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Abstract

We quantify the e�ect of uncertainties on quantities of interest re-

lated to contact mechanics of rough surfaces. Speci�cally, we consider

the problem of frictionless non adhesive normal contact between two

semi in�nite linear elastic solids subject to uncertainties. These uncer-

tainties may for example originate from an incomplete surface descrip-

tion. To account for surface uncertainties, we model a rough surface

as a suitable Gaussian random �eld whose covariance function encodes

the surface's roughness, which is experimentally measurable. Then, we

introduce the multilevel Monte Carlo method which is a computation-

ally e�cient sampling method for the computation of the expectation

and higher statistical moments of uncertain system output's, such as

those derived from contact simulations. In particular, we consider two

di�erent quantities of interest, namely the contact area and the num-

ber of contact clusters, and show via numerical experiments that the

multilevel Monte Carlo method o�ers signi�cant computational gains

compared to an approximation via a classic Monte Carlo sampling.

1 Introduction

Contact between interfaces is omnipresent in both nature and engineering
applications, so that understanding the mechanical response to such contacts
is a major scienti�c challenge of current interest. In fact, these contact
problems can be found in virtually any engineering application characterized
by interactions between separate parts and involving, for example, friction
or wear.

Despite its fundamental importance, many aspects of contact mechan-
ics remain poorly understood. One of the key challenges stems from the
multiscale nature of the contact interfaces. Indeed, both natural and man-
ufactured surfaces are not perfectly �at but are made of multiple asperities
that exist at all length scales. The rough surfaces are usually modeled as
semi-a�ne fractal surfaces [22], which are characterized through their height
distribution (see [23] for experimental measurements). In spite of the fact
that some surface properties can be measured, there remain uncertainties
e.g. due to �nite precision measurement and incomplete information. There-
fore, surfaces are considered to be random and are usually characterized only
through their statistical properties.

2



Describing the roughness of a surface via statistical properties for every
engineering application would imply prohibitive computational costs, many
numerical studies typically aim at considering semi-in�nite volume (bulk with
a rough surface) and obtaining mechanical responses, which will afterwards
be used in a macroscopic model. More precisely, for a surface de�ned by
its statistical properties, the contact area or the number of contact clusters
under an imposed pressure is computed and this result is then used for more
advanced mechanical problems. For example, being able to know the mor-
phology of contact clusters for some class of rough surfaces is of primary
importance to be able to study sealing technologies [10], the adherence of
tires on roads [21, 33], reliability considerations for nano electromechanical
systems (NEMS) and micro electromechanical systems (MEMS) appliances
[9], or tribology in general.

Despite its clear practical importance, a systematic and reliable quanti�-
cation of the e�ects of surfaces uncertainties on contact mechanics is often
disregarded in the relevant literature. Furthermore, even works that ac-
knowledge model uncertainties (e.g. [28, 25, 27]) quantify their e�ects on
mechanical outputs often in a somewhat ad-hoc way. Moreover, since the
numerical studies are typically done on a �nite size surface with periodic
boundary conditions, an error due to homogenization (with �nite size of the
representative surface element) is introduced.

Since the contact problem is often computationally challenging due to
the presence of multiple length scales, quantifying the e�ect of a random
rough surface, by e.g. the classic Monte Carlo method, becomes quickly
computationally prohibitive. Recently, the multilevel Monte Carlo (MLMC)
method has been established as a computationally e�cient sampling method
that is applicable to a wide range of random models [13, 8, 32, 14, 24]. In
this work, we will investigate the bene�ts of these multilevel Monte Carlo
techniques applied to random rough contact mechanics problems, for which
it will be key to carefully balance statistical errors and discretization errors.

Somewhat related works that have applied the multilevel Monte Carlo
method to a similar mechanical problem include [6, 4, 5]. In these works,
simpli�ed random obstacle problems governed by the Laplacian (i.e. ignoring
elasticity) have been considered, for which the surface of the random obstacle
is considered to be rough and given in terms of a Fourier cosine series with
random shift, or with random shift and random amplitude. Recently, the
MLMC method has also successfully been applied in the context of (stochas-
tic) numerical homogenization of randomly heterogeneous material [11].
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The rest of this paper is organized as follows. In Sect. 2 we introduce
the deterministic contact mechanics model and its discretization, which is
the basis of this work. Then, in Sect. 3, we introduce the random contact
model, which includes the de�nition of a class of suitable rough random
surfaces and a description of how to sample these surfaces in practice. In
Sect. 4 we introduce the multilevel Monte Carlo sampling technique, which
is subsequently used in Sect. 5 to estimate the average contact area or the
average number of contact clusters. Finally, conclusions and an outlook on
future works are o�ered in Sect. 6.

2 The deterministic mechanic contact model

In this section, we brie�y describe the deterministic contact model and its
discretization for a given surface. We focus on the non-adhesive friction-
less normal elastic contact. It is noteworthy that the deterministic model
described below is not novel, but is standard and well-established in the
literature [3, 35].

2.1 Semi-in�nite continuous model

As initial idealized model (denoted by P), we consider two semi-in�nite con-
tinuous solids. The �rst solid is rigid (i.e. in�nitely sti�) and rough, in the
sense that this solid's surface is characterized by the presence of asperities
on a wide range of length scales. In fact, the roughness of a surface can be
described via its surface pro�le. We denote a surface's pro�le by s, so that
every point on the surface can be written as

(
x, s(x)

)
∈ R3, x ∈ R2. The

second solid is assumed to be perfectly �at and deformable. Throughout
this paper we will work under the small strain assumption and consider the
solid's behavior to be linear homogeneous isotropic elastic. Furthermore, we
denote the solid's Young's modulus by E and its Poisson ratio by ν.

A mathematically convenient representation of the contact problem is
in terms of an integral representation; see, e.g., [7]. In fact, this integral
formulation provides a representation in which the only unknown that needs
to be determined is the normal displacement �eld of the elastic solid's surface
when the two solids come into contact. The advantage of this formulation
thus is a dimension reduction, since the problem becomes e�ectively two
dimensional. Moreover, the displacement �eld inside the bulk material does
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not need to be resolved as it can simply be recovered from the displacement
�eld at the surface of the elastic solid; see [29] for details.

2.2 Truncated continuous model

Instead of considering the two solids as semi-in�nite, we will consider both
solids on a bounded domain. Speci�cally, we consider them on a square D,
say, with edge length L > 0, i.e. D = [0, L]2 ⊂ R2. The only unbounded
direction is therefore the inward normal at the surface. To represent semi-
in�nite solids using the bounded domain D, we impose periodic boundary
conditions (PBCs) on the displacement �eld on the boundary of D. The
resulting model is denoted by PL. Notice that PL is still a fully continuous
contact model.

The link between the normal displacement u and the normal pressure p
at the surface is given by

u = K ∗ p . (1)

Here, the kernel K depends on the material properties E and ν as well as on
the fundamental solution that is chosen in the integral formulation; see [7]
for details. In order to formulate the contact problem, it is furthermore con-
venient to introduce the so-called gap function g as the distance between the
two contacting surfaces, so that g = u− s. The well-known Hertz�Signorini�
Moreau orthogonality condition then characterizes the non-adhesive contact
problem and reads:

p(x)g(x) = 0 , p(x) ≥ 0 , g(x) ≥ 0 ∀x ∈ D . (2)

In other words, the condition states that interpenetration is forbidden (g(x) ≥
0), that contact pressure can only be compressive (p(x) ≥ 0), and that each
point is either in contact with the rigid surface (g(x) = 0) or free of forces
(p(x) = 0). For clarity, we give a schematic representation of the problem in
Figure 1.

The mechanic contact problem depends on a non-negative prescribed
loading p̄, which is related to the average spatial pressure, in the sense that

1

|D|

∫
D

p(x) dx = p̄ . (3)

Combining everything together, problem PL can be stated as:

Find p ∈ A such that Ec(p) is minimized. (4)
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Figure 1: A 2-D sketch of two semi in�nite solids coming into contact

Here, Ec is the so-called complementary energy functional, which is given by

Ec(p) =
1

2

∫
D

u(x)p(x) dx−
∫
D

s(x)p(x) dx , (5)

and A denotes the space of admissible periodic pressure �elds

A ≡ A(p̄) :=

{
p : D → R periodic such that p ≥ 0 and

1

|D|

∫
D

p(x) dx = p̄

}
.

(6)
Note that there may be a model discrepancy due to the truncation of the

domain and the PBCs. However, this model discrepancy vanishes as L→∞.

2.3 Discretization of the truncated model

We discretize the model PL via the boundary element method (BEM) and
denote the resulting model by PLh .

To apply the BEM, we �rst introduce the spatial discretization parameter
h > 0 that is used to construct a grid. Here we consider a uniform grid on
the square domain D consisting of n2 grid points (nodes), where n ≥ 2 with
h = L/n (opposite edges are considered only once). An example of such
uniform grid is illustrated in Figure 3 (left). We represent both the surface
of the �at deformable solid and the rough surface of the rigid solid on said
grid by their nodal values to obtain discrete (i.e. �nite dimensional) surface
representations. Moreover, we denote by u ∈ Rn2

the vector containing the
n2 nodal values of the displacement function u and, analogously, by p ∈ Rn2

the vector containing the n2 nodal values of the pressure p. That is, the
component pi (respectively ui) of p (resp. u) corresponds to the value of the
pressure p (resp. the displacement u) at node i.
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For the continuous model PL, equation (1) implies that u = F−1
(
F(K)F(p)

)
in view of the convolution theorem for the Fourier transform F . For the dis-
crete case, we thus relate the displacement vector u and the elastic pressure
vector p via

u = FFT-1(K̂ FFT(p)) , (7)

where FFT and FFT-1 denote the 2D fast Fourier transform (2D-FFT) and
the inverse 2D-FFT, respectively. Here we use the fast Fourier transform be-
cause of its e�ciency, which is also one of the main reasons making the BEM
appealing for contact problems. Moreover, note that the FFT implicitly
enforces periodic boundary conditions on the surface, since displacements
computed from (7) will be L-periodic. In equation (7), K̂ ∈ Cn2×n2

is a
diagonal matrix that contains the so-called in�uence coe�cients for the fun-
damental solution in Fourier space. Here, we use the Westergaard's reference
solution [34]; see also [31] for the expression of the in�uence coe�cients.

We note that the coe�cient in the matrix K̂ associated to the mean
value (i.e. the zero frequency) is set to zero. Indeed, the displacement of
the surface is only known up to a rigid-body motion, since the problem is
ill-posed in the x3 direction. This choice will force u to have zero average,

i.e. 1
n2

∑n2

i=1 ui = 0. Equivalently, one can, of course, also obtain a pressure
from a displacement vector u using

p = FFT-1(K̂−1 FFT(u)) + p̄ . (8)

Here, we slightly abuse notation and assume that the coe�cient of K̂−1

associated to the mean value (zero frequency) vanishes. Analogously to the
continuous model, we then de�ne the space of admissible (discrete) pressure
vectors by

A ≡ A(p̄) :=

{
p ∈ Rn2

, pi ≥ 0

∣∣∣∣ 1

n2

n2∑
i=1

pi = p̄

}
. (9)

Eventually, the discrete problem PLh reads:

Find p ∈ A such that Ec(p) is minimized, (10)

where the discrete complementary energy is

Ec(p) =
1

2

n2∑
i=1

uipi −
n2∑
i=1

sipi . (11)
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The minimization problem above is then solved using a constrained conjugate
gradient approach; see, e.g., [26, 30]. Finally, we recall that model PLh is an
approximation of model PL, so that solutions to these problems may di�er
due to the discretization error. However, this error vanished as h tends to
zero [7].

3 Random rough surfaces for contact mechan-

ics

As mentioned in the introduction, both natural and manufactured surfaces
are rough, in the sense of being composed of multiple asperities. In fact,
experimental data indicate that surfaces are characterized by a wide range of
length scales, from sample size to nanometer. To accurately model contact
between two rough solids, one has to take this surface roughness into account
because it can drastically a�ect the mechanical response of the structure.
For example, the true contact area is actually signi�cantly smaller than the
nominal contact area obtained when neglecting surface roughness.

To this end, we consider the deterministic contact models described in
Sect. 2 for a class of random rough surfaces, which are modeled as Gaussian
random �elds. The considered class of surfaces is thereby de�ned by means
of a characterization of its height distribution or of its power spectrum, which
may be available through experimental results. As an illustration, Figure 2
shows the pressure distributions under a speci�c load p̄ = 10 and the two
associated di�erent realizations of a rough random surface. Each surface is
one realization de�ned by the same �xed power spectrum. One can observe
that the contact pattern strongly depends on the given surface realization and
that it is necessary to perform simulations on various realizations to obtain
statistically meaningful estimates. In what follows, we will discuss how to
sample appropriate random surfaces that can then be used to produce the
plots shown in Figure 2.

3.1 A characterization of rough surfaces

In this subsection, we de�ne the class of rough surfaces that we consider in
this work. Speci�cally, we model a random surface s as an isotropic Gaussian
random �eld with mean zero [20]. That is, the surface heights in any m
points x1, . . . ,xm ∈ D are jointly normally distributed with mean zero and
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Figure 2: Typical pressure distributions (in color) obtained under a load
p̄ = 10 corresponding to two di�erent realizations of a rough random surface
(in gray) de�ned by the same power spectrum.

the entries Σi,j of the covariance matrix Σ are given by

Σi,j = c
(
|xi − xj|

)
≡ Cov

(
s(xi), s(xj)

)
. (12)

Here, the function c is called isotropic covariance, which only depends on the
euclidean norm r := |x| of any point x ∈ R2. Notice that the isotropy also
implies the stationarity of the �eld s.

The (power) spectral density Φ of the stationary Gaussian �eld s is given
as the Fourier transform of its covariance function, in the sense that Φ(k) =
1

4π2

∫
R2 e

−ik·xc(|x|) dx.
Furthermore, the isotropy of s implies that the spectral density only de-

pends on the euclidean norm k := |k| of any Fourier point k ∈ R2 and is
therefore called the radial spectral density, which we denote by Φr.

Experimental results [23] suggest that rough surfaces can be characterized
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by a (radial power) spectral density of the form

Φr

(
|k|
)

=


C , if kl ≤ |k| ≤ kr ,

C
(
|k|
kr

)−2−2H
, if kr ≤ |k| ≤ ks ,

0 , otherwise.

(13)

Here, H ∈ [0, 1] denotes the Hurst exponent, C ≥ 0 is the roughness ampli-
tude, and the wave numbers 0 ≤ kl ≤ kr ≤ ks control the di�erent roughness
regimes. From the wave numbers controlling the di�erent regimes, one can,
as is common practice, de�ne the associated wave lengths λl = 2π

kl
, λs = 2π

ks

and λr = 2π
kr
.

Finally we note that there exist alternative approaches based on modeling
the rough surface as a set of densely situated punches [2, 1] before analytically
solving the frictionless normal contact problem.

3.2 Generating random rough surfaces on a grid

In this section, we present an algorithm to generate a (discretized) rough sur-
face on the domain D = [0, L]2 respecting a prescribed radial power spectrum
Φr.

In view of the periodicity inherent in the truncated problem (cf., Sect. 2.2)
and its discretization it is natural to also generate random surfaces that
are periodic. We will denote the radial power spectrum corresponding to
approximate periodic surfaces by Φ̃r; see also appendix A for further details.

In Figure 3 (center) we illustrate the frequential grid used to discretize
a power spectrum density Φ, which is also sketched in the same �gure. We
observe the isotropy in Figure 3 (right).

The wave-vector k has n2 components. As a consequence of Shanon's
theorem, on a n×n frequential grid one can only consider generating surfaces
with ks ≤ n

2L
. Therefore, re�ning the spatial discretization (i.e. increasing

n) for a �xed size L allows representing larger wave numbers (that is to say
smaller wave lengths).

Algorithm 1, which is a suitably modi�ed version of the sampling method
presented in [17], details the procedure to generate one realization of a rough

surface on the domain [0, L]2 with prescribed spectral density Φ̃r (that is to
say for the given parameters: kl, kr, ks, C, and H). The algorithm's main
input is the prescribed radial spectral density Φr. Its output is a surface in
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Figure 3: Spatial (left) and frequential (center and right) grids used for the
generation and the representation of the rough surface.

Algorithm 1: Surface generator

Inputs: Φr, n, L ;
Give the values for the two �rst rows of S corresponding to the
discretization of [0, L]2;
Generate the complex random vector ξ = η + iζ of size n2 , where η
and ζ are indep. N (0, I);

Compute Φ̃r as the evaluation of Φr on the frequential grid;

Compute the elementwise product q̂ = Φ̃
1
2
r ξ;

Compute q = 1
n2 fftw2

-1(q̂);
Compute the real part R (q) of q;
Complete the third column of S with R (q);
Return S;

R3 evaluated on a spatial grid, which is encoded as the matrix S of size n2×3
(n2 nodes with 3 coordinates). That is, �rst two rows of S are composed of
the coordinates of the nodes on the grid, while the last row is �lled at the
end of the algorithm with the generated surface heights.

In appendix A, we give further details on this sampling methodology and
verify that the used sampling routine does indeed produce samples with the
desired statistical properties.
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4 Monte Carlo methods for quantifying uncer-

tainties in rough contact mechanics

As discussed in the introduction, it is crucial to understand how the surface
uncertainties a�ect the average outputs of the contact problem (for example
the contact area, the morphology of contact clusters, ...).

Let u denote the solution to the continuous problem associated with the
random surface s. It is worthwhile to emphasize here that the surface's
randomness implies that also the solutions to the contact problems (as in-
troduced above) are random, such as the displacement, the pressure, the gap
function, and other derived quantities. The goal then is to quantify the e�ect
of the random surface s by computing the expected value E(Q) of an appro-
priate quantity of interest Q that is computed from the displacement �eld
u. For example, the quantity of interest Q may be the contact area or the
maximum pressure under a given load. However, as one cannot solve the con-
tinuous problem exactly, computing the expected value E(Q) is unfeasible.
Instead, we can only use the discretized model to obtain an approximation
Qh.

In this Section, we will describe two Monte Carlo based sampling meth-
ods, which are based on generating many surface realizations and computing
the corresponding approximate quantity of interest Qh. The appeal of these
sampling methods is that they are non-intrusive, in the sense that an existing
deterministic numerical solver does not need to be modi�ed and can thus be
used as a black box.

In what follows we brie�y review the classic Monte Carlo method for the
approximation of E(Q) based on simulations. Afterwards we introduce the
multilevel Monte Carlo method [13, 8, 32, 14] as a variant that o�ers drastic
computational savings for a wide range of applications. See also [16] for some
related earlier works. Although the focus of this work is on scalar quantities
of interest, it is noteworthy that the multilevel Monte Carlo method can also
be applied to multidimensional quantities or reliability studies [19]. We will
leave the application of these options in the context of contact problems for
future works.
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4.1 Classic Monte Carlo method

4.1.1 De�nition of the estimator

The classic Monte Carlo (MC) estimator is de�ned as the mean of a sample
of N independent and identically distributed (i.i.d.) realizations of Qh, that
is

EMC
N (Qh) :=

1

N

N∑
j=1

Qh

(
ω(j)
)
, (14)

where ω(j) are i.i.d. random events (each one corresponding to a generated
realization of the random surface). The accuracy of the Monte Carlo esti-
mator EMC

N (Qh) as an approximation of E(Q) can be characterized via the
mean squared error, viz.

E
((

E(Q)− EMC
N (Qh)

)2)
=

Var(Qh)

N
+ E(Q−Qh)

2 . (15)

Here, the �rst term on the right-hand side (the so-called statistical error)
quanti�es the estimator's variance and is inversely proportional to the num-
ber of realizations N . The second term (the so-called squared bias) accounts
for the expected error due to the spatial discretization frequency of the con-
tact problem and depends on the grid size h and on the domain truncation
L. In what follows, we assume that the domain D = [0, L]2 has been taken
large enough so that the truncation error is negligible with respect to the
discretization error due to the grid size h. Henceforth we focus only on the
latter. Clearly, for EMC

N to be an e�cient approximation of E(Q) both terms
should be balanced and small.

To further apply the Monte Carlo method, it is necessary to quantify the
accuracy and the computational cost of the solution computed with the deter-
ministic contact solver. As the discretization length h decreases, it is desired
that the approximation converges to the exact solution, which is related to
properties of the boundary element method for each deterministic problem;
cf. [7]. Similarly, we expect that the cost of the iterative scheme used to
approximate the solution to the contact problem is inversely proportional to
a power law with respect to the grid size h, since the grid size controls both
the accuracy and the dimension of the discretized problem. Finally, we also
make the assumption that the variance of Qh is �nite for h � 1, which is
natural in view of (15). In a more formal way, it leads to the three following
assumptions:
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MC-1 the cost to compute each i.i.d. realization ofQh is bounded : cost(Qh) ≤
Cγh

−γ for some constants Cγ, γ > 0,

MC-2 the bias decays with order α > 0, in the sense that |E(Q−Qh)| ≤ Cαh
α

for some constant Cα > 0,

MC-3 the variance of Qh is �nite for h� 1.

4.1.2 Application of the MC method

To apply the MC method, one has to �rst choose a root mean square error
tolerance ε. Then to balance the bias and the statistical error and achieve an
overall mean squared error of order ε2 in (15), it is thus su�cient to choose1

h ' ε1/α and N ' ε−2 . (16)

Thanks to (16), the number of realizations to perform is directly computable
from the tolerance ε. However, to estimate the grid size h, it is necessary to
know α, or in other words, how the expected discretization error decays as a
function of h. If analytical convergence results are available for the speci�c
discretization method, α can be deduced directly from these results. Other-
wise, one can estimate this convergence rate through a screening procedure
that will be described in subsection 4.2.2.

4.2 Multilevel Monte Carlo method

4.2.1 De�nition of the estimator

The underlying idea of the multilevel Monte Carlo (MLMC) method is to
use realizations of approximations to Q with varying accuracy. Speci�cally,
we consider a hierarchy of M grids, called levels, with grid sizes h0 > h1 >
· · · > hM . As we will see below, the grid size hM of the �nest discretization
level takes over the role of the grid size used in the classic MC method above.
We denote by Qh` the approximation of Q on a grid with size h`. Using the
linearity of the expectation operator, one can then write the expectation of
the approximation of Q on the �nest level hM as a telescoping sum. That
is, E

(
QhM

)
can be written as the expectation of the approximation of Q on

1We use the notation a . b, if there exists a constant c>0, such that a ≤ cb; analogously
for &. If a . b and a & b, then we write a ' b.
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the coarsest level h0 plus a sum of correction terms that are expectations of
approximations on consecutive levels:

E
(
QhM

)
= E

(
Qh0

)
+

M∑
`=1

E
(
Qh` −Qh`−1

)
≡

M∑
`=0

E
(
∆`

)
, (17)

where ∆0 := Qh0 and ∆` := Qh` − Qh`−1
for ` > 0. The MLMC estimator

EMLMC(QhM ) is then obtained by approximating each of the expectations
E(∆`) by a MC estimator using N` i.i.d. realizations:

EMLMC(QhM ) :=
M∑
`=0

1

N`

N∑̀
j=1

∆`

(
ω
(j)
`

)
=

1

N0

N0∑
j=1

Qh0

(
ω
(j)
0

)
+

M∑
`=1

1

N`

N∑̀
j=1

(
Qh`

(
ω
(j)
`

)
−Qh`−1

(
ω
(j)
`

))
.

(18)

Notice that the correction terms ∆`

(
ω
(j)
`

)
:= Qh`

(
ω
(j)
`

)
− Qh`−1

(
ω
(j)
`

)
are

computed using the same random realization on both levels ` and ` − 1.
Moreover, the ∆` terms are sampled independently on di�erent levels. As
for the MC estimator, the accuracy of the MLMC estimator is commonly
assessed via the mean squared error, which can also be decomposed into the
statistical error and the squared bias:

E
((

E(Q)− EMLMC(QhM )
)2)

=
M∑
`=0

Var
(
∆`

)
N`

+ E(Q−QhM )2 . (19)

The identity above demonstrates the virtue of considering multiple levels
instead of just one �ne grid. In fact, if Var

(
∆`

)
decreases as ` increases, then

one may need many realizations only on the coarse levels, which are typically
cheap to generate, but only very few on the �ner, more expensive, levels. To
make this intuition precise, we will assume that

ML-1 the cost to compute each i.i.d. realization ofQh` is bounded by cost(Qh`) ≤
Cγh`

−γ for all ` > and some constants Cγ, γ > 0,

ML-2 the bias decays with order α > 0, in the sense that |E(Q−Qh`)| ≤
Cαh`

α for all ` > and some constant Cα > 0,
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ML-3 the variance of ∆` = Qh` −Qh`−1
decays with rate β > 0, in the sense

that Var
(
∆`

)
≤ Cβh`

β for all ` > and some constant Cβ > 0.

Notice that assumptions ML-1 and ML-2 for the MLMC method are the
same as assumptions MC-1 and MC-2 for the MC method.

In this work we will consider geometric grids, in the sense that h` = δ−`h0
for some δ > 1. In practice the value δ = 2 is often used, which we also adopt
here. Although a non-optimal choice of δ can a�ect the MLMC method's
performance, this e�ect is minor [15].

4.2.2 Application of the MLMC method

For the practical application of the MLMC method to the contact problem at
hand, a few comments are in order. Firstly, the coarsest grid size h0 should
be chosen su�ciently small so that a basic problem resolution is provided
and also such that L

h0
is an integer. That is, the coarsest grid size is related

to the roughness of the surface since we aim at accurately representing the
largest wavelengths of size L/kl. A heuristics would be to chose h0 = 10 L

kl
in

order to resolve the largest asperity, which is also used here.
Secondly, assembling the MLMC estimator (18) requires to compute re-

alizations of the di�erences ∆` = Qh` −Qh`−1
on the di�erent levels. Speci�-

cally, one has to compute these di�erences of approximations on consecutive
grids for the same random event ω`, i.e. for the same realization of the ran-
dom surface s(ω`) on both level ` and level ` − 1. This can, for example,
be done by generating a realization of the discretized surface associated with
the grid on level ` using Algorithm 1, which is then used to compute the
corresponding realization of Qh` . The version of the surface on level ` − 1,
required to compute Qh`−1

, is then obtained by projecting the realization of
discretized surface on level ` onto the coarser (nested) grid of level ` − 1.
This particular approach o�ers the additional advantage that one can use
the solution to the contact problem on level `, after projecting it on the grid
on level `−1, as initial condition for the iterative solver for the contact prob-
lem on the coarser level; see Sect. 2. Indeed, this procedure can signi�cantly
reduce the computational e�ort for solving the problem on the coarser level
`− 1.

Finally, the parameters de�ning the MLMC method need to be deter-
mined, namely the number of levels M and the number of samples on each
level Nl for l = 0, . . . ,M . We begin with the level M corresponding to the
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�nest grid hM . After choosing the desired tolerance ε, to obtain a squared
bias error smaller than ε2

2
it is su�cient to choose:

hM ' ε1/α ⇒M '
logδ

(
ε−1
)

α
(20)

Observe that the grid size condition of the �nest level is identical to the
grid size condition for the MC method.

Next, the number of realizations per level is obtained by minimizing the
computational cost under the constraint that the statistical error is smaller
than ε2

2
. It leads to

Nl ' ε−2

√
Var
(
∆l

)
cost(∆l)

M∑
`=0

√
Var
(
∆`

)
cost(∆`) , (21)

for l = 0, . . . ,M (see [14] for details).
That is, if one can determine the constants Cγ, γ, Cα, α, Cβ, β and use

assumptionsML-1,ML-2 andML-3 to express Var
(
∆l

)
and cost(∆l), then

M and Nl are fully computable in view of (20) and (21).
The computation of the constants Cγ, γ, Cα, α, Cβ, β can be done using

a screening procedure, as described in [14]. The screening phase consists
in estimating the quantities E(Qh`),Var(∆`), cost(∆`) for di�erent grid sizes
h`. Here, the expectation E(Qh`) and the variance Var(∆`) are estimated
using the usual sample mean and variance estimates. Performing a linear
regression for the three quantities E(Qh`),Var(∆`), cost(∆`) with respect to
` eventually yields estimates for the convergence rates (that is to say for the
constants Cγ, γ, Cα, α, Cβ, β ). This procedure is the one carried out in the
numerical experiments of Section 5.

5 Numerical Experiments

In this section, we consider two di�erent quantities of interest that are derived
from the solution to the contact problem. The �rst one is the total contact
area under a given load p̄. This is a global quantity, which is straightforward
to estimate once the contact problem is solved, and it is of major interest
in many engineering applications. For instance, the thermal conductivity
between solids is proportional to the contact area. The second quantity is
the number of contact clusters under load p̄. This quantity describes the
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morphology of the contact area and it is of interest, for example, in leakage
problems.

The numerical experiments that follow were carried out in Python on a
standard laptop computer with 7.7 GB of memory and an Intel R©CoreTM

i7-5600U processor. Moreover, for the contact problems, we consider the
wave numbers kl = 1, kr = 1, ks = 64, H = 0.8, and C is chosen such that
c(0) = 1. Notice that the ratio λl/λs = ks/kl is large to model a surface's
self-a�nity across a wide range of frequencies. We also note that the Hurst
exponent H = 0.8 is motivated by the experimental results published in [23].
Furthermore, Young's modulus E and the Poisson ratio ν are such that the
equivalent modulus is E? = E

1−ν2 = 1.

5.1 The real contact area

To study the e�ects of the surface uncertainties to the real contact area, we
consider the random quantity of interest Q given as the normalized contact
area (in percent). For this quantity of interest, we set the applied load to be
p̄ = 0.1√

m2
, where m2 is the second spectral moment of the rough surface s so

that
√
m2 is the root mean square of the slopes (see [36] for its computation).

In the discretized problem, since we obtain piecewise constant solutions,
the contact area is therefore computed as

Qh(ω) =
1

n2

∑
i∈Ic(ω)

1 , (22)

where the set of contact points Ic is de�ned by: i ∈ Ic(ω)⇔ ui(ω)−si(ω) = 0.

5.1.1 Choosing the surface size L

What is not considered yet is the error introduced by the domain truncation
and the PBCs. To identify the size L of the truncated problem such that
model error P −PL does not dominate the overall error in the the numerical
study that follows, we numerically investigate this e�ect. Speci�cally, we
estimate the expectation of the contact area QL via EMC(QL) for di�erent
domain truncations L ∈ {1, 2, 3, 4}. For each size L, we compute 50 i.i.d
realizations, where the discretization parameter h is chosen such that the
discretization error is negligible. Indeed, we choose h = 1/512 in order
to properly describe the smallest wavelength λs (8 nodes per wavelength).
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Box size L

1 2 3 4

EMC(QL) 19.52 19.90 19.94 19.99

Table 1: MC estimators of the contact area for various box sizes L.

Of course, by changing the size of the surface, the number of grid points
increases but h remains constant. The obtained results are summarized in
the Table 1. We observe that EMC(QL) seems to monotonically approach
the limit value Q̄∞ = 20 as L increases. In fact, the distance to the limit
value is |EMC(QL) − Q̄∞| ≤ 0.1 for L ≥ 2. Notice that an absolute error of
0.1 already corresponds to a relative error of 0.5%. Therefore, we decided
to choose L = 2 for the numerical study that follows, for which we will then
explore mean squared error tolerances ε2 for 0.2 ≤ ε. Consequently, we can
be con�dent that the model error is not dominating the overall error, in the
sense that it is at most comparable to the prescribed mean squared error
tolerance.

5.1.2 Estimating convergence rates

Before we use the MLMC method described in Sect. 4 to estimate the expec-
tation of Q, we verify that the Assumptions ML-1�ML-3 are satis�ed. To
the authors' knowledge, no theoretical convergence results concerning these
hypotheses for the contact problem solved with the discretization method
used in this paper are available. We thus estimate the characterizing rates
using the techniques described in [14], which is based on an initial screening
phase where the rates are estimated via linear regression. Here, this screening
phase was carried out for various grid sizes h` = h02

−`, using 50 realizations
for each resolution, which was su�cient here. The coarsest grid considered
was 128 × 128. Figures 4 and 5 show the outcomes of this screening proce-
dure. We �nd that this screening procedure yields α = 1.32, Cα = 20.5,
β = 1.85, Cβ = 0.46, γ = 2.45, and Cγ = 1.69. It is noteworthy that the
coe�cient γ only depends on the implementation of the contact solver, but
not on the machine used for the simulations; the machine dependence only
a�ects the constant Cγ.
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Figure 4: Estimation of convergence rates.

tolerance ε

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

EMC(Qh) 19.94 20.26 19.90 20.11 19.48 19.55 19.64 19.97 20.01
EMLMC(Qh) 19.42 19.57 19.53 19.53 19.74 19.59 19.65 20.09 20.03
εr (%) 5 % 4.5 % 4 % 3.5 % 3 % 2.5 % 2 % 1.5 % 1 %

Table 2: MC and MLMC estimators of the contact area for various tolerances.

5.1.3 Estimation of the real contact area

Motivated by the screening process for the rates (see Fig. 4), we set the
coarsest level of the MLMC grid hierarchy to be a 256× 256 grid. Based on
the coarsest level grid size h0 and the estimated rates, we can thus use the
formulas in (20) and (21) to construct the MLMC estimator to approximate
the mean real contact area for a given tolerance. Table 2 shows the estimated
expectation of the true contact area computed via both the classic Monte
Carlo method EMC(Qh) and the multilevel Monte Carlo method EMLMC(Qh)
for di�erent tolerances ε. As the exact value of E(Q) is not known, we cannot
exactly assess the approximation error. However, it can be seen in Table 2
that both estimators provide similar results. In fact, the estimated values
always satisfy

|EMC(Qh)− EMLMC(Qh)| ≤ 2ε , (23)
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Figure 5: Estimation of the cost model.

tolerance ε

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

WMC (s) 37 37 41 220 243 374 531 2090 5019
WMLMC (s) 36 37 38 142 176 200 226 500 629

WMC

WMLMC

0.97 1 1.1 1.55 1.38 1.87 2.34 4.18 7.97

Table 3: Cost (in seconds) to compute the MC and MLMC estimators of the
contact area for various tolerances.

which con�rms the theoretical mean squared error results discussed in Sect. 4.
It is noteworthy that the mean squared error criterion is an absolute error
criterion. To ease the interpretation of the used tolerance ε, we have also
added the relative precision εr = ε

EMLMC(Qh)
to the table.

While Table 2 compares the estimated mean contact area for various val-
ues of the tolerance ε, Table 3 summarizes the corresponding computational
times required to obtain said estimators. Speci�cally, in Table 3, we present
the computational time in seconds for the classic Monte Carlo method (de-
noted by WMC) and for the multilevel Monte Carlo method (WMLMC) for
di�erent prescribed tolerance requirements. These results clearly demon-
strates that the multilevel Monte Carlo method is highly e�cient. Indeed,
the smaller the tolerance ε, the more drastic the gain. The data presented
in Table 3 are also illustrated in Figure 6. The plot shows the gain brought
by the MLMC method compared to MC method.

21



10−1 100

1 minute

1 hour

1 day

1 week

precision ε

Measured cost MC
Measured cost MLMC

Figure 6: Measured costs for the MC and the MLMC estimators for di�erent
tolerances. The quantity of interest is the contact area.

Figure 7 moreover presents the number of realizations required for two dif-
ferent prescribed tolerances for both the MC method and the MLMCmethod.
For the tolerance ε = 0.7, Table 3 shows that the cost of the MC method
is only marginally higher than the cost of MLMC method, while Figure 7a
indicates that the distribution of required realizations (i.e. the work) across
levels is very di�erent. This is even more so for a tolerance of ε = 0.2, as can
be seen in Figure 7b. In fact, the MLMC method spreads the number of re-
alizations across various levels with requiring most realizations on the coarse
(cheap) grids and only few on the �ner (more expensive) grids, whereas the
MC requires all of the many realizations on the �nest grid (most expensive).

5.2 The number of contact clusters

The second quantity of interest we study here is the number of contact clus-
ters (i.e. the number of contact zones) per square meters under the given
load p̄ = 0.1√

m2
.

As an example, an illustration is given in Figure 8 that exhibits 11 contact
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Figure 7: Number of realizations required per level for both the Monte Carlo
method and the multilevel Monte Carlo method for two tolerances.

Figure 8: Binary contact map: contact zones are in black.

clusters, which are the 11 connected black patches.

5.2.1 Choosing the surface size L

To identify the size L of the truncated problem such that the model error
P −PL does not dominate the overall error in the the numerical study that
follows, we proceed exactly as for the �rst quantity of interest. The corre-
sponding results are summarized in the Table 4. There, we see that EMC(QL)
seems to approach the limit value Q̄∞ = 110 as L increases. More precisely,
the distance to the limit value is |EMC(QL)− Q̄∞| ≤ 1 for L ≥ 3. Note that
an absolute error of 1 already corresponds to a relative error smaller than
1%. As a consequence, we decided to choose L = 3 for the numerical study
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Box size L

1 2 3 4

EMC(QL) 93.1 104.1 110.2 109.4

Table 4: MC estimators of the mean number of contact clusters for various
box sizes L.

that follows, for which we will then explore mean squared error tolerances ε2

for 2 ≤ ε. Having to choose a di�erent box size L than for the �rst quantity
of interest is not surprising since mechanical quantities are not a�ected the
same way by the PBCs.

5.2.2 Estimation of convergence rates

We estimate the rates needed for the MLMCmethod using the same screening
procedure as for the �rst quantity of interest. This procedure yields α = 2.79,
Cα = 211, β = 2.41, Cβ = 42.6, γ = 2.53, and Cγ = 318.

5.2.3 Estimation of the number of contact clusters

Guided by the screening procedure, we set the coarsest level to be a 128 ×
128 grid and use both the MC method and MLMC method to approximate
the mean number of contact clusters for various required tolerances ε ∈
{40, 30, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2}.

In Table 5, we then present the approximations of the expected number
of contact clusters E(Q), computed with the MC method and the MLMC
method, respectively, for the tolerances introduced above. As in the previous
example, the exact value of E(Q) is not known. However, the results in Table
5 show that

|EMC(Qh)− EMLMC(Qh)| ≤ 2ε , (24)

thus verifying the tolerance requirement. We also add in the same table the
relative precision εr = ε

EMLMC(Qh)
for an easier interpretation. The results in

Table 5 also reveal that both MC and MLMC estimators seem to overkill the
desired tolerance. A possible explanation for this phenomenon is that the
coarsest grid may not allow to accurately represent small wavelengths, which
thus leads to a smaller variance in the number of contact clusters.
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tolerance ε

40 30 20 15 10 9 8 7 6 5 4 3 2

EMC(Qh) 105.1 109.8 123.7 105.1 110.1 108.3 102.7 108.5 109.8 112.6 109.4 109.5 111.9
EMLMC(Qh) 108.8 102.2 112.5 108.9 115.4 108.4 111.1 107.9 110.8 113.5 111.3 110.7 110.9
εr (%) 37 % 29 % 17 % 14 % 8.6 % 8.3 % 7.2 % 6.5 % 5.4 % 4.4 % 3.6 % 2.7 % 1.8 %

Table 5: Estimations of the mean number of contact clusters for di�erent
tolerances with the MC method and the MLMC method.

tolerance ε

40 30 20 15 10 9 8 7 6 5 4 3 2

WMC (s) 90 90 96 170 262 407 420 649 2209 4752 4782 18806 18735
WMLMC (s) 107 107 107 118 118 123 125 129 477 507 523 836 848

WMC

WMLMC
0.84 0.84 0.89 1.44 2.22 3.3 3.36 5.03 4.63 9.37 9.14 22.49 22.09

Table 6: Cost (in seconds) required to compute the estimation of the mean
number of contact clusters for di�erent tolerances with the MC method and
the MLMC method.

Finally, in Table 6 we report the computational time in seconds for
both the Monte Carlo method (WMC) and multilevel Monte Carlo method
(WMLMC), each for di�erent tolerance requirements ε. Once again we observe
that the MLMC method is not only highly competitive, but actually superior
for any tolerance demand larger than 15. Indeed, the smaller ε, the larger
the gain.

6 Conclusion

In this work, we have applied the multilevel Monte Carlo method to estimate
the average contact area and the average number of contact clusters for the
problem of frictionless normal contact of rough surfaces. After describing the
statistical properties of the random rough surfaces in detail, we �rst veri�ed
that a variant of the surface generator introduced in [17] generates samples
of rough surfaces with the desired statistical properties. Then, we brie�y
reviewed the principles of the multilevel Monte Carlo method. Afterwards,
we detailed how to use the MLMC method e�ectively in the context of rough
contact problem and demonstrated by means of numerical assessments the
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huge computational gain that the MLMC methods provides compared to the
classic Monte Carlo method.

Future work building upon the framework presented here, consists, for
example, of studying other quantities of interest, such as the percentage of
the surface subject to a pressure larger than a given critical pressure.
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A Generator of random rough surfaces

A.1 Further comments on the surface generator algo-

rithm

The procedure described in Algorithm 1 generates random surfaces with a
discrete radial spectral density Φ̃r made by a sum of Dirac deltas located in
the frequency grid points. In the spatial domain, this leads to an approximate
covariance function c̃ that is the trigonometric interpolant on the spatial
grid of the periodized covariance cper =

∑
z∈Z2

c(|x + Lz|). In particular, all

generated surfaces are continuous L-periodic functions.
The presented Algorithm 1 takes, in essence, advantage of the fact that

any a�ne transformation of a multivariate Gaussian random variable has a
multivariate Gaussian distribution with explicitly known mean and covari-
ance structure. In fact, the �rst step of Algorithm 1 consists of generating
the complex random vector ξ = η+ iζ, with η and ζ being independent and
normally distributed random vectors in Rn2

with mean zero and covariance
matrix being the identity matrix of size n2×n2. After multiplying this vector

by Φ̃
1
2
r , which is the pointwise square root of Φ̃r, we obtain the complex vector

ŝ, which is then transformed to the physical space via the two-dimensional
inverse Fourier transform. Finally, Algorithm 1 returns the real part of this
transformation. It is noteworthy that the scaling by the factor 1

n2 in the third
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step of the algorithm is necessary since our implementation uses the fftw2

library [12], which has the property that fftw2-1(fftw2(x)) = n2x for any
x ∈ Rn2

.
Finally, we remark that one could also use the imaginary part of q as a

return value for Algorithm 1 so that two independent samples are generated
at the same time.

A.2 Veri�cation of the sampling algorithm and illustra-

tions

The purpose of this section is to illustrate the properties of the random
surface generator described in Algorithm 1. Here, we consider the parameters
kl = 4 = kr, ks = 32, H = 0.8, L = 32 and C is chosen so that the pointwise
variances are equal to 1. Moreover, we consider the grid size h = 1

256
L, if not

speci�ed otherwise.

A.2.1 Gaussian distribution

First, we verify that Algorithm 1 produces samples that are centered Gaus-
sian random �elds. Speci�cally, we consider four trial points in the domain
D = [0, L]2 with coordinates x1 = (h, h), x2 = (h, h+ L

2
), x3 = (h+ L

2
, h), and

x4 = (h+ L
2
, h+ L

2
), and approximate the distribution of each random surface

point s(xi, ω), i = 1, . . . , 4. To this end, we generate a sample of N = 50000
independent surface realizations using Algorithm 1, which is then used to
approximate the probability density function (PDF) of each surface point
s(xi) via a kernel density estimator with Gaussian kernel and Silverman's
bandwidth selection criterion; see, e.g., [18, Ch. 8.5] for details. Figure 9a
shows the approximated PDFs of the surface points s(xi, ω), i = 1, . . . , 4,
in addition to the target N

(
0, 1) PDF. The fact that all curves are almost

indistinguishable from the target PDF veri�es that Algorithm 1 generates
surface realizations whose surface points have the desired distribution.

This conclusion is also con�rmed by the Q�Q plot shown in Figure 9b.
There, we plot the theoretical quantiles of the target N

(
0, 1) distribution

against the quantiles obtained from the data for each surface point (color
key of crosses is the same as in Figure 9a). For each of the four cases we
observe an almost perfect linear trend (y = x), so that the data �t the
target distribution very well in each case. The only regions showing minor
deviations from the straight line behavior are at the very low and very high
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end of the range, respectively. However, these regions correspond to rare
outcomes (i.e. the probability of observing values in these regions is very
small), so that only a small fraction of the N samples lies in these regions,
which explains the marginally worse �ts in there.
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Figure 9: Veri�cation of surface height distribution in four points on the
surface

A.2.2 Autocorrelation

Next, we illustrate that Algorithm 1 also produces realizations with covari-
ance function that approximates well cper, hence c when the period L is taken
large enough. That is, we investigate the covariance matrix Σ ∈ Rn2×n2

de�ning the n2-dimensional Gaussian random vector obtained when evaluat-
ing Gaussian random �eld on the given grid. We estimate Σ via the sample
covariance matrix, based on a sample of N = 20000 independent discrete
surface realizations and we denote this estimator by Σ̂N . Inspecting the el-
ements of Σ̂N reveals that Σ̂N is indeed a discretized version of an isotropic
covariance.

Figure 10a shows the entries of three di�erent estimated discretized co-
variance matrices as a function of r, where each matrix approximates Cov

(
s(r+

L/2, L/2), s(L/2, L/2)
)
and is obtained for di�erent grid sizes h ∈ {2−8L, 2−7L, 2−6L}.

Additionally, the plot contains the curve of the periodic target isotropic co-
variance cper. We observe that Algorithm 1 generates realizations with the
correct isotropic covariance structure.
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Although not directly related to the quality of Algorithm 1, we also ad-
dress the di�erence between the non-periodic isotropic covariance c and ap-
proximations to its periodic version cper. For this, Figure 10b shows two
di�erent estimated discretized covariance matrices, obtained for a �xed mesh
size h = 2−8L but di�erent domain sizes L ∈ {32, 64}, in addition to the
non-periodic isotropic covariance c. We �nd that increasing the size L of
the domain D, while keeping the grid size h �xed, leads to a more accu-
rate approximation of the non-periodic isotropic covariance c. Indeed, with
the increasing size L, the discretized spectrum tends to the continuous spec-
trum de�ned in equation (13). We observe that improving the discretization
quality reduces the distance to the exact autocorrelation.
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Figure 10: Comparison between isotropic covariance approximations, the
periodic target covariance cper, and the non-periodic version of c.
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