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Abstract—In this paper, we introduce a neural network model 

named Clone based Neural Network (CbNN) to design associative 

memories. Neurons in CbNN can be cloned statically or 

dynamically which allows to increase the number of data that can 

be stored and retrieved. Thanks to their plasticity, CbNN can 

handle correlated information more robustly than existing models 

and thus provides better memory capacity. We experiment this 

model in Encoded Neural Networks also known as Gripon-Berrou 

neural networks. Numerical simulations demonstrate that 

memory and recall abilities of CbNN outperform state of art for 

the same memory footprint. 
 

Index Terms— Associative Memories, Neural Networks, 

Content Addressable Memories. 

I. INTRODUCTION 

he human brain is a powerful machine able to realize 

complex operations like abstracting, memorizing and 

reasoning. It processes information through a 

complex hierarchical associative memory 

organization distributed across complex neural network (NN). 

These memorizing and processing capabilities associated with 

very high power efficiency of the brain are major features which 

scientists try to understand and mimic. Numerous 

computational models have been explored, providing the 

promise of practical applications in many domains (computer 

sciences, electronics…). Several neural networks have been 

proposed that are able to first memorize associations between 

data, and then retrieve a given data (or its associated label) when 

receiving an altered version of it. Systems with such capabilities 

are referred as associative memories [1][2]. Hopfield neural 

networks (HNNs)[3], Boltzmann machines [6], Kohonen maps 

[4], Willshaw networks [6] or Cogent Confabulation models [7] 

are models classically used to design such memories. Many 

studies have been performed to enhance their capacity (i.e., the 

maximal amount of data that can be stored and then retrieved).  

In this paper, we introduce a neural network model named 

Clone based Neural Network (CbNN) to design associative 

memories. The main advantage of CbNNs is that they can 

handle correlated information more robustly than other existing 

models do. This is achieved by cloning neurons to increase the 

quantity of data that can be stored. In other words, the neural 

network is customized to adapt itself to the data distribution.   

In this work, we experiment CbNNs in Encoded Neural 

Networks (ENN), also known as Gripon-Berrou neural network 

[8]. This ENN model is interesting from theoretical point of 

view, since it is a kind of “clustered” version of Willshaw, that 

offers much more capacity, and moreover it is closer to real 

biological neuron networks.  

This paper is organized as follows. Section II presents 

existing models and architectures for associative memories. 

Section III, introduces the ENN model and describes its 

evolutions. Section IV formally defines the concept of CbNN 

and details the different steps for the storage and retrieval 

processes. Section V and Section VI describe the different 

variants for the main classes of CbNNs while comparing their 

performances (storage capacity, recall ability). Finally, Section 

VII compares the best static and dynamic CbNN variants. 

II. RELATED WORKS 

Two main neural network topologies are traditionally 

proposed in the literature: either the neurons are connected 

through multiple layers in a directed graph (i.e., feed-forward 

models [9]) or the connections between neurons form a cycle 

(i.e., recurrent models [3][4]).  

Deep learning has brought back feed-forward networks in the 

spotlight through classification applications. However only few 

considerations from this domain are relevant since hereby we 

focus on recurrent models to design associative memories. 

Hence in [10], the authors show how to combine several 

networks to improve the number  of retrievings. The basic idea 

is to select the final retrieved data once a consensus is obtained 

(i.e., once each copy of the network has voted).  Each copy is 

trained to be a predictor and different combinations of learning 

parameters (i.e., synaptic weights) are considered. This idea of 

relying on a set of elements to design associative memory is one 

of the core principle of our work. However, instead of using 

different learning method parameters in each network, we 

propose to clone neurons or sub-networks. In [11] the authors 

propose to use a learning step based on a meta-heuristic 

(“annealed synaptic dilution”) under a limited number of 

synapses to design associative memory. The proposed approach 

considers fitness and degree of neurons to determine the 

probability to add new connections. In our work, we propose a 

competition between clones of neurons which is based on a 

heuristic to compute a fitness metric. In [12], the authors 

propose an algorithm for deep learning models called Elastic 

Weight Consolidation (EWC). By mimicking the mammalian 

brain inner work, this algorithm tries to strengthen the synaptic 

weights during the learning step. The proposed model has been 
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designed in order to preserve, or more precisely to adjust non-

binary weights. As it will be exposed later in this paper, this 

weight preservation proposed by EWC is an inherent concept 

of our binary weighted model, but since we only consider 

binary values there is no need for weight consolidation. In [13], 

a machine learning model referred as Differentiable Neural 

Computer (DNC) is introduced. This model splits memory and 

computation in two separate entities, with a unique memory 

interface to refresh concurrently all the synaptic weights once 

the learning step is done. However, these memory accesses 

(read or write) add significant overhead to the overall 

performance of the system.  

Recurrent models which are traditionally used to design 

associative memories are less addressed in the recent literature. 

The underlying principle is to create internal states allowing to 

exhibit dynamic behavior while retrieving stored messages 

from a part of it.  Hopfield networks [3] have been defined such 

that their dynamic convergence is guaranteed. However, their 

efficiency (i.e., the number of stored data divided by the total 

number of data to store) tends to zero when the amount of stored 

data grows; this is even true when considering scale free 

topology [14][15][16]. In [13], the authors introduce an 

architecture based on an Associative Memory and Recall 

(AMR) model. The idea is to take advantage of several 

Hopfield-inspired networks gathered in a recursive and 

recurrent topology. Some of the underlying concepts of this 

publication could be similar to our cloning approach. However, 

if this proof-of-concept is interesting, the paper does not expose 

enough information to perform fair comparisons. Recently, 

binary cluster-based neural networks named Encoded Neural 

Networks ENNs have been proposed [8]. The approach was 

motivated both by biological considerations and ideas from 

information theory. This model offers a greater or equal 

capacity than classical recurrent models. ENNs use binary 

weights, and their neurons are gathered into groups, named 

clusters, such that a neuron in a given cluster can only be 

connected to neurons of the other clusters. Thanks to their 

binary weights and to a simple retrieval process, ENNs allow to 

design energy efficient Content Addressable Memories 

(CAM)[19]. However, as shown in [20] they only achieve an 

optimal performance when stored data are uniformly and 

identically distributed. Unfortunately, in practice, data mostly 

have non-uniform distribution which hence degrades ENN 

efficiency severely. Several approaches have been proposed to 

overcome these limitations at the cost of an important increase 

in terms of complexity and memory cost [20] (see section III 

for details).  

In [10], we introduced a Clone-based Neural Network 

(CbNN) model. Cloning consists in replicating the neurons in 

the network in order to improve ENN results: several entities 

named clones may represent the same neuron. Using clones 

does not only allow to increase the number of data that a 

network can store and retrieve, but it also allows CbNNs to 

adapt to the data distribution and thus to compete with [20]. The 

concept of clones has been reused in [22] through neuron 

duplication to improve the work from [20]. However, in [10] 

our work was restrained to static allocation of clones.  

In this paper, we target two major improvements compared 

to the work introduced in [10]: the network can be itself cloned 

(cloned networks are referred as sub-networks), and the clones 

can be dynamically allocated. In other words, during the storing 

step, the CbNN adapts itself in terms of number of sub-

networks and number of clones, depending on the input data 

values to minimize the risk of retrieval error. The 

network/neuron cloning combination, which can be performed 

statically or dynamically, results in a large variety of models. 

To clearly introduce these different models, an extensive 

taxonomy of the CbNN model in the ENN context is proposed 

and variants are compared in terms of storage capacity and 

recall ability. Our experiments show that the best variants 

outperform the state-of-the-art models, for the same memory 

cost or widely reduce the memory cost for a given efficiency 

level. Before exploring these models, we first remind the 

original ENN basics and analyze its strengths and weaknesses. 

III. ENCODED NEURAL NETWORKS: PRINCIPLES AND 

LIMITATIONS 

A. Encoded Neural Network basics 

An ENN [8] is based on binary sparse model. The main idea 

is to divide up sets of neurons into disjoint clusters. A depicted 

in Fig. 1, a cluster contains a subset of neurons from the 

network. Neurons that belong to the same cluster cannot be 

connected to each other. However, any neuron of a given cluster 

can be connected to any neuron in any other cluster. More 

precisely, the network consists of N binary neurons arranged 

into � equally-partitioned clusters. Therefore, each cluster 

contains � = �/� neurons. An ENN with such configuration is 

noted ���(�, �). 
In this model data are called messages. An ENN(C, L) can 

store and retrieve a message m with C symbols, each symbol 

containing 
 = log�(�) bits. Considering such message, each 

symbol is associated with a specific cluster in the network. The 

symbol value serves to trigger the activation of a specific 

neuron in the cluster. Therefore, each neuron represents a 

specific symbol value and a neuron is activated by setting its 

state to 1 (when the value it is associated with is presented to 

the network). 

Initially ENNs do not have any stored information (i.e., all 

the weights in the network are set to 0). During the “storage” 

step, the network memorizes all the input messages. To store a 

message, the activated neurons (i.e. the set of neurons 

corresponding to the values of the input message symbols) are 

connected to each other and form a neural clique [23] (thanks 

to the use of binary weighted connections). To memorize a 

connection between one neuron i in the cluster j, �(�,�)  and one 

neuron i' in the cluster j’, �(��,��), each active neuron locally 

stores the value 1 in its corresponding synaptic weight w (i.e. ���(�,�); �(��,��)� = ���(��,��); �(�,�)� = 1). Once all the messages 

stored, this associative memory can be used to retrieve partially 

erased messages (see Fig. 1 for a pedagogical example). 

The retrieval process, also named decoding step, recovers a 

message when some of its symbols are unknown (because of an 

erasure). This iterative process is based on two steps: a Scoring 

step, followed by a Local Winner Takes All (L-WtA) step. This 

process is able to detect which neuron, in a cluster associated 
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with a missing part of the message, is the most stimulated one 

[24] (i.e., the neuron that is most likely the one missing in the 

erased input message). 
 

 

Fig. 1 An example of an ENN(3,3) with three stored messages (cliques): [0,0,0], 

[0,2,2] and [2,2,0]. Nota bene [0,2,0] forms a clique even if the corresponding 

message has not been explicitly stored. 

Equation (1) defines the scoring function used to compute the 

score �������(�,�)� of a neuron �(�,�)at time t+1. This score 

depends on two parameters: (1) the state values of all the 

neurons i' from all the other clusters j’ (i.e. �(��,��)) computed at 

the time instant t (i.e., in the previous iteration of the decoding) 

and (2) the corresponding synaptic weights (i.e., value of ���(�,�); �(��,��)�) that have been stored during the storage 

process (see Eq. (2)). 
 ∀	� ∈ !0. . � $ 1%, & ∈ !0. . � $ 1%,  �������(�,�)� = '� ��(�,�)� ( 

) max-./.01��'���(��,��)� ∗ ���(�,�); �(��,��)�	�	31�
��4-,565�  

(1)

 

'�����(�,�)� = 7		1		�8	�������(�,�)� = max-.�90 :�������(�,�)�;0														<=>?@���?  (2)

 

The decoding is successful when at the end of the process 

there is only one active neuron in each cluster. A successful 

decoding may require a few iterations. When the decoding is 

over, the clusters which originally had no selected neuron are 

provided with the selection of a neuron or a group of neurons. 

The final answer of an ENN is defined by the set of neurons that 

were activated. 

Fig. 1 shows the overview of an ENN(3,3) in which 3 

messages have been stored ([0,0,0], [0,2,2] and [2,2,0]) during 

the storage step. Let consider this network must decode the 

message [?,2,0]  where the first symbol is unknown (i.e. the 

neuron in the cluster C0 is unknown). The neurons n(2,0) (square-

2) and n(0,0) (square-0) will remain active at the end of the 

decoding step since they are both connected to the neurons n(2,1) 

(round-2 in C1) and n(0,2) (triangle-0 in C2). Therefore, in this 

example, the false clique/message is [0,2,0] while the searched 

 
1 The capacity is called diversity in [9]. 

clique/message is [2,2,0]. The four notable properties of a 

binary associative memory are: 

- The global density, i.e. the percentage of weights that 

are set to 1 in the network.   

- The degree, i.e. the number of the weights that are set to 

1 for a given neuron. 

- The memory size |B|, i.e. the total number of synaptic 

weights in the network which is equal to the size of the 

memory in bits to store those weights: 

|B| = �² ∗ � ∗ (� $ 1)2 	 (3) 

- The capacity	�EF, i.e. the maximal number of messages 

a network can store and retrieve1: 

�EF = (� $ 1) ∗ �²2 ∗ �� log� :��;	       (4) 

More details can be found in [8] for the model and in [25] for 

the fully-binary model. The ENN has a storage capacity of the 

order N2/(log N)2 messages for N neurons, while the standard 

Hopfield model has a capacity of N/(2 log N) when the 

messages are independent and identically distributed (i.i.d). 

B. Performance evaluation   

Since our goal is to proposed more performant ENN-inspired 

model, we need to define a metric for fair comparisons between 

models. Hence, to measure the performance of an ENN a 

Retrieval Error Rate (RER, i.e. the number of successful 

retrievals over the total number of trials) is used. In this paper, 

each point in RER results, is the average of 5000 

storing/decoding error rates for a given number of data (with 

average deviation when it is relevant). 

In an associative memory, the failure of a retrieval happens 

because some stored messages share the same set of values for 

the same symbols. In an ENN, this comes when several neurons 

from one cluster are connected to the same neuron in other 

clusters. Hence, when the decoding step starts, if that cluster is 

erased (i.e. it contains no active neurons), then several neurons 

might remain active in that cluster when the decoding step 

stops. This means that either all the remaining active neurons 

are part of the stored cliques (which look like the searched 

clique i.e. true ambiguities) or they are part of a blend between 

stored and not stored cliques (i.e. false cliques [8]).  

The RER of the ENN depends on the number of stored 

messages and the distribution of those messages [20]. On one 

side, the RER increases with the number of stored messages. 

On the other side, for the same number of stored messages, the 

ENN gets a lower RER when those messages are uniformly 

distributed, compared to a non-uniform distribution (e.g. 

Gaussian distribution). 

Fig. 2 shows the RER of an ENN (8,32) where ENN-Uniform 

is a network that memorized messages with a uniform 

distribution, while ENN-Gaussian is a network that memorized 

messages with a Gaussian distribution (mean 16, standard 

deviation 5). For 500 stored messages, and an erasure set to 

50%, the RER of ENN-Uniform is 30% while the RER of ENN-

Gaussian is 94%. As mentioned before, each point of these 

curves is the mean value of 5000 MATLAB simulations. In the 
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sections V and VI, all the RER curves have been generated by 

using the same method.  

 

 

Fig. 2 RER evaluation of an ENN (8, 32) for different message distributions 

C. State-of-the-art approaches to handle non-uniform 

distributions in ENNs 

Two solutions are proposed in [20] to improve performance 

of ENNs for non-uniform distributions of stored messages. 

These methods consider messages that are binary vectors and 

each symbol is a binary sub-vector. Before their storage, 

messages are recoded following different processes. 

The first approach, named adding bits, consists in adding a 

group of bits to each symbol of the message to store. These 

added bits can either be: (1) randomly generated or (2) the least 

recently used sequence. With this solution the symbols to be 

stored become larger. As a consequence, the corresponding 

ENN is bigger to store the same amount of messages (de facto, 

more neurons and clusters are required to store the messages).  

The second approach, named Huffman, consists in 

performing Huffman encoding [26] of the messages. Huffman 

encoding is a lossless data compression technique that consists 

in defining a codeword for each value that the symbols can take 

depending on the distribution. This method requires to 

determine the frequency (or the probability) of occurrence of 

the values from the set of messages to memorize. The sizes of 

the codewords depend on the values: the most frequent values 

have reduced sizes compared to the less frequent ones. The 

codewords are stored in an additional dictionary. Hence during 

the storing step the messages are encoded, and ENN stores these 

codewords instead of the messages. As the messages (i.e., the 

codewords) can have different sizes, the latter are extended to 

the size of the longest codeword by adding random bits.  

A first improvement of the ENN models for non-uniform 

distributions without requiring any offline storage (i.e., with no 

dictionary), has been proposed by using clone neurons [10]. In 

this work, the clones were assigned before any storage (i.e., 

static allocation was considered). Hence, multiple instances of 

the same neuron exist in the network and are associated with 

the value of the symbol related to that neuron. Therefore, the 

degree a classical neuron would have is now distributed 

amongst its clone instances. The clones have a lower degree 

compared to neurons they are associated with. The proposed 

model competes with Huffman for the same memory cost (the 

extra-cost of the Huffman dictionary being excluded). This 

concept of clones has been reused in [22] through neuron 

duplication to improve the work from [20].  

In the next section, Clone-based Neural Networks are 

introduced, formally defined and detailed. 

IV. CLONE-BASED NEURAL NETWORKS: DEFINITIONS AND 

PRINCIPLES 

A. Basic definitions 
 

Definition 1: A clone is an instance of a neuron. A neuron 

may have one or several clones. 
 

Definition 2: A bundle is a subset of clones of the same 

neuron. A neuron may be associated with one or several 

bundles.  
 

Definition 3: A sub-network regroups a bundle of each 

neuron in each cluster. In other words, each cluster contains sets 

of clones instead of neurons. Each neuron is associated with one 

bundle in each sub-network exactly. the CbNN may contain one 

or several sub-networks.  

 

The CbNN is defined by a set of parameters (see Table 1):  

- The number of sub-networks G, 

- The number of clusters for each sub-network �, 

- The number of neurons associated with each cluster �, 

- The number of clones representing those neurons in each 

cluster H.  

 

In order to synthetize the notation, all these parameters are 

combined in a single relation I(G, �, �, H) allowing to define all 

the CbNN variants.  
 

 

Fig. 3 An example of a CbNN I(4,3,3,9) 
Fig. 3 shows an overview of a CbNN I(4,3,3,9) containing 

4 sub-networks. Each sub-network has 3 clusters (C0, C1, C2). 

Every cluster contains 3 neurons and each neuron may be 

instantiated by any clone of its bundle. In this example, each 

bundle holds 3 clones. Therefore, each cluster contains 

C*L=3*3=9 clones and each neuron may be represented by G*(H/�)=4*(9/3)=4*3=12 clones.  

A CbNN I(G, �, �, H) has G sub-networks, each one 

containing � clusters of � neurons (or bundles of clones, if H M
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 �). The total number of clones is thus G ∗ H ∗ �. Each clone can 

be connected to H ∗ (� $ 1) distant clones located in the same 

sub-network it belongs to. Therefore, by taking into account the 

symmetry of those connections, the total number of weights � 

in this network (equal to the cost to store the adjacency matrix 

in bits) is: 

|B| = G ∗ H� ∗ � ∗ (� $ 1)2 	             (5) 

TABLE 1 Notations used in the context of the CbNNs 

Symbol                              Quantity G																																			 �																																				 		�   

 	H																															 	I(G, �, �, H)  
Number of sub-networks 

Number of clusters 

Number of neurons per cluster 

Number of clones per cluster 

CbNN with G sub-networks 	N/  Subnetwork O of I with 0 ≤ O < G 	R(�,/)  Cluster & of the sub-network O 	�(�,�,/)S   Clone T of the neuron �(�,�)with  �(�,�,/)S ∈ R(�,/)  	� :�(�,�,/)S ; 	�(��,��,/)S� 	;  Synaptic weight between two clones, �(�,�,/)S  and �(��,��,/)S�  	�(�,/)  Set of clones in the cluster R(�,/)  	U��(�,�)�  Set of bundles of the neuron �(�,�) 
 

B. Properties 
 

Property 1. If a network possesses G sub-networks then, ∀�, &,max�VΓ��(�,�)�V� = G,��=>	G ≥ 1 
In other words, for a neuron, its number of bundles is at least 

equal to 1 and at most equal to the number of sub-networks. 

Property 2. If Y ⊂ Γ��(�,�)� then, |Y| ≥ 0 
In other words, a bundle b of a neuron may be empty and 

thus contains no clone. 

Property 3. � :�(�,�,/)S ; 	�(��,��,/�)S� 	; = [1	<@	0	��	O = O\?=	& ≠ &′0, ?_�?   

In other words, two clones can only be connected if they 

belong to the same sub-network (O = O\) while being in 

different clusters (& ≠ &′). 
Property 4. A sub-network is an entity able to store and decode 

messages. 

Property 5. If a network possesses G sub-networks, then a 

neuron �(�,�) is associated with G possible values: one value '(�(�,�); O) for each sub-network N/ where '��(�,�); O� is the state 

value of the neuron �(�,�) according to the sub-network N/. 

C. Taxonomy of the CbNNs 

We define two main classes of the CbNNs which differ 

according to the way clones and sub-networks are allocated: 

Static or Dynamic. In a I(G, �, �, H) K and/or H  may be 

statically defined when the network is designed, or in dynamic 

model, the network is designed in order to be able to adapt these 

parameters, depending on the sets of messages to store. The 

different combinations of these degree of freedom are gathered 

in Table 2.  

TABLE 2 Variants of the CbNNs and their classification 

 Number of sub-networks (K) 

  1 
Static 

allocation 

Dynamic 

allocation 

N
u

m
b

e
r 

o
f 

cl
o

n
e

s 
p

e
r 

b
u

n
d

le
 (
H) 

1 
I(1, �, �, �)  � ENN 

(see [8]) 

I(G̀ , �, �, �) 
(see [10]) 

I(Ga , �, �, �) 

Static 

allocation 

Ib(1, �, �, H̀ ) � 

adding bits (see [8]) 

 Icb(1, �, �, H̀ ) � 

Huffman (see [20]) 

Ib(G̀ , �, �, H̀ ) 
 Icb(G̀ , �, �, H̀ ) 

I(Ga , �, �, H̀ ) 

Dynamic 

allocation 

I(1, �, �, Ha) 
(�8max( Ha) = 2 � 

twin-neurons [22]) 

I(G̀ , �, �, Ha) I(Ga , �, �, Ha) 
 

As an example, I(1, �, �, �), which is a static model since 

KS=1 and H`=L, corresponds to the original ENN model from 

[8]. As another example, I(Ga, �, �, Ha)	indicates that the 

number of sub-network and the number of clones in the bundles 

may be dynamically increased (i.e. the number of sub-networks 

and the number of clones in bundles may change on-the-fly, 

depending on dedicated storage algorithms). 

Table 2 reviews the different variants of the CbNNs. The 

networks with the index “U” (resp. “NU”) represent models 

where bundles contain a fixed number of clones Uniformly 

(resp. Non-Uniformly) allocated to each neuron. These 

allocation strategies will be further detailed in subsection IV.B. 

D. Storing step and retrieving procedure 

1) Storing messages in a CbNN 

This section introduces the main principles of the storage 

procedure. More details are provided in sections IV and V for 

each CbNN variants. Storing messages in a CbNN is performed 

in four steps:  

1. The neurons (i.e., all the corresponding bundles of 

clones) related to the symbols of the message, are 

activated.  

2. A unique sub-network is selected (since a neuron may 

have several bundles distributed over several sub-

networks). 

3. A unique active clone is selected in each cluster (since a 

cluster in a sub-network may contain several clones for 

the same neuron). 

4. The weights between the selected clones are set to ‘1’.  

 

The selection of a sub-network may be done randomly or by 

competition. The competition between clones (resp. between 

sub-networks) is realized by computing a score for the activated 

clones (resp. sub-networks) and by choosing the clones (resp. 

sub-network) having the best score i.e. the lowest one. Different 

approaches have been explored to compute this score and the 

most efficient ones are presented later in this paper (see the 

sections V and VI). 
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2) Decoding procedure to retrieve a message 

The decoding step allows to retrieve a stored message when 

some of the input message symbols are erased.  

 

This procedure is iterative and performs in four steps: 

1. Given the input partially erased message: for each 

message symbol if the value is known, the associated 

clone is activated, otherwise all the clones are activated. 

Thus, in each cluster either one or all the clones are 

activated. 

2. The score of each clone in the network is computed by 

using the equations (1) and (2) (see section II). 

3. The state of the selected neurons, in each sub-network is 

determined. A neuron is active in a sub-network, if at 

least one of its active clones is contained in that sub-

network.  

4. Each sub-network is evaluated to determine if it 

converged. A sub-network converged once the previous 

steps have been applied when each of its clusters 

possesses exactly one active neuron i.e. each cluster 

contains a unique bundle having itself one active clone.  

 

A CbNN performs a successful decoding if at the end of the 

decoding process, there is at least one sub-network that has 

converged. If several sub-networks have converged, one of 

them is randomly selected. 

V. STATIC CBNNS 

In static variants of the CbNNs, the number of clones 

allocated to each neuron and the number of sub-networks in the 

CbNN are fixed (i.e., constant). The storage algorithm thus 

selects the “best” clones or sub-networks from a completely 

predefined set. For every static variant of the CbNNs, we 

propose two algorithms: the arbitrary or Random (RND) 

algorithm and the Least Dense Selection (LDS) algorithm.  
 

The RND algorithm consists in:  

1. Randomly choosing a sub-network, 

2. Activating the clones associated with the symbols of the 

input message, 

3. Randomly selecting one active clone per cluster in that 

sub-network,  

4. Setting to 1 the weights between the selected clones. 
 

The LDS algorithm consists in:  

1. Computing a score (see (6)) for each sub-network, 

2. Randomly selecting one of the sub-networks with the 

best score, i.e. the lowest one (see (7)). 

 

The first step of the LDS involves two sub-steps. First, one 

active clone per cluster is randomly activated, while the others 

are deactivated. In fact, this random selection is still used in this 

sub-step to avoid a huge amount of local score computations2. 

An arbitrary selection still offers good results as shown in the 

experiments. The second sub-step consists in computing the 

score of each sub-network which is equal to the sum of the 

scores of its active clones.  

 
2 Indeed, if clusters contain several active clones, in order to perform an 

efficient local competition, the score of each active clone has to be computed 

for every combination of storage (i.e. for all possible weight activation 

 

Let �(∗,�,/)S  be an active clone, its score ����(∗,�,/)S � is: ����(∗,�,/)S � =  

) d ) e' :�(��,��,/)S� ;⨁� :�(∗,�,/)S ;	�(��,��,/)S� 	;gh�i�,j�,k�l� ∈m(j�,k) n31�
��4-,��6�  

      

  (6) 

 

The score ��(O) of a sub-network O is given by: 

��(O) = ) :����(∗,�,/)S �;31�
�4-      (7) 

The selected sub-network Oo which stores the message is one 

of the sub-networks having the lowest score ��(Oo): ��(Oo)	 = p��	:���(O)�-./9q;    (8) 

This competition tends to choose the sub-network that will 

have the lowest degrees for its selected active clones once the 

message has been stored. It globally tries to keep as low as 

possible clones’ degrees.  

A. Original ENN model ℛ(1, �, �, �) ℛ(1, �, �, �) contains a unique sub-network �∀�, &, VΓ��(�,�)�V =1� in which a unique clone is allocated in each bundle �∀�, &, ∀F ∈ Γ��(�,�)�, |F| = 1�. In other words, we have a unique 

sub-network in which each neuron only possesses a unique 

clone. 

 

Fig. 4 An example of a ℛ(1,3,3,3) 
Fig. 4 shows a ℛ(1,3,3,3)  having a unique sub-network 

containing 3 clusters, each cluster with 3 clones and a single 

clone being allocated to each neuron. 

B. CbNN variant ℛ(1, �, �, H`)  ℛ(1, C, L, γu)	contains a unique sub-network �∀�, &, VΓ��(�,�)�V = 1� in which a fixed number of clones is 

allocated to each bundle �∀�, &, ∀F ∈ Γ��(�,�)�, |F| = v�. 
Fig. 5 shows an example of a ℛ(1,3,3,9) having a unique sub-

network containing 3 clusters, each cluster with 3 neurons 

represented by a total of 9 clones per cluster. 

generated by the message to store). Hence, if  
w0 clones are allocated to each 

neuron in the network, then the total number of combinations is :w0;3…  
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Fig. 5 An example of a ℛ (1,3,3,9) 

Here, since there is only one sub-network, G	 = 	1. Its 

memory size, given by eq. (3), is: 

|B| = H� ∗ (C $ 1) ∗ �2      (9) 

The number of clones allocated to each neuron may be the 

same for every neuron (Uniform allocation, Ib) or may depend 

on the distribution (Non-Uniform allocation, Icb). 
 

1) Uniform allocation Ib 

In the case of the Uniform allocation, the same number of 

clones is allocated to each neuron. Then, with such constraint 

the model is similar to the adding bits approach introduced in 

[20]. 
 

2) Non-Uniform allocation Icb  

In the case of the Non-Uniform allocation, the number of 

clones allocated to a given neuron depends on the occurrence 

frequency of the symbol value associated with that neuron. 

Such frequency can be obtained by evaluating the distribution 

over a sample of messages coming from the set of messages to 

store. 

Since this variant relies on occurrence frequency, it is similar 

to the Huffman approach proposed in [20]. However, instead of 

generating a dictionary of codes as in [20], we propose a simpler 

alternative by assigning a precise number of clones to each 

neuron based on two properties: the occurrence frequency of its 

related symbol value and the total number of available clones 

in its cluster. 

 Let �(�,�) be a neuron and x(�,�), the occurrence frequency of 

its associated value. So, the number of clones y��(�,&)� allocated 

to �(�,�) is: y��(�,&)� = zx(�,&) ∗ � ∗ :H� $ 1;{ ( 1	    (10) 

Equation (10) ensures that each neuron has at least one clone. 

If some clones in a cluster remain unallocated, they are equally 

distributed over the most involved neurons in that cluster. Such 

fine grain allocation allows determining an optimized number 

of clones for each neuron which reduces the variation between 

the clone degrees in a given cluster.  

C. CbNN variant I(G`, �, �, �) I(Ku, C, L, L) contains a fixed number of sub-networks �∀�, &, VΓ��(�,�)�V = G, G X 1� in which a unique clone is allocated 

in each bundle for every neuron �∀�, &, ∀F ∈ Γ��(�,�)�, |F| = 1�. 
This model is the one we have presented in [10]. 

 

 

Fig. 6 An example of a ℛ(4,3,3,3) 
Fig. 6 shows the example of a ℛ(4,3,3,3) with 4 sub-

networks, each one containing 3 clusters, each cluster with 3 

neurons (one unique clone for each neuron). ℛ(Ku, C, L, �) 
gathers several ENNs within the same network. Its memory 

size, given by eq. (3), is: 

|B| = G ∗ �² ∗ (� $ 1) ∗ �2     (11) 

In this CbNN variant, the multiplication of the number of 

sub-networks allows to multiply by K the capacity of the 

original network (ENN).  

D. CbNN variant I(G`, �, �, H`) I(Ku, C, L, γu)	contains a fixed number of sub-networks �∀�, &, VΓ��(�,�)�V = G,G X 1� in which a fixed number of clones 

is allocated in the bundles �∀�, &, ∀F ∈ Γ��(�,�)�, |F| = v�.  
Fig. 3 shows an example of a ℛ(4,3,3,9) having 4 sub-

networks with 3 clusters each. Each cluster has 3 neurons 

represented by a total of 9 clones per cluster. 

The total number of weights of ℛ(G̀ , �, �, H`) is given by (5). 

It is the generalization of the previously presented variants. 

Therefore, it possesses the same property in terms of allocation 

(Uniform allocation ℛb(G̀ , �, �, H`),		or Non-Uniform allocation ℛcb(G̀ , �, �, H`)). When ℛb allocation is considered, an 

identical number of clones is allocated to each bundle while in ℛcb, the number of allocated clones depends on the message 

distribution. Using several sub-networks increases the number 

of messages that the network can store. The non-uniform 

allocation allows to adapt the CbNN to the message 

distribution. 
 

E. Capacity 

In this section, the models previously introduced are 

compared in terms of capacity (see equation 4 in section II.A) 

i.e., the maximal amount of data that can be stored and then 

retrieved.  

 

For ℛ(1, �, �, �), the total number of neurons in the network 

is � = � ∗ �, the capacity of this variant is given for i.i.d. 

messages by ([9]): 
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�EF(ℛ(1, �, �, �)) = (� $ 1) ∗ ��
2 ∗ �� ∗ _<}� :��; =

(� $ 1) ∗ (�)²2 ∗ _<}�(�)     (12) 

For I(1, �, �, H`), we replace � by the total number of clones 

in the sub-network which is H` ∗ �. Then, its capacity is:  

�EF(I(1, �, �, Hu)) = (� $ 1) ∗ (Hu)²2 ∗ _<}�(Hu)     (13) 

For I(Ku, C, L, �), the number of sub-networks multiplies the 

capacity of I(1, C, L, �) by Ku. Then, it is equal to: 

�EF(I(G̀ , �, �, �)) = G̀ ∗ (� $ 1) ∗ (�)²2 ∗ _<}�(�)     (14) 

For variant I(G̀ , �, �, H`), the number of sub-networks 

multiplies the capacity by G̀ , while the number of clones in 

each sub-network is multiplied by 
w~0  compared to  I(1, C, L, �).  

Then, its capacity is given by: 

�EF(I(G′`, �, �, H′`)) = G′` ∗ (� $ 1) ∗ (H′`)²2 ∗ log�(H′`	)     (15) 

In order to have the same memory cost (for ℛ(1, �, �, H`), ℛ(G̀ , �, �, �) and ℛ(G̀ , �, �, H`)), the following expression has to 

be verified: 

G̀ = :H�̀ ;� = G′` ∗ �H′�̀ ��    (16) 

Equation (16) is obtained by matching (5), (9) and (11). The 

comparison between those capacities (see (17) and (18)) shows 

that the capacity of ℛ(G̀ , �, �, 1) is greater than the one of  ℛ(1, �, �, H`)  since H` M �. It is also greater than the capacity of ℛ(G′`, �, �, H′`) but with a lower gain (since H` M H′`). �EF(ℛ(G̀ , �, �, �))�EF(ℛ(1, �, �, H`)) = G̀ ∗ �� ∗ log�(H`)H`² ∗ log�(�) = log�(H`)log�(�)  (17) 

�EF(ℛ(G̀ , �, �, �))�EF(ℛ(G′`, �, �, H′`)) = G̀ ∗ �� ∗ log�(H′`)G′` ∗ H′`� ∗ log�(�) = log�(H′`)log�(�)  (18) 

 

Therefore, I(G̀ , �, �, �	 models are able to store the greatest 

number of messages. Unfortunately, the capacity does not 

guarantee good results because of the distribution of the data to 

store. 

F. Performances of the CbNNs with Static Clone Allocation 

This section presents efficiency comparisons of the different 

CbNN static variants in terms of RER.  

 

1) Experimental setup  

For fair comparisons with state of the art approaches, the 

number of clusters is set to 8 and the number of neurons is set 

to 32 for each cluster. The results are generated from 

simulations based on the decoding of messages with a non-

uniform distribution. The distribution of the messages is 

Gaussian with a mean of 16 and a standard deviation of 5. Like 

in section II, each point of the curves is the mean value of 5000 

MATLAB simulations of each variant. The experiments were 

performed with MATLAB 2014 from Mathworks. Every 

network has been configured to have the same memory cost 

equal to 16 ENNs(8,32) = 16 I�1,8,32,32	. The ratio 16 is the 

one used in [20] to compare different ENN approaches.  

The RER evaluation is based on the decoding of messages, 

randomly selected. RER mean variation ∆ over 5000 

simulations is provided for all the results. The results recorded 

during our experiments are obtained with the same constraint 

used in [8] or [20]: 50% of the input messages to be retrieved 

are randomly erased. For each message to decode, 4 symbols 

over 8 are unknown and have to be retrieved. Four iterations 

were performed for each decoding, since this number is 

sufficient to achieve the best RER of the original ENN model 

(I�1, �, �, �	 in this paper) [8]. 

In the figures, the best error ratio of the ENN (with Gaussian 

distribution of the messages) are given as references. Table 3 

shows the parameters in terms of dimensions for the evaluated 

variants. 

TABLE 3 Dimensions of the CbNNs with static clone allocation 

Variants G̀  H`  
w~
0   

I�1, �, �, H`	 1 128 128/32=4 

I�G̀ , �, �, �	 16 32 32/32=1 

I�G̀ , �, �, H`	 4 64 64/32=2 
 

Several ENNs with static clone allocation were exposed in 

the previous sub-sections V.A to V.E. Each one has different 

configurations depending on the storage algorithms 

(I�G̀ , �, �, �	 and I�G̀ , �, �, H`	) or the allocation strategy 

(I�1, �, �, H`	 and I�G̀ , �, �, H`	). In order to avoid overloaded 

figures, comparisons are progressively performed by assessing 

different configurations for the same variant, and we finally 

compare the best static variants. 
 

2) Performance of I�1, �, �, H`	  
Fig. 7 shows the RER evolution of this variant for different 

uniform and non-uniform allocation approaches. Icb�1, �, �, H`	 
obtains the best results thanks to its clone allocation policy 

allowing adaptation to data distribution. Moreover, we observe 

a RER < 1,2% up to 1500 messages (∆ � 0.4%). 

 

 
Fig. 7 RER of I�1, �, �, H`	 depending on the allocation strategy of the clones 

3) Performance of I�G`, �, �, �	 
Fig. 8 shows the efficiency of I�G̀ , �, �, �	 for the storage 

algorithms RND and LDS. I�G̀ , �, �, �	/LDS gets the best 

results with an RER < 2.1% (∆ � 1.1%) up to 1500 messages. 

This is due to the LDS algorithm that tends to slow down the 
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increase of the clones’ degrees during the storage step, 

compared to an arbitrary clone selection. 
 

 

 
Fig. 8 The RER of I�G̀ , �, �, �	 depending on the memorization algorithms 

4) Performances of I�G̀ , �, �, H`	  
Fig. 9 shows the RER evolution of I�G̀ , �, �, H`	 for different 

allocation approaches and storage algorithms. 

Icb�G̀ , �, �, H`	/LDS achieves a significant performance 

improvement with an RER < 1,2% (∆ � 0.3%) up to 1500 

messages thanks to the adaptive allocation policy and the use of 

the LDS method. 

 
Fig. 9 The RER of I�G̀ , �, �, H`	 depending on the clone allocation strategies 

and the storage algorithms (RND vs. LDS) 

 

5) Comparison of the best static CbNN variants  

Fig. 10 compares the accuracy of the best CbNN variants. 

Icb�G̀ , �, �, H`	/LDS still gets the best results (RER < 1,2% (∆ �

0.3%) up to 1500 messages) thanks to its smart clone allocation 

(based on the use of several sub-networks) and a smart storage 

algorithm. 

 

 

Fig. 10 The RER of the best networks with static clone allocation  

VI. DYNAMIC CBNNS  

As previously introduced, dynamic allocation is based on the 

idea that a CbNN is designed to optimize the number of sub-

network K and/or the number of clones in a cluster H�. In other 

words, clones and/or sub-networks can be allocated during the 

storing step depending on the message distribution. In practice, 

to remain realistic, the total amount of memory available in the 

network is bounded (i.e., infinite clone allocation is forbidden). 

Hence, the maximal number of clones per cluster but also the 

maximal number of sub-networks are limited and can vary from 

0 up to the maximum (i.e., resp. Ga or Ha). 

As a result, some dynamic variants behave rather similarly to 

some static variants and are not presented in this paper due to 

space limitation. Hence, in I�Ga, �, �, H`	, the number of sub-

networks may grow while each bundle contains a fixed number 

of clones. If the number of sub-networks is limited, then this 

variant is roughly similar to a I�G̀ , �, �, H`	 since the latter 

contains a constant number of sub-networks. 

In I�G̀ , �, �, Ha	, the number of sub-networks is fixed and the 

number of clones per bundle can increase. Since the number of 

clones is limited, this variant becomes rather similar to 

I�G̀ , �, �, H`	 which contains a constant number of sub-

networks.  

Finally, in I�Ga , �, �, �	, the number of sub-networks may be 

increased while every bundle contains a unique clone. Since the 

number of sub-networks is limited, this variant is roughly 
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similar to I�G̀ , �, �, �		which contains a fixed number of sub-

networks.  

Therefore, only two variants are thoroughly presented in this 

section: I�1, �, �,γD�	and I�Ga , �, �, Ha	. As a first step, a storage 

algorithm compatible with both models is introduced. The 

models are next presented. 

A. Storage algorithm for dynamic CbNNs  

Two rules are required for this storage algorithm. 

Rule 1 The allocation of a clone to an active neuron may be 

performed if and only if there is an available clone in its cluster.  

If this constraint is verified, the allocation of a clone to an 

active neuron is effectively performed when: either (1) there is 

no clone allocated to the neuron, or (2) the degree of the Most 

Recently Used clone of the neuron is higher than a threshold � 

called degree limit. Hence, by definition, our dynamic models 

are based on non-uniform allocation of clones. 

Rule 2 The allocation of a new sub-network to the network is 

performed:  

(1) If the allocation of a clone to an active neuron could not 

be performed in the Last Used Subnetwork  

and 

(2) If the maximal number of usable sub-networks is not 

reached. 

 

The storage process is defined as follows: as soon as the 

network receives a message to store, the neurons and the clones 

are activated in the most recently used sub-network.  

For each cluster in the sub-network, an active clone has to be 

selected. For a given cluster Cx, there are two cases: 

1. There is no active clone in Cx (no clone was allocated to 

the active neuron in Cx). The allocation is performed, 

and the new clone is used to store the message.  

2. There is at least one active clone in Cx. In that case, if 

the degree of the last used clone is higher than �, a new 

clone is allocated to store the message. Otherwise, the 

most recently used clone is selected (Rule 1). 

 

If a clone allocation has to be performed in a cluster and if 

there is no available clone, then a new sub-network is added, if 

possible (Rule 2). This new sub-network becomes the most 

recently used sub-network and the whole process is restarted. 

If a sub-network cannot be added to the network, our 

approach performs either RND or LDS algorithms (depending 

on user requirements) without any modification (see Section 

V): 

1. With RND, a sub-network Sx is randomly chosen, 

relevant clones are activated in Sx and an active clone 

is randomly chosen in each cluster.  

2. With LDS, for each sub-network, an active clone is 

randomly selected in each cluster and the scores are 

computed (see section V). If a cluster in a sub-network 

does not contain any active clone, the sub-network is 

excluded from the competition since it cannot help to 

create a full neural clique. 

The value of � can be derived from the notion of neuron 

degree for a given number of messages to store 	�. If we 

consider i.i.d. messages, the degree limit � is computed as 

follows: 

� � 1 $ e1 $ 1
Hg

�
q

      (19) 

Equation (19) does not always allow to reach the best 

performance, in particular for a high number of stored 

messages. Indeed, this heuristic is based on uniform message 

distribution while i.i.d messages are considered. 

 

B. CbNN variant I�1, �, �, H�� 
I�1, C, L, γD� contains a unique sub-network 

�∀�, &, VΓ����,�	�V � 1� in which the number of clones in bundles 

may dynamically increase	�∀�, &, ∀F ∈ Γ����,&	�, |F| P H�. 
 

 
Fig. 11 An example of a I�1,3,3,9	 

 

Fig. 11 shows an example of a I�1,3,3,9	 having a unique 

sub-network containing 3 clusters with each cluster with 9 

clones not yet allocated to a dedicated neuron. On average, 3 

clones may be allocated to each neuron. 

 

C. CbNN variant I�Ga, �, �, Ha	 
In I�Ga , �, �, Ha	, both the number of sub-networks 

�∀�, &, VΓ����,�	�V P Ga , ��=>	Ga X 1�, and the number of clones in 

each bundle �∀�, &, ∀F ∈ Γ����,�	�, |F| P H�� may be increased.  

 
 

 

Fig. 12 An example of a I�4,3,3,9	 

Fig. 12 shows a I�4,3,3,9	 having 3 sub-networks (over the 4 

possible sub-networks), containing 3 clusters, with each cluster 
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having 9 clones (the maximum). On average, 3 clones may be 

allocated to each neuron in each sub-network. 

D. Capacity of the CBNNs with dynamic clone allocation 

The capacity is only defined for a uniform distribution of 

messages. Therefore, since each clone allows to memorize the 

same quantity of information (for any allocation policy), the 

capacity of those networks is identical to their static counterpart 

(I�Ga, �, �, Ha	�	I�G̀ , �, �, H`	,  I�1, �, �, Ha	�	I�1, �, �, H`	). 
E. Performances of the CbNNs with Dynamic Clone 

Allocation 

The following simulations have been performed with the 

same experimental setup presented in section V. Table 4 shows 

the configurations in terms of dimensions for the different 

variants of the CbNNs with dynamic clone allocation.  

TABLE 4 Dimensions of the evaluated CbNN variants with dynamic clone 

allocations 

Variant K Ha 
w�
0   

I�1, �, �, Ha	 1 128 128/32=4 

I�Ga, �, �, Ha	 4 64 64/32=2 
 

As for the static variant experiments, each point of the curves 

is the mean value of 5000 MATLAB simulations. For the sake 

of clarity, comparisons are progressively performed for each 

variant depending on storage algorithms (RND and LDS) and 

degree limit �. Finally, a comparison between the best networks 

with dynamic clone allocation is provided. 

 

Nota bene: for these experiments, we have tested two � 

values: an arbitrary value � =5%, and � = opt which is the 

degree limit obtained by using (19).  

 

1) Performance of I�1, �, �, Ha	 
Fig. 13 shows the performance of I�1, �, �, Ha	 for different 

degree limits �. It can be observed that I�1, �, �, Ha	(�=5%) 

obtains the best performance: RER < 2% �∆ � 0.6%) up to 1000 

messages. The value � � 5% results in a “faster” allocation of 

the clones. This comes from the fact that some neurons have no 

allocated clones. Therefore, some messages that should have 

been stored, are not. For instance, over 5000 messages, 100 

messages (2%) were not stored by the I�1, �, �, Ha	(�=5%). 

Non-stored messages may impact performance positively or 

negatively, since the network becomes specialized in storing 

and retrieving messages with the most frequent neuron state 

values.  

 
Fig. 13 RER of I�1, �, �, Ha	  depending on the density limit 

2) Performance of I�Ga, �, �, Ha	  
Fig. 14 shows the RER evolution of I�Ga, �, �, Ha	 for 

different storage algorithms and density limits. In overall, 

I�Ga, �, �, Ha	(5%)/LDS offers the best results compared to the 

other I�Ga, �, �, Ha	 configurations presented in this case study. 

 
Fig. 14 The RER of I�Ga , �, �, Ha	 networks depending on the storage 

algorithms and the density limits 
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It can be observed that there is no real advantage to use 

I�Ga, �, �, Ha	(opt)/LDS compared to I�Ga , �, �, Ha	(5%)/LDS. 

The RER of the first one is lower than 1,5% up to 1500 

messages (∆±0.5%), while the second has a RER lower than 

2.4% (∆±0.7%). However, Fig. 14 shows that the results are not 

good above 2000 messages. This is due to the parameter � 

computed with equation (19) by considering constants values 

while messages are i.i.d in these experiments. Instead, by using 

a lower density limit (e.g. 5%), more clones are allocated since 

the allocation threshold is lower. Moreover, the LDS algorithm 

is preferably applied for a larger number of messages in order 

to achieve good performance. 

 

 

Fig.  15 The RER of the best networks with dynamic clone allocations 

3) Comparing the best CbNN variants with dynamic clone 

allocation 

Fig. 15 compares the accuracy of the best networks with 

dynamic clone allocation. I(Ga , �, �, Ha	(5%)/LDS clearly 

outperforms I�1, �, �, Ha	. This improvement (up to 55%) 

comes from the use of multiple sub-networks and the use of the 

smart storage algorithm LDS.  

VII. COMPARING STATIC VS. DYNAMIC CBNN VARIANTS  

In this section, the RER of the best static and dynamic 

variants are compared. First a worst case erasure rate of 50% 

(i.e., half of the input messages to be retrieved are randomly 

erased) is considered like in [8] or [20]. This strong constraint 

has been set in order to fairly evaluate the performances of our 

models compared to the original ENN. In order to explore the 

interest of our static and dynamic models, we also performed 

these experiments with a more classical message erasure of 

25% (like in [12][11][10]…).  

A. Erasure rate of 50% 

In Fig. 16, it can be observed that I�Ga, �, �, Ha		(5%)/LDS 

and Icb�G̀ , �, �, H`	/��N achieves almost the same efficiency 

for less than 2000 messages. The proposed dynamic CbNN 

seems to be more interesting when more messages need to be 

stored, RER < 1,8% (∆±0,08%) up to 2500 messages.  

B. Erasure rate of 25% 

In Fig. 17, the RER of the best static and dynamic CbNN 

variants is reported, with an erasure rate of 25%, and it is 

compared with their previous results from Fig. 17. The original 

ENN model I(1, �, �, �	, which has the same trends than in 

Fig. 16, is not reported for the sake of readability.  
 

 

Fig. 16 The RER of the best CbNN models  

It can be observed that the static approach (Icb(G̀ , �, �, H`	/
��N) is able to provide excellent results with a RER of 0% 

(∆±0%) up to 2000 stored messages. Then, the RER reaches 

0,5% (∆±0,03%) for 3000 messages, and the RER is 12,2% 

(∆±1,3%) for 5000 messages.  

The study of the RER of (I(Ga, �, �, Ha		(5%)/LDS) shows that 

our dynamic clone allocation strategy has a very interesting 

message retrieving ratio, with the new erasure rate. It can be 

observed that for 5000 messages, the RER is 4,5% (∆±0,06%). 

Moreover, the ∆ values in this configuration is much more 

regular than in the other experiments: from 0.04% (for 1000 

messages) to 0,06% (for 5000 message) in the figure. This 

regularity trend was not so clear in the first set of experiments 

performed with an erasure rate of 50%.  

 

All these results show that dynamic CbNNs are able to store 

and retrieve large amounts of data more efficiently that their 

static counterparts. These results motivate us to further 

investigate dynamicity and to study how to dynamically 

compute a smartly tuned value of α. Our first experiments show 
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very interesting results, but still need some additional work to 

be published. Moreover, intuitively, considering all the sub-

networks instead of the more recent used one, to store a new 

message should allow to increase memory capacity. This point 

will be investigated in our future work. 

 

  

Fig. 17 The RER of static vs dynamic tuning with different erasure rates  

VIII. CONCLUSION 

In this paper, we have introduced the concept of Clone-based 

Neural Network (CbNN) to consider realistic data (i.e., data 

non-uniformly distributed). Different strategies have been 

proposed to allocate clones and sub-networks in the CbNN. 

Experimental results show that all the proposed variants widely 

outperform the original ENN in terms of memory and recall 

abilities.  

Considering an erasure rate of 50%, our results show that 

coupling non-uniform static allocation of clones with a 

dedicated storage algorithm LDS (CbNN variant 

Icb�G̀ , �, �, H`	/LDS) is a more performant solution than the 

other static ones. Icb�G̀ , �, �, H`	/LDS also competes with its 

dynamic counterpart I�Ga, �, �, Ha	(5%)/LDS for small 

amounts of data. However, above a given threshold (~2500 

data), dynamicity offers better performances.  

When the erasure rate is reduced down-to 25% which 

corresponds to more classical and realistic stimuli, both static 

and dynamic CbNN variants allow to handle large amounts of 

data (i.e., the memory capacity is widely increased).  

Hence, Icb�G̀ , �, �, H`	/LDS is able to achieve a RER of 0% 

up to 2000 stored messages. Its dynamic counterpart 

I�Ga, �, �, Ha	(5%)/LDS achieves a RER <1.9% for 2500 

messages with an extreme regularity (∆max= 0,06% for 5000 

messages). Once again, results show that dynamicity offers 

better results and that the CbNN model allows the design of 

efficient associative memories.  

Future work will be dedicated to dynamic tuning of the 

allocation threshold �a to further improve the CbNN 

efficiency.  
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