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Quantifying uncertainties in contact mechanics of rough surfaces using the Multilevel Monte Carlo method

We quantify the eect of uncertainties on quantities of interest related to contact mechanics of rough surfaces. Specically, we consider the problem of frictionless non adhesive normal contact between two semi innite linear elastic solids subject to uncertainties. These uncertainties may for example originate from an incomplete surface description. To account for surface uncertainties, we model a rough surface as a suitable Gaussian random eld whose covariance function encodes the surface's roughness, which is experimentally measurable. Then, we introduce the multilevel Monte Carlo method which is a computationally ecient sampling method for the computation of the expectation and higher statistical moments of uncertain system output's, such as those derived from contact simulations. In particular, we consider two dierent quantities of interest, namely the contact area and the number of contact clusters, and show via numerical experiments that the multilevel Monte Carlo method oers signicant computational gains compared to an approximation via a classic Monte Carlo sampling. 1

Introduction

Contact between interfaces is omnipresent in both nature and engineering applications, so that understanding the mechanical response to such contacts is a major scientic challenge of current interest. In fact, these contact problems can be found in virtually any engineering application characterized by interactions between separate parts and involving, for example, friction or wear.

Despite its fundamental importance, many aspects of contact mechanics remain poorly understood. One of the key challenges stems from the multiscale nature of the contact interfaces. Indeed, both natural and manufactured surfaces are not perfectly at but are made of multiple asperities that exist at all length scales. The rough surfaces are usually modeled as semi-ane fractal surfaces [START_REF] Nayak | Random process model for rough surfaces[END_REF], which are characterized through their height distribution (see [START_REF] Persson | On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion[END_REF] for experimental measurements). In spite of the fact that some surface properties can be measured, there remain uncertainties e.g. due to nite precision measurement and incomplete information. Therefore, surfaces are considered to be random and are usually characterized only through their statistical properties.

Describing the roughness of a surface via statistical properties for every engineering application would imply prohibitive computational costs, many numerical studies typically aim at considering semi-innite volume (bulk with a rough surface) and obtaining mechanical responses, which will afterwards be used in a macroscopic model. More precisely, for a surface dened by its statistical properties, the contact area or the number of contact clusters under an imposed pressure is computed and this result is then used for more advanced mechanical problems. For example, being able to know the morphology of contact clusters for some class of rough surfaces is of primary importance to be able to study sealing technologies [START_REF] Hl | Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions[END_REF], the adherence of tires on roads [START_REF] Lorenz | Rubber friction for tire tread compound on road surfaces[END_REF][START_REF] Wang | Tireroad contact stiness[END_REF], reliability considerations for nano electromechanical systems (NEMS) and micro electromechanical systems (MEMS) appliances [START_REF] Corigliano | Microsystems and mechanics[END_REF], or tribology in general.

Despite its clear practical importance, a systematic and reliable quantication of the eects of surfaces uncertainties on contact mechanics is often disregarded in the relevant literature. Furthermore, even works that acknowledge model uncertainties (e.g. [START_REF] Putignano | The inuence of the statistical properties of self-ane surfaces in elastic contacts: A numerical investigation[END_REF][START_REF] Pohrt | Normal contact stiness of elastic solids with fractal rough surfaces[END_REF][START_REF] Prodanov | On the contact area and mean gap of rough, elastic contacts: Dimensional analysis, numerical corrections, and reference data[END_REF]) quantify their eects on mechanical outputs often in a somewhat ad-hoc way. Moreover, since the numerical studies are typically done on a nite size surface with periodic boundary conditions, an error due to homogenization (with nite size of the representative surface element) is introduced.

Since the contact problem is often computationally challenging due to the presence of multiple length scales, quantifying the eect of a random rough surface, by e.g. the classic Monte Carlo method, becomes quickly computationally prohibitive. Recently, the multilevel Monte Carlo (MLMC) method has been established as a computationally ecient sampling method that is applicable to a wide range of random models [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF][START_REF] Clie | Multilevel monte carlo methods and applications to elliptic PDEs with random coecients[END_REF][START_REF] Teckentrup | Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coecients[END_REF][START_REF] Giles | Multilevel monte carlo methods[END_REF][START_REF] Pisaroni | A Continuation Multi Level Monte Carlo (C-MLMC) method for uncertainty quantication in compressible inviscid aerodynamics[END_REF]. In this work, we will investigate the benets of these multilevel Monte Carlo techniques applied to random rough contact mechanics problems, for which it will be key to carefully balance statistical errors and discretization errors.

Somewhat related works that have applied the multilevel Monte Carlo method to a similar mechanical problem include [START_REF] Bierig | Convergence analysis of multilevel monte carlo variance estimators and application for random obstacle problems[END_REF][START_REF] Bierig | Approximation of probability density functions by the multilevel Monte Carlo maximum entropy method[END_REF][START_REF] Bierig | Estimation of arbitrary order central statistical moments by the multilevel Monte Carlo method[END_REF]. In these works, simplied random obstacle problems governed by the Laplacian (i.e. ignoring elasticity) have been considered, for which the surface of the random obstacle is considered to be rough and given in terms of a Fourier cosine series with random shift, or with random shift and random amplitude. Recently, the MLMC method has also successfully been applied in the context of (stochastic) numerical homogenization of randomly heterogeneous material [START_REF] Efendiev | Multilevel monte carlo approaches for numerical homogenization[END_REF].

The rest of this paper is organized as follows. In Sect. 2 we introduce the deterministic contact mechanics model and its discretization, which is the basis of this work. Then, in Sect. 3, we introduce the random contact model, which includes the denition of a class of suitable rough random surfaces and a description of how to sample these surfaces in practice. In Sect. 4 we introduce the multilevel Monte Carlo sampling technique, which is subsequently used in Sect. 5 to estimate the average contact area or the average number of contact clusters. Finally, conclusions and an outlook on future works are oered in Sect. 6.

2

The deterministic mechanic contact model

In this section, we briey describe the deterministic contact model and its discretization for a given surface. We focus on the non-adhesive frictionless normal elastic contact. It is noteworthy that the deterministic model described below is not novel, but is standard and well-established in the literature [START_REF] Bemporad | Optimization algorithms for the solution of the frictionless normal contact between rough surfaces[END_REF][START_REF] Wriggers | Computational contact mechanics[END_REF].

Semi-innite continuous model

As initial idealized model (denoted by P), we consider two semi-innite continuous solids. The rst solid is rigid (i.e. innitely sti) and rough, in the sense that this solid's surface is characterized by the presence of asperities on a wide range of length scales. In fact, the roughness of a surface can be described via its surface prole. We denote a surface's prole by s, so that every point on the surface can be written as x, s(x

) ∈ R 3 , x ∈ R 2 .
The second solid is assumed to be perfectly at and deformable. Throughout this paper we will work under the small strain assumption and consider the solid's behavior to be linear homogeneous isotropic elastic. Furthermore, we denote the solid's Young's modulus by E and its Poisson ratio by ν.

A mathematically convenient representation of the contact problem is in terms of an integral representation; see, e.g., [START_REF] Alberto Brebbia | Boundary element techniques: theory and applications in engineering[END_REF]. In fact, this integral formulation provides a representation in which the only unknown that needs to be determined is the normal displacement eld of the elastic solid's surface when the two solids come into contact. The advantage of this formulation thus is a dimension reduction, since the problem becomes eectively two dimensional. Moreover, the displacement eld inside the bulk material does not need to be resolved as it can simply be recovered from the displacement eld at the surface of the elastic solid; see [START_REF] Putignano | A new ecient numerical method for contact mechanics of rough surfaces[END_REF] for details.

Truncated continuous model

Instead of considering the two solids as semi-innite, we will consider both solids on a bounded domain. Specically, we consider them on a square D, say, with edge length L > 0, i.e. D = [0, L] 2 ⊂ R 2 . The only unbounded direction is therefore the inward normal at the surface. To represent semiinnite solids using the bounded domain D, we impose periodic boundary conditions (PBCs) on the displacement eld on the boundary of D. The resulting model is denoted by P L . Notice that P L is still a fully continuous contact model.

The link between the normal displacement u and the normal pressure p at the surface is given by

u = K * p . (1) 
Here, the kernel K depends on the material properties E and ν as well as on the fundamental solution that is chosen in the integral formulation; see [START_REF] Alberto Brebbia | Boundary element techniques: theory and applications in engineering[END_REF] for details. In order to formulate the contact problem, it is furthermore convenient to introduce the so-called gap function g as the distance between the two contacting surfaces, so that g = u -s. The well-known HertzSignorini Moreau orthogonality condition then characterizes the non-adhesive contact problem and reads:

p(x)g(x) = 0 , p(x) ≥ 0 , g(x) ≥ 0 ∀x ∈ D . (2) 
In other words, the condition states that interpenetration is forbidden (g(x) ≥ 0), that contact pressure can only be compressive (p(x) ≥ 0), and that each point is either in contact with the rigid surface (g(x) = 0) or free of forces (p(x) = 0). For clarity, we give a schematic representation of the problem in Figure 1.

The mechanic contact problem depends on a non-negative prescribed loading p, which is related to the average spatial pressure, in the sense that

1 |D| D p(x) dx = p . (3) 
Combining everything together, problem P L can be stated as:

Find p ∈ A such that E c (p) is minimized. ( 4 
)
Figure 1: A 2-D sketch of two semi innite solids coming into contact

Here, E c is the so-called complementary energy functional, which is given by

E c (p) = 1 2 D u(x)p(x) dx - D s(x)p(x) dx , (5) 
and A denotes the space of admissible periodic pressure elds

A ≡ A(p) := p : D → R periodic such that p ≥ 0 and 1 |D| D p(x) dx = p . (6) 
Note that there may be a model discrepancy due to the truncation of the domain and the PBCs. However, this model discrepancy vanishes as L → ∞.

Discretization of the truncated model

We discretize the model P L via the boundary element method (BEM) and denote the resulting model by P L h . To apply the BEM, we rst introduce the spatial discretization parameter h > 0 that is used to construct a grid. Here we consider a uniform grid on the square domain D consisting of n 2 grid points (nodes), where n ≥ 2 with h = L/n (opposite edges are considered only once). An example of such uniform grid is illustrated in Figure 3 (left). We represent both the surface of the at deformable solid and the rough surface of the rigid solid on said grid by their nodal values to obtain discrete (i.e. nite dimensional) surface representations. Moreover, we denote by u ∈ R n 2 the vector containing the n 2 nodal values of the displacement function u and, analogously, by p ∈ R n 2 the vector containing the n 2 nodal values of the pressure p. That is, the component p i (respectively u i ) of p (resp. u) corresponds to the value of the pressure p (resp. the displacement u) at node i.

For the continuous model P L , equation [START_REF] Argatov | The contact problem for a periodic cluster of microcontacts[END_REF] implies that u = F -1 F(K)F(p) in view of the convolution theorem for the Fourier transform F. For the discrete case, we thus relate the displacement vector u and the elastic pressure vector p via u = FFT -1 ( K FFT(p)) ,

where FFT and FFT -1 denote the 2D fast Fourier transform (2D-FFT) and the inverse 2D-FFT, respectively. Here we use the fast Fourier transform because of its eciency, which is also one of the main reasons making the BEM appealing for contact problems. Moreover, note that the FFT implicitly enforces periodic boundary conditions on the surface, since displacements computed from (7) will be L-periodic. In equation ( 7), K ∈ C n 2 ×n 2 is a diagonal matrix that contains the so-called inuence coecients for the fundamental solution in Fourier space. Here, we use the Westergaard's reference solution [START_REF] Westergaard | Bearing pressures and cracks[END_REF]; see also [START_REF] Stanley | An FFT-based method for rough surface contact[END_REF] for the expression of the inuence coecients. We note that the coecient in the matrix K associated to the mean value (i.e. the zero frequency) is set to zero. Indeed, the displacement of the surface is only known up to a rigid-body motion, since the problem is ill-posed in the x 3 direction. This choice will force u to have zero average, i.e. 1 n 2 n 2 i=1 u i = 0. Equivalently, one can, of course, also obtain a pressure from a displacement vector u using

p = FFT -1 ( K-1 FFT(u)) + p . (8) 
Here, we slightly abuse notation and assume that the coecient of K-1 associated to the mean value (zero frequency) vanishes. Analogously to the continuous model, we then dene the space of admissible (discrete) pressure vectors by

A ≡ A(p) := p ∈ R n 2 , p i ≥ 0 1 n 2 n 2 i=1 p i = p . (9) 
Eventually, the discrete problem P L h reads: Find p ∈ A such that E c (p) is minimized, [START_REF] Hl | Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions[END_REF] where the discrete complementary energy is

E c (p) = 1 2 n 2 i=1 u i p i - n 2 i=1 s i p i . (11) 
The minimization problem above is then solved using a constrained conjugate gradient approach; see, e.g., [START_REF] Polonsky | A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques[END_REF][START_REF] Rey | Normal adhesive contact on rough surfaces: ecient algorithm for t-based bem resolution[END_REF]. Finally, we recall that model P L h is an approximation of model P L , so that solutions to these problems may dier due to the discretization error. However, this error vanished as h tends to zero [START_REF] Alberto Brebbia | Boundary element techniques: theory and applications in engineering[END_REF]. [START_REF] Bemporad | Optimization algorithms for the solution of the frictionless normal contact between rough surfaces[END_REF] Random rough surfaces for contact mechanics As mentioned in the introduction, both natural and manufactured surfaces are rough, in the sense of being composed of multiple asperities. In fact, experimental data indicate that surfaces are characterized by a wide range of length scales, from sample size to nanometer. To accurately model contact between two rough solids, one has to take this surface roughness into account because it can drastically aect the mechanical response of the structure. For example, the true contact area is actually signicantly smaller than the nominal contact area obtained when neglecting surface roughness.

To this end, we consider the deterministic contact models described in Sect. 2 for a class of random rough surfaces, which are modeled as Gaussian random elds. The considered class of surfaces is thereby dened by means of a characterization of its height distribution or of its power spectrum, which may be available through experimental results. As an illustration, Figure 2 shows the pressure distributions under a specic load p = 10 and the two associated dierent realizations of a rough random surface. Each surface is one realization dened by the same xed power spectrum. One can observe that the contact pattern strongly depends on the given surface realization and that it is necessary to perform simulations on various realizations to obtain statistically meaningful estimates. In what follows, we will discuss how to sample appropriate random surfaces that can then be used to produce the plots shown in Figure 2.

A characterization of rough surfaces

In this subsection, we dene the class of rough surfaces that we consider in this work. Specically, we model a random surface s as an isotropic Gaussian random eld with mean zero [START_REF] Lord | An Introduction to Computational Stochastic PDEs[END_REF]. That is, the surface heights in any m points x 1 , . . . , x m ∈ D are jointly normally distributed with mean zero and the entries Σ i,j of the covariance matrix Σ are given by

Σ i,j = c |x i -x j | ≡ Cov s(x i ), s(x j ) . (12) 
Here, the function c is called isotropic covariance, which only depends on the euclidean norm r := |x| of any point x ∈ R 2 . Notice that the isotropy also implies the stationarity of the eld s. The (power) spectral density Φ of the stationary Gaussian eld s is given as the Fourier transform of its covariance function, in the sense that

Φ(k) = 1 4π 2 R 2 e -ik•x c(|x|) dx.
Furthermore, the isotropy of s implies that the spectral density only depends on the euclidean norm k := |k| of any Fourier point k ∈ R 2 and is therefore called the radial spectral density, which we denote by Φ r .

Experimental results [START_REF] Persson | On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion[END_REF] suggest that rough surfaces can be characterized by a (radial power) spectral density of the form

Φ r |k| =        C , if k l ≤ |k| ≤ k r , C |k| kr -2-2H , if k r ≤ |k| ≤ k s , 0 , otherwise. (13) 
Here, H ∈ [0, 1] denotes the Hurst exponent, C ≥ 0 is the roughness amplitude, and the wave numbers 0 ≤ k l ≤ k r ≤ k s control the dierent roughness regimes. From the wave numbers controlling the dierent regimes, one can, as is common practice, dene the associated wave lengths λ l = 2π k l , λ s = 2π ks and λ r = 2π kr . Finally we note that there exist alternative approaches based on modeling the rough surface as a set of densely situated punches [START_REF] Argatov | Homogenization of a contact problem for a system of densely situated punches[END_REF][START_REF] Argatov | The contact problem for a periodic cluster of microcontacts[END_REF] before analytically solving the frictionless normal contact problem.

Generating random rough surfaces on a grid

In this section, we present an algorithm to generate a (discretized) rough surface on the domain D = [0, L] 2 respecting a prescribed radial power spectrum Φ r .

In view of the periodicity inherent in the truncated problem (cf., Sect. 2.2) and its discretization it is natural to also generate random surfaces that are periodic. We will denote the radial power spectrum corresponding to approximate periodic surfaces by Φ r ; see also appendix A for further details.

In Figure 3 (center) we illustrate the frequential grid used to discretize a power spectrum density Φ, which is also sketched in the same gure. We observe the isotropy in Figure 3 (right).

The wave-vector k has n 2 components. As a consequence of Shanon's theorem, on a n×n frequential grid one can only consider generating surfaces with k s ≤ n 2L . Therefore, rening the spatial discretization (i.e. increasing n) for a xed size L allows representing larger wave numbers (that is to say smaller wave lengths).

Algorithm 1, which is a suitably modied version of the sampling method presented in [START_REF] Hu | Simulation of 3-D random rough surface by 2-D digital lter and fourier analysis[END_REF], details the procedure to generate one realization of a rough surface on the domain [0, L] 2 with prescribed spectral density Φ r (that is to say for the given parameters: k l , k r , k s , C, and H). The algorithm's main input is the prescribed radial spectral density Φ r . Its output is a surface in Algorithm 1: Surface generator Inputs: Φ r , n, L ; Give the values for the two rst rows of S corresponding to the discretization of [0, L] 2 ; Generate the complex random vector ξ = η + iζ of size n 2 , where η and ζ are indep. N (0, I); Compute Φ r as the evaluation of Φ r on the frequential grid;

Compute the elementwise product q = Φ 1 2 r ξ; Compute q = 1 n 2 fftw2 -1 (q); Compute the real part R (q) of q; Complete the third column of S with R (q); Return S; R 3 evaluated on a spatial grid, which is encoded as the matrix S of size n 2 ×3 (n 2 nodes with 3 coordinates). That is, rst two rows of S are composed of the coordinates of the nodes on the grid, while the last row is lled at the end of the algorithm with the generated surface heights.

In appendix A, we give further details on this sampling methodology and verify that the used sampling routine does indeed produce samples with the desired statistical properties.

Monte Carlo methods for quantifying uncertainties in rough contact mechanics

As discussed in the introduction, it is crucial to understand how the surface uncertainties aect the average outputs of the contact problem (for example the contact area, the morphology of contact clusters, ...).

Let u denote the solution to the continuous problem associated with the random surface s. It is worthwhile to emphasize here that the surface's randomness implies that also the solutions to the contact problems (as introduced above) are random, such as the displacement, the pressure, the gap function, and other derived quantities. The goal then is to quantify the eect of the random surface s by computing the expected value E(Q) of an appropriate quantity of interest Q that is computed from the displacement eld u. For example, the quantity of interest Q may be the contact area or the maximum pressure under a given load. However, as one cannot solve the continuous problem exactly, computing the expected value E(Q) is unfeasible. Instead, we can only use the discretized model to obtain an approximation Q h .

In this Section, we will describe two Monte Carlo based sampling methods, which are based on generating many surface realizations and computing the corresponding approximate quantity of interest Q h . The appeal of these sampling methods is that they are non-intrusive, in the sense that an existing deterministic numerical solver does not need to be modied and can thus be used as a black box.

In what follows we briey review the classic Monte Carlo method for the approximation of E(Q) based on simulations. Afterwards we introduce the multilevel Monte Carlo method [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF][START_REF] Clie | Multilevel monte carlo methods and applications to elliptic PDEs with random coecients[END_REF][START_REF] Teckentrup | Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coecients[END_REF][START_REF] Giles | Multilevel monte carlo methods[END_REF] as a variant that oers drastic computational savings for a wide range of applications. See also [START_REF] Heinrich | Multilevel Monte Carlo methods[END_REF] for some related earlier works. Although the focus of this work is on scalar quantities of interest, it is noteworthy that the multilevel Monte Carlo method can also be applied to multidimensional quantities or reliability studies [START_REF] Krumscheid | Multilevel Monte Carlo approximation of functions[END_REF]. We will leave the application of these options in the context of contact problems for future works.

Classic Monte Carlo method 4.1.1 Denition of the estimator

The classic Monte Carlo (MC) estimator is dened as the mean of a sample of N independent and identically distributed (i.i.d.) realizations of Q h , that is

E MC N (Q h ) := 1 N N j=1 Q h ω (j) , (14) 
where ω (j) are i.i.d. random events (each one corresponding to a generated realization of the random surface). The accuracy of the Monte Carlo estimator E MC N (Q h ) as an approximation of E(Q) can be characterized via the mean squared error, viz.

E E(Q) -E MC N (Q h ) 2 = Var(Q h ) N + E(Q -Q h ) 2 . (15) 
Here, the rst term on the right-hand side (the so-called statistical error) quanties the estimator's variance and is inversely proportional to the number of realizations N . The second term (the so-called squared bias) accounts for the expected error due to the spatial discretization frequency of the contact problem and depends on the grid size h and on the domain truncation

L.
In what follows, we assume that the domain D = [0, L] 2 has been taken large enough so that the truncation error is negligible with respect to the discretization error due to the grid size h. Henceforth we focus only on the latter. Clearly, for E MC N to be an ecient approximation of E(Q) both terms should be balanced and small.

To further apply the Monte Carlo method, it is necessary to quantify the accuracy and the computational cost of the solution computed with the deterministic contact solver. As the discretization length h decreases, it is desired that the approximation converges to the exact solution, which is related to properties of the boundary element method for each deterministic problem; cf. [START_REF] Alberto Brebbia | Boundary element techniques: theory and applications in engineering[END_REF]. Similarly, we expect that the cost of the iterative scheme used to approximate the solution to the contact problem is inversely proportional to a power law with respect to the grid size h, since the grid size controls both the accuracy and the dimension of the discretized problem. Finally, we also make the assumption that the variance of Q h is nite for h 1, which is natural in view of [START_REF] Haji-Ali | Optimization of mesh hierarchies in multilevel Monte Carlo samplers[END_REF]. In a more formal way, it leads to the three following assumptions:

MC-1 the cost to compute each i.

i.d. realization of Q h is bounded : cost(Q h ) ≤ C γ h -γ for some constants C γ , γ > 0,
MC-2 the bias decays with order α > 0, in the sense that

|E(Q -Q h )| ≤ C α h α for some constant C α > 0, MC-3 the variance of Q h is nite for h 1.

Application of the MC method

To apply the MC method, one has to rst choose a root mean square error tolerance ε. Then to balance the bias and the statistical error and achieve an overall mean squared error of order ε 2 in (15), it is thus sucient to choose 1

h ε 1/α and N ε -2 . ( 16 
)
Thanks to [START_REF] Heinrich | Multilevel Monte Carlo methods[END_REF], the number of realizations to perform is directly computable from the tolerance ε. However, to estimate the grid size h, it is necessary to know α, or in other words, how the expected discretization error decays as a function of h. If analytical convergence results are available for the specic discretization method, α can be deduced directly from these results. Otherwise, one can estimate this convergence rate through a screening procedure that will be described in subsection 4.2.2.

Multilevel Monte Carlo method 4.2.1 Denition of the estimator

The underlying idea of the multilevel Monte Carlo (MLMC) method is to use realizations of approximations to Q with varying accuracy. Specically, we consider a hierarchy of M grids, called levels, with grid sizes

h 0 > h 1 > • • • > h M .
As we will see below, the grid size h M of the nest discretization level takes over the role of the grid size used in the classic MC method above. We denote by Q h the approximation of Q on a grid with size h . Using the linearity of the expectation operator, one can then write the expectation of the approximation of Q on the nest level h M as a telescoping sum. That is, E Q h M can be written as the expectation of the approximation of Q on the coarsest level h 0 plus a sum of correction terms that are expectations of approximations on consecutive levels:

E Q h M = E Q h 0 + M =1 E Q h -Q h -1 ≡ M =0 E ∆ , (17) 
where

∆ 0 := Q h 0 and ∆ := Q h -Q h -1 for > 0. The MLMC estimator E MLMC (Q h M )
is then obtained by approximating each of the expectations E(∆ ) by a MC estimator using N i.i.d. realizations:

E MLMC (Q h M ) := M =0 1 N N j=1 ∆ ω (j) = 1 N 0 N 0 j=1 Q h 0 ω (j) 0 + M =1 1 N N j=1 Q h ω (j) -Q h -1 ω (j) 
.

(18) Notice that the correction terms ∆ ω j) are computed using the same random realization on both levels and -1. Moreover, the ∆ terms are sampled independently on dierent levels. As for the MC estimator, the accuracy of the MLMC estimator is commonly assessed via the mean squared error, which can also be decomposed into the statistical error and the squared bias:

(j) := Q h ω (j) -Q h -1 ω ( 
E E(Q) -E MLMC (Q h M ) 2 = M =0 Var ∆ N + E(Q -Q h M ) 2 . ( 19 
)
The identity above demonstrates the virtue of considering multiple levels instead of just one ne grid. In fact, if Var ∆ decreases as increases, then one may need many realizations only on the coarse levels, which are typically cheap to generate, but only very few on the ner, more expensive, levels. To make this intuition precise, we will assume that ML-1 the cost to compute each i.i.d. realization of Q h is bounded by cost(Q h ) ≤ C γ h -γ for all > and some constants C γ , γ > 0, ML-2 the bias decays with order α > 0, in the sense that

|E(Q -Q h )| ≤ C α h α for all > and some constant C α > 0, ML-3 the variance of ∆ = Q h -Q h -1
decays with rate β > 0, in the sense that Var ∆ ≤ C β h β for all > and some constant C β > 0.

Notice that assumptions ML-1 and ML-2 for the MLMC method are the same as assumptions MC-1 and MC-2 for the MC method.

In this work we will consider geometric grids, in the sense that h = δ -h 0 for some δ > 1. In practice the value δ = 2 is often used, which we also adopt here. Although a non-optimal choice of δ can aect the MLMC method's performance, this eect is minor [START_REF] Haji-Ali | Optimization of mesh hierarchies in multilevel Monte Carlo samplers[END_REF].

Application of the MLMC method

For the practical application of the MLMC method to the contact problem at hand, a few comments are in order. Firstly, the coarsest grid size h 0 should be chosen suciently small so that a basic problem resolution is provided and also such that L h 0 is an integer. That is, the coarsest grid size is related to the roughness of the surface since we aim at accurately representing the largest wavelengths of size L/k l . A heuristics would be to chose h 0 = 10 L k l in order to resolve the largest asperity, which is also used here.

Secondly, assembling the MLMC estimator [START_REF] Kroese | Handbook of Monte Carlo Methods[END_REF] requires to compute realizations of the dierences ∆ = Q h -Q h -1 on the dierent levels. Specically, one has to compute these dierences of approximations on consecutive grids for the same random event ω , i.e. for the same realization of the random surface s(ω ) on both level and level -1. This can, for example, be done by generating a realization of the discretized surface associated with the grid on level using Algorithm 1, which is then used to compute the corresponding realization of Q h . The version of the surface on level -1, required to compute Q h -1 , is then obtained by projecting the realization of discretized surface on level onto the coarser (nested) grid of level -1. This particular approach oers the additional advantage that one can use the solution to the contact problem on level , after projecting it on the grid on level -1, as initial condition for the iterative solver for the contact problem on the coarser level; see Sect. 2. Indeed, this procedure can signicantly reduce the computational eort for solving the problem on the coarser level -1.

Finally, the parameters dening the MLMC method need to be determined, namely the number of levels M and the number of samples on each level N l for l = 0, . . . , M . We begin with the level M corresponding to the nest grid h M . After choosing the desired tolerance ε, to obtain a squared bias error smaller than ε 2 2 it is sucient to choose:

h M ε 1/α ⇒ M log δ ε -1 α (20) 
Observe that the grid size condition of the nest level is identical to the grid size condition for the MC method.

Next, the number of realizations per level is obtained by minimizing the computational cost under the constraint that the statistical error is smaller than ε 2 2 . It leads to

N l ε -2 Var ∆ l cost(∆ l ) M =0 Var ∆ cost(∆ ) , (21) 
for l = 0, . . . , M (see [START_REF] Giles | Multilevel monte carlo methods[END_REF] for details).

That is, if one can determine the constants C γ , γ, C α , α, C β , β and use assumptions ML-1, ML-2 and ML-3 to express Var ∆ l and cost(∆ l ), then M and N l are fully computable in view of ( 20) and ( 21). The computation of the constants C γ , γ, C α , α, C β , β can be done using a screening procedure, as described in [START_REF] Giles | Multilevel monte carlo methods[END_REF]. The screening phase consists in estimating the quantities E(Q h ), Var(∆ ), cost(∆ ) for dierent grid sizes h . Here, the expectation E(Q h ) and the variance Var(∆ ) are estimated using the usual sample mean and variance estimates. Performing a linear regression for the three quantities E(Q h ), Var(∆ ), cost(∆ ) with respect to eventually yields estimates for the convergence rates (that is to say for the constants C γ , γ, C α , α, C β , β ). This procedure is the one carried out in the numerical experiments of Section 5.

Numerical Experiments

In this section, we consider two dierent quantities of interest that are derived from the solution to the contact problem. The rst one is the total contact area under a given load p. This is a global quantity, which is straightforward to estimate once the contact problem is solved, and it is of major interest in many engineering applications. For instance, the thermal conductivity between solids is proportional to the contact area. The second quantity is the number of contact clusters under load p. This quantity describes the morphology of the contact area and it is of interest, for example, in leakage problems.

The numerical experiments that follow were carried out in Python on a standard laptop computer with 7.7 GB of memory and an Intel R Core TM i7-5600U processor. Moreover, for the contact problems, we consider the wave numbers k l = 1, k r = 1, k s = 64, H = 0.8, and C is chosen such that c(0) = 1. Notice that the ratio λ l /λ s = k s /k l is large to model a surface's self-anity across a wide range of frequencies. We also note that the Hurst exponent H = 0.8 is motivated by the experimental results published in [START_REF] Persson | On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion[END_REF]. Furthermore, Young's modulus E and the Poisson ratio ν are such that the equivalent modulus is

E = E 1-ν 2 = 1.

The real contact area

To study the eects of the surface uncertainties to the real contact area, we consider the random quantity of interest Q given as the normalized contact area (in percent). For this quantity of interest, we set the applied load to be p = 0.1 √ m 2 , where m 2 is the second spectral moment of the rough surface s so that √ m 2 is the root mean square of the slopes (see [START_REF] Vladislav | From innitesimal to full contact between rough surfaces: Evolution of the contact area[END_REF] for its computation).

In the discretized problem, since we obtain piecewise constant solutions, the contact area is therefore computed as

Q h (ω) = 1 n 2 i∈Ic(ω) 1 , (22) 
where the set of contact points I c is dened by: i ∈ I c (ω) ⇔ u i (ω)-s i (ω) = 0.

Choosing the surface size L

What is not considered yet is the error introduced by the domain truncation and the PBCs. To identify the size L of the truncated problem such that model error P -P L does not dominate the overall error in the the numerical study that follows, we numerically investigate this eect. Specically, we estimate the expectation of the contact area Of course, by changing the size of the surface, the number of grid points increases but h remains constant. The obtained results are summarized in the Table 1. We observe that E MC (Q L ) seems to monotonically approach the limit value Q∞ = 20 as L increases. In fact, the distance to the limit

Q L via E MC (Q L ) for dierent domain truncations L ∈ {1, 2,
value is |E MC (Q L ) -Q∞ | ≤ 0.1 for L ≥ 2.
Notice that an absolute error of 0.1 already corresponds to a relative error of 0.5%. Therefore, we decided to choose L = 2 for the numerical study that follows, for which we will then explore mean squared error tolerances ε 2 for 0.2 ≤ ε. Consequently, we can be condent that the model error is not dominating the overall error, in the sense that it is at most comparable to the prescribed mean squared error tolerance.

Estimating convergence rates

Before we use the MLMC method described in Sect. 4 to estimate the expectation of Q, we verify that the Assumptions ML-1ML-3 are satised. To the authors' knowledge, no theoretical convergence results concerning these hypotheses for the contact problem solved with the discretization method used in this paper are available. We thus estimate the characterizing rates using the techniques described in [START_REF] Giles | Multilevel monte carlo methods[END_REF], which is based on an initial screening phase where the rates are estimated via linear regression. Here, this screening phase was carried out for various grid sizes h = h 0 2 -, using 50 realizations for each resolution, which was sucient here. The coarsest grid considered was 128 × 128. Figures 4 and5 show the outcomes of this screening procedure. We nd that this screening procedure yields α = 1.32, C α = 20.5, β = 1.85, C β = 0.46, γ = 2.45, and C γ = 1.69. It is noteworthy that the coecient γ only depends on the implementation of the contact solver, but not on the machine used for the simulations; the machine dependence only aects the constant C γ . 

E(Q h ) E(∆ ) model t (b) decay

Estimation of the real contact area

Motivated by the screening process for the rates (see Fig. 4), we set the coarsest level of the MLMC grid hierarchy to be a 256 × 256 grid. Based on the coarsest level grid size h 0 and the estimated rates, we can thus use the formulas in ( 20) and ( 21) to construct the MLMC estimator to approximate the mean real contact area for a given tolerance. Table 2 shows the estimated expectation of the true contact area computed via both the classic Monte

Carlo method E MC (Q h ) and the multilevel Monte Carlo method E MLMC (Q h )

for dierent tolerances ε. As the exact value of E(Q) is not known, we cannot exactly assess the approximation error. However, it can be seen in Table 2 that both estimators provide similar results. In fact, the estimated values always satisfy which conrms the theoretical mean squared error results discussed in Sect. 4. It is noteworthy that the mean squared error criterion is an absolute error criterion. To ease the interpretation of the used tolerance ε, we have also added the relative precision 2 compares the estimated mean contact area for various values of the tolerance ε, Table 3 summarizes the corresponding computational times required to obtain said estimators. Specically, in Table 3, we present the computational time in seconds for the classic Monte Carlo method (denoted by W MC ) and for the multilevel Monte Carlo method (W MLMC ) for dierent prescribed tolerance requirements. These results clearly demonstrates that the multilevel Monte Carlo method is highly ecient. Indeed, the smaller the tolerance ε, the more drastic the gain. The data presented in Table 3 are also illustrated in Figure 6. The plot shows the gain brought by the MLMC method compared to MC method. Figure 7 moreover presents the number of realizations required for two different prescribed tolerances for both the MC method and the MLMC method. For the tolerance ε = 0.7, Table 3 shows that the cost of the MC method is only marginally higher than the cost of MLMC method, while Figure 7a indicates that the distribution of required realizations (i.e. the work) across levels is very dierent. This is even more so for a tolerance of ε = 0.2, as can be seen in Figure 7b. In fact, the MLMC method spreads the number of realizations across various levels with requiring most realizations on the coarse (cheap) grids and only few on the ner (more expensive) grids, whereas the MC requires all of the many realizations on the nest grid (most expensive).

|E MC (Q h ) -E MLMC (Q h )| ≤ 2ε , (23) 
ε r = ε E MLMC (Q h ) to the table. While Table

The number of contact clusters

The second quantity of interest we study here is the number of contact clusters (i.e. the number of contact zones) per square meters under the given load p = 0.1 √ m 2 . As an example, an illustration is given in Figure 8 that exhibits 11 contact clusters, which are the 11 connected black patches.

Choosing the surface size L

To identify the size L of the truncated problem such that the model error P -P L does not dominate the overall error in the the numerical study that follows, we proceed exactly as for the rst quantity of interest. The corresponding results are summarized in the Table 4. There, we see that E MC (Q L ) seems to approach the limit value Q∞ = 110 as L increases. More precisely, the distance to the limit value is that follows, for which we will then explore mean squared error tolerances ε 2 for 2 ≤ ε. Having to choose a dierent box size L than for the rst quantity of interest is not surprising since mechanical quantities are not aected the same way by the PBCs.

|E MC (Q L ) -Q∞ | ≤ 1 for L ≥ 3.

Estimation of convergence rates

We estimate the rates needed for the MLMC method using the same screening procedure as for the rst quantity of interest. This procedure yields α = 2.79, C α = 211, β = 2.41, C β = 42.6, γ = 2.53, and C γ = 318.

Estimation of the number of contact clusters

Guided by the screening procedure, we set the coarsest level to be a 128 × 128 grid and use both the MC method and MLMC method to approximate the mean number of contact clusters for various required tolerances ε ∈ {40, 30, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2}.

In Table 5, we then present the approximations of the expected number of contact clusters E(Q), computed with the MC method and the MLMC method, respectively, for the tolerances introduced above. As in the previous example, the exact value of E(Q) is not known. However, the results in Table 5 show that

|E MC (Q h ) -E MLMC (Q h )| ≤ 2ε , (24) 
thus verifying the tolerance requirement. We also add in the same table the relative precision ε r = ε E MLMC (Q h ) for an easier interpretation. The results in Table 5 also reveal that both MC and MLMC estimators seem to overkill the desired tolerance. A possible explanation for this phenomenon is that the coarsest grid may not allow to accurately represent small wavelengths, which thus leads to a smaller variance in the number of contact clusters. Finally, in Table 6 we report the computational time in seconds for both the Monte Carlo method (W MC ) and multilevel Monte Carlo method (W MLMC ), each for dierent tolerance requirements ε. Once again we observe that the MLMC method is not only highly competitive, but actually superior for any tolerance demand larger than 15. Indeed, the smaller ε, the larger the gain.

Conclusion

In this work, we have applied the multilevel Monte Carlo method to estimate the average contact area and the average number of contact clusters for the problem of frictionless normal contact of rough surfaces. After describing the statistical properties of the random rough surfaces in detail, we rst veried that a variant of the surface generator introduced in [START_REF] Hu | Simulation of 3-D random rough surface by 2-D digital lter and fourier analysis[END_REF] generates samples of rough surfaces with the desired statistical properties. Then, we briey reviewed the principles of the multilevel Monte Carlo method. Afterwards, we detailed how to use the MLMC method eectively in the context of rough contact problem and demonstrated by means of numerical assessments the huge computational gain that the MLMC methods provides compared to the classic Monte Carlo method. Future work building upon the framework presented here, consists, for example, of studying other quantities of interest, such as the percentage of the surface subject to a pressure larger than a given critical pressure.

A

Generator of random rough surfaces

A.1 Further comments on the surface generator algorithm

The procedure described in Algorithm 1 generates random surfaces with a discrete radial spectral density Φ r made by a sum of Dirac deltas located in the frequency grid points. In the spatial domain, this leads to an approximate covariance function c that is the trigonometric interpolant on the spatial grid of the periodized covariance c per = z∈Z 2 c(|x + Lz|). In particular, all generated surfaces are continuous L-periodic functions. The presented Algorithm 1 takes, in essence, advantage of the fact that any ane transformation of a multivariate Gaussian random variable has a multivariate Gaussian distribution with explicitly known mean and covariance structure. In fact, the rst step of Algorithm 1 consists of generating the complex random vector ξ = η + iζ, with η and ζ being independent and normally distributed random vectors in R n 2 with mean zero and covariance matrix being the identity matrix of size n 2 ×n 2 . After multiplying this vector by Φ 1 2 r , which is the pointwise square root of Φ r , we obtain the complex vector ŝ, which is then transformed to the physical space via the two-dimensional inverse Fourier transform. Finally, Algorithm 1 returns the real part of this transformation. It is noteworthy that the scaling by the factor 1 n 2 in the third step of the algorithm is necessary since our implementation uses the fftw2 library [START_REF] Frigo | The design and implementation of FFTW3[END_REF], which has the property that fftw2 -1 (fftw2(x)) = n 2 x for any x ∈ R n 2 . Finally, we remark that one could also use the imaginary part of q as a return value for Algorithm 1 so that two independent samples are generated at the same time.

A.2 Verication of the sampling algorithm and illustrations

The purpose of this section is to illustrate the properties of the random surface generator described in Algorithm 1. Here, we consider the parameters k l = 4 = k r , k s = 32, H = 0.8, L = 32 and C is chosen so that the pointwise variances are equal to 1. Moreover, we consider the grid size h = 1 256 L, if not specied otherwise.

A.2.1 Gaussian distribution

First, we verify that Algorithm 1 produces samples that are centered Gaussian random elds. Specically, we consider four trial points in the domain D = [0, L] 2 with coordinates x 1 = (h, h), x 2 = (h, h+ L 2 ), x 3 = (h+ L 2 , h), and x 4 = (h+ L 2 , h+ L 2 ), and approximate the distribution of each random surface point s(x i , ω), i = 1, . . . , 4. To this end, we generate a sample of N = 50000 independent surface realizations using Algorithm 1, which is then used to approximate the probability density function (PDF) of each surface point s(x i ) via a kernel density estimator with Gaussian kernel and Silverman's bandwidth selection criterion; see, e.g., [START_REF] Kroese | Handbook of Monte Carlo Methods[END_REF]Ch. 8.5] for details. Figure 9a shows the approximated PDFs of the surface points s(x i , ω), i = 1, . . . , 4, in addition to the target N 0, 1) PDF. The fact that all curves are almost indistinguishable from the target PDF veries that Algorithm 1 generates surface realizations whose surface points have the desired distribution.

This conclusion is also conrmed by the QQ plot shown in Figure 9b. There, we plot the theoretical quantiles of the target N 0, 1) distribution against the quantiles obtained from the data for each surface point (color key of crosses is the same as in Figure 9a). For each of the four cases we observe an almost perfect linear trend (y = x), so that the data t the target distribution very well in each case. The only regions showing minor deviations from the straight line behavior are at the very low and very high end of the range, respectively. However, these regions correspond to rare outcomes (i.e. the probability of observing values in these regions is very small), so that only a small fraction of the N samples lies in these regions, which explains the marginally worse ts in there. 

Autocorrelation

Next, we illustrate that Algorithm 1 also produces realizations with covariance function that approximates well c per , hence c when the period L is taken large enough. That is, we investigate the covariance matrix Σ ∈ R n 2 ×n 2 dening the n 2 -dimensional Gaussian random vector obtained when evaluating Gaussian random eld on the given grid. We estimate Σ via the sample covariance matrix, based on a sample of N = 20000 independent discrete surface realizations and we denote this estimator by ΣN . Inspecting the el- ements of ΣN reveals that ΣN is indeed a discretized version of an isotropic covariance.

Figure 10a shows the entries of three dierent estimated discretized covariance matrices as a function of r, where each matrix approximates Cov s(r+ L/2, L/2), s(L/2, L/2) and is obtained for dierent grid sizes h ∈ {2 -8 L, 2 -7 L, 2 -6 L}. Additionally, the plot contains the curve of the periodic target isotropic covariance c per . We observe that Algorithm 1 generates realizations with the correct isotropic covariance structure.

Although not directly related to the quality of Algorithm 1, we also address the dierence between the non-periodic isotropic covariance c and approximations to its periodic version c per . For this, Figure 10b shows two dierent estimated discretized covariance matrices, obtained for a xed mesh size h = 2 -8 L but dierent domain sizes L ∈ {32, 64}, in addition to the non-periodic isotropic covariance c. We nd that increasing the size L of the domain D, while keeping the grid size h xed, leads to a more accurate approximation of the non-periodic isotropic covariance c. Indeed, with the increasing size L, the discretized spectrum tends to the continuous spectrum dened in equation [START_REF] Giles | Multilevel Monte Carlo path simulation[END_REF]. We observe that improving the discretization quality reduces the distance to the exact autocorrelation. 

Figure 2 :

 2 Figure 2: Typical pressure distributions (in color) obtained under a load p = 10 corresponding to two dierent realizations of a rough random surface (in gray) dened by the same power spectrum.
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 3 Figure 3: Spatial (left) and frequential (center and right) grids used for the generation and the representation of the rough surface.
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 4 Figure 4: Estimation of convergence rates.
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 53 Figure 5: Estimation of the cost model.
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 6 Figure 6: Measured costs for the MC and the MLMC estimators for dierent tolerances. The quantity of interest is the contact area.
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 7 Figure 7: Number of realizations required per level for both the Monte Carlo method and the multilevel Monte Carlo method for two tolerances.
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 8 Figure 8: Binary contact map: contact zones are in black.

Figure 9 :

 9 Figure 9: Verication of surface height distribution in four points on the surface

  Eect of the size of the domain L
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 10 Figure 10: Comparison between isotropic covariance approximations, the periodic target covariance c per , and the non-periodic version of c.

Table 1 :

 1 3, 4}. For each size L, we compute 50 i.i.d realizations, where the discretization parameter h is chosen such that the discretization error is negligible. Indeed, we choose h = 1/512 in order to properly describe the smallest wavelength λ s (8 nodes per wavelength). MC estimators of the contact area for various box sizes L.

		Box size L	
	1	2	3	4
	E MC (Q L ) 19.52 19.90 19.94 19.99

Table 2 :

 2 19.94 20.26 19.90 20.11 19.48 19.55 19.64 19.97 20.01 E MLMC (Q h ) 19.42 19.57 19.53 19.53 19.74 19.59 19.65 20.09 20.03 MC and MLMC estimators of the contact area for various tolerances.

		.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2
	ε r (%)	5 % 4.5 % 4 % 3.5 % 3 % 2.5 % 2 % 1.5 % 1 %

E MC (Q h )

Table 4 :

 4 MC estimators of the mean number of contact clusters for various box sizes L.

	Note that

Table 5 :

 5 Estimations of the mean number of contact clusters for dierent tolerances with the MC method and the MLMC method.

	tolerance ε

Table 6 :

 6 Cost (in seconds) required to compute the estimation of the mean number of contact clusters for dierent tolerances with the MC method and the MLMC method.

We use the notation a b, if there exists a constant c>0, such that a ≤ cb; analogously for . If a b and a b, then we write a b.
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