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Abstract

By using dimension reduction and homogenization techniques, we study the steady flow of an incompresible
viscoplastic Bingham fluid in a thin porous medium. A main feature of our study is the dependence of the
yield stress of the Bingham fluid on the small parameters describing the geometry of the thin porous medium
under consideration. Three different problems are obtained in the limit when the small parameter ε tends
to zero, following the ratio between the height ε of the porous medium and the relative dimension aε of its
periodically distributed pores. We conclude with the interpretation of these limit problems, which all preserve
the nonlinear character of the flow.

1 Introduction

In this paper we study the asymptotic behavior of the flow of a viscoplastic Bingham fluid in a thin porous
medium which contains an array of bodies modelized as vertical cylindrical obstacles (the pores). We refer the
reader to the very recent paper [8] and the references therein for the application of our study to problems issued
from the real life applications. As a first example one can mention the flow of the volcanic lava through dense
forests (see [30]). Another important application is the flow of fresh concrete spreading through networks of steel
bars (see [33]).

The model of thin porous medium of thickness much smaller than the distance between the pores was
introduced in [34], where a stationary incompressible Navier-Stokes flow was studied. Recently, the model of
thin porous medium under consideration in this paper was introduced in [20], where the flow of an incompressible
viscous fluid described by the stationary Navier-Stokes equations was studied by the multiscale expansion method,
which is a formal but powerful tool to analyse homogenization problems. These results were rigorously proved
in [5] using an adaptation introduced in [4] of the periodic unfolding method from [16] and [17]. This adaptation
consists of a combination of the unfolding method with a rescaling in the height variable, in order to work with
a domain of fixed height, and to use monotonicity arguments to pass to the limit. In [4], in particular, the
flow of an incompressible stationary Stokes system with a nonlinear viscosity, being a power law, was studied.
For non-stationary incompressible viscous flow in a thin porous medium see [1], where a non-stationary Stokes
system is considered, and [2], where a non-stationary non-newtonian Stokes system, where the viscosity obeyed
the power law, is studied. For the periodic unfolding method applied to the study of problems stated in other
type of thin periodic domains we refer for instance to [23] for crane type structures and to [24], [25] for thin layers
with thin beams structures, where elasticity problems are considered. In [32], the homogenization of elasticity
problems in thin periodic domains of planar grids type is studied. For problems involving arrays of bodies in
high-contrast materials we refer the reader to [6], Chapter 2.

AMS classification numbers: 76A05, 76A20, 76M50, 35B27.

Keywords: porous medium, thin domain, Bingham fluid
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If Π is a three-dimensional domain with smooth boundary ∂Π and f = (f1, f2, f3) are external given forces
defined on Π, then the velocity u = (u1, u2, u3) of a fluid and its pressure p satisfy the equations of motion

−
3∑
j=1

∂xi
(σ(p, u))ij = fi in Π, 1 ≤ i ≤ 3, (1)

completed with the fluid’s incompressibility condition divu =
∑3
i=1 ∂xi

ui = 0 in Π, and the no-slip boundary
condition u = 0 on the boundary ∂Π. What distinguishes different fluids is the expression of the stress tensor σ.
Newtonian fluids are the most encountered ones in real life and as typical examples one can mention the water
and the air. For a newtonian fluid, the entries of the stress tensor σ(p, u) are given by

(σ(p, u))ij = −pδij + 2µ(D(u))ij , 1 ≤ i, j ≤ 3 (2)

where δij is the Kronecker symbol, the real positive µ is the viscosity of the fluid and the entries of the strain
tensor are (D(u))ij = (∂xj

ui + ∂xi
uj)/2. If f belongs to (L2(Π))3 and the space V is defined by V = {v ∈

(H1
0 (Π))3 | div v = 0}, then u and p satisfying (1) with (2) are such that (see for instance [22]):

(Stokes) There is a unique u ∈ V and a unique (up to an additive real constant) p ∈ L2(Π) such that (if
< ·, · > is the dual pairing between (H−1(Π))3 and (H1

0 (Π))3)

a(u, v) = l(v)− < ∇p, v >, ∀v ∈ (H1
0 (Π))3, (3)

with a(u, v) = 2µ

∫
Π

D(u): D(v)dx and l(v) =

∫
Π

f · vdx.

A fluid whose stress is not defined by relation (2) is called a non-newtonian fluid. There are several classes
of non-newtonian fluids, as the power law, Carreau, Cross, Bingham fluids. It is on the study of the last type of
fluid that we are interested in this paper. We refer to [18] for a review on non-newtonian fluids. For a Bingham
fluid, the nonlinear stress tensor is defined by (see [19])

(σ(p, u))ij = −pδij + 2µ(D(u))ij +
√

2g
(D(u))ij
|D(u)|

, (4)

where |D(u)|2 = D(u) : D(u) 6= 0 and the positive number g represents the yield stress of the fluid. If g = 0,
then (4) becomes (2). Viscoplastic Bingham fluids are quite often encountered in real life. As examples one can
mention volcanic lava, fresh concrete, the drilling mud, oils, clays and some paintings. For ug and pg satisfying
(1) with (4), according to [19], one has the following result:

(Bingham) There is a unique ug ∈ V and a (non-unique) pg ∈ L2(Π)/R such that

a(ug, v − ug) + j(v)− j(ug) ≥ l(v − ug)− < ∇pg, v − ug >, ∀v ∈ (H1
0 (Π))3. (5)

Here a, l, < ·, · > are as before and

j(v) =
√

2g

∫
Π

|D(v)|dx, ∀v ∈ (H1
0 (Π))3.

If the yield stress of the Bingham fluid is of the form g(ε), with ε ∈]0, 1[ and such that g(ε) tends to zero
when ε tends to zero, then, according to [[19], Chapter 6, Théorème 5.1.], the following result holds

When ε tends to zero, one has for the solution uε of problem (5) corresponding to g(ε) the following conver-
gence

uε ⇀ u weakly in V,

where u is the solution of problem (3).

This means that, in a fixed domain, the nonlinear character of the Bingham flow is lost in the limit (when the
yield stress tends to zero), as it is expected. A natural question that arises is the following: If the yield stress g(ε)
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is as before and, moreover, the domain Π itself depends on the small parameter ε, what happens when ε tends
to zero? The answer is that, in the limit, the nonlinear character of the flow may be preserved. For instance,
if Πε is a classical rigid porous medium, it was proven in [29] with the asymptotic expansion method that, in
a range of parameters, the nonlinear character of the Bingham flow is preserved in the homogenized problem,
which is a nonlinear Darcy equation. The convergence corresponding to the above mentioned result was proven
in [10] with the two-scale convergence method and then recovered in [12] with the periodic unfolding method.
The case of a doubly periodic rigid porous medium was studied in [11], where a more involved nonlinear Darcy
equation is derived. Another class of domains for which the nonlinear character of the flow may be preserved in
the limit is those of thin domains. The case of a domain Πε which is thin in one direction was addressed in [14]
and [15]. We refer to [13] for the asymptotic analysis of a Bingham fluid in a thin T-like shaped domain. In all
these cases, a lower-dimensional Bingham-like law was exhibited in the limit. This law was already encountered
in engineering (see [31]), but no rigurous mathematical justification was previously known. A first mathematical
result combining both periodic and thin domains for the Bingham flow was announced in [3]. For the shallow
flow of a viscoplastic fluid we refer the reader to [21], [9], [26], [27] and [28]. For a homogenized non-newtonian
viscoelastic model we refer to [7].

The paper is organized as follows. In Section 2. we state the problem: we define in (6) the thin porous
medium Ωε (see also Figure 1), of height ε and relative dimension aε of its periodically distributed pores. In
Ωε we consider the flow of a viscoplastic Bingham fluid with velocity uε and pressure pε verifying the nonlinear
variational inequality (9). In Section 3. we give some a priori estimates for the velocity and for the pressure
obtained after the change of variables (10) and verifying (12), and then for the velocity and for the pressure
defined in (21). In Section 4. by passing to the limit ε→ 0, we prove the main convergence results of our paper,
stated in Theorems 4.2, 4.4 and 4.6, respectively. Up to our knowledge, problems (36), (57) and (78) are new in
the mathematical literature. We conclude in Section 5. with the interpretation of these limit problems, which
all three preserve the nonlinear character of the flow; both effects of a nonlinear Darcy equation and a lower
dimensional Bingham-like law appear. The paper ends with a list of References.

2 Statement of the problem

A periodic porous medium is defined by a domain ω and an associated microstructure, or periodic cell Y ′ =
[−1/2, 1/2]2, which is made of two complementary parts: the fluid part Y ′f , and the solid part Y ′s (Y ′f

⋃
Y ′s = Y ′

and Y ′f
⋂
Y ′s = ∅). More precisely, we assume that ω is a smooth, bounded, connected set in R2, and that Y ′s is

an open connected subset of Y ′ with a smooth boundary ∂Y ′s , such that Y
′
s is strictly included in Y ′.

The microscale of a porous medium is a small positive number aε. The domain ω is covered by a regular
mesh of size aε: for k′ ∈ Z2, each cell Y ′k′,aε = aεk

′ + aεY
′ is divided in a fluid part Y ′fk′ ,aε and a solid part

Y ′sk′ ,aε , i.e. is similar to the unit cell Y ′ rescaled to size aε. We define Y = Y ′ × (0, 1) ⊂ R3, which is divided

in a fluid part Yf and a solid part Ys, and consequently Yk′,aε = Y ′k′,aε × (0, 1) ⊂ R3, which is also divided in a
fluid part Yfk′ ,aε and a solid part Ysk′ ,aε .

We denote by τ(Y
′
sk′ ,aε

) the set of all translated images of Y
′
sk′ ,aε

. The set τ(Y
′
sk′ ,aε

) represents the solids

in R2. The fluid part of the bottom ωε ⊂ R2 of the porous medium is defined by ωε = ω\
⋃
k′∈Kε

Y
′
sk′ ,aε

, where

Kε = {k′ ∈ Z2 : Y ′k′,aε ∩ ω 6= ∅}. The whole fluid part Ωε ⊂ R3 in the thin porous medium is defined by

Ωε = {(x1, x2, x3) ∈ ωε × R : 0 < x3 < ε}. (6)

We make the assumption that the solids τ(Y
′
sk′ ,aε

) do not intersect the boundary ∂ω. We define Y εsk′ ,aε =
Y ′sk′ ,aε × (0, ε). Denote by Sε the set of the solids contained in Ωε. Then, Sε is a finite union of solids, i.e.

Sε =
⋃
k′∈Kε

Y
ε

sk′ ,aε
.

We define Ω̃ε = ωε× (0, 1), Ω = ω× (0, 1), and Qε = ω× (0, ε). We observe that Ω̃ε = Ω\
⋃
k′∈Kε

Y sk′ ,aε , and

we define Tε =
⋃
k′∈Kε

Y sk′ ,aε as the set of the solids contained in Ω̃ε.
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Figure 1: View of the domain Ωε

We denote by : the full contraction of two matrices; for A = (ai,j)1≤i,j≤3 and B = (bi,j)1≤i,j≤3, we have

A : B =
∑3
i,j=1 aijbij .

In order to apply the unfolding method, we will need the following notation. For k′ ∈ Z2, we define κ : R2 →
Z2 by

κ(x′) = k′ ⇐⇒ x′ ∈ Y ′k′,1 . (7)

Remark that κ is well defined up to a set of zero measure in R2 (the set ∪k′∈Z2∂Y ′k′,1). Moreover, for every
aε > 0, we have

κ

(
x′

aε

)
= k′ ⇐⇒ x′ ∈ Y ′k′,aε .

We denote by C a generic positive constant which can change from line to line.

The points x ∈ R3 will be decomposed as x = (x′, x3) with x′ = (x1, x2) ∈ R2, x3 ∈ R. We also use the
notation x′ to denote a generic vector of R2.

In Ωε we consider the stationary flow of an incompressible Bingham fluid. As already seen in the Introduction,
following Duvaut and Lions [19], the problem is formulated in terms of a variational inequality.

For a vectorial function v = (v′, v3), we define

(D(v))i,j =
1

2

(
∂xj

vi + ∂xi
vj
)
, 1 ≤ i, j ≤ 3, |D(v)|2 = D(v) : D(v).

We introduce the following spaces

V (Ωε) = {v ∈ (H1
0 (Ωε))

3 |div v = 0 in Ωε}, H(Ωε) = {v ∈ (L2(Ωε))
3 |div v = 0 in Ωε, v · n = 0 on ∂Ωε}.

For u, v ∈ (H1
0 (Ωε))

3, we introduce

a(u, v) = 2µ

∫
Ωε

D(u) : D(v)dx, j(v) =
√

2g(ε)

∫
Ωε

|D(v)|dx, (u, v)Ωε =

∫
Ωε

u · vdx,

where the yield stress g(ε) will be made precise in Section 3.1. Let f ∈ (L2(Ω))3 be given such that f = (f ′, 0).
Let fε ∈ (L2(Ωε))

3 be defined by
fε(x) = f(x′, x3/ε), a.e. x ∈ Ωε.

The model of the flow is described by the following variational inequality:

Find uε ∈ V (Ωε) such that

a(uε, v − uε) + j(v)− j(uε) ≥ (fε, v − uε)Ωε
, ∀v ∈ V (Ωε). (8)
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From Duvaut and Lions [19], we know that there exists a unique uε ∈ V (Ωε) solution of problem (8).
Moreover, from Bourgeat and Mikelić [10], we know that if pε is the pressure of the fluid in Ωε, then problem
(8) is equivalent to the following one: Find uε ∈ V (Ωε) and pε ∈ L2

0(Ωε) such that

a(uε, v − uε) + j(v)− j(uε) ≥ (fε, v − uε)Ωε + (pε,div (v − uε))Ωε , ∀v ∈ (H1
0 (Ωε))

3. (9)

Problem (9) admits a unique solution uε ∈ V (Ωε) and a (non) unique solution pε ∈ L2
0(Ωε), where L2

0(Ωε)
denotes the space of functions belonging to L2(Ωε) and of mean value zero.

Our aim is to study the asymptotic behavior of uε and pε when ε tends to zero. For this purpose, we first
use the dilatation of the domain Ωε in the variable x3, namely

y3 =
x3

ε
, (10)

in order to have the functions defined in an open set with fixed height, denoted Ω̃ε.

Namely, we define ũε ∈ (H1
0 (Ω̃ε))

3, p̃ε ∈ L2
0(Ω̃ε) by

ũε(x
′, y3) = uε(x

′, εy3), p̃ε(x
′, y3) = pε(x

′, εy3) a.e. (x′, y3) ∈ Ω̃ε.

Let us introduce some notation which will be useful in the following. For a vectorial function v = (v′, v3) and
a scalar function w, we will denote Dx′ [v] = 1

2 (Dx′v + Dt
x′v) and ∂y3 [v] = 1

2 (∂y3v + ∂ty3v), where we denote

∂y3 = (0, 0, ∂
∂y3

)t. Moreover, associated to the change of variables (10), we introduce the operators: Dε, Dε, divε
and ∇ε, defined by

(Dεv)i,j = ∂xjvi for i = 1, 2, 3, j = 1, 2, (Dεv)i,3 =
1

ε
∂y3vi for i = 1, 2, 3,

Dε [v] =
1

2

(
Dεv +Dt

εv
)
, |Dε [v] |2 = Dε [v] : Dε [v] , divεv = divx′v

′ +
1

ε
∂y3v3, ∇εw = (∇x′w,

1

ε
∂y3w)t.

We introduce the following spaces

V (Ω̃ε) = {ṽ ∈ (H1
0 (Ω̃ε))

3 |divεṽ = 0 in Ω̃ε}, H(Ω̃ε) = {ṽ ∈ (L2(Ω̃ε))
3 |divεṽ = 0 in Ω̃ε, ṽ · n = 0 on ∂Ω̃ε}.

For ũ, ṽ ∈ V (Ω̃ε), we introduce

aε(ũ, ṽ) = 2µ

∫
Ω̃ε

Dε [ũ] : Dε [ṽ] dx′dy3, jε(ṽ) =
√

2g(ε)

∫
Ω̃ε

|Dε[ṽ]|dx′dy3, (ũ, ṽ)Ω̃ε
=

∫
Ω̃ε

ũ · ṽdx′dy3.

Using the transformation (10), the variational inequality (8) can be rewritten as:

Find ũε ∈ V (Ω̃ε) such that

aε(ũε, ṽ − ũε) + jε(ṽ)− jε(ũε) ≥ (f, ṽ − ũε)Ω̃ε
, ∀ṽ ∈ V (Ω̃ε), (11)

and (9) can be rewritten as:

Find ũε ∈ V (Ω̃ε) and p̃ε ∈ L2
0(Ω̃ε) such that

aε(ũε, ṽ − ũε) + jε(ṽ)− jε(ũε) ≥ (f, ṽ − ũε)Ω̃ε
+ (p̃ε,divε(ṽ − ũε))Ω̃ε

, ∀ṽ ∈ (H1
0 (Ω̃ε))

3. (12)

Our goal now is to describe the asymptotic behavior of this new sequence (ũε, p̃ε).
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3 A Priori Estimates

We start by obtaining some a priori estimates for ũε.

Lemma 3.1. There exists a constant C independent of ε, such that if ũε ∈ (H1
0 (Ω̃ε))

3 is the solution of problem
(11), one has

i) if aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞, or aε � ε, then

‖ũε‖(L2(Ω̃ε))3 ≤
C

µ
a2
ε, ‖Dε [ũε]‖(L2(Ω̃ε))3×3 ≤

C

µ
aε, ‖Dεũε‖(L2(Ω̃ε))3×3 ≤

C

µ
aε, (13)

ii) if aε � ε, then

‖ũε‖(L2(Ω̃ε))3 ≤
C

µ
ε2, ‖Dε [ũε]‖(L2(Ω̃ε))3×3 ≤

C

µ
ε, ‖Dεũε‖(L2(Ω̃ε))3×3 ≤

C

µ
ε. (14)

Proof. Setting successively ṽ = 2ũε and ṽ = 0 in (11), we have

2µ

∫
Ω̃ε

Dε [ũε] : Dε [ũε] dx
′dy3 +

√
2g(ε)

∫
Ω̃ε

|Dε[ũε]|dx′dy3 =

∫
Ω̃ε

f · ũε dx′dy3. (15)

Using Cauchy-Schwarz’s inequality and the assumption of f , we obtain that∫
Ω̃ε

f · ũε dx′dy3 ≤ C ‖ũε‖(L2(Ω̃ε))3 ,

and taking into account that
∫

Ω̃ε
|Dε[ũε]|dx′dy3 ≥ 0, by (15), we have

‖Dε [ũε]‖2(L2(Ω̃ε))3×3 ≤
C

µ
‖ũε‖(L2(Ω̃ε))3 .

For the cases aε ≈ ε or aε � ε, taking into account Remark 4.3(i) in [4], we obtain the second estimate in (13),
and, consequently, from classical Korn’s inequality we obtain the last estimate in (13). Now, from the second
estimate in (13) and Remark 4.3(i) in [4], we deduce the first estimate in (13). For the case aε � ε, proceeding
similarly with Remark 4.3(ii) in [4], we obtain the desired result.

3.1 The extension of (ũε, p̃ε) to the whole domain Ω

We extend the velocity ũε by zero to the Ω\Ω̃ε and denote the extension by the same symbol. Obviously,
estimates (13)-(14) remain valid and the extension is divergence free too.

We study in the sequel the following cases for the value of the yield stress g(ε):

i) if aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞, or aε � ε, then g(ε) = g aε,

ii) if aε � ε, then g(ε) = g ε,

where g is a positive number. These choices are the most challenging ones and they answer to the question
adressed in the paper, namely they all preserve in the limit the nonlinear character of the flow.

In order to extend the pressure to the whole domain Ω, the mapping Rε (defined in Lemma 4.5 in [4] as Rε2)
allows us to extend the pressure pε to Qε by introducing Fε in (H−1(Qε))

3:

〈Fε, w〉Qε
= 〈∇pε, Rεw〉Ωε

, for any w ∈ (H1
0 (Qε))

3. (16)

6
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Setting succesively v = uε +Rεw and v = uε −Rεw in (9) we get the inequality

| 〈Fε, w〉Qε
| ≤ |a(uε, R

εw)|+ |(fε, Rεw)Ωε
|+ j(Rεw). (17)

Moreover, if divw = 0 then 〈Fε, w〉Qε
= 0, and the DeRham Theorem gives the existence of Pε in L2

0(Qε) with
Fε = ∇Pε.

Using the change of variables (10), we get for any w̃ ∈ (H1
0 (Ω))3 where w̃(x′, y3) = w(x′, εy3),〈

∇εP̃ε, w̃
〉

Ω
= −

∫
Ω

P̃ε divεw̃ dx
′dy3 = −ε−1

∫
Qε

Pε divw dx = ε−1 〈∇Pε, w〉Qε
.

Then, using the identification (16) of Fε and the inequality (17),

|
〈
∇εP̃ε, w̃

〉
Ω
| ≤ ε−1 (|a(uε, R

εw)|+ |(fε, Rεw)Ωε
|+ j(Rεw)) .

and applying the change of variables (10),

|
〈
∇εP̃ε, w̃

〉
Ω
| ≤ |aε(ũε, R̃εw̃)|+ |(f, R̃εw̃)Ω̃ε

|+ jε(R̃
εw̃), (18)

where R̃εw̃ = Rεw for any w̃ ∈ (H1
0 (Ω))3.

Now, we estimate the right-hand side of (18) using the estimates given in Lemma 4.6 in [4].

Lemma 3.2. There exists a constant C independent of ε, such that the extension P̃ε ∈ L2
0(Ω) of the pressure p̃ε

satisfies ∥∥∥P̃ε∥∥∥
L2

0(Ω)
≤ C. (19)

Proof. Let us estimate ∇εP̃ε in the cases aε ≈ ε or aε � ε. We estimate the right-hand side of (18). Using
Cauchy-Schwarz’s inequality and from the second estimate in (13) we have

|aε(ũε, R̃εw̃)| ≤ 2µ ‖Dε [ũε]‖(L2(Ω̃ε))3×3

∥∥∥DεR̃
εw̃
∥∥∥

(L2(Ω̃ε))3×3
≤ Caε

∥∥∥DεR̃
εw̃
∥∥∥

(L2(Ω̃ε))3×3
.

Using the assumption made on the function f , we obtain

|(f, R̃εw̃)Ω̃ε
| ≤ C

∥∥∥R̃εw̃∥∥∥
(L2(Ω̃ε))3

,

and by Cauchy-Schwarz’s inequality and taking into account that |Ω̃ε| ≤ |Ω|, we obtain

jε(R̃
εw̃) ≤ C aε

∥∥∥DεR̃
εw̃
∥∥∥

(L2(Ω̃ε))3×3
.

Then, from (18), we deduce∣∣∣〈∇εP̃ε, w̃〉
Ω

∣∣∣ ≤ Caε ∥∥∥DεR̃
εw̃
∥∥∥

(L2(Ω̃ε))3×3
+ C

∥∥∥R̃εw̃∥∥∥
(L2(Ω̃ε))3

.

Taking into account the third point in Lemma 4.6 in [4], we have∣∣∣〈∇εP̃ε, w̃〉
Ω

∣∣∣ ≤ Caε

(
1

aε
‖w̃‖(L2(Ω))3 + ‖Dεw̃‖(L2(Ω))3×3

)
+ C

(
‖w̃‖(L2(Ω))3 + aε ‖Dεw̃‖(L2(Ω))3×3

)
.

If aε ≈ ε we take into account that aε � 1, and if aε � ε we take into account that aε/ε� 1 and aε � 1, and
we see that there exists a positive constant C such that∣∣∣〈∇εP̃ε, w̃〉

Ω

∣∣∣ ≤ C ‖w̃‖(H1
0 (Ω))3 , ∀w̃ ∈ (H1

0 (Ω))3,

7
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and consequently ∥∥∥∇εP̃ε∥∥∥
(H−1(Ω))3

≤ C.

It follows that (see for instance Girault and Raviart [22], Chapter I, Corollary 2.1) there exists a representative
of P̃ε ∈ L2

0(Ω) such that ∥∥∥P̃ε∥∥∥
L2

0(Ω)
≤ C

∥∥∥∇P̃ε∥∥∥
(H−1(Ω))3

≤ C
∥∥∥∇εP̃ε∥∥∥

(H−1(Ω))3
≤ C.

Finally, let us estimate ∇εP̃ε in the case aε � ε. Similarly to the previous case, we estimate the right side of
(18) by using Cauchy-Schwarz’s inequality and from the second estimate in (14), and we have∣∣∣〈∇εP̃ε, w̃〉

Ω

∣∣∣ ≤ Cε∥∥∥DεR̃
εw̃
∥∥∥

(L2(Ω̃ε))3×3
+ C

∥∥∥R̃εw̃∥∥∥
(L2(Ω̃ε))3

.

Taking into account the proof in Lemma 4.5 in [4], the change of variables (10) and that aε � ε, we can deduce∣∣∣〈∇εP̃ε, w̃〉
Ω

∣∣∣ ≤ Cε

(
1

ε
‖w̃‖(L2(Ω))3 +

1

ε
‖Dx′w̃‖(L2(Ω))3×2 +

1

ε
‖∂y3w̃‖(L2(Ω))3

)
+ C

(
‖w̃‖(L2(Ω))3 + aε ‖Dx′w̃‖(L2(Ω))3×2 + ‖∂y3w̃‖(L2(Ω))3

)
,

and using that aε � 1, we see that there exists a positive constant C such that∣∣∣〈∇εP̃ε, w̃〉
Ω

∣∣∣ ≤ C ‖w̃‖(H1
0 (Ω))3 , ∀w̃ ∈ (H1

0 (Ω))3,

and reasing as the previous case, we have the estimate (19).

According to these extensions, problem (12) can be written as:

2µ

∫
Ω

Dε [ũε] : Dε [ṽ − ũε] dx′dy3 +
√

2g(ε)

∫
Ω

|Dε[ṽ]|dx′dy3 −
√

2g(ε)

∫
Ω

|Dε[ũε]|dx′dy3 (20)

≥
∫

Ω

f · (ṽ − ũε) dx′dy3 +

∫
Ω

P̃ε divε(ṽ − ũε)dx′dy3,

for every ṽ that is the extension by zero to the whole Ω of a function in (H1
0 (Ω̃ε))

3.

3.2 Adaptation of the Unfolding Method

The change of variable (10) does not provide the information we need about the behavior of ũε in the microstruc-

ture associated to Ω̃ε. To solve this difficulty, we use an adaptation introduced in [4] of the unfolding method
from [16] and [17].

Let us recall this adaptation of the unfolding method in which we divide the domain Ω in cubes of lateral
length aε and vertical length 1. For this purpose, given (ũε, P̃ε) ∈ (H1

0 (Ω))3 × L2
0(Ω), we define (ûε, P̂ε) by

ûε(x
′, y) = ũε

(
aεκ

(
x′

aε

)
+ aεy

′, y3

)
, P̂ε(x

′, y) = P̃ε

(
aεκ

(
x′

aε

)
+ aεy

′, y3

)
, a.e. (x′, y) ∈ ω × Y, (21)

where the function κ is defined in (7).

Remark 3.3. For k′ ∈ Kε, the restriction of (ûε, P̂ε) to Y ′k′,aε ×Y does not depend on x′, whereas as a function

of y it is obtained from (ũε, P̃ε) by using the change of variables y′ =
x′ − aεk′

aε
, which transforms Yk′,aε into Y .

8
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We are now in position to obtain estimates for the sequences (ûε, P̂ε), as in the proof of Lemma 4.9 in [4].

Lemma 3.4. There exists a constant C independent of ε, such that the couple (ûε, P̂ε) defined by (21) satisfies

i) if aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞, or aε � ε,

‖ûε‖(L2(ω×Y ))3 ≤ Ca
2
ε, ‖Dy′ [ûε]‖(L2(ω×Y ))3×2≤Ca2

ε, ‖∂y3 [ûε]‖(L2(ω×Y ))3≤Cεaε,

ii) if aε � ε,

‖ûε‖(L2(ω×Y ))3 ≤ Cε
2, ‖Dy′ [ûε]‖(L2(ω×Y ))3×2≤Caε ε, ‖∂y3 [ûε]‖(L2(ω×Y ))3≤Cε

2,

and, moreover, in every cases, ∥∥∥P̂ε∥∥∥
L2

0(ω×Y )
≤ C.

4 Main convergence results

When ε tends to zero, we obtain for problem (20) different behaviors, depending on the magnitude of aε with
respect to ε. We will analyze them in the next sections.

4.1 Critical case aε ≈ ε, with aε/ε→ λ, 0 < λ < +∞

First, we obtain some compactness results about the behavior of the sequences (ũε, P̃ε) and (ûε, P̂ε) satisfying
the a priori estimates given in Lemmas 3.1-i) and 3.4-i), respectively.

Lemma 4.1 (Critical case). For a subsequence of ε still denote by ε, there exist ũ ∈ H1(0, 1;L2(ω)3), where
ũ3 = 0 and ũ = 0 on y3 = {0, 1}, û ∈ L2(ω;H1

] (Y )3) (“]” denotes Y ′-periodicity), with û = 0 on ω × Ys and

û = 0 on y3 = {0, 1} such that
∫
Y
û(x′, y)dy =

∫ 1

0
ũ(x′, y3)dy3 with

∫
Y
û3dy = 0, and P̂ ∈ L2

0(ω×Y ), independent
of y, such that

ũε
a2
ε

⇀ (ũ′, 0) in H1(0, 1;L2(ω)3), (22)

ûε
a2
ε

⇀ û in L2(ω;H1(Y )3), P̂ε ⇀ P̂ in L2
0(ω × Y ), (23)

divx′

(∫ 1

0

ũ′(x′, y3)dy3

)
= 0 in ω,

(∫ 1

0

ũ′(x′, y3)dy3

)
· n = 0 on ∂ω, (24)

divλû = 0 in ω × Y, divx′

(∫
Y

û′(x′, y)dy

)
= 0 in ω,

(∫
Y

û′(x′, y)dy

)
· n = 0 on ∂ω, (25)

where divλ = divy′ + λ∂y3 .

Proof. We refer the reader to Lemmas 5.2, 5.3 and 5.4 in [4] for the proof of (22)-(25). Here, we prove that P̂
does not depend on the microscopic variable y. To do this, we choose as test function ṽ(x′, y) ∈ D(ω;C∞] (Y )3)

with ṽ(x′, y) = 0 ∈ ω × Ys (thus, ṽ(x′, x′/aε, y3) ∈ (H1
0 (Ω̃ε))

3). Setting aεṽ(x′, x′/aε, y3) in (20) (we recall that
g(ε) = g aε)) and using that divεũε = 0, we have

2µaε

∫
Ω

Dε [ũε] :

(
Dx′ [ṽ] +

1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy3 − 2µ

∫
Ω

|Dε [ũε] |2dx′dy3 (26)

+
√

2g a2
ε

∫
Ω

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy3 −
√

2g aε

∫
Ω

|Dε[ũε]|dx′dy3

≥ aε
∫

Ω

f ′ · ṽ′ dx′dy3 −
∫

Ω

f ′ · ũ′ε dx′dy3 + aε

∫
Ω

P̃ε divx′ ṽ
′ dx′dy3 +

∫
Ω

P̃ε divy′ ṽ
′ dx′dy3 +

aε
ε

∫
Ω

P̃ε ∂y3 ṽ3 dx
′dy3.

9



Maŕıa Anguiano and Renata Bunoiu

By the change of variables given in Remark 3.3 and by Lemma 3.4, we get for the first term in relation (26)∫
Ω

Dε [ũε] :

(
Dx′ [ṽ] +

1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy3 (27)

=

∫
ω×Y

(
1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

)
:

(
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy +Oε,

and for the second term in relation (26)∫
Ω

|Dε [ũε] |2dx′dy3 =

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣2 dx′dy = Oε. (28)

Moreover, applying the change of variables given in Remark 3.3 to the fourth term in relation (26), we have∫
Ω

|Dε[ũε]|dx′dy3 =

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy. (29)

Therefore, applying the change of variables given in Remark 3.3 to relation (26), we obtain

2µaε

∫
ω×Y

(
1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

)
:

(
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy (30)

+
√

2g a2
ε

∫
ω×Y

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy −√2g aε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy +Oε

≥ aε
∫
ω×Y

f ′ · ṽ′ dx′dy −
∫
ω×Y

f ′ · û′ε dx′dy + aε

∫
ω×Y

P̂ε divx′ ṽ
′ dx′dy +

∫
ω×Y

P̂ε divy′ ṽ
′ dx′dy

+
aε
ε

∫
ω×Y

P̂ε ∂y3 ṽ3 dx
′dy +Oε.

According with (23), the first term in relation (30) can be written by the following way

2µaε

∫
ω×Y

(
1

a2
ε

Dy′ [ûε] +
aε
ε

1

a2
ε

∂y3 [ûε]

)
:
(
Dy′ [ṽ] +

aε
ε
∂y3 [ṽ]

)
dx′dy → 0, as ε→ 0. (31)

In order to pass to the limit in the first nonlinear term, we have

√
2gaε

∫
ω×Y

∣∣∣aεDx′ [ṽ] + Dy′ [ṽ] +
aε
ε
∂y3 [ṽ]

∣∣∣ dx′dy → 0, as ε→ 0. (32)

Now, in order to pass the limit in the second nonlinear term, we are taking into account that

√
2g aε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy =
√

2g a2
ε

∫
ω×Y

∣∣∣∣ 1

a2
ε

Dy′ [ûε] +
aε
ε

1

a2
ε

∂y3 [ûε]

∣∣∣∣ dx′dy,
and using (23) and the fact that the function E(ϕ) = |ϕ| is proper convex continuous, we can deduce that

lim inf
ε→0

√
2g aε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy ≥ 0. (33)

Moreover, using (23) the two first terms in the right hand side of (30) can be written by

aε

∫
ω×Y

f ′ · ṽ′ dx′dy − a2
ε

∫
ω×Y

f ′ · û
′
ε

a2
ε

dx′dy → 0, as ε→ 0. (34)

We consider now the terms which involve the pressure. Taking into account the convergence of the pressure (23),
passing to the limit when ε tends to zero, we have∫

ω×Y
P̂ divλṽ dx

′dy. (35)

10
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Therefore, taking into account (31)-(35), when we pass to the limit in (30) when ε tends to zero, we have
0 ≥

∫
ω×Y P̂ divλṽ dx

′dy. Now, if we choose as test function −aεṽ(x′, x′/aε, y3) in (20) and we argue similarly,

we obtain
∫
ω×Y P̂ divλṽ dx

′dy ≥ 0. Thus, we can deduce that
∫
ω×Y P̂ divλṽ dx

′dy = 0, which shows that P̂ does
not depend on y.

Theorem 4.2 (Critical case). If aε ≈ ε, with aε/ε → λ, 0 < λ < +∞, then (ûε/a
2
ε, P̂ε) converges to (û, P̂ ) in

L2(ω;H1(Y )3)× L2
0(ω × Y ), which satisfies the following variational inequality

2µ

∫
ω×Y

Dλ [û] : (Dλ [ṽ]− Dλ [û]) dx′dy +
√

2g

∫
ω×Y

|Dλ [ṽ]| dx′dy −
√

2g

∫
ω×Y

|Dλ [û]| dx′dy

≥
∫
ω×Y

f ′ · (ṽ′ − û′) dx′dy −
∫
ω×Y

∇x′ P̂ (ṽ′ − û′) dx′dy, (36)

where Dλ[·] = Dy′ [·] + λ∂y3 [·] and for every ṽ ∈ L2(ω;H1(Y )3) such that

ṽ(x′, y) = 0 in ω × Ys, divλṽ = 0 in ω × Y,
(∫

Y

ṽ′(x′, y)dy

)
· n = 0 on ∂ω.

Proof. We choose a test function ṽ(x′, y) ∈ D(ω;C∞] (Y )3) with ṽ(x′, y) = 0 ∈ ω × Ys (thus, we have that

ṽ(x′, x′/aε, y3) ∈ (H1
0 (Ω̃ε))

3). We first multiply (20) by a−2
ε and we use that divεũε = 0. Then, we take as

test function a2
εṽε = a2

ε(ṽ
′(x′, x′/aε, y3), λε/aεv3(x′, x′/aε, y3)), with ṽ(x′, y) = 0 in ω × Ys and satisfying the

incompressibility conditions (25), that is, divλṽ = 0 in ω × Y and
(∫
Y
ṽ′(x′, y)dy

)
· n = 0 on ∂ω, and we have

2µ

∫
Ω

Dε [ũε] :

(
Dx′ [ṽε] +

1

aε
Dy′ [ṽε] +

1

ε
∂y3 [ṽε]

)
dx′dy3 − 2µ

1

a2
ε

∫
Ω

|Dε [ũε] |2dx′dy3 (37)

+
√

2g aε

∫
Ω

∣∣∣∣Dx′ [ṽε] +
1

aε
Dy′ [ṽε] +

1

ε
∂y3 [ṽε]

∣∣∣∣ dx′dy3 −
√

2g
1

aε

∫
Ω

|Dε[ũε]|dx′dy3

≥
∫

Ω

f ′ · ṽ′ dx′dy3 −
1

a2
ε

∫
Ω

f ′ · ũ′ε dx′dy3 +

∫
Ω

P̃ε divx′ ṽ
′ dx′dy3 +

1

aε

∫
Ω

P̃ε divy′ ṽ
′ dx′dy3 +

λ

aε

∫
Ω

P̃ε ∂y3 ṽ3 dx
′dy3.

By the change of variables given in Remark 3.3 and by Lemma 3.4, we have (27) for the first term in relation
(37), and for the second term in relation (37) we obtain∫

Ω

|Dε [ũε] |2dx′dy3 =

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣2 dx′dy. (38)

Moreover, applying the change of variables given in Remark 3.3 to the fourth term in relation (37), we have (29).
Therefore, applying the change of variables given in Remark 3.3 to relation (37), we obtain

2µ

∫
ω×Y

(
1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

)
:

(
1

aε
Dy′ [ṽε] +

1

ε
∂y3 [ṽε]

)
dx′dy − 2µ

1

a2
ε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣2 dx′dy
+
√

2g aε

∫
ω×Y

∣∣∣∣Dx′ [ṽε] +
1

aε
Dy′ [ṽε] +

1

ε
∂y3 [ṽε]

∣∣∣∣ dx′dy −√2g
1

aε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy +Oε (39)

≥
∫
ω×Y

f ′ · ṽ′ dx′dy − 1

a2
ε

∫
ω×Y

f ′ · û′ε dx′dy +

∫
ω×Y

P̂ε divx′ ṽ
′ dx′dy +

1

aε

∫
ω×Y

P̂ε divy′ ṽ
′ dx′dy

+
λ

aε

∫
ω×Y

P̂ε ∂y3 ṽ3 dx
′dy +Oε.

According with (23), the first term in relation (39) can be written

2µ

∫
ω×Y

(
1

a2
ε

Dy′ [ûε] +
aε
ε

1

a2
ε

∂y3 [ûε]

)
:
(
Dy′ [ṽε] +

aε
ε
∂y3 [ṽε]

)
dx′dy,

11
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and, taking into account that λ ε/aε → 1, this term tends to the following limit

2µ

∫
ω×Y

(Dy′ [û] + λ∂y3 [û]) : (Dy′ [ṽ] + λ∂y3 [ṽ]) dx′dy. (40)

The second term in relation (39) writes

2µ

∫
ω×Y

(
1

a2
ε

Dy′ [ûε] +
aε
ε

1

a2
ε

∂y3 [ûε]

)
:

(
1

a2
ε

Dy′ [ûε] +
aε
ε

1

a2
ε

∂y3 [ûε]

)
dx′dy,

and, taking into account that the function B(ϕ) = |ϕ| is proper convex continuous and λ ε/aε → 1, we get that
the lim infε→0 of this second is greater or equal than

2µ

∫
ω×Y

(Dy′ [û] + λ∂y3 [û]) : (Dy′ [û] + λ∂y3 [û]) dx′dy. (41)

In order to pass to the limit in the first nonlinear term, we have∣∣∣∣√2g aε

∫
ω×Y

∣∣∣∣Dx′ [ṽε] +
1

aε
Dy′ [ṽε] +

1

ε
∂y3 [ṽε]

∣∣∣∣ dx′dy −√2g

∫
ω×Y

|Dy′ [ṽ] + λ∂y3 [ṽ]| dx′dy
∣∣∣∣

≤
√

2g

∫
ω×Y

∣∣∣aεDx′ [ṽε] + Dy′ [ṽε] +
aε
ε
∂y3 [ṽε]− Dy′ [ṽ]− λ∂y3 [ṽ]

∣∣∣ dx′dy
≤
√

2g

∫
ω×Y

|aεDx′ [ṽε]| dx′dy +
√

2g

∫
ω×Y

|Dy′ [ṽε]− Dy′ [ṽ]| dx′dy

+
√

2g

∫
ω×Y

∣∣∣aε
ε
∂y3 [ṽε]− λ∂y3 [ṽ]

∣∣∣ dx′dy → 0, as ε→ 0,

and we can deduce that the first nonlinear term tends to the following limit

√
2g

∫
ω×Y

|Dy′ [ṽ] + λ∂y3 [ṽ]| dx′dy. (42)

Now, in order to pass the limit in the second nonlinear term, we are taking into account that

√
2g

1

aε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy =
√

2g

∫
ω×Y

∣∣∣∣ 1

a2
ε

Dy′ [ûε] +
aε
ε

1

a2
ε

∂y3 [ûε]

∣∣∣∣ dx′dy,
and using (23) and the fact that the function E(ϕ) = |ϕ| is proper convex continuous, we can deduce that

lim inf
ε→0

√
2g

1

aε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy ≥ √2g

∫
ω×Y

|Dy′ [û] + λ∂y3 [û]| dx′dy. (43)

Moreover, using (23) the two first terms in the right hand side of (39) tend to the following limit∫
ω×Y

f ′ · (ṽ′ − û′) dx′dy. (44)

We consider now the terms which involve the pressure. Taking into account the convergence of the pressure (23)
the first term of the pressure tends to the following limit

∫
ω×Y P̂ divx′ ṽ

′ dx′dy, and using (25) and taking into

account that P̂ does not depend on y, we have∫
ω×Y

P̂ divx′ ṽ
′ dx′dy =

∫
ω×Y

P̂ divx′ ṽ
′ dx′dy −

∫
ω

P̂

(
divx′

∫
Y

û′dy

)
dx′ = −

∫
ω×Y

∇x′ P̂ (ṽ′ − û′)dx′dy.(45)

Finally, using that divλṽ = 0, we have

1

aε

∫
ω×Y

P̂ε divy′ ṽ
′ dx′dy +

λ

aε

∫
ω×Y

P̂ε ∂y3 ṽ3 dx
′dy = 0. (46)

Therefore, taking into account (40)-(46), we have (36).
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4.2 Subcritical case aε � ε (λ = 0)

We obtain some compactness results about the behavior of the sequences (ũε, P̃ε) and (ûε, P̂ε) satisfying the a
priori estimates given in Lemmas 3.1-i) and 3.4-i), respectively.

Lemma 4.3 (Subcritical case). For a subsequence of ε still denoted by ε, there exist ũ ∈ (L2(Ω))3, where
ũ3 = 0 and ũ = 0 on y3 = {0, 1}, û ∈ L2(Ω;H1

] (Y ′)3) (“]” denotes Y ′-periodicity), with û = 0 in ω × Ys and

û = 0 on y3 = {0, 1} such that
∫
Y
û(x′, y)dy =

∫ 1

0
ũ(x′, y3)dy3 with

∫
Y
û3dy = 0 and û3 independent of y3, and

P̂ ∈ L2
0(ω × Y ), independent of y, such that

ũε
a2
ε

⇀ (ũ′, 0) in (L2(Ω))3, (47)

ûε
a2
ε

⇀ û in L2(Ω;H1(Y ′)3), P̂ε ⇀ P̂ in L2
0(ω × Y ), (48)

divx′

(∫ 1

0

ũ′(x′, y3)dy3

)
= 0 in ω,

(∫ 1

0

ũ′(x′, y3)dy3

)
· n = 0 on ∂ω, (49)

divy′ û
′ = 0 in ω × Y, divx′

(∫
Y

û′(x′, y)dy

)
= 0 in ω,

(∫
Y

û′(x′, y)dy

)
· n = 0 on ∂ω. (50)

Proof. See Lemmas 5.2, 5.3 and 5.4 in [4] for the proof of (47)-(50). In order to prove that P̂ does not depend
on y′ we argue as in the proof of Lemma 4.1 using that aε � ε, and we obtain

∫
ω×Y P̂ divy′ ṽ

′ dx′dy = 0,

which shows that P̂ does not depend on y′. Now, in order to prove that P̂ does not depend on y3, setting
εṽ = ε(0, ṽ3(x′, x′/aε, y3)) in (20) (we recall that g(ε) = g aε)) and using that divεũε = 0, we have

2µε

∫
Ω

Dε [ũε] :

(
Dx′ [ṽ] +

1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy3 − 2µ

∫
Ω

|Dε [ũε] |2dx′dy3 (51)

+
√

2gaε ε

∫
Ω

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy3 −
√

2gaε

∫
Ω

|Dε[ũε]|dx′dy3

≥ −
∫

Ω

f ′ · ũ′ε dx′dy3 +

∫
Ω

P̃ε ∂y3 ṽ3 dx
′dy3.

Applying the change of variables given in Remark 3.3 to relation (51) and taking into account (27)-(29), we
obtain

2µε

∫
ω×Y

(
1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

)
:

(
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy (52)

+
√

2gaε ε

∫
ω×Y

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy −√2gaε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy +Oε

≥ −
∫
ω×Y

f ′ · û′ε dx′dy +

∫
ω×Y

P̂ε ∂y3 ṽ3 dx
′dy +Oε.

According with (48) and using that aε � ε, the first term in relation (52) can be written by the following way

2µε

∫
ω×Y

(
1

a2
ε

Dy′ [ûε] +
aε
ε

1

a2
ε

∂y3 [ûε]

)
:
(
Dy′ [ṽ] +

aε
ε
∂y3 [ṽ]

)
dx′dy → 0, as ε→ 0. (53)

In order to pass to the limit in the first nonlinear term, we have

√
2gε

∫
ω×Y

∣∣∣aεDx′ [ṽ] + Dy′ [ṽ] +
aε
ε
∂y3 [ṽ]

∣∣∣ dx′dy → 0, as ε→ 0. (54)

13
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In order to pass to the limit in the second nonlinear term, we proceed as in Lemma 4.1. Moreover, using (48)
the first term in the right hand side of (52) can be written by

a2
ε

∫
ω×Y

f ′ · û
′
ε

a2
ε

dx′dy → 0, as ε→ 0. (55)

We consider now the term which involves the pressure. Taking into account the convergence of the pressure (48),
passing to the limit when ε tends to zero, we have∫

ω×Y
P̂ ∂y3 ṽ3 dx

′dy. (56)

Therefore, taking into account (33) and (53)-(56), when we pass to the limit in (52) when ε tends to zero, we
have 0 ≥

∫
ω×Y P̂ ∂y3 ṽ3 dx

′dy. Now, if we choose as test function −εṽ = −ε(0, ṽ3(x′, x′/aε, y3)) in (20) and we

argue similarly, we can deduce that P̂ does not depend on y3, so P̂ does not depend on y.

Theorem 4.4 (Subcritical case). If aε � ε, then (ûε/a
2
ε, P̂ε) converges to (û, P̂ ) in L2(Ω;H1(Y ′)3)×L2

0(ω×Y ),
which satisfies the following variational inequality

2µ

∫
ω×Y

Dy′ [û′] : (Dy′ [ṽ′]− Dy′ [û′]) dx′dy +
√

2g

∫
ω×Y

|Dy′ [ṽ′]| dx′dy −
√

2g

∫
ω×Y

|Dy′ [û′]| dx′dy

≥
∫
ω×Y

f ′ · (ṽ′ − û′) dx′dy −
∫
ω×Y

∇x′ P̂ (ṽ′ − û′) dx′dy, (57)

for every ṽ ∈ L2(Ω;H1(Y ′)3) such that

ṽ(x′, y) = 0 in ω × Ys, divy′ ṽ
′ = 0 in ω × Y,

(∫
Y

ṽ′(x′, y)dy

)
· n = 0 on ∂ω.

Proof. We choose a test function ṽ(x′, y) ∈ D(ω;C∞] (Y )3) with ṽ(x′, y) = 0 ∈ ω × Ys (thus, we have that

ṽ(x′, x′/aε, y3) ∈ (H1
0 (Ω̃ε))

3). We first multiply (20) by a−2
ε and we use that divεũε = 0. Then, we take a

test function a2
εṽ(x′, x′/aε, y3), with ṽ3 independent of y3 and with ṽ(x′, y) = 0 in ω × Ys and satisfying the

incompressibility conditions (50), that is, divy′ ṽ
′ = 0 in ω × Y and

(∫
Y
ṽ′(x′, y)dy

)
· n = 0 on ∂ω, and we have

2µ

∫
Ω

Dε [ũε] :

(
Dx′ [ṽ] +

1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy3 − 2µ

1

a2
ε

∫
Ω

|Dε [ũε] |2dx′dy3 (58)

+
√

2g aε

∫
Ω

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy3 −
√

2g
1

aε

∫
Ω

|Dε[ũε]|dx′dy3

≥
∫

Ω

f ′ · ṽ′ dx′dy3 −
1

a2
ε

∫
Ω

f ′ · ũ′ε dx′dy3 +

∫
Ω

P̃ε divx′ ṽ
′ dx′dy3 +

1

aε

∫
Ω

P̃ε divy′ ṽ
′ dx′dy3.

Applying the change of variables given in Remark 3.3 to relation (58) and taking into account (27), (29) and
(38), we obtain

2µ

∫
ω×Y

(
1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

)
:

(
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy (59)

−2µ
1

a2
ε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣2 dx′dy +
√

2g aε

∫
ω×Y

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy
−
√

2g
1

aε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy +Oε

≥
∫
ω×Y

f ′ · ṽ′ dx′dy − 1

a2
ε

∫
ω×Y

f ′ · û′ε dx′dy +

∫
ω×Y

P̂ε divx′ ṽ
′ dx′dy +

1

aε

∫
ω×Y

P̂ε divy′ ṽ
′ dx′dy +Oε.
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In the left-hand side, we only give the details of convergence for the first nonlinear term, the most challenging
one. ∣∣∣∣√2g aε

∫
ω×Y

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy −√2g

∫
ω×Y

|Dy′ [ṽ]| dx′dy
∣∣∣∣

≤
√

2g

∫
ω×Y

∣∣∣aεDx′ [ṽ] + Dy′ [ṽ] +
aε
ε
∂y3 [ṽ]− Dy′ [ṽ]

∣∣∣ dx′dy
≤
√

2g

∫
ω×Y

|aεDx′ [ṽ]| dx′dy +
√

2g

∫
ω×Y

∣∣∣aε
ε
∂y3 [ṽ]

∣∣∣ dx′dy → 0, as ε→ 0.

Using (48) the two first terms in the right hand side of (59) tend to the following limit∫
ω×Y

f ′ · (ṽ′ − û′) dx′dy.

We consider now the terms which involve the pressure. Taking into account the convergence of the pressure (48)
the first term of the pressure tends to the following limit

∫
ω×Y P̂ divx′ ṽ

′ dx′dy, and using (50) and taking into

account that P̂ does not depend on y, we have (45). Finally, using that divy′ ṽ
′ = 0, we have

1

aε

∫
ω×Y

P̂ε divy′ ṽ
′ dx′dy = 0. (60)

It is straightforward to obtain that û3 = 0 and therefore we get (57).

4.3 Supercritical case aε � ε (λ = +∞)

We obtain some compactness results about the behavior of the sequences (ũε, P̃ε) and (ûε, P̂ε) satisfying the a
priori estimates given in Lemmas 3.1-ii) and 3.4-ii), respectively.

Lemma 4.5 (Supercritical case). For a subsequence of ε still denote by ε, there exist ũ ∈ H1(0, 1;L2(ω)3), where
ũ3 = 0 and ũ = 0 on y3 = {0, 1}, û ∈ H1(0, 1;L2

] (ω × Y ′)3) (“]” denotes Y ′-periodicity), with û = 0 in ω × Ys,
û = 0 on y3 = {0, 1} such that

∫
Y
û(x′, y)dy =

∫ 1

0
ũ(x′, y3)dy3 with

∫
Y
û3dy = 0 and û3 independent of y3, and

P̂ ∈ L2
0(ω × Y ), independent of y, such that

ũε
ε2

⇀ (ũ′, 0) in H1(0, 1;L2(ω)3), (61)

ûε
ε2

⇀ û in H1(0, 1;L2(ω × Y ′)3), P̂ε ⇀ P̂ in L2
0(ω × Y ), (62)

divx′

(∫ 1

0

ũ′(x′, y3)dy3

)
= 0 in ω,

(∫ 1

0

ũ′(x′, y3)dy3

)
· n = 0 on ∂ω, (63)

divy′ û
′ = 0 in ω × Y, divx′

(∫
Y

û′(x′, y)dy

)
= 0 in ω,

(∫
Y

û′(x′, y)dy

)
· n = 0 on ∂ω. (64)

Proof. See Lemmas 5.2, 5.3 and 5.4 in [4] for the proof of (61)-(64). Here, we prove that P̂ does not depend on the
microscopic variable y. To do this, we choose as test function ṽ(x′, y) ∈ D(ω;C∞] (Y )3) with ṽ(x′, y) = 0 ∈ ω×Ys
(thus, ṽ(x′, x′/aε, y3) ∈ (H1

0 (Ω̃ε))
3). In order to prove that P̂ does not depend on y3, we set εṽ(x′, x′/aε, y3) in

(20) (we recall that g(ε) = g ε))and using that divεũε = 0, we have

2µε

∫
Ω

Dε [ũε] :

(
Dx′ [ṽ] +

1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy3 − 2µ

∫
Ω

|Dε [ũε] |2dx′dy3 (65)

+
√

2gε2

∫
Ω

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy3 −
√

2gε

∫
Ω

|Dε[ũε]|dx′dy3

≥ ε
∫

Ω

f ′ · ṽ′ dx′dy3 −
∫

Ω

f ′ · ũ′ε dx′dy3 + ε

∫
Ω

P̃ε divx′ ṽ
′ dx′dy3 +

ε

aε

∫
Ω

P̃ε divy′ ṽ
′ dx′dy3 +

∫
Ω

P̃ε ∂y3 ṽ3 dx
′dy3.

15
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Applying the change of variables given in Remark 3.3 to relation (65) and taking into account (27)-(29), we
obtain

2µε

∫
ω×Y

(
1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

)
:

(
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy (66)

+
√

2gε2

∫
ω×Y

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy −√2gε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy +Oε

≥ ε
∫
ω×Y

f ′ · ṽ′ dx′dy −
∫
ω×Y

f ′ · û′ε dx′dy + ε

∫
ω×Y

P̂ε divx′ ṽ
′ dx′dy +

ε

aε

∫
ω×Y

P̂ε divy′ ṽ
′ dx′dy

+

∫
ω×Y

P̂ε ∂y3 ṽ3 dx
′dy +Oε.

According with (62) and using that aε � ε, one has for the first term in relation (66)

2µε

∫
ω×Y

(
ε

aε

1

ε2
Dy′ [ûε] +

1

ε2
∂y3 [ûε]

)
:

(
ε

aε
Dy′ [ṽ] + ∂y3 [ṽ]

)
dx′dy → 0, as ε→ 0. (67)

We pass to the limit in the first nonlinear term and we have

√
2gε

∫
ω×Y

∣∣∣∣εDx′ [ṽ] +
ε

aε
Dy′ [ṽ] + ∂y3 [ṽ]

∣∣∣∣ dx′dy → 0, as ε→ 0. (68)

In order to pass the limit in the second nonlinear term, we taking into account that

√
2gε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy =
√

2gε2

∫
ω×Y

∣∣∣∣ εaε 1

ε2
Dy′ [ûε] +

1

ε2
∂y3 [ûε]

∣∣∣∣ dx′dy,
and using (62), with aε � ε, and the fact that the function E(ϕ) = |ϕ| is proper convex continuous, we can
deduce that

lim inf
ε→0

√
2gε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy ≥ 0. (69)

Moreover, using (62) the two first terms in the right hand side of (66) can be written by

ε

∫
ω×Y

f ′ · ṽ′ dx′dy − ε2

∫
ω×Y

f ′ · û
′
ε

ε2
dx′dy → 0, as ε→ 0. (70)

We consider now the terms which involve the pressure. Taking into account the convergence of the pressure (62)
and aε � ε, passing to the limit when ε tends to zero, we have∫

ω×Y
P̂ ∂y3 ṽ3 dx

′dy. (71)

Therefore, taking into account (67)-(71), when we pass to the limit in (66) when ε tends to zero, we have
0 ≥

∫
ω×Y P̂ ∂y3 ṽ3 dx

′dy. Now, if we choose as test function −εṽ(x′, x′/aε, y3) in (20) and we argue similarly, we

can deduce that P̂ does not depend on y3.

Now, in order to prove that P̂ does not depend on y′, we set aεṽ = aε(ṽ
′(x′, x′/aε, y3), 0) in (20) and using

that divεũε = 0, we have

2µaε

∫
Ω

Dε [ũε] :

(
Dx′ [ṽ] +

1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy3 − 2µ

∫
Ω

|Dε [ũε] |2dx′dy3 (72)

+
√

2gε aε

∫
Ω

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy3 −
√

2gε

∫
Ω

|Dε[ũε]|dx′dy3

≥ aε
∫

Ω

f ′ · ṽ′ dx′dy3 −
∫

Ω

f ′ · ũ′ε dx′dy3 + aε

∫
Ω

P̃ε divx′ ṽ
′ dx′dy3 +

∫
Ω

P̃ε divy′ ṽ
′ dx′dy3.
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Applying the change of variables given in Remark 3.3 to relation (72) and taking into account (27)-(29), we
obtain

2µaε

∫
ω×Y

(
1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

)
:

(
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy (73)

+
√

2gε aε

∫
ω×Y

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy −√2gε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy +Oε

≥ aε
∫
ω×Y

f ′ · ṽ′ dx′dy −
∫
ω×Y

f ′ · û′ε dx′dy + aε

∫
ω×Y

P̂ε divx′ ṽ
′ dx′dy +

∫
ω×Y

P̂ε divy′ ṽ
′ dx′dy.

According with (62) and using that aε � ε, the first term in relation (73) can be written by the following way

2µaε

∫
ω×Y

(
ε

aε

1

ε2
Dy′ [ûε] +

1

ε2
∂y3 [ûε]

)
:

(
ε

aε
Dy′ [ṽ] + ∂y3 [ṽ]

)
dx′dy → 0, as ε→ 0. (74)

In order to pass to the limit in the first nonlinear term, we have

√
2gaε

∫
ω×Y

∣∣∣∣εDx′ [ṽ] +
ε

aε
Dy′ [ṽ] + ∂y3 [ṽ]

∣∣∣∣ dx′dy → 0, as ε→ 0. (75)

Moreover, using (62) the two first terms in the right hand side of (73) can be written by

aε

∫
ω×Y

f ′ · ṽ′ dx′dy − ε2

∫
ω×Y

f ′ · û
′
ε

ε2
dx′dy → 0, as ε→ 0. (76)

We consider now the terms which involve the pressure. Taking into account the convergence of the pressure (62),
passing to the limit when ε tends to zero, we have∫

ω×Y
P̂ divy′ ṽ

′ dx′dy. (77)

Therefore, taking into account (69) and (74)-(77), when we pass to the limit in (73) when ε tends to zero, we
have 0 ≥

∫
ω×Y P̂ divy′ ṽ

′ dx′dy. Now, if we choose as test function −aεṽ = −aε(ṽ′(x′, x′/aε, y3), 0) in (20) and we

argue similarly, we can deduce that P̂ does not depend on y′, so P̂ does not depend on y.

Theorem 4.6 (Supercritical case). If aε � ε, then (ûε/ε
2, P̂ε) converges to (û, P̂ ) in H1(0, 1;L2(ω × Y ′)3) ×

L2
0(ω × Y ), which satisfies the following variational equality

2µ

∫
ω×Y

∂y3 [û′] : (∂y3 [ṽ′]− ∂y3 [û′]) dx′dy +
√

2g

∫
ω×Y

|∂y3 [ṽ′]| dx′dy −
√

2g

∫
ω×Y

|∂y3 [û′]| dx′dy

≥
∫
ω×Y

f ′ · (ṽ′ − û′) dx′dy −
∫
ω×Y

∇x′ P̂ (ṽ′ − û′) dx′dy, (78)

for every ṽ ∈ H1(0, 1;L2(ω × Y ′)3) such that

ṽ(x′, y) = 0 in ω × Ys, divy′ ṽ
′ = 0 in ω × Y,

(∫
Y

ṽ′(x′, y)dy

)
· n = 0 on ∂ω.

Proof. We choose a test function ṽ(x′, y) ∈ D(ω;C∞] (Y )3) with ṽ(x′, y) = 0 ∈ ω × Ys (thus, ṽ(x′, x′/aε, y3) ∈
(H1

0 (Ω̃ε))
3). We first multiply (20) by ε−2 and we use that divεũε = 0. Then, we take a test function

ε2ṽ(x′, x′/aε, y3), with ṽ3 independent of y3 and with ṽ(x′, y) = 0 in ω × Ys and satisfying the incompress-
ibility conditions (64), that is, divy′ ṽ

′ = 0 in ω × Y and
(∫
Y
ṽ′(x′, y)dy

)
· n = 0 on ∂ω, and we have

2µ

∫
Ω

Dε [ũε] :

(
Dx′ [ṽ] +

1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy3 − 2µ

1

ε2

∫
Ω

|Dε [ũε] |2dx′dy3 (79)

+
√

2gε

∫
Ω

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy3 −
√

2g
1

ε

∫
Ω

|Dε[ũε]|dx′dy3

≥
∫

Ω

f ′ · ṽ′ dx′dy3 −
1

ε2

∫
Ω

f ′ · ũ′ε dx′dy3 +

∫
Ω

P̃ε divx′ ṽ
′ dx′dy3 +

1

aε

∫
Ω

P̃ε divy′ ṽ
′ dx′dy3.
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Maŕıa Anguiano and Renata Bunoiu

Applying the change of variables given in Remark 3.3 to relation (79), arguing as in the critical case, we obtain

2µ

∫
ω×Y

(
1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

)
:

(
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

)
dx′dy (80)

−2µ
1

ε2

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣2 dx′dy +
√

2gε

∫
ω×Y

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy
−
√

2g
1

ε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy +Oε

≥
∫
ω×Y

f ′ · ṽ′ dx′dy − 1

ε2

∫
ω×Y

f ′ · û′ε dx′dy +

∫
ω×Y

P̂ε divx′ ṽ
′ dx′dy +

1

aε

∫
ω×Y

P̂ε divy′ ṽ
′ dx′dy +Oε.

According with (62), the first term in relation (80) can be written by the following way

2µ

∫
ω×Y

(
ε

aε

1

ε2
Dy′ [ûε] +

1

ε2
∂y3 [ûε]

)
:

(
ε

aε
Dy′ [ṽ] + ∂y3 [ṽ]

)
dx′dy,

and, taking into account that aε � ε, this term tends to the following limit

2µ

∫
ω×Y

∂y3 [û′] : ∂y3 [ṽ′] dx′dy. (81)

The second term in relation (80) writes

2µ

∫
ω×Y

(
ε

aε

1

ε2
Dy′ [ûε] +

1

ε2
∂y3 [ûε]

)
:

(
ε

aε

1

ε2
Dy′ [ûε] +

1

ε2
∂y3 [ûε]

)
dx′dy,

and, taking into account that the function B(ϕ) = |ϕ| is proper convex continuous and aε � ε, we get that the
lim infε→0 of this second is greater or equal than

2µ

∫
ω×Y

∂y3 [û′] : ∂y3 [û′] dx′dy. (82)

In order to pass to the limit in the first nonlinear term, using that aε � ε, we have∣∣∣∣√2gε

∫
ω×Y

∣∣∣∣Dx′ [ṽ] +
1

aε
Dy′ [ṽ] +

1

ε
∂y3 [ṽ]

∣∣∣∣ dx′dy −√2g

∫
ω×Y

|∂y3 [ṽ′]| dx′dy
∣∣∣∣

≤
√

2g

∫
ω×Y

∣∣∣∣εDx′ [ṽ] +
ε

aε
Dy′ [ṽ] + ∂y3 [ṽ]− ∂y3 [ṽ]

∣∣∣∣ dx′dy
≤
√

2g

∫
ω×Y

|εDx′ [ṽ]| dx′dy +
√

2g
ε

aε

∫
ω×Y

|Dy′ [ṽ]| dx′dy → 0, as ε→ 0.

Now, in order to pass the limit in the second nonlinear term, taking into account that

√
2g

1

ε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy =
√

2g

∫
ω×Y

∣∣∣∣ εaε 1

ε2
Dy′ [ûε] +

1

ε2
∂y3 [ûε]

∣∣∣∣ dx′dy,
and using (62) and the fact that the function E(ϕ) = |ϕ| is proper convex continuous and aε � ε, we can deduce
that

lim inf
ε→0

√
2g

1

ε

∫
ω×Y

∣∣∣∣ 1

aε
Dy′ [ûε] +

1

ε
∂y3 [ûε]

∣∣∣∣ dx′dy ≥ √2g

∫
ω×Y

|∂y3 [û]| dx′dy. (83)

Moreover, using (62) the two first terms in the right hand side of (80) tend to the following limit∫
ω×Y

f ′ · (ṽ′ − û′) dx′dy. (84)

We consider now the terms which involve the pressure. Taking into account the convergence of the pressure (62)
the first term of the pressure tends to the following limit

∫
ω×Y P̂ divx′ ṽ

′ dx′dy, and using (64) and taking into

account that P̂ does not depend on y, we have (45). Finally using that divy′ ṽ
′ = 0, we have (60). Therefore,

taking into account (45), (60) and (81)-(84), we get (78).
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5 Conclusions

By using dimension reduction and homogenization techniques, we studied the limiting behavior of the velocity
and of the pressure for a nonlinear viscoplastic Bingham flow with small yield stress, in a thin porous medium
of small height ε and for which the relative dimension of the pores is aε. Three cases are studied following the
value of λ = limε→0 aε/ε and, at the limit, they all preserve the nonlinear character of the flow. More precisely,
according to [29], each of the limit problems (36), (57) and (78), is written as a nonlinear Darcy equation:

Ũ ′(x′) = Kλ
(
f ′(x′)−∇x′ P̂ (x′)

)
in ω,

divx′Ũ ′(x
′) = 0 in ω,

Ũ ′(x′) · n = 0 on ∂ω.

(85)

The velocity of filtration Ũ(x′) =
(
Ũ ′(x′), Ũ3(x′)

)
is defined by

Ũ(x′) =

∫
Y

û(x′, y)dy =

1∫
0

∫
Y ′

û(x′, y′, y3)dy′

 dy3 =

1∫
0

ũ(x′, y3)dy3.

We remark that in all three cases, the vertical component Ũ3 of the velocity of filtration equals zero and
this result is in accordance with the previous mathematical studies of the flow in this thin porous medium,
for newtonian fluids (Stokes and Navier-Stokes equations) and for power law fluids (see [20], [1], [2], [4], [5]).
Moreover, despite the fact that the limit pressure is not unique, the velocity of filtration is uniquely determined
(see Section 4.3 in [29]). In (85), the function Kλ : R2 −→ R2 is nonlinear and its expression can not be made

explicit for the Bingham flow (see [29]). Nevertheless, in each case, for a given ξ ∈ R2, one hasKλ(ξ) =
∫
Y

χξλ(y)dy,

with χξλ solution of a local problem stated in the cell Y . If 0 < λ < +∞, the local problem is a 3-D Bingham
problem. If λ = 0, the local problem is a 2-D Bingham problem (defined for each y3 ∈]0, 1[), while if λ = +∞
the 1-D local problem (defined for each y′ ∈ Y ′) corresponds to a lower-dimensional Bingham-like law (see [15]).

We end with the remark that if in the initial problem (9) we take g = 0, then the problem under study
becomes the Stokes problem. We refer to [4] (case p = 2) for the asymptotic analysis of the Stokes problem. If
we set g = 0 in the limit problems (36), (57) and (78), they become exactly the ones in [4], Theorem 6.1 (case
p = 2), corresponding to the Stokes case.
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