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By using dimension reduction and homogenization techniques, we study the steady flow of an incompresible viscoplastic Bingham fluid in a thin porous medium. A main feature of our study is the dependence of the yield stress of the Bingham fluid on the small parameters describing the geometry of the thin porous medium under consideration. Three different problems are obtained in the limit when the small parameter ε tends to zero, following the ratio between the height ε of the porous medium and the relative dimension aε of its periodically distributed pores. We conclude with the interpretation of these limit problems, which all preserve the nonlinear character of the flow.

Introduction

In this paper we study the asymptotic behavior of the flow of a viscoplastic Bingham fluid in a thin porous medium which contains an array of bodies modelized as vertical cylindrical obstacles (the pores). We refer the reader to the very recent paper [START_REF] Bernabeu | Laminar shallow viscoplastic fluid flowing through an array of vertical obstacles[END_REF] and the references therein for the application of our study to problems issued from the real life applications. As a first example one can mention the flow of the volcanic lava through dense forests (see [START_REF] Lipman | Ground deformation associated with the 1975 magnitude-7.2 earthquake and resulting changes in activity of kilauea volcano[END_REF]). Another important application is the flow of fresh concrete spreading through networks of steel bars (see [START_REF] Vasilic | Flow of fresh concrete through steel bars: a porous medium analogy[END_REF]).

The model of thin porous medium of thickness much smaller than the distance between the pores was introduced in [START_REF] Zhengan | Homogenization of a stationary Navier-Stokes flow in porous medium with thin film[END_REF], where a stationary incompressible Navier-Stokes flow was studied. Recently, the model of thin porous medium under consideration in this paper was introduced in [START_REF] Fabricius | Darcy's Law for Flow in a Periodic Thin Porous Medium Confined Between Two Parallel Plates[END_REF], where the flow of an incompressible viscous fluid described by the stationary Navier-Stokes equations was studied by the multiscale expansion method, which is a formal but powerful tool to analyse homogenization problems. These results were rigorously proved in [START_REF] Anguiano | The transition between the Navier-Stokes equations to the Darcy equation in a thin porous medium[END_REF] using an adaptation introduced in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF] of the periodic unfolding method from [START_REF] Cioranescu | The periodic Unfolding Method in Homogenization[END_REF] and [START_REF] Cioranescu | The Periodic Unfolding Method: Theory and Applications to Partial Differential Problems[END_REF]. This adaptation consists of a combination of the unfolding method with a rescaling in the height variable, in order to work with a domain of fixed height, and to use monotonicity arguments to pass to the limit. In [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF], in particular, the flow of an incompressible stationary Stokes system with a nonlinear viscosity, being a power law, was studied. For non-stationary incompressible viscous flow in a thin porous medium see [START_REF] Anguiano | Darcy's laws for non-stationary viscous fluid flow in a thin porous medium[END_REF], where a non-stationary Stokes system is considered, and [START_REF] Anguiano | On the non-stationary non-Newtonian flow through a thin porous medium[END_REF], where a non-stationary non-newtonian Stokes system, where the viscosity obeyed the power law, is studied. For the periodic unfolding method applied to the study of problems stated in other type of thin periodic domains we refer for instance to [START_REF] Griso | Asymptotic behavior of a crane[END_REF] for crane type structures and to [START_REF] Griso | Junctions between two plates and a family of beams[END_REF], [START_REF] Griso | Asymptotic analysis for domains separated by a thin layer made of periodic vertical beams[END_REF] for thin layers with thin beams structures, where elasticity problems are considered. In [START_REF] Pastukhova | Asymptotic analysis in elasticity problems on thin periodic structures[END_REF], the homogenization of elasticity problems in thin periodic domains of planar grids type is studied. For problems involving arrays of bodies in high-contrast materials we refer the reader to [START_REF] Berlyand | Introduction to the Network Approximation Method for Materials Modeling[END_REF], Chapter 2.

If Π is a three-dimensional domain with smooth boundary ∂Π and f = (f 1 , f 2 , f 3 ) are external given forces defined on Π, then the velocity u = (u 1 , u 2 , u 3 ) of a fluid and its pressure p satisfy the equations of motion

- 3 j=1 ∂ xi (σ(p, u)) ij = f i in Π, 1 ≤ i ≤ 3, (1) 
completed with the fluid's incompressibility condition div u = 

) ij = -pδ ij + 2µ(D(u)) ij , 1 ≤ i, j ≤ 3 (2)
where δ ij is the Kronecker symbol, the real positive µ is the viscosity of the fluid and the entries of the strain tensor are (D(u)) ij = (∂ xj u i + ∂ xi u j )/2. If f belongs to (L 2 (Π)) 3 and the space V is defined by V = {v ∈ (H 1 0 (Π)) 3 | div v = 0}, then u and p satisfying (1) with ( 2) are such that (see for instance [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms[END_REF]):

(Stokes) There is a unique u ∈ V and a unique (up to an additive real constant) p ∈ L 2 (Π) such that (if < •, • > is the dual pairing between (H -1 (Π)) 3 and (H 1 0 (Π)) 3 )

a(u, v) = l(v)-< ∇p, v >, ∀v ∈ (H 1 0 (Π)) 3 , (3) 
with a(u, v) = 2µ A fluid whose stress is not defined by relation ( 2) is called a non-newtonian fluid. There are several classes of non-newtonian fluids, as the power law, Carreau, Cross, Bingham fluids. It is on the study of the last type of fluid that we are interested in this paper. We refer to [START_REF] Cioranescu | Mechanics and mathematics of fluids of the differential type[END_REF] for a review on non-newtonian fluids. For a Bingham fluid, the nonlinear stress tensor is defined by (see [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF])

(σ(p, u)) ij = -pδ ij + 2µ(D(u)) ij + √ 2g (D(u)) ij |D(u)| , (4) 
where |D(u)| 2 = D(u) : D(u) = 0 and the positive number g represents the yield stress of the fluid. If g = 0, then (4) becomes [START_REF] Anguiano | On the non-stationary non-Newtonian flow through a thin porous medium[END_REF]. Viscoplastic Bingham fluids are quite often encountered in real life. As examples one can mention volcanic lava, fresh concrete, the drilling mud, oils, clays and some paintings. For u g and p g satisfying ( 1) with (4), according to [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF], one has the following result:

(Bingham) There is a unique u g ∈ V and a (non-unique)

p g ∈ L 2 (Π)/R such that a(u g , v -u g ) + j(v) -j(u g ) ≥ l(v -u g )-< ∇p g , v -u g >, ∀v ∈ (H 1 0 (Π)) 3 . (5) 
Here a, l, < •, • > are as before and

j(v) = √ 2g Π |D(v)|dx, ∀v ∈ (H 1 0 (Π)) 3 .
If the yield stress of the Bingham fluid is of the form g(ε), with ε ∈]0, 1[ and such that g(ε) tends to zero when ε tends to zero, then, according to [ [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF], Chapter 6, Théorème 5.1.], the following result holds When ε tends to zero, one has for the solution u ε of problem (5) corresponding to g(ε) the following convergence

u ε u weakly in V,
where u is the solution of problem (3).

This means that, in a fixed domain, the nonlinear character of the Bingham flow is lost in the limit (when the yield stress tends to zero), as it is expected. A natural question that arises is the following: If the yield stress g(ε)

is as before and, moreover, the domain Π itself depends on the small parameter ε, what happens when ε tends to zero? The answer is that, in the limit, the nonlinear character of the flow may be preserved. For instance, if Π ε is a classical rigid porous medium, it was proven in [START_REF] Lions | Écoulement d'un fluide viscoplastique de Bingham dans un milieu poreux[END_REF] with the asymptotic expansion method that, in a range of parameters, the nonlinear character of the Bingham flow is preserved in the homogenized problem, which is a nonlinear Darcy equation. The convergence corresponding to the above mentioned result was proven in [START_REF] Bourgeat | A note on homogenization of Bingham flow through a porous medium[END_REF] with the two-scale convergence method and then recovered in [START_REF] Bunoiu | Unfolding Method for the Homogenization of Bingham flow, Modelling and Simulation in Fluid Dynamics in Porous Media[END_REF] with the periodic unfolding method. The case of a doubly periodic rigid porous medium was studied in [START_REF] Bunoiu | Bingham Flow in Porous Media with Obstacles of Different Size[END_REF], where a more involved nonlinear Darcy equation is derived. Another class of domains for which the nonlinear character of the flow may be preserved in the limit is those of thin domains. The case of a domain Π ε which is thin in one direction was addressed in [START_REF] Bunoiu | Fluide de Bingham dans une couche mince[END_REF] and [START_REF] Bunoiu | Asymptotic behaviour of a Bingham fluid in thin layers[END_REF]. We refer to [START_REF] Bunoiu | Asymptotic Analysis of a Bingham Fluid in a Thin T-like Shaped Structure[END_REF] for the asymptotic analysis of a Bingham fluid in a thin T-like shaped domain. In all these cases, a lower-dimensional Bingham-like law was exhibited in the limit. This law was already encountered in engineering (see [START_REF] Liu | Approximate equations for the slow spreading of a thin sheet of Bingham plastic fluid[END_REF]), but no rigurous mathematical justification was previously known. A first mathematical result combining both periodic and thin domains for the Bingham flow was announced in [START_REF] Anguiano | On the Flow of a Viscoplastic Fluid in a Thin Periodic Domain[END_REF]. For the shallow flow of a viscoplastic fluid we refer the reader to [START_REF] Fernández-Nieto | Shallow water equations for power law and Bingham fluids[END_REF], [START_REF] Bresch | Augmented Lagrangian Method and Compressible Visco-Plastic Flows : Applications to Shallow Dense Avalanches[END_REF], [START_REF] Ionescu | Onset and dynamic shallow flow of a viscoplastic fluid on a plane slope[END_REF], [START_REF] Ionescu | Augmented Lagrangian for shallow viscoplastic flow with topography[END_REF] and [START_REF] Ionescu | Viscoplastic shallow flow equations with topography[END_REF]. For a homogenized non-newtonian viscoelastic model we refer to [START_REF] Berlyand | Homogenized Non-Newtonian Viscoelastic Rheology of a Suspension of Interacting Particles in a Viscous Newtonian Fluid[END_REF].

The paper is organized as follows. In Section 2. we state the problem: we define in (6) the thin porous medium Ω ε (see also Figure 1), of height ε and relative dimension a ε of its periodically distributed pores. In Ω ε we consider the flow of a viscoplastic Bingham fluid with velocity u ε and pressure p ε verifying the nonlinear variational inequality [START_REF] Bresch | Augmented Lagrangian Method and Compressible Visco-Plastic Flows : Applications to Shallow Dense Avalanches[END_REF]. In Section 3. we give some a priori estimates for the velocity and for the pressure obtained after the change of variables [START_REF] Bourgeat | A note on homogenization of Bingham flow through a porous medium[END_REF] and verifying [START_REF] Bunoiu | Unfolding Method for the Homogenization of Bingham flow, Modelling and Simulation in Fluid Dynamics in Porous Media[END_REF], and then for the velocity and for the pressure defined in [START_REF] Fernández-Nieto | Shallow water equations for power law and Bingham fluids[END_REF]. In Section 4. by passing to the limit ε → 0, we prove the main convergence results of our paper, stated in Theorems 4.2, 4.4 and 4.6, respectively. Up to our knowledge, problems (36), ( 57) and ( 78) are new in the mathematical literature. We conclude in Section 5. with the interpretation of these limit problems, which all three preserve the nonlinear character of the flow; both effects of a nonlinear Darcy equation and a lower dimensional Bingham-like law appear. The paper ends with a list of References.

Statement of the problem

A periodic porous medium is defined by a domain ω and an associated microstructure, or periodic cell Y = [-1/2, 1/2] 2 , which is made of two complementary parts: the fluid part Y f , and the solid part Y s (Y f Y s = Y and Y f Y s = ∅). More precisely, we assume that ω is a smooth, bounded, connected set in R 2 , and that Y s is an open connected subset of Y with a smooth boundary ∂Y s , such that Y s is strictly included in Y .

The microscale of a porous medium is a small positive number a ε . The domain ω is covered by a regular mesh of size

a ε : for k ∈ Z 2 , each cell Y k ,aε = a ε k + a ε Y is divided in a fluid part Y f k ,
aε and a solid part Y s k ,aε , i.e. is similar to the unit cell Y rescaled to size a ε . We define Y = Y × (0, 1) ⊂ R 3 , which is divided in a fluid part Y f and a solid part Y s , and consequently Y k ,aε = Y k ,aε × (0, 1) ⊂ R 3 , which is also divided in a fluid part Y f k ,aε and a solid part Y s k ,aε .

We denote by τ (Y s k ,aε ) the set of all translated images of Y s k ,aε . The set τ (Y s k ,aε ) represents the solids in R 2 . The fluid part of the bottom ω ε ⊂ R 2 of the porous medium is defined by ω ε = ω\ k ∈Kε Y s k ,aε , where

K ε = {k ∈ Z 2 : Y k ,aε ∩ ω = ∅}.
The whole fluid part Ω ε ⊂ R 3 in the thin porous medium is defined by

Ω ε = {(x 1 , x 2 , x 3 ) ∈ ω ε × R : 0 < x 3 < ε}. (6) 
We make the assumption that the solids τ (Y s k ,aε ) do not intersect the boundary ∂ω. We define Y ε s k ,aε = Y s k ,aε × (0, ε). Denote by S ε the set of the solids contained in Ω ε . Then, S ε is a finite union of solids, i.e.

S ε = k ∈Kε Y ε s k ,aε .
We define Ω ε = ω ε × (0, 1), Ω = ω × (0, 1), and Q ε = ω × (0, ε). We observe that Ω ε = Ω\ k ∈Kε Y s k ,aε , and we define T ε = k ∈Kε Y s k ,aε as the set of the solids contained in Ω ε . We denote by : the full contraction of two matrices; for A = (a i,j ) 1≤i,j≤3 and B = (b i,j ) 1≤i,j≤3 , we have

A : B = 3 i,j=1 a ij b ij .
In order to apply the unfolding method, we will need the following notation. For k ∈ Z 2 , we define κ :

R 2 → Z 2 by κ(x ) = k ⇐⇒ x ∈ Y k ,1 . (7) 
Remark that κ is well defined up to a set of zero measure in R 2 (the set ∪ k ∈Z 2 ∂Y k ,1 ). Moreover, for every a ε > 0, we have

κ x a ε = k ⇐⇒ x ∈ Y k ,aε .
We denote by C a generic positive constant which can change from line to line.

The points x ∈ R 3 will be decomposed as x = (x , x 3 ) with x = (x 1 , x 2 ) ∈ R 2 , x 3 ∈ R. We also use the notation x to denote a generic vector of R 2 .

In Ω ε we consider the stationary flow of an incompressible Bingham fluid. As already seen in the Introduction, following Duvaut and Lions [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF], the problem is formulated in terms of a variational inequality.

For a vectorial function v = (v , v 3 ), we define

(D(v)) i,j = 1 2 ∂ xj v i + ∂ xi v j , 1 ≤ i, j ≤ 3, |D(v)| 2 = D(v) : D(v).
We introduce the following spaces

V (Ω ε ) = {v ∈ (H 1 0 (Ω ε )) 3 | div v = 0 in Ω ε }, H(Ω ε ) = {v ∈ (L 2 (Ω ε )) 3 | div v = 0 in Ω ε , v • n = 0 on ∂Ω ε }. For u, v ∈ (H 1 0 (Ω ε )) 3 , we introduce a(u, v) = 2µ Ωε D(u) : D(v)dx, j(v) = √ 2g(ε) Ωε |D(v)|dx, (u, v) Ωε = Ωε u • vdx,
where the yield stress g(ε) will be made precise in Section 3.

1. Let f ∈ (L 2 (Ω)) 3 be given such that f = (f , 0). Let f ε ∈ (L 2 (Ω ε )) 3 be defined by f ε (x) = f (x , x 3 /ε), a.e. x ∈ Ω ε .
The model of the flow is described by the following variational inequality:

Find u ε ∈ V (Ω ε ) such that a(u ε , v -u ε ) + j(v) -j(u ε ) ≥ (f ε , v -u ε ) Ωε , ∀v ∈ V (Ω ε ). ( 8 
)
From Duvaut and Lions [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF], we know that there exists a unique u ε ∈ V (Ω ε ) solution of problem [START_REF] Bernabeu | Laminar shallow viscoplastic fluid flowing through an array of vertical obstacles[END_REF]. Moreover, from Bourgeat and Mikelić [START_REF] Bourgeat | A note on homogenization of Bingham flow through a porous medium[END_REF], we know that if p ε is the pressure of the fluid in Ω ε , then problem (8) is equivalent to the following one: Find

u ε ∈ V (Ω ε ) and p ε ∈ L 2 0 (Ω ε ) such that a(u ε , v -u ε ) + j(v) -j(u ε ) ≥ (f ε , v -u ε ) Ωε + (p ε , div (v -u ε )) Ωε , ∀v ∈ (H 1 0 (Ω ε )) 3 . (9) 
Problem ( 9) admits a unique solution u ε ∈ V (Ω ε ) and a (non) unique solution p ε ∈ L 2 0 (Ω ε ), where L 2 0 (Ω ε ) denotes the space of functions belonging to L 2 (Ω ε ) and of mean value zero.

Our aim is to study the asymptotic behavior of u ε and p ε when ε tends to zero. For this purpose, we first use the dilatation of the domain Ω ε in the variable x 3 , namely

y 3 = x 3 ε , (10) 
in order to have the functions defined in an open set with fixed height, denoted Ω ε .

Namely, we define ũε

∈ (H 1 0 ( Ω ε )) 3 , pε ∈ L 2 0 ( Ω ε ) by ũε (x , y 3 ) = u ε (x , εy 3 ), pε (x , y 3 ) = p ε (x , εy 3 ) a.e. (x , y 3 ) ∈ Ω ε .
Let us introduce some notation which will be useful in the following. For a vectorial function v = (v , v 3 ) and a scalar function w, we will denote

D x [v] = 1 2 (D x v + D t x v) and ∂ y3 [v] = 1 2 (∂ y3 v + ∂ t y3 v)
, where we denote ∂ y3 = (0, 0, ∂ ∂y3 ) t . Moreover, associated to the change of variables [START_REF] Bourgeat | A note on homogenization of Bingham flow through a porous medium[END_REF], we introduce the operators:

D ε , D ε , div ε and ∇ ε , defined by (D ε v) i,j = ∂ xj v i for i = 1, 2, 3, j = 1, 2, (D ε v) i,3 = 1 ε ∂ y3 v i for i = 1, 2, 3, D ε [v] = 1 2 D ε v + D t ε v , |D ε [v] | 2 = D ε [v] : D ε [v] , div ε v = div x v + 1 ε ∂ y3 v 3 , ∇ ε w = (∇ x w, 1 ε ∂ y3 w) t .
We introduce the following spaces

V ( Ω ε ) = {ṽ ∈ (H 1 0 ( Ω ε )) 3 | div ε ṽ = 0 in Ω ε }, H( Ω ε ) = {ṽ ∈ (L 2 ( Ω ε )) 3 | div ε ṽ = 0 in Ω ε , ṽ • n = 0 on ∂ Ω ε }.
For ũ, ṽ ∈ V ( Ω ε ), we introduce

a ε (ũ, ṽ) = 2µ Ωε D ε [ũ] : D ε [ṽ] dx dy 3 , j ε (ṽ) = √ 2g(ε) Ωε |D ε [ṽ]|dx dy 3 , (ũ, ṽ) Ωε = Ωε ũ • ṽdx dy 3 .
Using the transformation [START_REF] Bourgeat | A note on homogenization of Bingham flow through a porous medium[END_REF], the variational inequality ( 8) can be rewritten as:

Find ũε ∈ V ( Ω ε ) such that a ε (ũ ε , ṽ -ũε ) + j ε (ṽ) -j ε (ũ ε ) ≥ (f, ṽ -ũε ) Ωε , ∀ṽ ∈ V ( Ω ε ), (11) 
and ( 9) can be rewritten as:

Find ũε ∈ V ( Ω ε ) and pε ∈ L 2 0 ( Ω ε ) such that a ε (ũ ε , ṽ -ũε ) + j ε (ṽ) -j ε (ũ ε ) ≥ (f, ṽ -ũε ) Ωε + (p ε , div ε (ṽ -ũε )) Ωε , ∀ṽ ∈ (H 1 0 ( Ω ε )) 3 . ( 12 
)
Our goal now is to describe the asymptotic behavior of this new sequence (ũ ε , pε ).

A Priori Estimates

We start by obtaining some a priori estimates for ũε .

Lemma 3.1. There exists a constant

C independent of ε, such that if ũε ∈ (H 1 0 ( Ω ε )) 3 is the solution of problem (11), one has i) if a ε ≈ ε, with a ε /ε → λ, 0 < λ < +∞, or a ε ε, then ũε (L 2 ( Ωε)) 3 ≤ C µ a 2 ε , D ε [ũ ε ] (L 2 ( Ωε)) 3×3 ≤ C µ a ε , D ε ũε (L 2 ( Ωε)) 3×3 ≤ C µ a ε , (13) 
ii) if a ε ε, then

ũε (L 2 ( Ωε)) 3 ≤ C µ ε 2 , D ε [ũ ε ] (L 2 ( Ωε)) 3×3 ≤ C µ ε, D ε ũε (L 2 ( Ωε)) 3×3 ≤ C µ ε. (14) 
Proof. Setting successively ṽ = 2ũ ε and ṽ = 0 in [START_REF] Bunoiu | Bingham Flow in Porous Media with Obstacles of Different Size[END_REF], we have

2µ Ωε D ε [ũ ε ] : D ε [ũ ε ] dx dy 3 + √ 2g(ε) Ωε |D ε [ũ ε ]|dx dy 3 = Ωε f • ũε dx dy 3 . (15) 
Using Cauchy-Schwarz's inequality and the assumption of f , we obtain that

Ωε f • ũε dx dy 3 ≤ C ũε (L 2 ( Ωε)) 3 ,
and taking into account that Ωε |D ε [ũ ε ]|dx dy 3 ≥ 0, by [START_REF] Bunoiu | Asymptotic behaviour of a Bingham fluid in thin layers[END_REF], we have

D ε [ũ ε ] 2 (L 2 ( Ωε)) 3×3 ≤ C µ ũε (L 2 ( Ωε)) 3 .
For the cases a ε ≈ ε or a ε ε, taking into account Remark 4.3(i) in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF], we obtain the second estimate in (13), and, consequently, from classical Korn's inequality we obtain the last estimate in [START_REF] Bunoiu | Asymptotic Analysis of a Bingham Fluid in a Thin T-like Shaped Structure[END_REF]. Now, from the second estimate in [START_REF] Bunoiu | Asymptotic Analysis of a Bingham Fluid in a Thin T-like Shaped Structure[END_REF] and Remark 4.3(i) in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF], we deduce the first estimate in [START_REF] Bunoiu | Asymptotic Analysis of a Bingham Fluid in a Thin T-like Shaped Structure[END_REF]. For the case a ε ε, proceeding similarly with Remark 4.3(ii) in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF], we obtain the desired result.

The extension of (ũ ε , pε ) to the whole domain Ω

We extend the velocity ũε by zero to the Ω\ Ω ε and denote the extension by the same symbol. Obviously, estimates ( 13)-( 14) remain valid and the extension is divergence free too.

We study in the sequel the following cases for the value of the yield stress g(ε):

i) if a ε ≈ ε, with a ε /ε → λ, 0 < λ < +∞, or a ε ε, then g(ε) = g a ε , ii) if a ε ε, then g(ε) = g ε,
where g is a positive number. These choices are the most challenging ones and they answer to the question adressed in the paper, namely they all preserve in the limit the nonlinear character of the flow.

In order to extend the pressure to the whole domain Ω, the mapping R ε (defined in Lemma 4.5 in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF] as R ε 2 ) allows us to extend the pressure

p ε to Q ε by introducing F ε in (H -1 (Q ε )) 3 : F ε , w Qε = ∇p ε , R ε w Ωε , for any w ∈ (H 1 0 (Q ε )) 3 . ( 16 
)
Setting

succesively v = u ε + R ε w and v = u ε -R ε w in (9) we get the inequality | F ε , w Qε | ≤ |a(u ε , R ε w)| + |(f ε , R ε w) Ωε | + j(R ε w). (17) 
Moreover, if div w = 0 then F ε , w Qε = 0, and the DeRham Theorem gives the existence of

P ε in L 2 0 (Q ε ) with F ε = ∇P ε .
Using the change of variables [START_REF] Bourgeat | A note on homogenization of Bingham flow through a porous medium[END_REF], we get for any w ∈ (H 1 0 (Ω)) 3 where w(x , y 3 ) = w(x , εy 3 ),

∇ ε Pε , w Ω = - Ω Pε div ε w dx dy 3 = -ε -1 Qε P ε div w dx = ε -1 ∇P ε , w Qε .
Then, using the identification ( 16) of F ε and the inequality [START_REF] Cioranescu | The Periodic Unfolding Method: Theory and Applications to Partial Differential Problems[END_REF],

| ∇ ε Pε , w Ω | ≤ ε -1 (|a(u ε , R ε w)| + |(f ε , R ε w) Ωε | + j(R ε w)) .
and applying the change of variables [START_REF] Bourgeat | A note on homogenization of Bingham flow through a porous medium[END_REF],

| ∇ ε Pε , w Ω | ≤ |a ε (ũ ε , Rε w)| + |(f, Rε w) Ωε | + j ε ( Rε w), (18) 
where Rε w = R ε w for any w ∈ (H 1 0 (Ω)) 3 . Now, we estimate the right-hand side of (18) using the estimates given in Lemma 4.6 in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF]. Lemma 3.2. There exists a constant C independent of ε, such that the extension Pε ∈ L 2 0 (Ω) of the pressure pε satisfies Pε

L 2 0 (Ω) ≤ C. (19) 
Proof. Let us estimate ∇ ε Pε in the cases a ε ≈ ε or a ε ε. We estimate the right-hand side of [START_REF] Cioranescu | Mechanics and mathematics of fluids of the differential type[END_REF]. Using Cauchy-Schwarz's inequality and from the second estimate in [START_REF] Bunoiu | Asymptotic Analysis of a Bingham Fluid in a Thin T-like Shaped Structure[END_REF] we have

|a ε (ũ ε , Rε w)| ≤ 2µ D ε [ũ ε ] (L 2 ( Ωε)) 3×3 D ε Rε w (L 2 ( Ωε)) 3×3 ≤ Ca ε D ε Rε w (L 2 ( Ωε)) 3×3 .
Using the assumption made on the function f , we obtain

|(f, Rε w) Ωε | ≤ C Rε w (L 2 ( Ωε)) 3
, and by Cauchy-Schwarz's inequality and taking into account that | Ω ε | ≤ |Ω|, we obtain

j ε ( Rε w) ≤ C a ε D ε Rε w (L 2 ( Ωε)) 3×3
.

Then, from (18), we deduce

∇ ε Pε , w Ω ≤ Ca ε D ε Rε w (L 2 ( Ωε)) 3×3 + C Rε w (L 2 ( Ωε)) 3
.

Taking into account the third point in Lemma 4.6 in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF], we have

∇ ε Pε , w Ω ≤ Ca ε 1 a ε w (L 2 (Ω)) 3 + D ε w (L 2 (Ω)) 3×3 + C w (L 2 (Ω)) 3 + a ε D ε w (L 2 (Ω)) 3×3 .
If a ε ≈ ε we take into account that a ε 1, and if a ε ε we take into account that a ε /ε 1 and a ε 1, and we see that there exists a positive constant C such that

∇ ε Pε , w Ω ≤ C w (H 1 0 (Ω)) 3 , ∀ w ∈ (H 1 0 (Ω)) 3 ,
and consequently ∇ ε Pε (H -1 (Ω)) 3 ≤ C. It follows that (see for instance Girault and Raviart [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms[END_REF], Chapter I, Corollary 2.1) there exists a representative of Pε ∈ L 2 0 (Ω) such that Pε

L 2 0 (Ω) ≤ C ∇ Pε (H -1 (Ω)) 3 ≤ C ∇ ε Pε (H -1 (Ω)) 3 ≤ C.
Finally, let us estimate ∇ ε Pε in the case a ε ε. Similarly to the previous case, we estimate the right side of (18) by using Cauchy-Schwarz's inequality and from the second estimate in ( 14), and we have

∇ ε Pε , w Ω ≤ Cε D ε Rε w (L 2 ( Ωε)) 3×3 + C Rε w (L 2 ( Ωε)) 3 .
Taking into account the proof in Lemma 4.5 in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF], the change of variables [START_REF] Bourgeat | A note on homogenization of Bingham flow through a porous medium[END_REF] and that a ε ε, we can deduce

∇ ε Pε , w Ω ≤ Cε 1 ε w (L 2 (Ω)) 3 + 1 ε D x w (L 2 (Ω)) 3×2 + 1 ε ∂ y3 w (L 2 (Ω)) 3 + C w (L 2 (Ω)) 3 + a ε D x w (L 2 (Ω)) 3×2 + ∂ y3 w (L 2 (Ω)) 3 ,
and using that a ε 1, we see that there exists a positive constant C such that

∇ ε Pε , w Ω ≤ C w (H 1 0 (Ω)) 3 , ∀ w ∈ (H 1 0 (Ω)) 3 ,
and reasing as the previous case, we have the estimate [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF].

According to these extensions, problem (12) can be written as:

2µ

Ω D ε [ũ ε ] : D ε [ṽ -ũε ] dx dy 3 + √ 2g(ε) Ω |D ε [ṽ]|dx dy 3 - √ 2g(ε) Ω |D ε [ũ ε ]|dx dy 3 (20) 
≥ Ω f • (ṽ -ũε ) dx dy 3 + Ω Pε div ε (ṽ -ũε )dx dy 3 ,
for every ṽ that is the extension by zero to the whole Ω of a function in (H 1 0 ( Ω ε )) 3 .

Adaptation of the Unfolding Method

The change of variable [START_REF] Bourgeat | A note on homogenization of Bingham flow through a porous medium[END_REF] does not provide the information we need about the behavior of ũε in the microstructure associated to Ω ε . To solve this difficulty, we use an adaptation introduced in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF] of the unfolding method from [START_REF] Cioranescu | The periodic Unfolding Method in Homogenization[END_REF] and [START_REF] Cioranescu | The Periodic Unfolding Method: Theory and Applications to Partial Differential Problems[END_REF].

Let us recall this adaptation of the unfolding method in which we divide the domain Ω in cubes of lateral length a ε and vertical length 1. For this purpose, given (ũ ε , Pε )

∈ (H 1 0 (Ω)) 3 × L 2 0 (Ω), we define (û ε , Pε ) by ûε (x , y) = ũε a ε κ x a ε + a ε y , y 3 , Pε (x , y) = Pε a ε κ x a ε + a ε y , y 3 , a.e. (x , y) ∈ ω × Y, (21) 
where the function κ is defined in [START_REF] Berlyand | Homogenized Non-Newtonian Viscoelastic Rheology of a Suspension of Interacting Particles in a Viscous Newtonian Fluid[END_REF]. We are now in position to obtain estimates for the sequences (û ε , Pε ), as in the proof of Lemma 4.9 in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF].

Lemma 3.4. There exists a constant C independent of ε, such that the couple (û ε , Pε ) defined by (21

) satisfies i) if a ε ≈ ε, with a ε /ε → λ, 0 < λ < +∞, or a ε ε, ûε (L 2 (ω×Y )) 3 ≤ Ca 2 ε , D y [û ε ] (L 2 (ω×Y )) 3×2 ≤ Ca 2 ε , ∂ y3 [û ε ] (L 2 (ω×Y )) 3 ≤ Cε a ε , ii) if a ε ε, ûε (L 2 (ω×Y )) 3 ≤ Cε 2 , D y [û ε ] (L 2 (ω×Y )) 3×2 ≤ Ca ε ε, ∂ y3 [û ε ] (L 2 (ω×Y )) 3 ≤ Cε 2 ,
and, moreover, in every cases, Pε

L 2 0 (ω×Y ) ≤ C.

Main convergence results

When ε tends to zero, we obtain for problem [START_REF] Fabricius | Darcy's Law for Flow in a Periodic Thin Porous Medium Confined Between Two Parallel Plates[END_REF] different behaviors, depending on the magnitude of a ε with respect to ε. We will analyze them in the next sections.

Critical case a

ε ≈ ε, with a ε /ε → λ, 0 < λ < +∞
First, we obtain some compactness results about the behavior of the sequences (ũ ε , Pε ) and (û ε , Pε ) satisfying the a priori estimates given in Lemmas 3.1-i) and 3.4-i), respectively. 

(ũ , 0) in H 1 (0, 1; L 2 (ω) 3 ), ( 22 
) ûε a 2 ε û in L 2 (ω; H 1 (Y ) 3 ), Pε P in L 2 0 (ω × Y ), (23) 
div x 1 0 ũ (x , y 3 )dy 3 = 0 in ω, 1 0 ũ (x , y 3 )dy 3 • n = 0 on ∂ω, (24) 
div λ û = 0 in ω × Y, div x Y û (x , y)dy = 0 in ω, Y û (x , y)dy • n = 0 on ∂ω, (25) 
where div λ = div y + λ∂ y3 .

Proof. We refer the reader to Lemmas 5.2, 5.3 and 5.4 in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF] for the proof of ( 22)- [START_REF] Griso | Asymptotic analysis for domains separated by a thin layer made of periodic vertical beams[END_REF]. Here, we prove that P does not depend on the microscopic variable y. To do this, we choose as test function ṽ(x , y) ∈ D(ω; C ∞ (Y ) 3 ) with ṽ(x , y) = 0 ∈ ω × Y s (thus, ṽ(x , x /a ε , y 3 ) ∈ (H 1 0 ( Ω ε )) 3 ). Setting a ε ṽ(x , x /a ε , y 3 ) in (20) (we recall that g(ε) = g a ε )) and using that div ε ũε = 0, we have

2µa ε Ω D ε [ũ ε ] : D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy 3 -2µ Ω |D ε [ũ ε ] | 2 dx dy 3 (26) 
+ √ 2g a 2 ε Ω D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy 3 - √ 2g a ε Ω |D ε [ũ ε ]|dx dy 3 ≥ a ε Ω f • ṽ dx dy 3 - Ω f • ũ ε dx dy 3 + a ε Ω Pε div x ṽ dx dy 3 + Ω Pε div y ṽ dx dy 3 + a ε ε Ω Pε ∂ y3 ṽ3 dx dy 3 .
By the change of variables given in Remark 3.3 and by Lemma 3.4, we get for the first term in relation ( 26)

Ω D ε [ũ ε ] : D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy 3 (27) = ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] : 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy + O ε ,
and for the second term in relation ( 26)

Ω |D ε [ũ ε ] | 2 dx dy 3 = ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] 2 dx dy = O ε . (28) 
Moreover, applying the change of variables given in Remark 3.3 to the fourth term in relation ( 26), we have

Ω |D ε [ũ ε ]|dx dy 3 = ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy. (29) 
Therefore, applying the change of variables given in Remark 3.3 to relation [START_REF] Ionescu | Onset and dynamic shallow flow of a viscoplastic fluid on a plane slope[END_REF], we obtain

2µa ε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] : 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy (30) 
+ √ 2g a 2 ε ω×Y D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy - √ 2g a ε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy + O ε ≥ a ε ω×Y f • ṽ dx dy - ω×Y f • û ε dx dy + a ε ω×Y
Pε div x ṽ dx dy + ω×Y Pε div y ṽ dx dy

+ a ε ε ω×Y Pε ∂ y3 ṽ3 dx dy + O ε .
According with [START_REF] Griso | Asymptotic behavior of a crane[END_REF], the first term in relation [START_REF] Lipman | Ground deformation associated with the 1975 magnitude-7.2 earthquake and resulting changes in activity of kilauea volcano[END_REF] can be written by the following way

2µa ε ω×Y 1 a 2 ε D y [û ε ] + a ε ε 1 a 2 ε ∂ y3 [û ε ] : D y [ṽ] + a ε ε ∂ y3 [ṽ] dx dy → 0, as ε → 0. ( 31 
)
In order to pass to the limit in the first nonlinear term, we have

√ 2ga ε ω×Y a ε D x [ṽ] + D y [ṽ] + a ε ε ∂ y3 [ṽ] dx dy → 0, as ε → 0. ( 32 
)
Now, in order to pass the limit in the second nonlinear term, we are taking into account that

√ 2g a ε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy = √ 2g a 2 ε ω×Y 1 a 2 ε D y [û ε ] + a ε ε 1 a 2 ε ∂ y3 [û ε ] dx dy,
and using [START_REF] Griso | Asymptotic behavior of a crane[END_REF] and the fact that the function E(ϕ) = |ϕ| is proper convex continuous, we can deduce that

lim inf ε→0 √ 2g a ε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy ≥ 0. ( 33 
)
Moreover, using [START_REF] Griso | Asymptotic behavior of a crane[END_REF] the two first terms in the right hand side of (30) can be written by

a ε ω×Y f • ṽ dx dy -a 2 ε ω×Y f • û ε a 2 ε dx dy → 0, as ε → 0. ( 34 
)
We consider now the terms which involve the pressure. Taking into account the convergence of the pressure (23), passing to the limit when ε tends to zero, we have ω×Y P div λ ṽ dx dy.

Therefore, taking into account ( 31)-( 35), when we pass to the limit in [START_REF] Lipman | Ground deformation associated with the 1975 magnitude-7.2 earthquake and resulting changes in activity of kilauea volcano[END_REF] when ε tends to zero, we have 0 ≥ ω×Y P div λ ṽ dx dy. Now, if we choose as test function -a ε ṽ(x , x /a ε , y 3 ) in ( 20) and we argue similarly, we obtain ω×Y P div λ ṽ dx dy ≥ 0. Thus, we can deduce that ω×Y P div λ ṽ dx dy = 0, which shows that P does not depend on y.

Theorem 4.2 (Critical case). If a ε ≈ ε, with a ε /ε → λ, 0 < λ < +∞, then (û ε /a 2 ε , Pε ) converges to (û, P ) in L 2 (ω; H 1 (Y ) 3 ) × L 2
0 (ω × Y ), which satisfies the following variational inequality

2µ ω×Y D λ [û] : (D λ [ṽ] -D λ [û]) dx dy + √ 2g ω×Y |D λ [ṽ]| dx dy - √ 2g ω×Y |D λ [û]| dx dy ≥ ω×Y f • (ṽ -û ) dx dy - ω×Y ∇ x P (ṽ -û ) dx dy, (36) 
where

D λ [•] = D y [•] + λ∂ y3 [•] and for every ṽ ∈ L 2 (ω; H 1 (Y ) 3 ) such that ṽ(x , y) = 0 in ω × Y s , div λ ṽ = 0 in ω × Y, Y ṽ (x , y)dy • n = 0 on ∂ω.
Proof. We choose a test function ṽ(x , y) ∈ D(ω; C ∞ (Y ) 3 ) with ṽ(x , y) = 0 ∈ ω × Y s (thus, we have that ṽ(x , x /a ε , y 3 ) ∈ (H 1 0 ( Ω ε )) 3 ). We first multiply (20) by a -2 ε and we use that div ε ũε = 0. Then, we take as test function a 2 ε ṽε = a 2 ε (ṽ (x , x /a ε , y 3 ), λε/a ε v 3 (x , x /a ε , y 3 )), with ṽ(x , y) = 0 in ω × Y s and satisfying the incompressibility conditions [START_REF] Griso | Asymptotic analysis for domains separated by a thin layer made of periodic vertical beams[END_REF], that is, div λ ṽ = 0 in ω × Y and Y ṽ (x , y)dy • n = 0 on ∂ω, and we have 2µ

Ω D ε [ũ ε ] : D x [ṽ ε ] + 1 a ε D y [ṽ ε ] + 1 ε ∂ y3 [ṽ ε ] dx dy 3 -2µ 1 a 2 ε Ω |D ε [ũ ε ] | 2 dx dy 3 (37) + √ 2g a ε Ω D x [ṽ ε ] + 1 a ε D y [ṽ ε ] + 1 ε ∂ y3 [ṽ ε ] dx dy 3 - √ 2g 1 a ε Ω |D ε [ũ ε ]|dx dy 3 ≥ Ω f • ṽ dx dy 3 - 1 a 2 ε Ω f • ũ ε dx dy 3 + Ω Pε div x ṽ dx dy 3 + 1 a ε Ω Pε div y ṽ dx dy 3 + λ a ε Ω Pε ∂ y3 ṽ3 dx dy 3 .
By the change of variables given in Remark 3.3 and by Lemma 3.4, we have [START_REF] Ionescu | Augmented Lagrangian for shallow viscoplastic flow with topography[END_REF] for the first term in relation (37), and for the second term in relation (37) we obtain

Ω |D ε [ũ ε ] | 2 dx dy 3 = ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] 2 dx dy. (38) 
Moreover, applying the change of variables given in Remark 3.3 to the fourth term in relation (37), we have [START_REF] Lions | Écoulement d'un fluide viscoplastique de Bingham dans un milieu poreux[END_REF]. Therefore, applying the change of variables given in Remark 3.3 to relation (37), we obtain

2µ ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] : 1 a ε D y [ṽ ε ] + 1 ε ∂ y3 [ṽ ε ] dx dy -2µ 1 a 2 ε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] 2 dx dy + √ 2g a ε ω×Y D x [ṽ ε ] + 1 a ε D y [ṽ ε ] + 1 ε ∂ y3 [ṽ ε ] dx dy - √ 2g 1 a ε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy + O ε (39) ≥ ω×Y f • ṽ dx dy - 1 a 2 ε ω×Y f • û ε dx dy + ω×Y
Pε div x ṽ dx dy + 1 a ε ω×Y Pε div y ṽ dx dy

+ λ a ε ω×Y Pε ∂ y3 ṽ3 dx dy + O ε .
According with [START_REF] Griso | Asymptotic behavior of a crane[END_REF], the first term in relation (39) can be written

2µ ω×Y 1 a 2 ε D y [û ε ] + a ε ε 1 a 2 ε ∂ y3 [û ε ] : D y [ṽ ε ] + a ε ε ∂ y3 [ṽ ε ] dx dy,
and, taking into account that λ ε/a ε → 1, this term tends to the following limit

2µ ω×Y (D y [û] + λ∂ y3 [û]) : (D y [ṽ] + λ∂ y3 [ṽ]) dx dy. ( 40 
)
The second term in relation (39) writes

2µ ω×Y 1 a 2 ε D y [û ε ] + a ε ε 1 a 2 ε ∂ y3 [û ε ] : 1 a 2 ε D y [û ε ] + a ε ε 1 a 2 ε ∂ y3 [û ε ] dx dy,
and, taking into account that the function B(ϕ) = |ϕ| is proper convex continuous and λ ε/a ε → 1, we get that the lim inf ε→0 of this second is greater or equal than

2µ ω×Y (D y [û] + λ∂ y3 [û]) : (D y [û] + λ∂ y3 [û]) dx dy. ( 41 
)
In order to pass to the limit in the first nonlinear term, we have

√ 2g a ε ω×Y D x [ṽ ε ] + 1 a ε D y [ṽ ε ] + 1 ε ∂ y3 [ṽ ε ] dx dy - √ 2g ω×Y |D y [ṽ] + λ∂ y3 [ṽ]| dx dy ≤ √ 2g ω×Y a ε D x [ṽ ε ] + D y [ṽ ε ] + a ε ε ∂ y3 [ṽ ε ] -D y [ṽ] -λ∂ y3 [ṽ] dx dy ≤ √ 2g ω×Y |a ε D x [ṽ ε ]| dx dy + √ 2g ω×Y |D y [ṽ ε ] -D y [ṽ]| dx dy + √ 2g ω×Y a ε ε ∂ y3 [ṽ ε ] -λ∂ y3 [ṽ] dx dy → 0, as ε → 0,
and we can deduce that the first nonlinear term tends to the following limit

√ 2g ω×Y |D y [ṽ] + λ∂ y3 [ṽ]| dx dy. ( 42 
)
Now, in order to pass the limit in the second nonlinear term, we are taking into account that

√ 2g 1 a ε ω×Y 1 ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy = √ 2g ω×Y 1 a 2 ε D y [û ε ] + a ε ε 1 a 2 ε ∂ y3 [û ε ] dx dy,
and using [START_REF] Griso | Asymptotic behavior of a crane[END_REF] and the fact that the function E(ϕ) = |ϕ| is proper convex continuous, we can deduce that

lim inf ε→0 √ 2g 1 a ε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy ≥ √ 2g ω×Y |D y [û] + λ∂ y3 [û]| dx dy. ( 43 
)
Moreover, using [START_REF] Griso | Asymptotic behavior of a crane[END_REF] the two first terms in the right hand side of (39) tend to the following limit

ω×Y f • (ṽ -û ) dx dy. ( 44 
)
We consider now the terms which involve the pressure. Taking into account the convergence of the pressure [START_REF] Griso | Asymptotic behavior of a crane[END_REF] the first term of the pressure tends to the following limit ω×Y P div x ṽ dx dy, and using ( 25) and taking into account that P does not depend on y, we have ω×Y P div x ṽ dx dy = ω×Y P div x ṽ dx dy -

ω P div x Y û dy dx = - ω×Y ∇ x P (ṽ -û )dx dy. (45)
Finally, using that div λ ṽ = 0, we have

1 a ε ω×Y Pε div y ṽ dx dy + λ a ε ω×Y Pε ∂ y3 ṽ3 dx dy = 0. ( 46 
)
Therefore, taking into account ( 40)-( 46), we have (36).

Subcritical case a ε ε (λ = 0)

We obtain some compactness results about the behavior of the sequences (ũ ε , Pε ) and (û ε , Pε ) satisfying the a priori estimates given in Lemmas 3.1-i) and 3.4-i), respectively.

Lemma 4.3 (Subcritical case). For a subsequence of ε still denoted by ε, there exist ũ ∈ (L 2 (Ω)) 3 , where ũ3 = 0 and ũ = 0 on y 3 = {0, 1}, û ∈ L 2 (Ω; H 1 (Y ) 3 ) (" " denotes Y -periodicity), with û = 0 in ω × Y s and û = 0 on y 3 = {0, 1} such that Y û(x , y)dy = 1 0 ũ(x , y 3 )dy 3 with Y û3 dy = 0 and û3 independent of y 3 , and

P ∈ L 2 0 (ω × Y ), independent of y, such that ũε a 2 ε (ũ , 0) in (L 2 (Ω)) 3 , ( 47 
) ûε a 2 ε û in L 2 (Ω; H 1 (Y ) 3 ), Pε P in L 2 0 (ω × Y ), ( 48 
) div x 1 0 ũ (x , y 3 )dy 3 = 0 in ω, 1 0 ũ (x , y 3 )dy 3 • n = 0 on ∂ω, ( 49 
)
div y û = 0 in ω × Y, div x Y û (x , y)dy = 0 in ω, Y û (x , y)dy • n = 0 on ∂ω. (50) 
Proof. See Lemmas 5.2, 5.3 and 5.4 in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF] for the proof of ( 47)-( 50). In order to prove that P does not depend on y we argue as in the proof of Lemma 4.1 using that a ε ε, and we obtain ω×Y P div y ṽ dx dy = 0, which shows that P does not depend on y . Now, in order to prove that P does not depend on y 3 , setting εṽ = ε(0, ṽ3 (x , x /a ε , y 3 )) in (20) (we recall that g(ε) = g a ε )) and using that div ε ũε = 0, we have 2µε

Ω D ε [ũ ε ] : D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy 3 -2µ Ω |D ε [ũ ε ] | 2 dx dy 3 (51) + √ 2ga ε ε Ω D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy 3 - √ 2ga ε Ω |D ε [ũ ε ]|dx dy 3 ≥ - Ω f • ũ ε dx dy 3 + Ω Pε ∂ y3 ṽ3 dx dy 3 .
Applying the change of variables given in Remark 3.3 to relation (51) and taking into account ( 27)-( 29), we obtain

2µε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] : 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy (52) 
+ √ 2ga ε ε ω×Y D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy - √ 2ga ε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy + O ε ≥ - ω×Y f • û ε dx dy + ω×Y Pε ∂ y3 ṽ3 dx dy + O ε .
According with (48) and using that a ε ε, the first term in relation (52) can be written by the following way

2µε ω×Y 1 a 2 ε D y [û ε ] + a ε ε 1 a 2 ε ∂ y3 [û ε ] : D y [ṽ] + a ε ε ∂ y3 [ṽ] dx dy → 0, as ε → 0. (53) 
In order to pass to the limit in the first nonlinear term, we have

√ 2gε ω×Y a ε D x [ṽ] + D y [ṽ] + a ε ε ∂ y3 [ṽ] dx dy → 0, as ε → 0. (54) 
In order to pass to the limit in the second nonlinear term, we proceed as in Lemma 4.1. Moreover, using (48) the first term in the right hand side of (52) can be written by

a 2 ε ω×Y f • û ε a 2 ε dx dy → 0, as ε → 0. ( 55 
)
We consider now the term which involves the pressure. Taking into account the convergence of the pressure (48), passing to the limit when ε tends to zero, we have

ω×Y P ∂ y3 ṽ3 dx dy. (56) 
Therefore, taking into account ( 33) and ( 53)-( 56), when we pass to the limit in (52) when ε tends to zero, we have 0 ≥ ω×Y P ∂ y3 ṽ3 dx dy. Now, if we choose as test function -εṽ = -ε(0, ṽ3 (x , x /a ε , y 3 )) in ( 20) and we argue similarly, we can deduce that P does not depend on y 3 , so P does not depend on y.

Theorem 4.4 (Subcritical case). If a ε ε, then (û ε /a 2 ε , Pε ) converges to (û, P ) in L 2 (Ω; H 1 (Y ) 3 ) × L 2 0 (ω × Y ), which satisfies the following variational inequality 2µ ω×Y D y [û ] : (D y [ṽ ] -D y [û ]) dx dy + √ 2g ω×Y |D y [ṽ ]| dx dy - √ 2g ω×Y |D y [û ]| dx dy ≥ ω×Y f • (ṽ -û ) dx dy - ω×Y ∇ x P (ṽ -û ) dx dy, (57) 
for every ṽ ∈ L 2 (Ω; H 1 (Y ) 3 ) such that ṽ(x , y) = 0 in ω × Y s , div y ṽ = 0 in ω × Y, Y ṽ (x , y)dy • n = 0 on ∂ω.

Proof. We choose a test function ṽ(x , y) ∈ D(ω; C ∞ (Y ) 3 ) with ṽ(x , y) = 0 ∈ ω × Y s (thus, we have that ṽ(x , x /a ε , y 3 ) ∈ (H 1 0 ( Ω ε )) 3 ). We first multiply (20) by a -2 ε and we use that div ε ũε = 0. Then, we take a test function a 2 ε ṽ(x , x /a ε , y 3 ), with ṽ3 independent of y 3 and with ṽ(x , y) = 0 in ω × Y s and satisfying the incompressibility conditions (50), that is, div y ṽ = 0 in ω × Y and Y ṽ (x , y)dy • n = 0 on ∂ω, and we have 2µ

Ω D ε [ũ ε ] : D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy 3 -2µ 1 a 2 ε Ω |D ε [ũ ε ] | 2 dx dy 3 (58) + √ 2g a ε Ω D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy 3 - √ 2g 1 a ε Ω |D ε [ũ ε ]|dx dy 3 ≥ Ω f • ṽ dx dy 3 - 1 a 2 ε Ω f • ũ ε dx dy 3 + Ω Pε div x ṽ dx dy 3 + 1 a ε Ω Pε div y ṽ dx dy 3 .
Applying the change of variables given in Remark 3.3 to relation (58) and taking into account ( 27), ( 29) and (38), we obtain

2µ ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] : 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy (59) -2µ 1 a 2 ε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] 2 dx dy + √ 2g a ε ω×Y D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy - √ 2g 1 a ε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy + O ε ≥ ω×Y f • ṽ dx dy - 1 a 2 ε ω×Y f • û ε dx dy + ω×Y Pε div x ṽ dx dy + 1 a ε ω×Y Pε div y ṽ dx dy + O ε .
In the left-hand side, we only give the details of convergence for the first nonlinear term, the most challenging one.

√ 2g a ε ω×Y D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy - √ 2g ω×Y |D y [ṽ]| dx dy ≤ √ 2g ω×Y a ε D x [ṽ] + D y [ṽ] + a ε ε ∂ y3 [ṽ] -D y [ṽ] dx dy ≤ √ 2g ω×Y |a ε D x [ṽ]| dx dy + √ 2g ω×Y a ε ε ∂ y3 [ṽ] dx dy → 0, as ε → 0.
Using (48) the two first terms in the right hand side of (59) tend to the following limit ω×Y f • (ṽ -û ) dx dy.

We consider now the terms which involve the pressure. Taking into account the convergence of the pressure (48) the first term of the pressure tends to the following limit ω×Y P div x ṽ dx dy, and using (50) and taking into account that P does not depend on y, we have (45). Finally, using that div y ṽ = 0, we have

1 a ε ω×Y Pε div y ṽ dx dy = 0. ( 60 
)
It is straightforward to obtain that û3 = 0 and therefore we get (57).

Supercritical case a ε ε (λ = +∞)

We obtain some compactness results about the behavior of the sequences (ũ ε , Pε ) and (û ε , Pε ) satisfying the a priori estimates given in Lemmas 3.1-ii) and 3.4-ii), respectively.

Lemma 4.5 (Supercritical case). For a subsequence of ε still denote by ε, there exist ũ ∈ H 1 (0, 1; L 2 (ω) 3 ), where ũ3 = 0 and ũ = 0 on y 3 = {0, 1}, û ∈ H 1 (0, 1; L 2 (ω × Y ) 3 ) (" " denotes Y -periodicity), with û = 0 in ω × Y s , û = 0 on y 3 = {0, 1} such that Y û(x , y)dy = 1 0 ũ(x , y 3 )dy 3 with Y û3 dy = 0 and û3 independent of y 3 , and

P ∈ L 2 0 (ω × Y ), independent of y, such that ũε ε 2 (ũ , 0) in H 1 (0, 1; L 2 (ω) 3 ), ( 61 
) ûε ε 2 û in H 1 (0, 1; L 2 (ω × Y ) 3 ), Pε P in L 2 0 (ω × Y ), (62) 
div x 1 0 ũ (x , y 3 )dy 3 = 0 in ω, 1 0 ũ (x , y 3 )dy 3 • n = 0 on ∂ω, (63) 
div y û = 0 in ω × Y, div x Y û (x , y)dy = 0 in ω, Y û (x , y)dy • n = 0 on ∂ω. ( 64 
)
Proof. See Lemmas 5.2, 5.3 and 5.4 in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF] for the proof of (61)-(64). Here, we prove that P does not depend on the microscopic variable y. To do this, we choose as test function ṽ(x , y) ∈ D(ω; C ∞ (Y ) 3 ) with ṽ(x , y) = 0 ∈ ω × Y s (thus, ṽ(x , x /a ε , y 3 ) ∈ (H 1 0 ( Ω ε )) 3 ). In order to prove that P does not depend on y 3 , we set εṽ(x , x /a ε , y 3 ) in (20) (we recall that g(ε) = g ε))and using that div ε ũε = 0, we have 2µε

Ω D ε [ũ ε ] : D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy 3 -2µ Ω |D ε [ũ ε ] | 2 dx dy 3 (65) + √ 2gε 2 Ω D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy 3 - √ 2gε Ω |D ε [ũ ε ]|dx dy 3 ≥ ε Ω f • ṽ dx dy 3 - Ω f • ũ ε dx dy 3 + ε Ω Pε div x ṽ dx dy 3 + ε a ε Ω Pε div y ṽ dx dy 3 + Ω Pε ∂ y3 ṽ3 dx dy 3 .
Applying the change of variables given in Remark 3.3 to relation (65) and taking into account ( 27)-( 29), we obtain

2µε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] : 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy (66) + √ 2gε 2 ω×Y D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy - √ 2gε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy + O ε ≥ ε ω×Y f • ṽ dx dy - ω×Y f • û ε dx dy + ε ω×Y
Pε div x ṽ dx dy + ε a ε ω×Y Pε div y ṽ dx dy

+ ω×Y Pε ∂ y3 ṽ3 dx dy + O ε .
According with (62) and using that a ε ε, one has for the first term in relation (66)

2µε ω×Y ε a ε 1 ε 2 D y [û ε ] + 1 ε 2 ∂ y3 [û ε ] : ε a ε D y [ṽ] + ∂ y3 [ṽ] dx dy → 0, as ε → 0. ( 67 
)
We pass to the limit in the first nonlinear term and we have

√ 2gε ω×Y εD x [ṽ] + ε a ε D y [ṽ] + ∂ y3 [ṽ] dx dy → 0, as ε → 0. (68) 
In order to pass the limit in the second nonlinear term, we taking into account that

√ 2gε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy = √ 2gε 2 ω×Y ε a ε 1 ε 2 D y [û ε ] + 1 ε 2 ∂ y3 [û ε ] dx dy,
and using (62), with a ε ε, and the fact that the function E(ϕ) = |ϕ| is proper convex continuous, we can deduce that lim inf

ε→0 √ 2gε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy ≥ 0. ( 69 
)
Moreover, using (62) the two first terms in the right hand side of (66) can be written by

ε ω×Y f • ṽ dx dy -ε 2 ω×Y f • û ε ε 2 dx dy → 0, as ε → 0. ( 70 
)
We consider now the terms which involve the pressure. Taking into account the convergence of the pressure (62) and a ε ε, passing to the limit when ε tends to zero, we have

ω×Y P ∂ y3 ṽ3 dx dy. (71) 
Therefore, taking into account (67)-( 71), when we pass to the limit in (66) when ε tends to zero, we have 0 ≥ ω×Y P ∂ y3 ṽ3 dx dy. Now, if we choose as test function -εṽ(x , x /a ε , y 3 ) in [START_REF] Fabricius | Darcy's Law for Flow in a Periodic Thin Porous Medium Confined Between Two Parallel Plates[END_REF] and we argue similarly, we can deduce that P does not depend on y 3 . Now, in order to prove that P does not depend on y , we set a ε ṽ = a ε (ṽ (x , x /a ε , y 3 ), 0) in [START_REF] Fabricius | Darcy's Law for Flow in a Periodic Thin Porous Medium Confined Between Two Parallel Plates[END_REF] and using that div ε ũε = 0, we have

2µa ε Ω D ε [ũ ε ] : D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy 3 -2µ Ω |D ε [ũ ε ] | 2 dx dy 3 (72) + √ 2gε a ε Ω D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy 3 - √ 2gε Ω |D ε [ũ ε ]|dx dy 3 ≥ a ε Ω f • ṽ dx dy 3 - Ω f • ũ ε dx dy 3 + a ε Ω Pε div x ṽ dx dy 3 + Ω Pε div y ṽ dx dy 3 .
Applying the change of variables given in Remark 3.3 to relation (72) and taking into account ( 27)-( 29), we obtain

2µa ε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] : 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy (73) + √ 2gε a ε ω×Y D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy - √ 2gε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy + O ε ≥ a ε ω×Y f • ṽ dx dy - ω×Y f • û ε dx dy + a ε ω×Y
Pε div x ṽ dx dy + ω×Y Pε div y ṽ dx dy.

According with (62) and using that a ε ε, the first term in relation ( 73) can be written by the following way

2µa ε ω×Y ε a ε 1 ε 2 D y [û ε ] + 1 ε 2 ∂ y3 [û ε ] : ε a ε D y [ṽ] + ∂ y3 [ṽ] dx dy → 0, as ε → 0. ( 74 
)
In order to pass to the limit in the first nonlinear term, we have

√ 2ga ε ω×Y εD x [ṽ] + ε a ε D y [ṽ] + ∂ y3 [ṽ] dx dy → 0, as ε → 0. ( 75 
)
Moreover, using (62) the two first terms in the right hand side of (73) can be written by

a ε ω×Y f • ṽ dx dy -ε 2 ω×Y f • û ε ε 2 dx dy → 0, as ε → 0. (76) 
We consider now the terms which involve the pressure. Taking into account the convergence of the pressure (62), passing to the limit when ε tends to zero, we have ω×Y P div y ṽ dx dy.

Therefore, taking into account (69) and ( 74)-( 77), when we pass to the limit in (73) when ε tends to zero, we have 0 ≥ ω×Y P div y ṽ dx dy. Now, if we choose as test function -a ε ṽ = -a ε (ṽ (x , x /a ε , y 3 ), 0) in [START_REF] Fabricius | Darcy's Law for Flow in a Periodic Thin Porous Medium Confined Between Two Parallel Plates[END_REF] and we argue similarly, we can deduce that P does not depend on y , so P does not depend on y.

Theorem 4.6 (Supercritical case). If a ε ε, then (û ε /ε 2 , Pε ) converges to (û, P ) in H 1 (0, 1; L 2 (ω × Y ) 3 ) × L 2 0 (ω × Y ), which satisfies the following variational equality 2µ ω×Y ∂ y3 [û ] : (∂ y3 [ṽ ] -∂ y3 [û ]) dx dy + √ 2g ω×Y |∂ y3 [ṽ ]| dx dy - √ 2g ω×Y |∂ y3 [û ]| dx dy ≥ ω×Y f • (ṽ -û ) dx dy - ω×Y ∇ x P (ṽ -û ) dx dy, (78) 
for every ṽ ∈ H

1 (0, 1; L 2 (ω × Y ) 3 ) such that ṽ(x , y) = 0 in ω × Y s , div y ṽ = 0 in ω × Y, Y ṽ (x , y)dy • n = 0 on ∂ω.
Proof. We choose a test function ṽ(x , y) ∈ D(ω; C ∞ (Y ) 3 ) with ṽ(x , y) = 0 ∈ ω × Y s (thus, ṽ(x , x /a ε , y 3 ) ∈ (H 1 0 ( Ω ε )) 3 ). We first multiply (20) by ε -2 and we use that div ε ũε = 0. Then, we take a test function ε 2 ṽ(x , x /a ε , y 3 ), with ṽ3 independent of y 3 and with ṽ(x , y) = 0 in ω × Y s and satisfying the incompressibility conditions (64), that is, div y ṽ = 0 in ω × Y and Y ṽ (x , y)dy • n = 0 on ∂ω, and we have 2µ

Ω D ε [ũ ε ] : D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy 3 -2µ 1 ε 2 Ω |D ε [ũ ε ] | 2 dx dy 3 (79) + √ 2gε Ω D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy 3 - √ 2g 1 ε Ω |D ε [ũ ε ]|dx dy 3 ≥ Ω f • ṽ dx dy 3 - 1 ε 2 Ω f • ũ ε dx dy 3 + Ω Pε div x ṽ dx dy 3 + 1 a ε Ω Pε div y ṽ dx dy 3 .
Applying the change of variables given in Remark 3.3 to relation (79), arguing as in the critical case, we obtain

2µ ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] : 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy (80) -2µ 1 ε 2 ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] 2 dx dy + √ 2gε ω×Y D x [ṽ] + 1 a ε D y [ṽ] + 1 ε ∂ y3 [ṽ] dx dy - √ 2g 1 ε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy + O ε ≥ ω×Y f • ṽ dx dy - 1 ε 2 ω×Y f • û ε dx dy + ω×Y Pε div x ṽ dx dy + 1 a ε ω×Y Pε div y ṽ dx dy + O ε .
According with (62), the first term in relation ( 80) can be written by the following way

2µ ω×Y ε a ε 1 ε 2 D y [û ε ] + 1 ε 2 ∂ y3 [û ε ] : ε a ε D y [ṽ] + ∂ y3 [ṽ] dx dy,
and, taking into account that a ε ε, this term tends to the following limit

2µ ω×Y ∂ y3 [û ] : ∂ y3 [ṽ ] dx dy. (81) 
The second term in relation (80) writes

2µ ω×Y ε a ε 1 ε 2 D y [û ε ] + 1 ε 2 ∂ y3 [û ε ] : ε a ε 1 ε 2 D y [û ε ] + 1 ε 2 ∂ y3 [û ε ] dx dy,
and, taking into account that the function B(ϕ) = |ϕ| is proper convex continuous and a ε ε, we get that the lim inf ε→0 of this second is greater or equal than (82)

In order to pass to the limit in the first nonlinear term, using that a ε ε, we have √ 2gε Now, in order to pass the limit in the second nonlinear term, taking into account that 

√ 2g 1 ε ω×Y 1 a ε D y [û ε ] + 1 ε ∂ y3 [û ε ] dx dy = √ 2g ω×Y ε a ε 1 ε 2 D y [û ε ] + 1 ε 2 ∂ y3 [û ε ] dx dy,
Moreover, using (62) the two first terms in the right hand side of (80) tend to the following limit ω×Y f • (ṽ -û ) dx dy.

(84)

We consider now the terms which involve the pressure. Taking into account the convergence of the pressure (62) the first term of the pressure tends to the following limit ω×Y P div x ṽ dx dy, and using (64) and taking into account that P does not depend on y, we have (45). Finally using that div y ṽ = 0, we have (60). Therefore, taking into account (45), ( 60) and ( 81)-(84), we get (78).

Conclusions

By using dimension reduction and homogenization techniques, we studied the limiting behavior of the velocity and of the pressure for a nonlinear viscoplastic Bingham flow with small yield stress, in a thin porous medium of small height ε and for which the relative dimension of the pores is a ε . Three cases are studied following the value of λ = lim ε→0 a ε /ε and, at the limit, they all preserve the nonlinear character of the flow. More precisely, according to [START_REF] Lions | Écoulement d'un fluide viscoplastique de Bingham dans un milieu poreux[END_REF], each of the limit problems (36), ( 57) and (78), is written as a nonlinear Darcy equation: We remark that in all three cases, the vertical component Ũ3 of the velocity of filtration equals zero and this result is in accordance with the previous mathematical studies of the flow in this thin porous medium, for newtonian fluids (Stokes and Navier-Stokes equations) and for power law fluids (see [START_REF] Fabricius | Darcy's Law for Flow in a Periodic Thin Porous Medium Confined Between Two Parallel Plates[END_REF], [START_REF] Anguiano | Darcy's laws for non-stationary viscous fluid flow in a thin porous medium[END_REF], [START_REF] Anguiano | On the non-stationary non-Newtonian flow through a thin porous medium[END_REF], [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF], [START_REF] Anguiano | The transition between the Navier-Stokes equations to the Darcy equation in a thin porous medium[END_REF]). Moreover, despite the fact that the limit pressure is not unique, the velocity of filtration is uniquely determined (see Section 4.3 in [29]). In (85), the function K λ : R 2 -→ R 2 is nonlinear and its expression can not be made explicit for the Bingham flow (see [START_REF] Lions | Écoulement d'un fluide viscoplastique de Bingham dans un milieu poreux[END_REF]). Nevertheless, in each case, for a given ξ ∈ R 2 , one has K λ (ξ) = [START_REF] Bunoiu | Asymptotic behaviour of a Bingham fluid in thin layers[END_REF]).

     Ũ (x ) = K λ f (x ) -∇ x P (x ) in ω,
We end with the remark that if in the initial problem [START_REF] Bresch | Augmented Lagrangian Method and Compressible Visco-Plastic Flows : Applications to Shallow Dense Avalanches[END_REF] we take g = 0, then the problem under study becomes the Stokes problem. We refer to [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF] (case p = 2) for the asymptotic analysis of the Stokes problem. If we set g = 0 in the limit problems (36), (57) and (78), they become exactly the ones in [START_REF] Anguiano | Homogenization of an incompressible non-Newtonian flow through a thin porous medium[END_REF], Theorem 6.1 (case p = 2), corresponding to the Stokes case.

3 i=1∂

 3 xi u i = 0 in Π, and the no-slip boundary condition u = 0 on the boundary ∂Π. What distinguishes different fluids is the expression of the stress tensor σ. Newtonian fluids are the most encountered ones in real life and as typical examples one can mention the water and the air. For a newtonian fluid, the entries of the stress tensor σ(p, u) are given by (σ(p, u)

ΠD

  (u) : D(v)dx and l(v) = Π f • vdx.

Figure 1 :

 1 Figure 1: View of the domain Ω ε

Remark 3 . 3 .

 33 For k ∈ K ε , the restriction of (û ε , Pε ) to Y k ,aε × Y does not depend on x , whereas as a function of y it is obtained from (ũ ε , Pε ) by using the change of variables y =x -a ε k a ε , which transforms Y k ,aε into Y .

Lemma 4 . 1 ( 1 0 2 ε

 4112 Critical case). For a subsequence of ε still denote by ε, there exist ũ ∈ H 1 (0, 1; L 2 (ω)3 ), where ũ3 = 0 and ũ = 0 on y 3 = {0, 1}, û ∈ L 2 (ω; H 1 (Y ) 3 ) (" " denotes Y -periodicity), with û = 0 on ω × Y s and û = 0 on y 3 = {0, 1} such that Y û(x , y)dy = ũ(x , y 3 )dy 3 with Y û3 dy = 0, and P ∈ L 2 0 (ω ×Y ), independent of y, such that ũε a

2µ ω×Y∂

 2µ y3 [û ] : ∂ y3 [û ] dx dy.

  [ṽ] dx dy -√ 2g ω×Y |∂ y3 [ṽ ]| dx dy ≤ √ 2g ω×Y εD x [ṽ] + ε a ε D y [ṽ] + ∂ y3 [ṽ] -∂ y3 [ṽ] dx dy ≤ √ 2g ω×Y |εD x [ṽ]| dx dy + √ 2g ε a ε ω×Y |D y [ṽ]| dx dy → 0, as ε → 0.

  and using (62) and the fact that the functionE(ϕ) = |ϕ| is proper convex continuous and a ε ε, û ε ] dx dy ≥ √ 2g ω×Y |∂ y3 [û]| dx dy.

  div x Ũ (x ) = 0 in ω, Ũ (x ) • n = 0 on ∂ω. (85)The velocity of filtration Ũ (x ) = Ũ (x ), Ũ3 (x ) is defined byŨ (x ) = Y û(x,y)dy = , y 3 )dy 3 .

  λ solution of a local problem stated in the cell Y . If 0 < λ < +∞, the local problem is a 3-D Bingham problem. If λ = 0, the local problem is a 2-D Bingham problem (defined for each y 3 ∈]0, 1[), while if λ = +∞ the 1-D local problem (defined for each y ∈ Y ) corresponds to a lower-dimensional Bingham-like law (see
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