

containing � clusters of � neurons (or bundles of clones, if H M

0%

20%

40%

60%

80%

100%

R
E

R

Number of stored messages

ENN-Uniform ENN-Gaussian

5

 �). The total number of clones is thus G ∗ H ∗ �. Each clone can

be connected to H ∗ (� $ 1) distant clones located in the same

sub-network it belongs to. Therefore, by taking into account the

symmetry of those connections, the total number of weights �

in this network (equal to the cost to store the adjacency matrix

in bits) is:

|B| = G ∗ H� ∗ � ∗ (� $ 1)2 	 (5)

TABLE 1 Notations used in the context of the CbNNs

Symbol Quantity G																																			 �																																				 		�

 	H																															 	I(G, �, �, H)
Number of sub-networks

Number of clusters

Number of neurons per cluster

Number of clones per cluster

CbNN with G sub-networks 	N/ Subnetwork O of I with 0 ≤ O < G 	R(�,/) Cluster & of the sub-network O 	�(�,�,/)S Clone T of the neuron �(�,�)with �(�,�,/)S ∈ R(�,/) 	� :�(�,�,/)S ; 	�(��,��,/)S� 	; Synaptic weight between two clones, �(�,�,/)S and �(��,��,/)S� 	�(�,/) Set of clones in the cluster R(�,/) 	U��(�,�)� Set of bundles of the neuron �(�,�)

B. Properties

Property 1. If a network possesses G sub-networks then, ∀�, &,max�VΓ��(�,�)�V� = G,��=>	G ≥ 1
In other words, for a neuron, its number of bundles is at least

equal to 1 and at most equal to the number of sub-networks.

Property 2. If Y ⊂ Γ��(�,�)� then, |Y| ≥ 0
In other words, a bundle b of a neuron may be empty and

thus contains no clone.

Property 3. � :�(�,�,/)S ; 	�(��,��,/�)S� 	; = [1	<@	0	��	O = O\?=	& ≠ &′0, ?_�?

In other words, two clones can only be connected if they

belong to the same sub-network (O = O\) while being in

different clusters (& ≠ &′).
Property 4. A sub-network is an entity able to store and decode

messages.

Property 5. If a network possesses G sub-networks, then a

neuron �(�,�) is associated with G possible values: one value '(�(�,�); O) for each sub-network N/ where '��(�,�); O� is the state

value of the neuron �(�,�) according to the sub-network N/.

C. Taxonomy of the CbNNs

We define two main classes of the CbNNs which differ

according to the way clones and sub-networks are allocated:

Static or Dynamic. In a I(G, �, �, H) K and/or H may be

statically defined when the network is designed, or in dynamic

model, the network is designed in order to be able to adapt these

parameters, depending on the sets of messages to store. The

different combinations of these degree of freedom are gathered

in Table 2.

TABLE 2 Variants of the CbNNs and their classification

 Number of sub-networks (K)

 1
Static

allocation

Dynamic

allocation

N
u

m
b

e
r

o
f

cl
o

n
e

s
p

e
r

b
u

n
d

le
 (
H)

1
I(1, �, �, �) � ENN

(see [8])

I(G̀ , �, �, �)
(see [10])

I(Ga , �, �, �)

Static

allocation

Ib(1, �, �, H̀) �

adding bits (see [8])

 Icb(1, �, �, H̀) �

Huffman (see [20])

Ib(G̀ , �, �, H̀)
 Icb(G̀ , �, �, H̀)

I(Ga , �, �, H̀)

Dynamic

allocation

I(1, �, �, Ha)
(�8max(Ha) = 2 �

twin-neurons [22])

I(G̀ , �, �, Ha) I(Ga , �, �, Ha)

As an example, I(1, �, �, �), which is a static model since

KS=1 and H`=L, corresponds to the original ENN model from

[8]. As another example, I(Ga, �, �, Ha)	indicates that the

number of sub-network and the number of clones in the bundles

may be dynamically increased (i.e. the number of sub-networks

and the number of clones in bundles may change on-the-fly,

depending on dedicated storage algorithms).

Table 2 reviews the different variants of the CbNNs. The

networks with the index “U” (resp. “NU”) represent models

where bundles contain a fixed number of clones Uniformly

(resp. Non-Uniformly) allocated to each neuron. These

allocation strategies will be further detailed in subsection IV.B.

D. Storing step and retrieving procedure

1) Storing messages in a CbNN

This section introduces the main principles of the storage

procedure. More details are provided in sections IV and V for

each CbNN variants. Storing messages in a CbNN is performed

in four steps:

1. The neurons (i.e., all the corresponding bundles of

clones) related to the symbols of the message, are

activated.

2. A unique sub-network is selected (since a neuron may

have several bundles distributed over several sub-

networks).

3. A unique active clone is selected in each cluster (since a

cluster in a sub-network may contain several clones for

the same neuron).

4. The weights between the selected clones are set to ‘1’.

The selection of a sub-network may be done randomly or by

competition. The competition between clones (resp. between

sub-networks) is realized by computing a score for the activated

clones (resp. sub-networks) and by choosing the clones (resp.

sub-network) having the best score i.e. the lowest one. Different

approaches have been explored to compute this score and the

most efficient ones are presented later in this paper (see the

sections V and VI).

6

2) Decoding procedure to retrieve a message

The decoding step allows to retrieve a stored message when

some of the input message symbols are erased.

This procedure is iterative and performs in four steps:

1. Given the input partially erased message: for each

message symbol if the value is known, the associated

clone is activated, otherwise all the clones are activated.

Thus, in each cluster either one or all the clones are

activated.

2. The score of each clone in the network is computed by

using the equations (1) and (2) (see section II).

3. The state of the selected neurons, in each sub-network is

determined. A neuron is active in a sub-network, if at

least one of its active clones is contained in that sub-

network.

4. Each sub-network is evaluated to determine if it

converged. A sub-network converged once the previous

steps have been applied when each of its clusters

possesses exactly one active neuron i.e. each cluster

contains a unique bundle having itself one active clone.

A CbNN performs a successful decoding if at the end of the

decoding process, there is at least one sub-network that has

converged. If several sub-networks have converged, one of

them is randomly selected.

V. STATIC CBNNS

In static variants of the CbNNs, the number of clones

allocated to each neuron and the number of sub-networks in the

CbNN are fixed (i.e., constant). The storage algorithm thus

selects the “best” clones or sub-networks from a completely

predefined set. For every static variant of the CbNNs, we

propose two algorithms: the arbitrary or Random (RND)

algorithm and the Least Dense Selection (LDS) algorithm.

The RND algorithm consists in:

1. Randomly choosing a sub-network,

2. Activating the clones associated with the symbols of the

input message,

3. Randomly selecting one active clone per cluster in that

sub-network,

4. Setting to 1 the weights between the selected clones.

The LDS algorithm consists in:

1. Computing a score (see (6)) for each sub-network,

2. Randomly selecting one of the sub-networks with the

best score, i.e. the lowest one (see (7)).

The first step of the LDS involves two sub-steps. First, one

active clone per cluster is randomly activated, while the others

are deactivated. In fact, this random selection is still used in this

sub-step to avoid a huge amount of local score computations2.

An arbitrary selection still offers good results as shown in the

experiments. The second sub-step consists in computing the

score of each sub-network which is equal to the sum of the

scores of its active clones.

2 Indeed, if clusters contain several active clones, in order to perform an

efficient local competition, the score of each active clone has to be computed

for every combination of storage (i.e. for all possible weight activation

Let �(∗,�,/)S be an active clone, its score ����(∗,�,/)S � is: ����(∗,�,/)S � =

) d) e' :�(��,��,/)S� ;⨁� :�(∗,�,/)S ;	�(��,��,/)S� 	;gh�i�,j�,k�l� ∈m(j�,k) n31�
��4-,��6�

 (6)

The score ��(O) of a sub-network O is given by:

��(O) =) :����(∗,�,/)S �;31�
�4- (7)

The selected sub-network Oo which stores the message is one

of the sub-networks having the lowest score ��(Oo): ��(Oo)	 = p��	:���(O)�-./9q; (8)

This competition tends to choose the sub-network that will

have the lowest degrees for its selected active clones once the

message has been stored. It globally tries to keep as low as

possible clones’ degrees.

A. Original ENN model ℛ(1, �, �, �) ℛ(1, �, �, �) contains a unique sub-network �∀�, &, VΓ��(�,�)�V =1� in which a unique clone is allocated in each bundle �∀�, &, ∀F ∈ Γ��(�,�)�, |F| = 1�. In other words, we have a unique

sub-network in which each neuron only possesses a unique

clone.

Fig. 4 An example of a ℛ(1,3,3,3)
Fig. 4 shows a ℛ(1,3,3,3) having a unique sub-network

containing 3 clusters, each cluster with 3 clones and a single

clone being allocated to each neuron.

B. CbNN variant ℛ(1, �, �, H`) ℛ(1, C, L, γu)	contains a unique sub-network �∀�, &, VΓ��(�,�)�V = 1� in which a fixed number of clones is

allocated to each bundle �∀�, &, ∀F ∈ Γ��(�,�)�, |F| = v�.
Fig. 5 shows an example of a ℛ(1,3,3,9) having a unique sub-

network containing 3 clusters, each cluster with 3 neurons

represented by a total of 9 clones per cluster.

generated by the message to store). Hence, if
w0 clones are allocated to each

neuron in the network, then the total number of combinations is :w0;3…

7

Fig. 5 An example of a ℛ (1,3,3,9)

Here, since there is only one sub-network, G	 = 	1. Its

memory size, given by eq. (3), is:

|B| = H� ∗ (C $ 1) ∗ �2 (9)

The number of clones allocated to each neuron may be the

same for every neuron (Uniform allocation, Ib) or may depend

on the distribution (Non-Uniform allocation, Icb).

1) Uniform allocation Ib

In the case of the Uniform allocation, the same number of

clones is allocated to each neuron. Then, with such constraint

the model is similar to the adding bits approach introduced in

[20].

2) Non-Uniform allocation Icb

In the case of the Non-Uniform allocation, the number of

clones allocated to a given neuron depends on the occurrence

frequency of the symbol value associated with that neuron.

Such frequency can be obtained by evaluating the distribution

over a sample of messages coming from the set of messages to

store.

Since this variant relies on occurrence frequency, it is similar

to the Huffman approach proposed in [20]. However, instead of

generating a dictionary of codes as in [20], we propose a simpler

alternative by assigning a precise number of clones to each

neuron based on two properties: the occurrence frequency of its

related symbol value and the total number of available clones

in its cluster.

 Let �(�,�) be a neuron and x(�,�), the occurrence frequency of

its associated value. So, the number of clones y��(�,&)� allocated

to �(�,�) is: y��(�,&)� = zx(�,&) ∗ � ∗ :H� $ 1;{ (1	 (10)

Equation (10) ensures that each neuron has at least one clone.

If some clones in a cluster remain unallocated, they are equally

distributed over the most involved neurons in that cluster. Such

fine grain allocation allows determining an optimized number

of clones for each neuron which reduces the variation between

the clone degrees in a given cluster.

C. CbNN variant I(G`, �, �, �) I(Ku, C, L, L) contains a fixed number of sub-networks �∀�, &, VΓ��(�,�)�V = G, G X 1� in which a unique clone is allocated

in each bundle for every neuron �∀�, &, ∀F ∈ Γ��(�,�)�, |F| = 1�.
This model is the one we have presented in [10].

Fig. 6 An example of a ℛ(4,3,3,3)
Fig. 6 shows the example of a ℛ(4,3,3,3) with 4 sub-

networks, each one containing 3 clusters, each cluster with 3

neurons (one unique clone for each neuron). ℛ(Ku, C, L, �)
gathers several ENNs within the same network. Its memory

size, given by eq. (3), is:

|B| = G ∗ �² ∗ (� $ 1) ∗ �2 (11)

In this CbNN variant, the multiplication of the number of

sub-networks allows to multiply by K the capacity of the

original network (ENN).

D. CbNN variant I(G`, �, �, H`) I(Ku, C, L, γu)	contains a fixed number of sub-networks �∀�, &, VΓ��(�,�)�V = G,G X 1� in which a fixed number of clones

is allocated in the bundles �∀�, &, ∀F ∈ Γ��(�,�)�, |F| = v�.
Fig. 3 shows an example of a ℛ(4,3,3,9) having 4 sub-

networks with 3 clusters each. Each cluster has 3 neurons

represented by a total of 9 clones per cluster.

The total number of weights of ℛ(G̀ , �, �, H`) is given by (5).

It is the generalization of the previously presented variants.

Therefore, it possesses the same property in terms of allocation

(Uniform allocation ℛb(G̀ , �, �, H`),		or Non-Uniform allocation ℛcb(G̀ , �, �, H`)). When ℛb allocation is considered, an

identical number of clones is allocated to each bundle while in ℛcb, the number of allocated clones depends on the message

distribution. Using several sub-networks increases the number

of messages that the network can store. The non-uniform

allocation allows to adapt the CbNN to the message

distribution.

E. Capacity

In this section, the models previously introduced are

compared in terms of capacity (see equation 4 in section II.A)

i.e., the maximal amount of data that can be stored and then

retrieved.

For ℛ(1, �, �, �), the total number of neurons in the network

is � = � ∗ �, the capacity of this variant is given for i.i.d.

messages by ([9]):

8

�EF(ℛ(1, �, �, �)) = (� $ 1) ∗ ��
2 ∗ �� ∗ _<}� :��; =

(� $ 1) ∗ (�)²2 ∗ _<}�(�) (12)

For I(1, �, �, H`), we replace � by the total number of clones

in the sub-network which is H` ∗ �. Then, its capacity is:

�EF(I(1, �, �, Hu)) = (� $ 1) ∗ (Hu)²2 ∗ _<}�(Hu) (13)

For I(Ku, C, L, �), the number of sub-networks multiplies the

capacity of I(1, C, L, �) by Ku. Then, it is equal to:

�EF(I(G̀ , �, �, �)) = G̀ ∗ (� $ 1) ∗ (�)²2 ∗ _<}�(�) (14)

For variant I(G̀ , �, �, H`), the number of sub-networks

multiplies the capacity by G̀ , while the number of clones in

each sub-network is multiplied by
w~0 compared to I(1, C, L, �).

Then, its capacity is given by:

�EF(I(G′`, �, �, H′`)) = G′` ∗ (� $ 1) ∗ (H′`)²2 ∗ log�(H′`) (15)

In order to have the same memory cost (for ℛ(1, �, �, H`), ℛ(G̀ , �, �, �) and ℛ(G̀ , �, �, H`)), the following expression has to

be verified:

G̀ = :H�̀ ;� = G′` ∗ �H′�̀ �� (16)

Equation (16) is obtained by matching (5), (9) and (11). The

comparison between those capacities (see (17) and (18)) shows

that the capacity of ℛ(G̀ , �, �, 1) is greater than the one of ℛ(1, �, �, H`) since H` M �. It is also greater than the capacity of ℛ(G′`, �, �, H′`) but with a lower gain (since H` M H′`). �EF(ℛ(G̀ , �, �, �))�EF(ℛ(1, �, �, H`)) = G̀ ∗ �� ∗ log�(H`)H`² ∗ log�(�) = log�(H`)log�(�) (17)

�EF(ℛ(G̀ , �, �, �))�EF(ℛ(G′`, �, �, H′`)) = G̀ ∗ �� ∗ log�(H′`)G′` ∗ H′`� ∗ log�(�) = log�(H′`)log�(�) (18)

Therefore, I(G̀ , �, �, �	 models are able to store the greatest

number of messages. Unfortunately, the capacity does not

guarantee good results because of the distribution of the data to

store.

F. Performances of the CbNNs with Static Clone Allocation

This section presents efficiency comparisons of the different

CbNN static variants in terms of RER.

1) Experimental setup

For fair comparisons with state of the art approaches, the

number of clusters is set to 8 and the number of neurons is set

to 32 for each cluster. The results are generated from

simulations based on the decoding of messages with a non-

uniform distribution. The distribution of the messages is

Gaussian with a mean of 16 and a standard deviation of 5. Like

in section II, each point of the curves is the mean value of 5000

MATLAB simulations of each variant. The experiments were

performed with MATLAB 2014 from Mathworks. Every

network has been configured to have the same memory cost

equal to 16 ENNs(8,32) = 16 I�1,8,32,32	. The ratio 16 is the

one used in [20] to compare different ENN approaches.

The RER evaluation is based on the decoding of messages,

randomly selected. RER mean variation ∆ over 5000

simulations is provided for all the results. The results recorded

during our experiments are obtained with the same constraint

used in [8] or [20]: 50% of the input messages to be retrieved

are randomly erased. For each message to decode, 4 symbols

over 8 are unknown and have to be retrieved. Four iterations

were performed for each decoding, since this number is

sufficient to achieve the best RER of the original ENN model

(I�1, �, �, �	 in this paper) [8].

In the figures, the best error ratio of the ENN (with Gaussian

distribution of the messages) are given as references. Table 3

shows the parameters in terms of dimensions for the evaluated

variants.

TABLE 3 Dimensions of the CbNNs with static clone allocation

Variants G̀ H`
w~
0

I�1, �, �, H`	 1 128 128/32=4

I�G̀ , �, �, �	 16 32 32/32=1

I�G̀ , �, �, H`	 4 64 64/32=2

Several ENNs with static clone allocation were exposed in

the previous sub-sections V.A to V.E. Each one has different

configurations depending on the storage algorithms

(I�G̀ , �, �, �	 and I�G̀ , �, �, H`) or the allocation strategy

(I�1, �, �, H`	 and I�G̀ , �, �, H`). In order to avoid overloaded

figures, comparisons are progressively performed by assessing

different configurations for the same variant, and we finally

compare the best static variants.

2) Performance of I�1, �, �, H`	
Fig. 7 shows the RER evolution of this variant for different

uniform and non-uniform allocation approaches. Icb�1, �, �, H`	
obtains the best results thanks to its clone allocation policy

allowing adaptation to data distribution. Moreover, we observe

a RER < 1,2% up to 1500 messages (∆ � 0.4%).

Fig. 7 RER of I�1, �, �, H`	 depending on the allocation strategy of the clones

3) Performance of I�G`, �, �, �	
Fig. 8 shows the efficiency of I�G̀ , �, �, �	 for the storage

algorithms RND and LDS. I�G̀ , �, �, �	/LDS gets the best

results with an RER < 2.1% (∆ � 1.1%) up to 1500 messages.

This is due to the LDS algorithm that tends to slow down the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
E

R

Number of stored messages

R(1,C, L, L) Re(1,C,L,h)/RND Ru(1,C,L,h)/RNDI�1, �, �, �	 Icb�1, �, �, H̀ 	/��� Ib�1, �, �, H̀ 	/���

9

increase of the clones’ degrees during the storage step,

compared to an arbitrary clone selection.

Fig. 8 The RER of I�G̀ , �, �, �	 depending on the memorization algorithms

4) Performances of I�G̀ , �, �, H`	
Fig. 9 shows the RER evolution of I�G̀ , �, �, H`	 for different

allocation approaches and storage algorithms.

Icb�G̀ , �, �, H`	/LDS achieves a significant performance

improvement with an RER < 1,2% (∆ � 0.3%) up to 1500

messages thanks to the adaptive allocation policy and the use of

the LDS method.

Fig. 9 The RER of I�G̀ , �, �, H`	 depending on the clone allocation strategies

and the storage algorithms (RND vs. LDS)

5) Comparison of the best static CbNN variants

Fig. 10 compares the accuracy of the best CbNN variants.

Icb�G̀ , �, �, H`	/LDS still gets the best results (RER < 1,2% (∆ �

0.3%) up to 1500 messages) thanks to its smart clone allocation

(based on the use of several sub-networks) and a smart storage

algorithm.

Fig. 10 The RER of the best networks with static clone allocation

VI. DYNAMIC CBNNS

As previously introduced, dynamic allocation is based on the

idea that a CbNN is designed to optimize the number of sub-

network K and/or the number of clones in a cluster H�. In other

words, clones and/or sub-networks can be allocated during the

storing step depending on the message distribution. In practice,

to remain realistic, the total amount of memory available in the

network is bounded (i.e., infinite clone allocation is forbidden).

Hence, the maximal number of clones per cluster but also the

maximal number of sub-networks are limited and can vary from

0 up to the maximum (i.e., resp. Ga or Ha).

As a result, some dynamic variants behave rather similarly to

some static variants and are not presented in this paper due to

space limitation. Hence, in I�Ga, �, �, H`	, the number of sub-

networks may grow while each bundle contains a fixed number

of clones. If the number of sub-networks is limited, then this

variant is roughly similar to a I�G̀ , �, �, H`	 since the latter

contains a constant number of sub-networks.

In I�G̀ , �, �, Ha	, the number of sub-networks is fixed and the

number of clones per bundle can increase. Since the number of

clones is limited, this variant becomes rather similar to

I�G̀ , �, �, H`	 which contains a constant number of sub-

networks.

Finally, in I�Ga , �, �, �	, the number of sub-networks may be

increased while every bundle contains a unique clone. Since the

number of sub-networks is limited, this variant is roughly

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
E

R

Number of stored messages

R(1,C, L, L) R(K,C,L,L)/RND R(K,C,L,L)/LDS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
E

R

Number of stored messages

R(1,C, L, L) Re(K,C,L,L)/RND Re(K,C,L,L)/LDS

Ru(K,C,L,h)/RND Ru(K,C,L,h)/LDS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
E

R

Number of stored messages

R(1,C, L, L) Ru(K,C,L,h)/RND

Ru(K,C,L,h)/LDS R(K,C,L,L)/LDS

I�1, �, �, �	 I�G̀ , �, �, �	/RND I�G̀ , �, �, �	/LDS

I�1, �, �, �	
I�G̀ , �, �, �	/LDS Icb�G̀ , �, �, H̀ 	/��N

Icb�1, �, �, H̀ 	/���

Ib�G̀ , �, �, H̀ 	/��N

Icb�G̀ , �, �, H̀ 	/��N

I�1, �, �, �	

Icb�G̀ , �, �, H̀ 	/���

Ib�G̀ , �, �, H`	/���

10

similar to I�G̀ , �, �, �		which contains a fixed number of sub-

networks.

Therefore, only two variants are thoroughly presented in this

section: I�1, �, �,γD�	and I�Ga , �, �, Ha	. As a first step, a storage

algorithm compatible with both models is introduced. The

models are next presented.

A. Storage algorithm for dynamic CbNNs

Two rules are required for this storage algorithm.

Rule 1 The allocation of a clone to an active neuron may be

performed if and only if there is an available clone in its cluster.

If this constraint is verified, the allocation of a clone to an

active neuron is effectively performed when: either (1) there is

no clone allocated to the neuron, or (2) the degree of the Most

Recently Used clone of the neuron is higher than a threshold �

called degree limit. Hence, by definition, our dynamic models

are based on non-uniform allocation of clones.

Rule 2 The allocation of a new sub-network to the network is

performed:

(1) If the allocation of a clone to an active neuron could not

be performed in the Last Used Subnetwork

and

(2) If the maximal number of usable sub-networks is not

reached.

The storage process is defined as follows: as soon as the

network receives a message to store, the neurons and the clones

are activated in the most recently used sub-network.

For each cluster in the sub-network, an active clone has to be

selected. For a given cluster Cx, there are two cases:

1. There is no active clone in Cx (no clone was allocated to

the active neuron in Cx). The allocation is performed,

and the new clone is used to store the message.

2. There is at least one active clone in Cx. In that case, if

the degree of the last used clone is higher than �, a new

clone is allocated to store the message. Otherwise, the

most recently used clone is selected (Rule 1).

If a clone allocation has to be performed in a cluster and if

there is no available clone, then a new sub-network is added, if

possible (Rule 2). This new sub-network becomes the most

recently used sub-network and the whole process is restarted.

If a sub-network cannot be added to the network, our

approach performs either RND or LDS algorithms (depending

on user requirements) without any modification (see Section

V):

1. With RND, a sub-network Sx is randomly chosen,

relevant clones are activated in Sx and an active clone

is randomly chosen in each cluster.

2. With LDS, for each sub-network, an active clone is

randomly selected in each cluster and the scores are

computed (see section V). If a cluster in a sub-network

does not contain any active clone, the sub-network is

excluded from the competition since it cannot help to

create a full neural clique.

The value of � can be derived from the notion of neuron

degree for a given number of messages to store 	�. If we

consider i.i.d. messages, the degree limit � is computed as

follows:

� � 1 $ e1 $ 1
Hg

�
q

 (19)

Equation (19) does not always allow to reach the best

performance, in particular for a high number of stored

messages. Indeed, this heuristic is based on uniform message

distribution while i.i.d messages are considered.

B. CbNN variant I�1, �, �, H��
I�1, C, L, γD� contains a unique sub-network

�∀�, &, VΓ����,�	�V � 1� in which the number of clones in bundles

may dynamically increase	�∀�, &, ∀F ∈ Γ����,&	�, |F| P H�.

Fig. 11 An example of a I�1,3,3,9	

Fig. 11 shows an example of a I�1,3,3,9	 having a unique

sub-network containing 3 clusters with each cluster with 9

clones not yet allocated to a dedicated neuron. On average, 3

clones may be allocated to each neuron.

C. CbNN variant I�Ga, �, �, Ha	
In I�Ga , �, �, Ha	, both the number of sub-networks

�∀�, &, VΓ����,�	�V P Ga , ��=>	Ga X 1�, and the number of clones in

each bundle �∀�, &, ∀F ∈ Γ����,�	�, |F| P H�� may be increased.

Fig. 12 An example of a I�4,3,3,9	

Fig. 12 shows a I�4,3,3,9	 having 3 sub-networks (over the 4

possible sub-networks), containing 3 clusters, with each cluster

11

having 9 clones (the maximum). On average, 3 clones may be

allocated to each neuron in each sub-network.

D. Capacity of the CBNNs with dynamic clone allocation

The capacity is only defined for a uniform distribution of

messages. Therefore, since each clone allows to memorize the

same quantity of information (for any allocation policy), the

capacity of those networks is identical to their static counterpart

(I�Ga, �, �, Ha	�	I�G̀ , �, �, H`	, I�1, �, �, Ha	�	I�1, �, �, H`).
E. Performances of the CbNNs with Dynamic Clone

Allocation

The following simulations have been performed with the

same experimental setup presented in section V. Table 4 shows

the configurations in terms of dimensions for the different

variants of the CbNNs with dynamic clone allocation.

TABLE 4 Dimensions of the evaluated CbNN variants with dynamic clone

allocations

Variant K Ha
w�
0

I�1, �, �, Ha	 1 128 128/32=4

I�Ga, �, �, Ha	 4 64 64/32=2

As for the static variant experiments, each point of the curves

is the mean value of 5000 MATLAB simulations. For the sake

of clarity, comparisons are progressively performed for each

variant depending on storage algorithms (RND and LDS) and

degree limit �. Finally, a comparison between the best networks

with dynamic clone allocation is provided.

Nota bene: for these experiments, we have tested two �

values: an arbitrary value � =5%, and � = opt which is the

degree limit obtained by using (19).

1) Performance of I�1, �, �, Ha	
Fig. 13 shows the performance of I�1, �, �, Ha	 for different

degree limits �. It can be observed that I�1, �, �, Ha	(�=5%)

obtains the best performance: RER < 2% �∆ � 0.6%) up to 1000

messages. The value � � 5% results in a “faster” allocation of

the clones. This comes from the fact that some neurons have no

allocated clones. Therefore, some messages that should have

been stored, are not. For instance, over 5000 messages, 100

messages (2%) were not stored by the I�1, �, �, Ha	(�=5%).

Non-stored messages may impact performance positively or

negatively, since the network becomes specialized in storing

and retrieving messages with the most frequent neuron state

values.

Fig. 13 RER of I�1, �, �, Ha	 depending on the density limit

2) Performance of I�Ga, �, �, Ha	
Fig. 14 shows the RER evolution of I�Ga, �, �, Ha	 for

different storage algorithms and density limits. In overall,

I�Ga, �, �, Ha	(5%)/LDS offers the best results compared to the

other I�Ga, �, �, Ha	 configurations presented in this case study.

Fig. 14 The RER of I�Ga , �, �, Ha	 networks depending on the storage

algorithms and the density limits

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
E

R

Number of stored messages

R(1,C, L, L) Rd(1,C,L,hd)(5%) Rd(1,C,L,hd)(opt)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
E

R

Number of stored messages

R(1,C, L, L) Rd(Kd,C,L,hd)(opt)

Rd(Kd,C,L,hd)(opt)/LDS Rd(Kd,C,L,hd)(5%)

Rd(Kd,C,L,hd)(5%)/LDS

I�1, �, �, �	 I�1, �, �, Ha	�<F=	 I�1, �, �, Ha	(5%)

I�1, �, �, �			 I�Ga , �, �, Ha	�<F=	
I�Ga , �, �, Ha	(5%) I�Ga , �, �, Ha	(opt)/LDS

I�Ga , �, �, Ha	(5%)/LDS

12

It can be observed that there is no real advantage to use

I�Ga, �, �, Ha	(opt)/LDS compared to I�Ga , �, �, Ha	(5%)/LDS.

The RER of the first one is lower than 1,5% up to 1500

messages (∆±0.5%), while the second has a RER lower than

2.4% (∆±0.7%). However, Fig. 14 shows that the results are not

good above 2000 messages. This is due to the parameter �

computed with equation (19) by considering constants values

while messages are i.i.d in these experiments. Instead, by using

a lower density limit (e.g. 5%), more clones are allocated since

the allocation threshold is lower. Moreover, the LDS algorithm

is preferably applied for a larger number of messages in order

to achieve good performance.

Fig. 15 The RER of the best networks with dynamic clone allocations

3) Comparing the best CbNN variants with dynamic clone

allocation

Fig. 15 compares the accuracy of the best networks with

dynamic clone allocation. I(Ga , �, �, Ha	(5%)/LDS clearly

outperforms I�1, �, �, Ha	. This improvement (up to 55%)

comes from the use of multiple sub-networks and the use of the

smart storage algorithm LDS.

VII. COMPARING STATIC VS. DYNAMIC CBNN VARIANTS

In this section, the RER of the best static and dynamic

variants are compared. First a worst case erasure rate of 50%

(i.e., half of the input messages to be retrieved are randomly

erased) is considered like in [8] or [20]. This strong constraint

has been set in order to fairly evaluate the performances of our

models compared to the original ENN. In order to explore the

interest of our static and dynamic models, we also performed

these experiments with a more classical message erasure of

25% (like in [12][11][10]…).

A. Erasure rate of 50%

In Fig. 16, it can be observed that I�Ga, �, �, Ha		(5%)/LDS

and Icb�G̀ , �, �, H`	/��N achieves almost the same efficiency

for less than 2000 messages. The proposed dynamic CbNN

seems to be more interesting when more messages need to be

stored, RER < 1,8% (∆±0,08%) up to 2500 messages.

B. Erasure rate of 25%

In Fig. 17, the RER of the best static and dynamic CbNN

variants is reported, with an erasure rate of 25%, and it is

compared with their previous results from Fig. 17. The original

ENN model I(1, �, �, �	, which has the same trends than in

Fig. 16, is not reported for the sake of readability.

Fig. 16 The RER of the best CbNN models

It can be observed that the static approach (Icb(G̀ , �, �, H`	/
��N) is able to provide excellent results with a RER of 0%

(∆±0%) up to 2000 stored messages. Then, the RER reaches

0,5% (∆±0,03%) for 3000 messages, and the RER is 12,2%

(∆±1,3%) for 5000 messages.

The study of the RER of (I(Ga, �, �, Ha		(5%)/LDS) shows that

our dynamic clone allocation strategy has a very interesting

message retrieving ratio, with the new erasure rate. It can be

observed that for 5000 messages, the RER is 4,5% (∆±0,06%).

Moreover, the ∆ values in this configuration is much more

regular than in the other experiments: from 0.04% (for 1000

messages) to 0,06% (for 5000 message) in the figure. This

regularity trend was not so clear in the first set of experiments

performed with an erasure rate of 50%.

All these results show that dynamic CbNNs are able to store

and retrieve large amounts of data more efficiently that their

static counterparts. These results motivate us to further

investigate dynamicity and to study how to dynamically

compute a smartly tuned value of α. Our first experiments show

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
E

R

Number of stored messages

R(1,C, L, L) Rd(Kd,C,L,hd)(5%)/LDS

Rd(1,C,L,hd)(5%)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
E

R

Number of stored messages

R(1,C, L, L) Rd(Kd,C,L,hd)(5%)/LDS

Ru(K,C,L,h)/LDS

I(1, �, �, �	
I�1, �, �, Ha	�5%	

I�Ga , �, �, Ha	(5%)/LDS

Icb�G̀ , �, �, H`	/��N

I�1, �, �, �	 I�Ga , �, �, Ha	(5%)/LDS

13

very interesting results, but still need some additional work to

be published. Moreover, intuitively, considering all the sub-

networks instead of the more recent used one, to store a new

message should allow to increase memory capacity. This point

will be investigated in our future work.

Fig. 17 The RER of static vs dynamic tuning with different erasure rates

VIII. CONCLUSION

In this paper, we have introduced the concept of Clone-based

Neural Network (CbNN) to consider realistic data (i.e., data

non-uniformly distributed). Different strategies have been

proposed to allocate clones and sub-networks in the CbNN.

Experimental results show that all the proposed variants widely

outperform the original ENN in terms of memory and recall

abilities.

Considering an erasure rate of 50%, our results show that

coupling non-uniform static allocation of clones with a

dedicated storage algorithm LDS (CbNN variant

Icb�G̀ , �, �, H`	/LDS) is a more performant solution than the

other static ones. Icb�G̀ , �, �, H`	/LDS also competes with its

dynamic counterpart I�Ga, �, �, Ha	(5%)/LDS for small

amounts of data. However, above a given threshold (~2500

data), dynamicity offers better performances.

When the erasure rate is reduced down-to 25% which

corresponds to more classical and realistic stimuli, both static

and dynamic CbNN variants allow to handle large amounts of

data (i.e., the memory capacity is widely increased).

Hence, Icb�G̀ , �, �, H`	/LDS is able to achieve a RER of 0%

up to 2000 stored messages. Its dynamic counterpart

I�Ga, �, �, Ha	(5%)/LDS achieves a RER <1.9% for 2500

messages with an extreme regularity (∆max= 0,06% for 5000

messages). Once again, results show that dynamicity offers

better results and that the CbNN model allows the design of

efficient associative memories.

Future work will be dedicated to dynamic tuning of the

allocation threshold �a to further improve the CbNN

efficiency.

IX. REFERENCES

[1] G. Palm, “On associative memory,” Biol. Cybern., vol. 36,

no. 1, pp. 19–31, Feb. 1980.

[2] G. Palm, “Neural associative memories and sparse

coding,” Neural Netw., vol. 37, pp. 165–171, Jan. 2013.

[3] J. J. Hopfield, “Neural networks and physical systems with

emergent collective computational abilities.,” Proc. Natl.

Acad. Sci. U. S. A., vol. 79, no. 8, pp. 2554–2558, Apr.

1982.

[4] E. H. L. Aarts and J. H. M. Korst, “Boltzmann machines

and their applications,” in PARLE Parallel Architectures

and Languages Europe, J. W. de Bakker, A. J. Nijman, and

P. C. Treleaven, Eds. Springer Berlin Heidelberg, 1987, pp.

34–50.

[5] T. Kohonen, Associative Memory: A System-Theoretical

Approach. Springer London, Limited, 2012.

[6] D. Willshaw, “Models of Distributed Associative

Memory,” PhD thesis manuscript, University of

Edinburgh, 1971.

[7] R. Hecht-Nielsen, “Neural Networks Letter: Cogent

Confabulation,” Neural Network, vol. 18, no. 2, pp. 111–

115, Mar. 2005.

[8] V. Gripon and C. Berrou, “Sparse Neural Networks With

Large Learning Diversity,” IEEE Trans. Neural Netw., vol.

22, no. 7, pp. 1087–1096, Jul. 2011.

[9] J. Schmidhuber, “Deep Learning in Neural Networks: An

Overview,” Neural Netw., vol. 61, pp. 85–117, Jan. 2015.

[10] L.K. Hansen and P. Salamon,"Neural network ensembles",

IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 12, issue 10, pp. 993 - 1001, 1990.

[11] J. Yang, et al, “Sparsely Connected Associative Memory

Based on the Preferential Mechanism of Heuristic

Annealed Topology”, Journal of Shanghai Jiaotong Univ,

vol. 47, issue 07, pp.1009-1014, 2013.

[12] K. James et al, "Overcoming Catastrophic Forgetting in

Neural Networks", 3rd ed., vol. 2. National Academy of

Sciences of the United States of America, Feb 13, 2017,

pp.1-6.

[13] K. JA. Graves et al., "Hybrid Computing using a Neural

Network with Dynamic External Memory", International

Weekly Journal of Science, Oct., pp 1-21, 2016.

[14] S.J. Wang, et al, “Sparse connection density unlies the

maximal functional difference between random and scale-

free networks,” The European Physical Journal B, vol. 86,

issue 424, pp. 1-5, 2013.

[15] D. Holstein, et al, “Impact of noise and damage on

collective dynamics of scale-free neuronal networks”,

Physical Review E, vol. 87, issue 3, pp. 032717, 2013.H

[16] P. Sollich, et al, “Extensive parallel processing on scale-

free networks,” Physical review letters, vol. 113, issue 23,

pp. 238106, 2014.

0%

10%

20%

30%

40%

50%

60%

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
E

R

Number of stored messages

Rd(Kd,C,L,hd)(5%)/LDS (err. 50%) Ru(K,C,L,h)/LDS (err. 50%)

Ru(K,C,L,h)/LDS (err. 25%) Rd(Kd,C,L,hd)(5%)/LDS (err. 25%)

I(Ga , �, �, Ha	(5%)/LDS (er. 50%)

I�Ga , �, �, Ha	(5%)/LDS (er. 25%)

Icb�G̀ , �, �, H`	/��N		�?@.		50%	

Icb�G̀ , �, �, H`	/��N	�?@.		25%	

14

[17] A.-L. Barabási and R. Albert, "Emergence of scaling in

random networks", Science, vol. 286, pp. 509-512, 1999.

[18] P. Kimani Mungai and R. Huang, " A Study on Merging

Mechanisms of Simple Hopfield Network Models for

Building Associative Memory", IEEE 16th International

Conference on Cognitive Informatics & Cognitive

Computing (ICCI*CC), 2017.

[19] K. Pagiamtzis and A. Sheikholeslami, “Content-

addressable memory (CAM) circuits and architectures: a

tutorial and survey,” IEEE J. Solid-State Circuits, vol. 41,

no. 3, pp. 712–727, Mar. 2006.

[20] B. Boguslawski, et al, “Huffman Coding for Storing Non-

uniformly Distributed Messages in Networks of Neural

Cliques,” in AAAI 2014: the 28th Conference on Artificial

Intelligence, Québec, Canada, 2014, vol. 1, pp. 262–268.

[21] H. Wouafo, C. Chavet, and P. Coussy, “Improving Storage

of Patterns in Recurrent Neural Networks: Clones Based

Model and Architecture,” in Proceedings of the IEEE

International Symposium on Circuits and Systems, Lisbon

(Portugal), 2015.

[22] B. Boguslawski, et al, “Twin Neurons for Efficient Real-

World Data Distribution in Networks of Neural Cliques:

Applications in Power Management in Electronic

Circuits,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,

no. 2, pp. 375–387, Feb. 2016.

[23] L. Lin, et al, “Organizing principles of real-time memory

encoding: neural clique assemblies and universal neural

codes,” Trends Neurosci., vol. 29, no. 1, pp. 48–57, Jan.

2006.

[24] V. Gripon and C. Berrou, “Nearly-optimal associative

memories based on distributed constant weight codes,” in

Information Theory and Applications Workshop (ITA),

2012, 2012, pp. 269–273.

[25] P. Coussy, et al, “Fully Binary Neural Network Model and

Optimized Hardware Architectures for Associative

Memories,” J Emerg Technol Comput Syst, vol. 11, no. 4,

p. 35:1–35:23, avril 2015.

[26] D. Huffman, “A Method for the Construction of Minimum-

Redundancy Codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–

1101, Sep. 1952.

[27] H. Jarollahi, et al, “Reduced-complexity binary-weight-

coded associative memories,” in 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2013, pp. 2523–2527.

Hugues WOUAFO is a Post-Doc. at Lab-STICC

(UMR CNRS) at the Université de Bretagne-Sud,

France. He was graduated from the same

university, (Ph.D. 2016, Master Degree on

Computer Engineering 2012). He also works as a

Consultant at Everygates (France) and KIRO’O

(Cameroon). His research interests include

system-level design and neuromorphic

computing. IEEE member since 2012.

Cyrille Chavet received the M.S. and M.Ph.

degrees in computer science from the Université

Joseph Fourrier (Grenoble, France), in 2003, and

the Ph.D. degree in computer engineering and

computer science from the Université Bretagne-

Sud (Lorient, France), in 2007. After 3 years in

STMicroelectronics, Crolles, he held a post-

doctoral position with the TIMA Laboratory,

Grenoble, for a year. He is currently an Associate

Professor with the Lab-STICC Laboratory (UMR CNRS). He is PC

member and/or reviewer for conferences and journals (IEEE Trans.

CAD, Trans. SP, DATE, ACM GLS-VLSI, ICASSP, ISCAS…), and

he organized several events co-located with these conferences. He also

published several papers in conferences and journals, and he is co-

editor of a book: Advanced Hardware Design for Error Correcting

Codes (Springer, 2015). His research interests are high level synthesis

tools for hardware architectures, conflict-free memory mapping,

advanced architecture for neural networks. He is IEEE senior member

since 2005 and ACM SIGDA, member since 2006.

Philippe Coussy is a full professor in the Lab-

STICC (UMR CNRS) at the Université de

Bretagne-Sud, France, where he leads the

“Communications Architectures Circuits and

Systems (CACS)” department. He was graduated

from Université Pierre et Marie Curie (MSc,

1999), Université de Bretagne-Sud (Ph.D., 2003

and Habilitation 2011). He is a member of the

technical committee of the IEEE Signal Processing

Society, Design and Implementation of Signal Processing Systems

(DISPS) since 2011. He has organized several workshops and tutorials

in many international conferences including DAC, DATE,

CODES+ISSS and ASP-DAC. He was guest editor for several special

issues of scientific journals and co-editor of two books (Springer). He

regularly serves as a national and international scientific expert and

participates as PC member in many international ACM/IEEE

conferences and as reviewer for major IEEE/ACM journals. He is

Associate Editor of the IEEE Signal Processing Letters for the design

and implementation of signal processing systems. His research

interests include system-level and computer-aided design, high-level

synthesis and neuromorphic computing. He is IEEE senior member

since 2001.

