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A generalized Timoshenko rod model is developed for helical strands and helically reinforced 
cylinders. The thermomechanical constitutive law has five effective elastic moduli, and two thermal 
coefficients, which can be obtained with the finite element method, or partly from analytic solutions. 
The model predicts nonclassical bending and thermoelastic behavior of helical strands. First, 
bending–shearing coupling is explicitly captured, which leads to non-planar bending under a 
transverse shear force, or a bending moment. Second, torsion and thermal expansion are coupled 
due to structural chirality. The dispersion relation of harmonic thermoelastic waves is governed by 
four non-dimensional parameters: two thermoelastic coupling constants, one chirality parameter and 
the Fourier number. The quasi-longitudinal and the quasi-torsional waves (“quasi” meaning the lon-
gitudinal mode is always coupled with a small torsional motion, and vice versa, due to chirality) are 
dispersive and damped, and dependent on tem-perature. The adiabatic-isothermal transition of the 
wave propagation is determined by the Fourier number.

Introduction

Helical strands, or helically wound cables, are made of layers of individual wires helically wrapped
around a common central axis. They are commonly seen in ropes and power transmission cables.

The helical wrapping introduces mirror asymmetry, or chirality into the structure, leading to
effective properties not present in the base material. Under the no-slip condition, helical strands
are in close analogy to helical-fiber-reinforced composites [1].

A critical part of modeling helical strands is to find their effective properties which are func-
tions of the strand configuration, the material parameters, and the interfacial conditions. It can
be done by either modeling the wires individually, or by effectively treating the helical layers as

concentric helically reinforced cylinders. The second approach replaces each layer of wires with
an effective continuum, and is termed the “semi-continuous” method in the literature [2].

One most prominent effect of chirality in helical strands is the coupling between tension and
torsion, i.e., an axial tensile load induces a twist, and an axial torque induces an extension. This
effect has been widely studied in the literature [3,4]. Transverse deformations of the strand can
also be incorporated by adding a bending stiffness into the overall constitutive law [5,6]. Given

the stiffnesses, the model essentially reduces the whole strand to an effective Euler–Bernoulli rod.
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However, there are cases when this model is not sufficient to explain all the chiral effects in hel-

ical strands. Crossley solved the flexural problems of helically reinforced cylinders based on 3D

elasticity, and discovered that an extra bending moment is required to make sure the bending is

planar [7,8]. This is another phenomenon caused by the chirality of the strands. However, as is

shown in the current article, the classical rod model fails to predict this behavior and a general-

ization of the model is required.
Thermal–mechanical couplings are reported in the literature for helices and helical strands.

Pipes and Hubert [9] studied helical nanotube/polymer arrays by modeling them as concentric

cylinders. The effective axial, circumferential, and shear coefficients of thermal expansion for car-

bon nanotube arrays are obtained as functions of the lay angle. Karathanasopolous et al. analytic-

ally derived the coefficients for the thermal effect on the axial, torsional, and radial loads on a

single helix [10]. Ieşan [11,12] solved the deformation of isotropic chiral cylinders using the equi-

librium theory of Cosserat thermoelastic continuum, and found that a temperature field produced

torsional effects. Thus, to account for thermal effects, the rod model needs to be further extended.
The thermoelastic wave propagations in isotropic [13–15], transversely isotropic [16] and lay-

ered anisotropic [17] media were solved with the theory of thermoelasticity [18,19]. It was found

that the phase velocities of the waves are modified due to the thermal effects and material anisot-

ropy. Tomar and Khurana [20] solved time harmonic wave propagation in a thermoelastic chiral

medium using micropolar thermoelasticity. Temperature field is added to the set of equations for

hemitropic micropolar materials. All the waves are found to be dispersive and the coupled dilata-

tional waves are attenuated and temperature dependent. The thermoelastic waves in helical

strands have not been investigated except in one of our earlier articles [21], where it was assumed

that there is no coupling between torsion and temperature fields.
A model that effectively reduces a helically reinforced beam or a helical strand to a rod was

proposed in [22]. It is a generalized rod model, with a 6 by 6 stiffness matrix, taking into account

the shear flexibility. In the current article, the rod model is restated, with a slightly more general

representation. Thermal expansion is also introduced into the rod constitutive law. The derivation

starts from the generalized Timoshenko rod model, with a full 6� 6 mechanical stiffness matrix

and six thermal coefficients. For a helical strand, the inherent structural symmetry results in

many zero entries in the stiffness and thermal coefficients. The final form of the themo-mechan-

ical constitutive law for a helical strand is then obtained, with five non-zero constants for mech-

anical deformation and two for thermal expansion. The procedures for estimating the values of

the nonzero constants are stated. With the thermomechanical constitutive law, the general ther-

moelastic behavior of helical strands can be solved. In particular, two mechanical and thermal

couplings in helical strands are investigated. First, the aforementioned nonclassical bending

behavior is predicted. Second, the celerities (phase velocities) and dampings of thermoelastic

waves in helical strands are solved, with discussions on the modifications of the wave solutions

due to structural chirality and thermomechanics. Note that all the discussions are for helical

strands with no internal slip at contacting surfaces, and hence, the discoveries of the chiral effects

are equally applicable to helical-fiber-reinforced composites. It has been reported that the inter-

facial slipping condition has influence on the bending stiffness [23], but not on the tensile and

torsional stiffnesses as tensile and torsional loads do not induce slip [6].
The article is organized as follows, the Timoshenko rod model accounting for only the mech-

anical behavior is stated and the procedure of estimating the effective moduli proposed. The non-

classical bending behavior is predicted by the model and also verified by a finite element analysis.

In a second part, the model is extended to include thermal effects. First, the final form of the

thermomechanical constitutive relation is established by introducing thermal expansion terms.

Then, the thermoelastic wave equations are derived for helical strands. Finally, the effects of ther-

moelastic coupling on the harmonic wave solutions are detailed.
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Elastic rod model for helical strands

Consider a helical strand with a length of L. A Cartesian frame ðO; e1; e2; e3Þ is defined. It is com-
mon in the literature that an effective rod model of a helical strand is expressed as [2,5,6,24]
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This formulation follows the Euler–Bernoulli beam framework, neglecting the shear rigidities
of the cross section. Here (EA) is the effective tensile stiffness, (GJ) is the effective torsional stiff-
ness, and (EI) is the effective bending stiffness, while kTR¼ kRT characterizes the coupling
between tension and torsion. We also have the deformation c3 ¼ Du3=DL and ji ¼ Dhi=DL
(i¼ 1, 2, 3), with DL being the length of a segment along the axis of the strand. There are a lot
of articles on accurately computing the effective stiffnesses in the formula. The readers can refer
to a review of the models in [3,4]. Most models use a discrete approach that treats each wire
individually as a curved thin rod and then assembles them based on deformation constraints
[5,25–28]. In contrast, Raoof and Hobbs [29] and Jolicoeur and Cardou [6] proposed semicontin-
uous models that effectively homogenize each layer of helical wires as an orthotropic elastic cylin-
der. The effective stiffnesses in Eq. (1) are derived in terms of the elastic constants of the
“effective” orthotropic material by solving the elasticity of a cylinder.

Instead of the models above, we seek a Timoshenko model that considers the transverse shear
rigidities of the cross section. Following the generalized Timoshenko theory in [30,31], the most
general form of the constitutive relation of a non-homogeneous, anisotropic beam can be written
as follows:
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where c1 and c2 are the engineering shear strains.

Symmetry of rod constitutive behavior

For a specific rod geometry, many entries in the stiffness matrix C are zeros due to symmetry.
While it is difficult to get the actual values of the nonzero entries for a helical strand (which will
be discussed later), one can readily see how many such entries are present in the stiffness matrix
C by assuming a helical strand possesses the same symmetries as a helically reinforced cylinder.
To that end, we start from the Spencer constitutive law [32] of a transversely isotropic, linear
elastic continuum with fiber orientation s. The strain energy is

U e; sð Þ ¼
k

2
Tr eð Þð Þ2 þ lTr e2ð Þ þ a1Tr Reð ÞTr eð Þ þ a2

2
Tr Reð Þð Þ2 þ a3Tr Re2ð Þ (3)

where R ¼ s� s is the orientation tensor, and

s ¼ sin b � sinue1 þ cosue2ð Þ þ cos be3 (4)

given b the local lay angle and u the azimuthal coordinate in the cylindrical coordinate system
ðr;u; zÞ oriented along e3 � ez. The stress then becomes:
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r ¼ kTr eð ÞIþ 2leþ a1 Tr Reð ÞIþ Tr eð ÞR
� �

þ a2Tr Reð ÞRþ a3 Reþ eRð Þ (5)

where I is the identity tensor, or in indicial notation,

rij ¼ kekkdij þ 2leij þ a1 skslekldij þ sisjekk
� �þ a2sisjskslekl þ a3 siskekj þ sjskekið Þ (6)

The parameters in Eq. (3) are related to the five independent elastic moduli ET, EL, GL, GT, �L,
for a transversely isotropic material. ET and EL are the elastic moduli in the transverse and the
longitudinal directions of the helical fibers, respectively. GL is the shear modulus for shear strains
between the longitudinal direction and any transverse direction, GT is the shear modulus in the
transverse plane, while �L is Poisson’s ratio for strain in the longitudinal direction caused by
stress in any transverse direction. In particular, a3 ¼ 2ðGL�GTÞ and l ¼ GT [24].

We then impose the Timoshenko beam assumption, i.e., for any point P on the cross section
S, with a position vector

�!
O0P ¼ x1e1 þ x2e2, the displacement w of P is controlled by the displace-

ment u of the center of mass O0 and the rotation vector h of the rigid section:

w ¼ uþ h��!
O0P (7)

Here, w ¼ wjðx1; x2; x3; tÞej; u ¼ ujðx3; tÞej, and h ¼ hjðx3; tÞej, where Einstein’s summation
convention is used. The deformation gradient is [33]
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The small strain tensor e ¼ 1
2
ðrw þ ðrwÞTÞ is then obtained explicitly as follows:
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where we use prime for @=@x3. The force N ¼ Niei and moment M ¼ Miei on a cross section are
then obtained by the following integration:

N ¼
ð

S
f dx1dx2; M ¼

ð

S

�!
O0P � f dx1dx2 (8)

with f ¼ rj3ej being the traction on an arbitrary point of the cross section.

Example I: Solid circular cylinder with uniform lay angle b

With the stress components given, the integration in Eq. (8) can be performed to obtain a
constitutive relation in the form of Eq. (2) with the stiffness matrix
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(9)
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where

E ¼ kþ 2lþ cos2b 2a1 þ 2a3 þ a2 cos
2b

� �

Gs ¼ lþ 1

8
a2 sin

22bþ a3 3þ cos 2bð Þ
� �

Gr ¼ lþ 1

8
a2 sin

22bþ a3 3þ cos 2bð Þ
� �

þ sin 2b

4
2 cos2ba2 þ a3
� �

Cf ¼
sin 2b

3
a1 þ a3 þ a2 cos

2b
� �

(10)

Here, E, Gs, Gr, and Cf are the effective moduli for extension, shear, torsion, and coupling,
respectively. As pointed out in [22], when the lay angle is nonzero, the effective torsional modu-
lus Gr is different than the effective transverse shear modulus Gs. Another observation is that Cf

is nonzero when the lay angle is nonzero, i.e., there is coupling between tension and torsion, as
well as between shearing and bending.

Example II: Solid circular cylinder with stepwise b

The lay angle b is a stepwise function of the radial position r:

b rð Þ ¼ 0; r< r0
b; r0 < r<R

�

(11)

where R is the outer radius of the cable. This models a helical cable with one layer of helical
wires and a straight core. Following the integration procedure mentioned above, we get C of the
form
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where

Gs ¼ a2
1
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Gr ¼
1

8
a2 n4 � 1
� �

cos 4bð Þ � a2n
4 þ a2 þ 4a3

h i

þ l (13e)

in which, n ¼ r0=R. Again, the effective torsional modulus Gr is different than the shear modulus
Gs. However, in contrast to Eq. (9), the modulus of extension Ee and the modulus of bending Eb
are also different here. In fact,

Ee�Eb ¼
1

2
n2 1� n2
� �

4a1 þ a2 cos 2bð Þ þ 3a2 þ 4a3½ � sin 2b (14)

Note that Ee¼ Eb when n¼ 0, i.e., when b is uniform.

Example III: Uniform pitch length
This is to model the case where we make a helical strand by clamping a bundle of fibers at

one end, and twisting the other end. The strand obtained will have a uniform pitch length from
the center to the edge of the cross section. With a small angle assumption, we have b� kr where
k is a constant. In this case, one can also get a stiffness matrix following the form of Eq. (12),
with different stiffness values, i.e., Eb 6¼ Ee and Gs 6¼ Gr unless b � 0.

From the above, the symmetry of a helical strand leads to a stiffness matrix of the form in Eq.
(12). For a helically wound cable with a straight core, Example II is a better approximation, since
we can treat the core as an inner region with b¼ 0, and the helices as an outer section with b

constant. There are five independent effective moduli, Ee, Gs, Eb, Gr, and Cf, that are functions of
the lay angle and the wires’ diameters. However, the values of the effective moduli, do not follow
Eq. (13), as the wires are separate from each other, and do not fill the annular space around the
core. In addition, this form of stiffness matrix shows that the bending–shearing problem and the
tension–torsion problem are uncoupled.

Procedure of estimating effective moduli

It is nontrivial to determine the values of the effective moduli in the rod models. In the semicon-
tinuous model by Jolicoeur and Cardou, the elastic constants of the transversely isotropic cylin-
ders can be estimated either by fitting results from thin rod models [24] or by modeling the
contact between wires [2,6]. These authors also recommended the use of experimental data to
achieve more reliable estimations [24].

For the Timoshenko model that we propose, we use the finite element analysis to estimate the
effective moduli in Eq. (12) due to the following reasons. First, modeling the contact between
wires with an analytic approach requires assumptions that are themselves to be verified. Second,
finite element analysis for a helical strand is relatively quick and accurate. Third, the effective
moduli do not depend on the length of the cable, and thus we can do the finite element analysis
on a relatively short cable, the results from which can then be used for cables of arbi-
trary lengths.

Inferring the values of the effective moduli from finite element results requires solving an
inverse problem. The forward problem is to solve the response of the cable under given boundary
conditions. The equilibrium equations for the Timoshenko rod with no distributed loads are [22]

@N

@x3
¼ qA

@2u

@t2

@M

@x3
þ e3 � N ¼ qIO0

@2h

@t2

8

>

>

<

>

>

:

(15)

which, for a static problem, have the following components in the Cartesian frame ðO; e1; e2; e3Þ
N0

1 ¼ 0 (16a)
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N0
2 ¼ 0 (16b)

N0
3 ¼ 0 (16c)

M0
1�N2 ¼ 0 (16d)

M0
2 þ N1 ¼ 0 (16e)

M0
3 ¼ 0 (16f)

With the constitutive relations obtained by the integration in Eq. (8), the equations of equilib-
rium can be solved for given boundary conditions.

For comparison, the constitutive equation for the Euler–Bernoulli beam model shown in Eq.
(1), is re-written as
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(18)

In Eq. (17), h1 ¼ �u02 and h2 ¼ u01 have been used, which are based on the assumption that
there is no transverse shear strain in the cross section. N3, M1, M2, and M3 can be solved under
given boundary conditions from Eq. (16). Then, N1 and N2 can be inferred using Eqs. (16d)
and (16e).

Alternatively, there are many analytic models that give predictions of the effective moduli Ee,
Eb, Gr, and Cf [5,25,26,34,35]. The values of Gs, however, are not available in the literature, since
the analytic models follow the Euler–Bernoulli framework as in Eq. (1).

Numerical example of solving effective moduli

We consider a 1þ 6 helical strand, made of a straight cylindrical core and six helical wires. The
wires are perfectly bonded to the core, and there is no contact between neighboring wires. The
radius of the core is r0 ¼ 1:97 mm, and the radius of the wires is r1 ¼ 1:865 mm, making the
outer radius of the strand R ¼ 5:7mm. The wires are made of a material with a Young’s modulus
E0 ¼ 188GPa and a Poisson’s ratio � ¼ 0:3. Helical strands of different lay angles of up to 17

	
are

created and meshed. The strands have the same length 80 mm. It is verified that the effect of
length on the results is minimal. For each strand, the mesh of the wires and the mesh of the core
are stitched together with the procedure used in [23], and there is no contact between neighbor-
ing helical wires. The left ends of the cables are clamped. Several different types of boundary con-
ditions are applied to the right end. Analytic solutions for each of the resulting boundary value
problems (BVPs) are obtained by solving the equilibrium given by Eq. (16) with a stiffness matrix
given by Eq. (12).

1. u3ðLÞ ¼ d and all other degrees of freedom are 0. The analytic solutions of the nonzero cross
section forces and moments at x3 ¼ L are
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N3

d
¼ pR2Ee

L
(19a)

M3

d
¼ pR3Cf

L
(19b)

2. h3ðLÞ ¼ h and all other degrees of freedom are 0. The analytic solutions of the nonzero cross

section forces and moments at x3 ¼ L are

N3

h
¼ pR3Cf

L
(20a)

M3

h
¼ pR4Gr

2L
(20b)

3. u2ðLÞ ¼ d and all other degrees of freedom are 0. The analytic solutions of the nonzero cross

section forces and moments at x3 ¼ L are

N2

d
¼

3pGsR
4 EbGs � C2

f

	 


L �3C2
f R

2 þ 3EbGsR2 þ G2
sL

2
	 
 (21a)

M2

d
¼

3pCfR
5 C2

f � EbGs

	 


2L �3C2
f R

2 þ 3EbGsR2 þ G2
sL

2
	 
 (21b)

M1

d
¼

3pGsR
4 EbGs � C2

f

	 


�6C2
f R

2 þ 6EbGsR2 þ 2G2
sL

2
(21c)

With the values of the left-hand side obtained from finite element simulations, each of the

equations above gives one relation between the elastic constants. Some of these equations are lin-

early dependent, e.g., Eq. (19b) and Eq. (20a) are the same, Eqs. (21c) and (21a) are proportional.

Therefore, we end up with five independent equations, Eqs. (19a),(19b),(20b),(21a), and (21b).

The five unknowns Ee, Cf, Gs, Eb and Gr, can then be solved and written explicitly as functions of

the loads:

Ee ¼ N3=dð Þ 
 L

pR2
(22a)

Cf ¼ M3=dð Þ 
 L

pR3
(22b)

Gr ¼ M3=hð Þ 
 2L

pR4
(22c)

Gs ¼ � N2=dð Þ 
 M3=dð Þ 
 L
2pR2

M2=dð Þ (22d)

Eb ¼
L3 M3=dð Þ N2=dð Þ2�6L M2=dð Þ M3=dð Þ 2 M2=dð Þ þ M3=dð Þ½ �

3p N2=dð ÞR4 2 M2=dð Þ þ M3=dð Þ½ � (22e)

When the lay angle b¼ 0, it is known a priori that Cf¼ 0, and ðM2=dÞ and ðM3=dÞ are also

approximately zero. Therefore, Eq. (22d) and (22e) can no longer be used to compute Gs and Eb.

In fact, when b¼ 0, there are only three nontrivial independent equations Eqs. (19a),(20b), and

(21a), leaving Gs and Eb undetermined. But we can still get Gs and Eb at zero lay angle by extrap-

olating their values at nonzero lay angles. It is noteworthy to emphasize that these BVPs are not

arbitrarily chosen. They cover the three basic deformation modes, extension, torsion and bending.

More importantly, one has to make sure the final set of equations for solving the elastic moduli

are insensitive to small perturbations to the finite element results for the cross section loads,
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especially for the equations of Gs and Eb, which are likely nonlinear functions of the cross section
loads. One can easily pick a set of BVPs such that the resultant equations are unstable to pertur-
bations. Here, we have verified that Eq. (22) is well behaved in that sense.

As a comparison, the elastic moduli in the Euler–Bernoulli model can also be estimated with
the finite element analysis. The analytic solutions for the cross section forces and moments under
BVPs 1–3 are listed below.

1:
N3

d
¼ pR2Ee

L
(23a)

M3

d
¼ pR3Cf

L
(23b)

2:
N3

h
¼ pR3Cf

L
(24a)

M3

h
¼ pR4Gr

2L
(24b)
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Figure 1. The values of the effective moduli i) for the Timoshenko model, ii) for the Euler-Bernoulli model, and iii) from analytic
models in the literature (Costello, McConnell-Zemke, Sathikh, Lanteigne).
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3:
N2

d
¼ 3pR4Eb

L3
(25a)

M2 ¼ 0 (25b)

M1

d
¼ 3pR4Eb

2L2
(25c)

There are four effective moduli, Ee, Eb, Cf and Gr, and four independent equations: Eqs.
(23a),(23b),(24b) and (25c). All the equations are uncoupled and linear, and are thus apparently
well conditioned. Since Eqs. (23a),(23b) and (24b) are the same as Eqs. (19a),(19b) and (20b),
respectively, the values of Ee, Cf, and Gr are identical to those for the Timoshenko model. Only
Eb is, in general, different.

The values of the five moduli from the finite element analysis are shown in Figure 1.
Alternatively, estimates of Ee, Cf, and Gr can also be obtained from analytic models under ten-
sion–torsion loads in the literature, e.g., the model by Costello [25], and the model by McConnell
and Zemke [35]. Eb is proportional to the bending stiffness of the cable and it depends on the
contact condition at the wire–core interfaces [3]. In this study, the wires are assumed to be per-
fectly bonded to the core. The corresponding bending stiffness can be estimated using analytic
models, such as the one by Lanteigne [5] or that by Sathikh et al. [26]. The values of Ee, Cf, and
Gr from the Timoshenko model and from the Euler–Bernoulli model are identical, and they are
close to those from the analytic models. The values of Eb for the Timoshenko model are also
close to those from the analytic models. But the Euler–Bernoulli model requires significantly
lower Eb’s to match the loads predicted by the finite element method. The reason for the lower
Eb is because under BVP3, there is transverse shear strain in the cable, therefore, the
Euler–Bernoulli beam assumption that the cross section remains orthogonal to the centerline is
no longer valid, i.e., the Euler–Bernoulli model would overestimate the bending loads, if using
the same effective bending moduli Eb. No report on analytic estimates of the effective shear
modulus Gs has been seen in the literature. The shear correction factor j for conventional
Timoshenko beam model is implicitly incorporated into the effective shear moduli Gs here. Gs

and Gr (in Figure 1) both increase with the lay angle, but Gs is greater than Gr.

Bending–shearing coupling in helical strands

Comparing Eq. (21) with Eq. (25), we see that the most significant difference is that the
Timoshenko model predicts a nonzero M2 when the beam is flexed by a displacement u2, whereas
the Euler–Bernoulli model predicts M2 to be zero. According to Eqs. (21b) and (21c),

M2

M1
¼ �CfR

GsL
(26)

Therefore, M2 ¼ 0 only when the coupling modulus Cf¼ 0, which corresponds to the case of a
zero lay angle. M2=M1 is also proportional to R/L, suggesting the coupling effect is more signifi-
cant for thick strands. The bending is also not planar, as

u1 ¼ � 3CfGsR Lx3 � x23
� �

d

L �3C2
f R

2 þ 3EbGsR2 þ G2
sL

2
	 
 (27)

which is non-zero unless x3 ¼ 0, or L. As a “conjugate,” the case where the right end of the
strand is subjected to a bending angle h2ðLÞ ¼ h is studied. Moreover, we add two more cases
where the displacement and bending angle are applied in the 1-direction, i.e., we solve the follow-
ing three BVP’s:

4. h2ðLÞ ¼ h and all other degrees of freedom are 0.

10



5. u1ðLÞ ¼ d and all other degrees of freedom are 0.
6. h1ðLÞ ¼ h and all other degrees of freedom are 0.

Since all the effective moduli are known for the Timoshenko and the Euler–Bernoulli models,
The cross section loads for BVP4-BVP6 can be readily solved using these models. For BVP4, the
Timoshenko model gives

N2

h
¼

3pCfR
5 C2

f � EbGs

	 


2L �3C2
f R

2 þ 3EbGsR2 þ G2
sL

2
	 
 (28a)

M2

h
¼ �

pR4 C2
f � EbGs

	 


3EbR
2 þ 4GsL

2ð Þ

4L �3C2
f R

2 þ 3EbGsR2 þ G2
sL

2
	 
 (28b)

N1

h
¼

3pGsR
4 C2

f � EbGs

	 


�6C2
f R

2 þ 6EbGsR2 þ 2G2
sL

2
(28c)

and the Euler–Bernoulli model gives

N2

h
¼ 0 (29a)

M2

h
¼ pR4Eb

L
(29b)

N1

h
¼ � 3pR4Eb

2L2
(29c)

Again, the bending–shearing coupling leads to a non-zero N2. Also, from Eqs. (28a) and (28c),
we have

N2

N1
¼ CfR

GsL
(30)

suggesting N2 ¼ 0 only when the lay angle b¼ 0, and the coupling is more significant for thick
strands. The bending is also not planar, as the displacement u2 is nonzero except at the left and
right ends:

u2 ¼ � CfGsR L2x3 � x33
� �

h

L �3C2
f R

2 þ 3EbGsR2 þ G2
sL

2
	 
 (31)

The observations above also show that the bending deformations in the two cross-sectional
principal directions are coupled, with the extent of coupling characterized by Cf, as is also dem-
onstrated by the dynamic equations of motion in Ref. [22].

Table 1. Cross section forces and moments predicted by different methods for b¼ 0.

Force or moment FEA Euler–Bernoulli

BVP4 N1ðNÞ �7151 �7151
BVP4 N2ðNÞ 0.01786 0
BVP4 M2ðNmÞ 389.2 381.4
BVP5 N1ðNÞ 1788 1788
BVP5 M1ðNmÞ �0.0001719 0
BVP5 M2ðNmÞ �71.51 �71.51
BVP6 N1ðNÞ �0.01719 0
BVP6 N2ðNÞ 7151 7151
BVP6 M1ðNmÞ 389.2 381.4

There are no predictions from the Timoshenko model because when b¼ 0, Eqs. (22d) and (22e) are no longer valid.
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Table 2. Cross section forces and moments predicted by different methods for b ¼ 6
	
.

Force or moment FEA Timoshenko Euler–Bernoulli

BVP4 N1ðNÞ �2579 �2579 �2579
BVP4 N2ðNÞ �28.12 �28.12 0
BVP4 M2ðNmÞ 394.9 395.4 394.2
BVP5 N1ðNÞ 225 225 225
BVP5 M1ðNmÞ �0.2809 �0.2812 0
BVP5 M2ðNmÞ �25.79 �25.79 �25.79
BVP6 N1ðNÞ �28.09 �28.12 0
BVP6 N2ðNÞ 2579 2579 2579
BVP6 M1ðNmÞ 394.9 395.4 394.2

Values significantly different than FEA are made bold.

Table 3. Cross section forces and moments predicted by different methods for b ¼ 11:8
	
.

Force or moment FEA Timoshenko Euler–Bernoulli

BVP4 N1ðNÞ �4372 �4375 �4373
BVP4 N2ðNÞ �162.5 �162.5 0
BVP4 M2ðNmÞ 337.7 339.9 336.2
BVP5 N1ðNÞ 758.6 758.6 758.2
BVP5 M1ðNmÞ �1.623 �1.625 0
BVP5 M2ðNmÞ �43.72 �43.75 �43.73
BVP6 N1ðNÞ �162.3 �162.5 0
BVP6 N2ðNÞ 4373 4375 4373
BVP6 M1ðNmÞ 337.7 339.9 336.2

Values significantly different than FEA are made bold.

Table 4. Cross section forces and moments predicted by different methods for b ¼ 17
	
.

Force or Moment FEA Timoshenko Euler–Bernoulli

BVP4 N1ðNÞ �5327 �5327 �5328
BVP4 N2ðNÞ �332.4 �332.4 0
BVP4 M2ðNmÞ 281.1 284.9 280
BVP5 N1ðNÞ 1352 1352 1352
BVP5 M1ðNmÞ �3.322 �3.324 0
BVP5 M2ðNmÞ �53.27 �53.27 �53.28
BVP6 N1ðNÞ �332.2 �332.4 0
BVP6 N2ðNÞ 5328 5327 5328
BVP6 M1ðNmÞ 281.1 284.9 280

Values significantly different than FEA are made bold.
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Figure 2. The thermal coefficients k3 and k6.
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The solutions from the Timoshenko model are then verified by finite element analysis. Tables
1–4 show that with the Euler–Bernoulli model, N2 for BVP4, M1 for BVP5, and N1 for BVP6 are
always zero, because it neglects the coupling between shearing and bending. On the other hand,
the Timoshenko model gives predictions very close to the finite element results for all cross sec-
tion forces and moments. The fact that the model is equally good for displacement boundary
conditions applied in both the 1- and 2-directions suggests that the strand is “quasi-isotropic”
within the cross section.

Thermoelastic rod model for helical strands

Constitutive relation with thermal expansion

The effect of thermal expansion can be introduced into the constitutive law as an extra term:
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H (32)

Analogous to the stiffness matrix C, the thermal expansion coefficient vector fkg has zero
entries depending on the underlying symmetry of the structure and the materials. In the case
where the cable is made of a material with a uniform and isotropic coefficient of thermal expan-
sion (CTE) g, a temperature increase H is equivalent to introducing a mechanical strain
f c1 c2 c3 j1 j2 j3 gT ¼ f 0 0 �gH 0 0 0 gT, and thus ½C� and fkg are related by

ki ¼ Ci3g; i ¼ 1:::6 (33)

In the case of a helical strand that follows Eq. (12):

k3 ¼ pR2Eeg; k6 ¼ pR3Cf g; other ki ¼ 0 (34)

The same is true for Euler–Bernoulli models. Therefore, in this case, not only the zero entries
in fkg are identified, but also the values of the nonzero ki’s are readily obtained from the mech-
anical stiffnesses Ee and Cf. Equation (34) shows that a uniform temperature increase leads to ten-
sile and torsional loads, but has no effect on the bending moments and transverse shear forces.
This equation can be verified with finite element analysis on the helical cables defined earlier.
The CTE of the material is set to 1:2� 10�5 K�1. The strand is initially stress free, and then sub-
jected to a uniform temperature increase of 100 K. The cross section loads are computed and
used to infer ki’s. In the meantime, ki’s can be computed using Eq. (34), with the values of mod-
uli already estimated above for the Timoshenko and the Euler–Bernoulli model, respectively. The
values of k3 and k6 from the thermal finite element analysis compare very well with Eq. (34), as
is shown in Figure 2. In the meantime, N1 and N2 remain around 0:01N, negligible compared
with N3 which is of the order of 104 N. M1 and M2 are also around 0:005 N 
m2, negligible com-
pared with M3 which is up to 14 N 
m2 for the largest lay angle.

In a more general case where the CTE is anisotropic, a simple relation between ki and Cij such
as Eq. (34) does not exist, but one can still follow the procedure in the section “Symmetry of rod
constitutive behavior” to identify the possible zero ki’s. Again, this is based on the assumption
that the helical strand follows the same symmetry as a helically reinforced cylinder, which is valid
if there is no slip between the wires. In a helically reinforced cylinder, the CTE is in general
anisotropic. At any point on a helical fiber, a local coordinate system ðP; s; b; rÞ is established
where s is the tangential direction with Cartesian components shown in Eq. (4), and
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binormal b ¼ cosb sin/e1� cos b cos/e2 þ sin be3 (35)

radial r ¼ cos/e1 þ sin/e2 (36)

A temperature increase H equivalently causes the following thermal strain:

eth½ �sbr ¼
�gsH 0 0
0 �gbH 0
0 0 �grH

2

4

3

5 (37)

where gs, gb, and gr are the CTE along the fibers, between fibers within the same layer of
helical wires, and between fibers in neighboring layers, respectively. The local thermal strain
components are transformed into global components in the Cartesian coordinate system
ðO; e1; e2; e3Þ via

eth½ �global ¼ Q½ �T eth½ �sbr Q½ � (38)

where ½Q� is the transformation matrix. The stress induced by ½eth�global can be obtained from Eq.
(5), which upon integration following Eq. (8) gives the cross section loads, and thus ki’s:

k3 ¼ pR2ke
k6 ¼ pR3kr

k1 ¼ k2 ¼ k4 ¼ k5 ¼ 0

where

ke ¼
1

2
gs cos 2bð Þ a1 þ a2 þ 2 a3 þ lð Þ½ � þ 3a1 þ a2 þ 2 a3 þ kþ lð Þ
� �

þ 1

2
gb a1 cos 2bð Þ þ a1�2l cos 2bð Þ þ 2kþ 2lð Þ

þ 1

2
gr a1 cos 2bð Þ þ a1 þ 2kð Þ

(39)

and

kr ¼
1

3
gs sin 2bð Þ a1 þ a2 þ 2 a3 þ lð Þ½ �

þ 1

3
gb a1�2lð Þ sin 2bð Þ

þ 1

3
gra1 sin 2bð Þ

(40)

Therefore, the thermal expansion only leads to modifications to the axial force N3 and
moment M3, while it has no effect on bending and shearing. This is consistent with
Eq. (34), but the result here is more general as the anisotropy of CTE is considered. Also
different is the fact that in the anisotropic case, one has to use a thermal finite element
analysis to estimate the nonzero thermal coefficients, since no simple relation between ki
and Cij is available. Another observation from Eq. (40) is that k6 ¼ 0 when the lay angle
b¼ 0, and also k6�b when b is small, i.e., k6 is a result of the presence of helices. In con-
trast, k3 6¼ 0 for zero b. ke and kr are coefficients that do not depend on the cross section
area of the strand. We further note that when the CTE is not uniform over the cross sec-
tion, we do not in general have k1 ¼ k2 ¼ k4 ¼ k5 ¼ 0, i.e., there may be coupling between
thermal expansion and bending, as is reported in [12]. However, when the variation of
CTE is only along the radial direction, we still end up with k1 ¼ k2 ¼ k4 ¼ k5 ¼ 0 follow-
ing the same derivation as above.

In summary, we have created a generalized Timoshenko model for helical strands with thermal
expansion:
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H

(41)

It is governed by five effective elastic moduli Gs, Ee, Eb, Gr, and Cf, and two effective thermal
coefficients, k3 and k6. The values of these constants can be obtained with the procedures men-
tioned above. Then, the general deformation of the helical strand can be solved with 1D beam
equations. We investigate the thermoelastic wave propagation in a helical strand in the following
section. It is a modification of our earlier results where the contribution of thermal expansion to
the torsional moment was assumed zero.

Thermoelastic wave equations

The Timoshenko rod model can now be employed to study the mechanical wave propagation in
a helical strand [22]. The equations of vibration can be separated into two sets uncoupled from
each other: one set of two tension–torsion equations and one set of four bending–shearing equa-
tions. The eigenvalue problems of the two sets of equations are solved, yielding the dispersion
relations and vibration modes. In another article, we studied the thermoelastic waves in a helical
strand with the heat transfer following either a parabolic (i.e., Fourier) or a hyperbolic (i.e.,
Maxwell-Cattaneo) type [21], where the strand was assumed to have tension–torsion coupling,
with the thermal expansion only affecting the axial force, not the axial torque. In contradistinc-
tion to this, in the thermomechanical constitutive law we derived in the current study (Eq. (41)),
one important consequence of the structural chirality is that thermal expansion leads to a change
of the axial torque as well. In this study, the thermoelastic wave problem in a helical strand is
solved with the rod model proposed above. The heat conduction is assumed to follow Fourier’s
law, which is sufficient for the majority of engineering applications.

Since the thermal expansion does not affect the bending and shearing loads, and the tension–-
torsion problem is also uncoupled from the bending–shearing problem, the bending–shearing
equations are excluded in this section, resulting in the following reduced thermomechanical con-
stitutive law

N3 ¼ pR2Eeu
0
3 þ pR3Cf h

0
3�pR2keH (42a)

M3 ¼ pR3Cfu
0
3 þ

1

2
pR4Grh

0
3�pR3krH (42b)

The Fourier heat conduction law states

Q ¼ �AKH0 (43)

where K is the thermal conductivity along the strand’s axis, Q is the heat flux in the whole cross
section, and A is the area of the cross section. The momentum balance equations are reduced
from Eq. (15) to

N0
3 ¼ qA€u3 (44a)
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M0
3 ¼ qJ€h3 (44b)

where J is the torsional moment of inertia of the cross section. Since we effectively replace a hel-
ical strand with a helically reinforced rod with cross section radius R via the constitutive relation
Eq. (41), we have

A ¼ pR2

J ¼ pR4

2

The equation of entropy rate is

T0
_S ¼ �Q0 (45)

where S is the entropy per unit length of the strand and T0 is a reference temperature such that
the instantaneous temperature T ¼ Hþ T0 [36]. In analogy to the thermoelasticity constitutive
theory for linear 3D media [36], the free-energy per unit length of a rod following Eq. (32) can
be written as follows:

W ¼ W0�S0Hþ 1

2
cf gT C½ � cf g� kf gT cf gH�qcvA

2T0
H

2 (46)

Then,

S ¼ � @W

@T
¼ kf gT cf g þ

qcvA

T0
H (47)

by properly choosing the reference state entropy value. Substituting Eqs. (43) and (47) into Eq.
(45) and assuming jHj � T0, we get

T0

A
kf gT c

:� �þ qcv _H ¼ KH00 (48)

which, in view of Eq. (41), is reduced to

T0 ke u
0
3

:

þkrR h03
:	 


þ qcv _H ¼ KH00 (49)

Equations (42) and (44) can be combined, which then together with Eq. (49) form the follow-
ing three coupled equations governing the thermomechanical behavior of the helical strand

q€u3 ¼ Eeu
00
3 þ RCf h

00
3�keH

0 (50a)

q
R

2
€h3 ¼ Cf u

00
3 þ

R

2
Grh

00
3�krH

0 (50b)

qcv _H ¼ KH00�T0 ke u
0
3

:

þkrR h03
:	 


(50c)

Note that the coupling between torsion and temperature is accounted for here, due to a non-
zero kr, which is neglected in Ref. [21].

Thermoelastic coupling and wave solutions

Assuming the following space-time-harmonic wave form solutions,

u3 x; tð Þ ¼ A� exp ik x�ctð Þ½ � (51a)

h3 x; tð Þ ¼ B� exp ik x�ctð Þ½ � (51b)

H x; tð Þ ¼ C� exp ik x�ctð Þ½ � (51c)
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we arrive at the dispersion relation

Ee�c2q CfR i
ke

k

Cf
1

2
R Gr�c2q
� �

i
kr

k
ckeT0

qcv

ckrRT0

qcv

K

qcv
�i

c

k













































¼ 0 (52)

Note that the matrix is full, due to the thermal coupling with tension and torsion. The solutions

of the dispersion relation remain the same if a row or a column is multiplied by a constant.

Hence, the following equivalent form is obtained:

1�c2
q

Ee

ffiffiffiffi

�c
p ffiffiffiffi

�e
p

ffiffiffiffi

�c
p

1�c2
q

Gr

ffiffiffiffiffiffiffi

�r�c
p

ffiffiffiffi

�e
p ffiffiffiffiffiffiffi

�r�c
p � 1þ iC

c

� �













































¼ 0 (53)

where

ge ¼
ke

Ee
; gr ¼

kr

Cf
; C ¼ kK

cvq
; �e ¼ g2e

T0

cv

Ee

q
; �r ¼ g2r

T0

cv

Ee

q
; �c ¼ 2

C2
f

EeGr
:

Note that �e, �r and �c are non-dimensional, while C has the unit of celerity. �c is a measure of

chirality (�c ¼ 0 if the lay angle is 0). �e and �r are the thermoelastic coupling factors. For an iso-

tropic straight rod under isothermal condition, the longitudinal wave celerity is
ffiffiffiffiffiffiffiffi

E=q
p

, and the

torsional celerity is
ffiffiffiffiffiffiffiffiffi

G=q
p

. If the thermoelastic coupling is considered, then, under an adiabatic

condition, the longitudinal celerity is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

q
1þ �ð Þ

s

; with � ¼ g2ET0

qcv
(54)

while the torsional celerity remains the same [37]. The parameter � represents the thermoelastic

coupling. In our case, there is thermal expansion effect in both the longitudinal and the torsional

directions due to chirality, quantified by ge and gr, respectively. Therefore, we have two thermo-

elastic coupling factors, �e and �r. C is the product of the thermal diffusivity K=cvq and the wave-

number k, and thus, a small C may correspond to a large wavelength (k � 1) or low thermal

conductivity. As is discussed later, C is an important parameter in the transition of the solution

from the adiabatic regime to the isothermal regime.
Multiplying Eq. (53) by c we obtain a fifth-order polynomial equation in c with five roots that

are in general complex. This polynomial is denoted FðcÞ henceforth. The coefficients of the odd-

order terms are real and the even-oder terms purely imaginary. For such an equation, if c is a

root, then -�c is a root as well, where �c is the conjugate of c, i.e., the roots are in pairs

6Rcþ Ic 
 i or a pure imaginary number. It will be seen later that the two pairs of roots

6Rcþ Ic 
 i correspond to the quasi-longitudinal wave and the quasi-torsional wave, whereas the

single pure imaginary root corresponds to the thermal field. Here “quasi” means that the longitu-

dinal mode is always coupled with a small torsional motion and vice versa, due to chirality

[21,38]. For brevity, we omit "quasi" in the following writing.
According to Eq. (51), Rc represents the celerity of the wave, and �k 
 Ic represents the

damping factor. The solutions to FðcÞ ¼ 0 can be computed numerically in general. However,

analytic solutions exist for special cases, which reveal important properties of the waves. We will

discuss the analytic solutions below. Before the discussion, it is helpful to rewrite the original
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equation FðcÞ in the form

F cð Þ ¼ cþ iCð ÞQ cð Þ� c P cð Þ
where PðcÞ and QðcÞ are polynomials in c with real coefficients

P cð Þ ¼ Ee

q
�e þ

Gr

q
�c�r

� �

c2�Ee

q

Gr

q
�e��c 2

ffiffiffiffiffiffiffi

�e�r
p ��r

� �� �

Q cð Þ ¼ Ee

q
�c2

� �

Gr

q
�c2

� �

�Gr

q

Ee

q
�c

(55)

Case I: No thermal expansion

If there is no thermal expansion, i.e., �e ¼ �r ¼ 0, the mechanical and thermal equations in Eq.
(50) are decoupled. We have FðcÞ ¼ ðcþ iCÞQðcÞ. The root �iC is associated with the thermal
field. Since the real part is zero (c

ð1Þ
th ¼ 0), this is a purely diffusive solution, with the damping

d 1ð Þ
th ¼ kC ¼ K

cvq
k2

which is proportional to the wavenumber squared and the thermal diffusivity K=ðqcvÞ. For mech-
anical waves the celerities for longitudinal and torsional waves are found as the roots of
QðcÞ ¼ 0,

c 1ð Þ
l ¼

Ee þ Gr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ee�Grð Þ2 þ 4EeGr�c

q

2q

0

@

1

A

1=2

(56a)

c 1ð Þ
t ¼

Ee þ Gr�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ee�Grð Þ2 þ 4EeGr�c

q

2q

0

@

1

A

1=2

(56b)

Because ðEe�GrÞ2 þ 4EeGr�c > 0, no damping is present in the elastic waves (d
ð1Þ
l ¼ d

ð1Þ
t ¼ 0).

The celerities are consistent with quasi-torsional and quasi-longitudinal wave solutions of a helix
obtained in [22,38]. Also note that C is not present in the solutions, suggesting the waves are
nondispersive and independent of the thermal conductivity.

If the helix has a small lay angle such that �c � 1, a Taylor expansion gives

c 1ð Þ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ee

q
þ EeGr

q Ee � Grð Þ �c

s

þO �2c
� �

; c 1ð Þ
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gr

q
� EeGr

q Ee � Grð Þ �c

s

þO �2c
� �

(57)

Case II: Asymptotics using small thermoelastic coupling condition

When �r 6¼ 0; �e 6¼ 0, but �e � 1 and �r � 1, there is a weak thermoelastic coupling. This is in
particular true for a small coefficient of thermal expansion, which is the case for many engineer-
ing materials. The effect of the thermoelastic coupling on the wave solutions can then be intro-
duced as a perturbation term.

Perturbation method

Consider a solution cð1Þ for the problem with �e ¼ �r ¼ 0. The new solution can be written as
c ¼ cð1Þ þ dcþOð�2e;rÞ. Here, Oð�2e;rÞ means that dc is of the same order of magnitude as �e, �r or
ffiffiffiffiffiffiffi

�e�r
p

, with dc to be solved. A Taylor series expansion of F up to the first order in the neighbor-
hood of cð1Þ gives
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F c 1ð Þ þ dc
� �

�F c 1ð Þð Þ þ dc
@F
@c









c¼c 1ð Þ
(58)

¼ c 1ð Þ þ iC
� �

Q c 1ð Þð Þ�c 1ð ÞP c 1ð Þð Þ þ dc
@F
@c









c¼c 1ð Þ
(59)

¼ �c 1ð ÞP c 1ð Þð Þ þ dc
@F
@c









c¼c 1ð Þ
(60)

where the last equality is from the definition of cð1Þ. The quantities �cð1ÞPðcð1ÞÞ and @F=@cjc¼cð1Þ

are functions of �e and �r. As �e � 1 and �r � 1, it is sufficient to solve Eq. (58) to the first order
in �e and �r, giving a linear relation in terms of dc that can be solved analytically:

dc
@ cþ iCð ÞQ cð Þ

@c









c¼c 1ð Þ
¼ c 1ð ÞP c 1ð Þð Þ (61)

This procedure is conducted with respect to each root for the case of zero thermal expansion,
c
ð1Þ
l ; c

ð1Þ
t , and �iC.

Elastic field

With Eqs. (61) and (55), the perturbations for the longitudinal and torsional wave solutions are

dc ¼ c
P cð Þ

cþ iCð Þ @Q
@c

¼
Ee
q
�e þ Gr

q
�c�r

	 


c2� Ee
q
Gr

q
�e��c 2

ffiffiffiffiffiffiffi

�e�r
p ��r

� �� �

4 cþ iCð Þ c2 � EeþGr

2q

	 
 (62)

with c ¼ c
ð1Þ
l or c

ð1Þ
t , respectively. This solution contains an imaginary coefficient through

ðcþ iCÞ�1, hence there is damping in the elastic waves. Since all other variables are real, the
amount of damping is controlled by C. In particular, two situations are considered, C � c (where
c ¼ c

ð1Þ
l , or c

ð1Þ
t ), and C  c. The physical meanings of these two conditions can be elucidated

with the Fourier number. The Fourier number is defined as Fo ¼ DTc=L
2
c where D ¼ K=cvq is

the thermal diffusivity, Tc is the characteristic time scale, and Lc the characteristic length scale.
For the wave-form solution Eq. (51), the time scale is Tc ¼ 2p=x ¼ 2p=ck and the length scale is
the wavelength Lc ¼ 2p=k, so

Fo ¼ 1

2p

Kk

cvqc
¼ 1

2p

C

c
(63)

Therefore, the condition C � c is equivalent to Fo � 1. It corresponds to the case where elas-
tic wave propagation dominates the thermal diffusion, i.e., it is an adiabatic process. On the other
hand, C  c is equivalent to Fo  1, representing the case where thermal diffusion dominates
the elastic wave propagation, i.e., it is an isothermal process. We define the wavenumber such
that C ¼ c as the critical wavenumber,

kcr ¼
qcvc

K
(64)

which can used to estimate where the adiabatic-isothermal transition occurs as the wavenumber
varies. Similarly, we have the critical frequency

xcr ¼ kcrc ¼
qcvc

2

K
(65)

In practice, c in Eqs. (63)–(65) is a characteristic celerity, and one can also use
ffiffiffiffiffiffiffiffiffiffi

Ee=q
p

(for
longitudinal waves) and

ffiffiffiffiffiffiffiffiffiffi

Gr=q
p

(for torsional waves), instead of Eq. (56), as they are typically of
the same order of magnitude.
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1. Adiabatic regime: If C � c, then in Eq. (61) the following Taylor series expansion is used
ðcþ iCÞ�1 ¼ 1

c
ð1�i C

c
Þ þ OððC

c
Þ2Þ. The wave celerity and damping become

c 2ð Þ
l;t ¼ cþ

Ee

q
�e þ

Gr

q
�c�r

� �

c2�Ee

q

Gr

q
�e��c 2

ffiffiffiffiffiffiffi

�e�r
p ��r

� �� �

4c c2 � Ee þ Gr

2q

� �

d 2ð Þ
l;t ¼ kC

c2

Ee

q
�e þ

Gr

q
�c�r

� �

c2�Ee

q

Gr

q
�e��c 2

ffiffiffiffiffiffiffi

�e�r
p ��r

� �� �

4 c2 � Ee þ Gr

2q

� �

(66)

where, on the right-hand side, c ¼ c
ð1Þ
l or c

ð1Þ
t for the longitudinal and torsional waves

respectively. As �e and �r are both proportional to T0, the celerity is linearly dependent on
the temperature and the damping is proportional to the temperature. The celerity is inde-
pendent of C, hence the waves are nondispersive. However, the damping of the elastic waves
is proportional to K and k2. For isotropic thermal expansion, �r ¼ �e, the elastic damping
and celerity are simplified to

c 2ð Þ
l;t ¼ cþ �e

Ee

q
þ Gr

q
�c

� �

c2�Ee

q

Gr

q
1��cð Þ

4c c2 � Ee þ Gr

2q

� �

d 2ð Þ
l;t ¼ kC

c2
�e

Ee

q
þ Gr

q
�c

� �

c2� Ee

q

Gr

q
1��cð Þ

4 c2 � Ee þ Gr

2q

� �

To demonstrate the effect of the lay angle, we take a first-order expansion of Eq. (66) in the
limit of �c � 1, to get

c 2ð Þ
l �

ffiffiffiffiffi

Ee

q

s

1þ �e
2
þ �c

2

Gr

Ee � Gr
1� �e

2

3Ee�Gr

Ee � Gr
þ 2

ffiffiffiffiffiffiffi

�e�r
p� �� �

(67a)

c 2ð Þ
t �

ffiffiffiffiffi

Gr

q

s

1þ �c�r
2

þ Ee

Ee�Grð Þ2
�c
2

Gr 1þ 2
ffiffiffiffiffiffiffi

�e�r
p� �

� Ee 1� �e þ 2
ffiffiffiffiffiffiffi

�r�e
p� �� �

!

(67b)

d 2ð Þ
l � 1

2
kC �e þ �c

ffiffiffiffi

�e
p Gr

Ee�Grð Þ2
2
ffiffiffiffi

�r
p

Ee � Grð Þ þ ffiffiffiffi

�e
p

Gr � 2Eeð Þ
� �

!

(67c)

d 2ð Þ
t � 1

2
kC�c

ffiffiffiffi

�r
p � Ee

Ee � Gr

ffiffiffiffi

�e
p� �2

(67d)

If we neglect the quadratic terms Oð�c�eÞ and Oð�c�rÞ, Eq. (67) can be written as

c 2ð Þ
l � c 1ð Þ

l þ
ffiffiffiffiffi

Ee

q

s

�e
2
; d 2ð Þ

l � 1

2
kC�e (68a)

c 2ð Þ
t � c 1ð Þ

t ; d 2ð Þ
t � 0 (68b)
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In other words, in the case of weak chirality and thermoelastic coupling, the longitudinal

thermoelastic coupling has a more significant effect on the longitudinal waves than on the

torsional waves, and the effect of torsional thermoelastic coupling is negligible on both waves.

For isotropic thermal expansion, the dampings for the longitudinal and torsional waves in

Eq. (67) are further simplified to

d 2ð Þ
l ¼ 1

2
kC�e 1� �c

Gr

Ee � Gr

� �2
 !

; d 2ð Þ
t ¼ 1

2
kC�e�c

Gr

Ee � Gr

� �2

(69)

Since �c is always positive, it is observed from Eq. (69) that the chirality reduces the damping

of the longitudinal wave and increases the damping of the torsional wave by the same

amount. If we use the first-order approximation k�x=c
ð1Þ
l for longitudinal waves and

k�x=c
ð1Þ
t for torsional waves in Eq. (69), then we also have the dampings in terms of the

frequency x

d 2ð Þ
l ¼ x2 KT0g

2
e

qc2v

1

2
1� 2

Cf

Ee � Gr

� �2
 !

d 2ð Þ
t ¼ x2 KT0g

2
e

qc2v

Cf

Ee � Gr

� �2

2. Isothermal regime: If C  c, then in Eq. (61) the Taylor series expansion ðcþ iCÞ�1 ¼
� i

C
� c

C
2 þOðð c

C
Þ2Þ is used. If we neglect terms of quadratic or higher orders in c=C, then we

see the wave celerities are the same as those found in the case of no thermal expansion (Eq.

(56)), i.e.,

c 3ð Þ
l � c 1ð Þ

l ; c 3ð Þ
t � c 1ð Þ

t : (70)

However, there is nonzero damping here,

d 3ð Þ
l;t ¼ k

C

Ee
q
�e þ Gr

q
�c�r

	 


c2� Ee
q
Gr

q
�e��c 2

ffiffiffiffiffiffiffi

�e�r
p ��r

� �� �

4 c2 � EeþGr

2q

	 
 (71)

where c ¼ c
ð1Þ
l , or c

ð1Þ
t , depending on whether the wave is longitudinal or torsional. Because

k=C ¼ cvq=K, the damping is independent of the wavenumber. Same as for the adiabatic

regime, the damping is proportional to the temperature T0. It is noticed that Eq. (71) is

essentially the same as its adiabatic counterpart in Eq. (66) if the coefficient k=C is replaced

with kC=c2. For isotropic thermal expansion, the elastic damping is

d 3ð Þ
l;t ¼ k

C
�e

Ee
q
þ Gr

q
�c

	 


c2� Ee
q
Gr

q
1��cð Þ

4 c2 � EeþGr

2q

	 


which in the case of weak chirality, is further simplified to:

d 3ð Þ
l ¼ 1

2

Ee

q

k

C
�e ¼

1

2
E2e g2e

T0

Kq

d 3ð Þ
t ¼ 1

2

G3
r

q Ee�Grð Þ2
k

C
�c�e ¼

CfGr

Ee � Gr

� �2

g2e
T0

Kq

It is observed that cv does not affect damping in the isothermal regime.
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Thermal field

For the thermal field, the perturbation to cð1Þ ¼ �iC is

dc ¼ �iC
P �iCð Þ
Q �iCð Þ ¼ iC

Ee
q
�e þ Gr

q
�c�r

	 


C
2 þ Ee

q
Gr

q
�e��c 2

ffiffiffiffiffiffiffi

�e�r
p ��r

� �� �

Ee
q
þ C

2
	 


Gr

q
þ C

2
	 


� Gr

q
Ee
q
�c

It is purely imaginary, suggesting there is no propagation of the thermal field. The thermal damp-
ing is

d 2ð Þ
th ¼ kC 1�

Ee
q
�e þ Gr

q
�c�r

	 


C
2 þ Ee

q
Gr

q
�e��c 2

ffiffiffiffiffiffiffi

�e�r
p ��r

� �� �

Ee
q
þ C

2
	 


Gr

q
þ C

2
	 


� Gr

q
Ee
q
�c

0

B

@

1

C

A
(72)

which is proportional to k2. If the thermal expansion is isotropic, i.e., �r ¼ �e, the damping is sim-
plified to

d 2ð Þ
th ¼ kC 1� �e

Ee
q
þ Gr

q
�c

	 


C
2 þ Ee

q
Gr

q
1��cð Þ

Ee
q
þ C

2
	 


Gr

q
þ C

2
	 


� Gr

q
Ee
q
�c

0

B

@

1

C

A

In the adiabatic regime, C �
ffiffiffiffi

Ee
q

q

and C �
ffiffiffiffi

Gr

q

q

. The thermal damping Eq. (72) can be repre-
sented in the first-order approximation as follows:

d 2ð Þ
th � kC 1�

�e��c 2
ffiffiffiffiffiffiffi

�e�r
p ��r

� �

1� �c

!

and for isotropic thermal expansion,

d 2ð Þ
th � kC 1��eð Þ (73)

In the isothermal regime, d
ð2Þ
th � kC in the first-order approximation for both anisotropic and

isotropic thermal expansions.

Case III: Asymptotics without using small thermoelastic coupling condition

When �e and �r are not small, the solutions cannot be obtained with the perturbation method.
However, we can still consider the solutions in the adiabatic or the isothermal regimes. We notice
that the dispersion relation Eq. (53) can be further nondimensionalized by introducing,

Table 5. Asymptotic behavior of the solutions.

Adiabatic Isothermal

Condition x � cvq
K
c2; k � cvq

K
c; Fo � 1 x  cvq

K
c2; k  cvq

K
c; Fo  1

Celerity (�e; �r � 1) c
ð2Þ
l and c

ð2Þ
t (Eq. 66) c

ð1Þ
l and c

ð1Þ
t (Eq. 56)

Independent of k, non-dispersive Independent of k, non-dispersive
Linear in T0 Independent of T0

Celerity (�e; �r finite) c
ð4Þ
l and c

ð4Þ
t (Eq. 76) c

ð1Þ
l and c

ð1Þ
t (Eq. 56)

Independent of k, non-dispersive Independent of k, non-dispersive
Dependent on T0 Independent of T0

Damping (�e; �r � 1) d
ð2Þ
l and d

ð2Þ
t (Eq. 66) d

ð3Þ
l and d

ð3Þ
t (Eq. 71)

Proportional to k
2 Independent of k

Proportional to T0 Proportional to T0

Damping (�e; �r finite) d
ð4Þ
l and d

ð4Þ
t (Eq. 76) d

ð5Þ
l and d

ð5Þ
t (Eq. 78)

Proportional to k
2 Independent of k

Dependent on T0 Proportional to T0
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Fo ¼ 1

2p

C
ffiffiffiffiffiffiffiffiffiffi

Ee=q
p ; c� ¼ c

ffiffiffiffiffiffiffiffiffiffi

Ee=q
p : (74)

According to the discussions above, the wave propagation is an adiabatic process when
Fo � 1. In that case, the solution c� can be written as an asymptotic expansion with respect to
Fo:

c� ¼ c�0 þ c�1FoþO Fo2ð Þ (75)

Substituting Eq. (75) into the dispersion relation, and setting the leading two terms to zero, we
can get explicit solutions for c�0 and c�1. It is found that c�0 is real and c�1 is purely imaginary.
Therefore, the leading term for celerity is c�0

ffiffiffiffiffiffiffiffiffiffi

Ee=q
p

, and the leading term for damping is
�2pk 
 Fo 
 Iðc�1Þ 


ffiffiffiffiffiffiffiffiffiffi

Ee=q
p

. Thus, we get the following celerity and damping:

c 4ð Þ
l ¼ 1

2q
Ee 1þ �eð Þ þ Gr 1þ �c�rð Þ þ E2e 1þ �eð Þ2 þ G2

r 1þ �c�rð Þ2
h	

�

�2EeGr 1þ �e � 2�c � 4
ffiffiffiffiffiffiffi

�e�r
p

�c þ �c�r � �c�e�r
� �

i1=2
��1=2

(76a)

c 4ð Þ
t ¼ 1

2q
Ee 1þ �eð Þ þ Gr 1þ �c�rð Þ� E2e 1þ �eð Þ2 þ G2

r 1þ �c�rð Þ2
h	

�

�2EeGr 1þ �e � 2�c � 4
ffiffiffiffiffiffiffi

�e�r
p

�c þ �c�r � �c�e�r
� �

i1=2
��1=2

(76b)

d 4ð Þ
l;t ¼ kC

2



Ee þ Gr� EeGr 1��cð Þ
c2q

�c2q

Ee 1þ �eð Þ þ Gr 1þ �c�rð Þ � 2c2q
; with c ¼ c 4ð Þ

l or c 4ð Þ
t (76c)

Upon taking the limit of �e, �r � 1, Eq. (76) reduces to Eq. (66). Same as for weak thermoelas-
tic coupling, the celerities are also independent of the wavenumber, and the dampings are pro-
portional to k2. However, it is no longer the case that the celerities are linear in T0 and the
dampings are proportional to T0. It was the case for adiabatic waves with weak thermoelastic cou-
pling simply because we assumed �e, �r � 1.

On the other hand, the waves are isothermal when Fo  1. An asymptotic expansion of the
solution with respect to 1=Fo is pursued:

c� ¼ c�0 þ
c�1
Fo

þO 1

Fo2

� �

(77)

Following the same procedure as above, we again find c�0 real and c�1 purely imaginary. The
leading term for celerity is c�0

ffiffiffiffiffiffiffiffiffiffi

Ee=q
p

, and the leading term for damping is
�kIðc�1Þ 


ffiffiffiffiffiffiffiffiffiffi

Ee=q
p

=ð2p 
 FoÞ. The final solutions are

c 5ð Þ
l ¼ c 1ð Þ

l ; c 5ð Þ
t ¼ c 1ð Þ

t (78a)

d 5ð Þ
l ¼ k

4Cq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4EeGr�c þ Ee�Grð Þ2
q 
 �e E2e þ Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4EeGr�c þ Ee�Grð Þ2
q

� EeGr

� ��

Table 6. Values of additional properties of the steel strand to be used for celerity calculation.

Property Actual Equation Effective

Density 7:8� 103 kg=m3
q ¼ qactual

pr2
0
þ6pr2

1

pR2
5:94� 103 kg=m3

Thermal conductivity 50 W=ðmKÞ
K ¼ Kactual

pr2
0
þ6pr2

1

pR2
38 W=ðmKÞ

Specific heat 500 J=ðkgKÞ cv ¼ cv;actual 500 J=ðkgKÞ
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þ�r �EeGr�c þ Gr�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4EeGr�c þ Ee�Grð Þ2
q

þ G2
r �c

� �

þ 4EeGr�c
ffiffiffiffiffiffiffi

�e�r
p �

(78b)

d 5ð Þ
t ¼ k

4Cq
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With the definition C ¼ kK=ðqcvÞ, the dampings are independent of k. The dampings are also

proportional to T0 in view of the definitions of �e and �r.

Table 7. The mechanical celerities in different special cases.

Case
Longitudinal Torsional

Equation Celerity ðm=sÞ Equation Celerity ðm=sÞ
No helix, no thermal expansion

ffiffiffiffiffiffiffiffiffi

Ee=q
p

4553.49
ffiffiffiffiffiffiffiffiffiffi

Gr=q
p

1646.81
No expansion, or isothermal Eq. (56a) 4679.52 Eq. (56b) 1244.30
Adiabatic Eq. (66) 4683.60 at 293 K Eq. (66) 1244.31 at 293 K

4686.10 at 473 K 1244.31 at 473 K
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Figure 3. Numerical solutions for (a) longitudinal waves and (b) torsional waves at different temperatures. The critical wavenum-
bers for adiabatic-isothermal transition computed with Eq. (64) are indicated by the vertical dotted lines. Note the transitions for
the longitudinal and the torsional waves do not occur at the same wavenumber.
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Figure 4. The ratio between the dampings at T0 ¼ 473 K and at T0 ¼ 293 K: (a) longitudinal waves and (b) torsional waves.
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The asymptotic behaviors of the solutions in the adiabatic and the isothermal regimes are

summarized in Table 5. Note that while the waves in either the adiabatic or the isothermal

regimes are nondispersive, the waves between these two limits are in general dispersive.

Numerical example

As a numerical example, we take the values of the moduli Ee, Gr, Cf, ke, and kr of the b ¼ 17
	

steel strand from the finite element analysis above. The effective density, thermal conductivity

and specific heat are listed in Table 6.
According to these values we have �e ¼ �r ¼ 1:75� 10�3 at T0 ¼ 293 K; �e ¼ �r ¼ 2:83� 10�3

at T0 ¼ 473 K, and �c ¼ 0:397. Therefore, we can use the condition of weak thermoelastic cou-

pling �e � 1, but not weak chirality �c � 1. The critical wavenumber for the adiabatic-isothermal

transition kcr is estimated as 3:5� 108 m�1 using c ¼
ffiffiffiffiffiffiffiffiffiffi

Ee=q
p

. It is well beyond the range of

wavenumbers for practical purposes. In fact, it corresponds to a wavelength

2p=k ¼ 1:7� 10�8 m, which is too low for the rod model to be valid (since the radius R ¼
5:7 mm is much larger than the wavelength). In terms of frequency, the transition occurs around

f ¼ kcrc=2p� 250 GHz, which is much higher than frequencies in practical applications.

Therefore, the thermoelastic waves in the steel strand are essentially adiabatic. However, it is pos-

sible to reach the isothermal regime with a helical strand of a different material or structure. In

particular, the isothermal regime is more likely to be achieved for a material with low elastic

moduli, low density and high thermal conductivity, and a strand with a large lay angle, or a sub-

micron cross section. The numerical results of the celerities under different special cases for the

steel strand are shown in Table 7. It is observed that the torsional celerity is almost unchanged

with the isothermal-adiabatic transition, which is consistent with Eq. (68) though �c is not so

small in this case. The longitudinal celerity increases by �4m=s with the transition at 293 K,

which is small, but experimentally measurable. The amount of increase is also comparable with

the celerity difference estimated from Eq. (68): 3:98m=s.
To obtain solutions in general cases (away from the adiabatic, or isothermal limits), numerical

methods are needed to solve Eq. (53). The numerical solutions of celerities and dampings are

shown as functions of the wavenumber in Figure 3. As the asymptotic analysis has shown, the

celerities approach the adiabatic solutions for small wavenumbers, and approach the isothermal

solutions for large wavenumbers. This is because thermal equilibrium can be established quickly

for short waves but slowly for long waves [13,39]. It is also seen from the figure that the damping

scales as k2, for small k’s, and plateaus for large k’s, consistent with the result of the asymptotic

analysis. The dampings are extremely small (as low as 10�11�10�8 s�1) for this range of wave-

numbers. Therefore, the thermoelastic damping is negligible and mechanical damping is

more important.
Next, the temperature effects on the thermoelastic waves are investigated. The main consider-

ation is that, with novel designs of overhead power transmission lines, operating temperatures

can reach 200�250
	
C [40]. The dampings in both the longitudinal waves and the torsional

waves increase by a factor of about 1.6 with the temperature increasing from 293 K to 473 K for

our steel strand (Figure 4). But such an increase does not bring a fundamental difference in the

damping behavior, as the absolute values of the dampings remain negligible, as shown in Figure

3. Overall, the numerical results show that for the steel strand, the errors of neglecting the ther-

modynamics and the thermal expansion are very small when compared with the alterations of the

celerity brought about by pure tension–torsion coupling. Thermoelastic damping is essentially

almost absent for practical applications, and mechanical damping is the dominant source of

damping. These results are expected, as they support the use of pure mechanical equations for

wave propagations in helical strands for most engineering applications. However, the
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thermomechanical coupling effect can be large for high temperature applications, or materials

with a high coefficient of thermal expansion, as either case leads to large thermoelastic cou-

pling constants.
It is worth comparing the results we obtained above for a helical strand with the solutions for

thermoelastic waves in an isotropic elastic medium [41]. Both solutions approach the adiabatic

limit for long waves and the isothermal limit for short waves. In both cases, the longitudinal

waves are dispersive and damped. However, there are fundamental differences in our solutions

due to the helical structure. In an isotropic medium, the transverse waves do not interact with

the temperature field, and only the longitudinal waves are coupled with thermodynamics. As a

result, the transverse waves are nondispersive and undamped. In contrast, in the helical medium,

the torsional waves (which are a 1D form of transverse waves) are also coupled with the tem-

perature field, and thus are also dispersive and damped.

Conclusion

In this study, a helical strand without internal slip is modeled as a generalized Timoshenko rod.

In a most general Timoshenko rod model, the cross section force and moment components are

related to the local deformation by a full 6� 6 stiffness matrix. For the helical strand, we identify

the zero entries in the stiffness matrix, following a similar procedure to the one we used for [22],

which is based on the assumption that the helical strand has the same structural symmetry as a

helically reinforced continuum. The model is then extended by introducing thermal expansion

terms into the constitutive relation. In the end, we arrive at a thermomechanical constitutive rela-

tion with five effective moduli, Ee (extension), Eb (bending), Cf (coupling), Gs (shearing) and Gr

(torsion) and two thermal coefficients, k3 (extensional-thermal coupling) and k6 (torsional-ther-

mal coupling). In the stiffness matrix, bending–shearing is uncoupled from tension–torsion. The

bending–shearing coupling and tension–torsion coupling are both characterized by the coupling

moduli Cf. Thermal expansion only affects the axial force and the torsional moment, but not the

bending moments and transverse shear forces. In particular, the effect of thermal expansion on

the torsional moment is rooted in the presence of helices, and it vanishes when the lay angle

reaches zero. For a specific helical strand structure, the values of the effective moduli can be

obtained with finite element analysis, or partially, from analytic solutions.
The non-classical bending behavior of helical strands in which an out-of-plane bending

moment or transverse force is required to maintain a planar deflection, is predicted by the

Timoshenko model and also verified by finite element analysis on a 1þ 6 strand structure. The

nonclassical bending response is due to the bending–shearing coupling in helical strands, which

is considered in the constitutive relation of the Timoshenko rod model. As a comparison, the

Euler–Bernoulli model wrongly predicts those out-of-plane load components to be zero as the

bending–shearing coupling is neglected.
Other than the bending–shearing coupling, the chirality in helical strands causes a coupling

between the torsional deformation and the temperature field, which is also explicitly included in

the constitutive relation of the Timoshenko rod model. The harmonic thermoelastic waves in hel-

ical strands are solved with this model. The dispersion relation is governed by four nondimen-

sional parameters: two thermoelastic coupling constants, �e and �r , one chirality parameter �c, and
the Fourier number Fo. Both the quasi-longitudinal and quasi-torsional waves are dispersive and

damped. The dampings originate from the extensional-thermal and torsional-thermal couplings.

The celerities of short waves approach the isothermal limit, and long waves the adiabatic limit.

More generally, the adiabatic-isothermal transition is controlled by the Fourier number: the solu-

tions are in the adiabatic regime for Fo � 1, and in the isothermal regime for Fo  1. The

dampings of the waves increase with the wavenumber and eventually plateau as the wavenumber

grows to infinity.
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