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Dmytro Marushkevych∗ and Alexandre Popier∗
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Abstract

We use the functional Itô calculus to prove that the solution of a BSDE with
singular terminal condition is continuous at the terminal time. Hence we extend
known results for a non-Markovian terminal condition.

AMS class: 60G99, 60H99.
Keywords: Backward stochastic differential equations / Functional stochastic calculus
/ Singularity.

Introduction

In this paper we consider a filtered probability space (Ω,F ,F,P) with a complete
and right-continuous filtration F = {Ft, t ≥ 0}. We assume that this space supports a
Brownian motion W . We consider the following BSDE:

(1) Y (t) = ξ +

∫ T

t

f(s, Y (s), Z(s))ds−
∫ T

t

Z(s)dW (s)−
∫ T

t

dM(s)

where f is the generator and ξ is the terminal condition. The solution is the triplet
(Y, Z,M). Since no particular assumption is made on the underlying filtration, there is
the additional martingale part M orthogonal to W . It is already established that such a
BSDE has a unique solution when the terminal condition ξ belongs to Lp(Ω,FT ,P), p > 1
(see among others [8] or [11]).

When the terminal condition ξ satisfies

(2) P(ξ = +∞) > 0

we called the BSDE singular. This singular case has been studied in [15] when the
filtration is generated by the Brownian motion (no additional noise, i.e. M = 0) and
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for the particular generator f(t, y, z) = f(y) = −y|y|q. Extension have been studied in
[11] and [16]. Recently singular BSDE were used to solve a particular stochastic control
problem with application to portfolio management (see [1], [10], [12]). In this framework,
the generator does not depend on z and has the following form:

(3) f(t, y, z) = − y|y|q

qα(t)q
+ γ(t).

where α, β and γ are positive processes. The minimal solution (Y, Z,M) (provided it
exists) gives the value function of the following control problem: minimize1

(4) E
[∫ T

t

(α(s)|η(s)|p + γ(s)|X(s)|p) ds+ ξ|X(T )|p
∣∣∣∣Ft]

over all progressively measurable processes X that satisfy the dynamics

X(s) = x+

∫ s

t

η(u)du

and the terminal state constraint

X(T )1ξ=∞ = 0.

p is the Hölder conjugate of 1 + q. For the financial point of view, the set {ξ = +∞}
is a specification of a set of market scenarios where liquidation is mandatory. The value
function is equal to |x|pYt and the optimal state process X∗ can be computed directly
with Y . Note that the martingale part of the solution (Z,M) is not employed in the
computation of the optimal state process. Thus the control problem can be completely
solved provided the BSDE has a minimal solution (see Section 2 and Theorem 4 in [12]
for more details on the control problem).

In [12], under some technical sufficient assumptions on f (Conditions (A) below), it
is proved that the BSDE (1) with singular terminal condition (2) has a minimal super-
solution (Y, Z,M) such that a.s.

(5) lim inf
t→T

Y (t) ≥ ξ.

The main requirement is that f decreases w.r.t. y at least as a polynomial function
(almost like −y1+q, q > 0), when y is large. The main difficulty is to obtain some a priori
estimate, which states that Yt is bounded from above for any t < T by a finite process
(Inequality (7)). One can construct the solution (Y, Z,M) without Condition (5) if the
filtration F is complete and right-continuous.

In the classical setting (ξ ∈ Lp(Ω)), Y has a limit as t increases to T since the process
is solution of the BSDE (1) and thus is càdlàg2. Moreover this limit is equal to ξ a.s. if
the filtration F is left-continuous at time T . Indeed we need to avoid a jump at time T of
the orthogonal martingale M (see the later discussion in Section 1). Hence in the singular

1with the convention 0.∞ = 0.
2French acronym for right continuous with left limits.

2



case the behaviour (5) of the super-solution Y at time T is obtained under this additional
requirement on the filtration F. For the related control problem (4), this weak behaviour
(5) at time T of the minimal process Y is sufficient to obtain the optimal control and the
value function (see [12]). Nevertheless two natural questions arise here:

1. Does the limit exist ?

2. Can the inequality (5) be an equality if the filtration is left-continuous at time T ?

Despite the very theoretical aspect of these questions, there are several applications. From
the financial point of view it means that the optimal liquidation portfolio does not super
hedge the penalty cost ξ. And in [2], a positive answer to these questions is a condition
for solving the optimal targeting problem.

Related literature

As far as we know, there are only three works on this topic: [15], [16] and [19]. In
[15] we were able to prove this in the Brownian setting, that is when the filtration F is
generated by the Brownian motion W and if f(t, y, z) = −y|y|q. We proved that the
limit always exists (see [15, Proposition 9]) and to obtain the equality, we supposed that
ξ = g(X(T )) where X is the solution of a forward SDE. We distinguished two cases:

• When q > 2 without additional conditions since we have a suitable control of Z.

• When q ≤ 2 but with Malliavin calculus: roughly speaking Z is the Malliavin
derivative of Y and we use the integration by parts to remove Z.

In [16], we deal with a generator satisfying Condition (A) (see below). The filtration
F should be left continuous at time T (to avoid thin time case, see the discussion in [16,
Section 2.2]).

1. The existence of a limit at time T is proved under a structural condition on the
generator f ([16, Theorem 3.1]). Roughly speaking we prove that Y is a non linear
continuous transform of a non negative supermartingale. Relaxing the condition on
f is not the aim of this paper.

2. In [16], we also extend the result concerning the second question, again when ξ =
g(X(T )). This setting is called half-Markovian since we do not require any similar
condition on f .

The paper [19] was the first attempt to prove the equality when ξ is not given by
g(X(T )) in the Brownian setting. Indeed ξ was assumed to be equal to ∞1B(m,r)c or
∞1B(m,r), where B(m, r) is the ball in the space C([0, T ]) of the underlying Brownian
motion centered at the constant function m and radius r. Our proof was based on the exit
time of the Brownian motion and the derivation and solution of a related heat equation
with a singular and discontinuous Dirichlet boundary condition. Let us remark that the
considered functionals are not continuous, in the sense of [5, Definition 2.3].

3



Contributions and decomposition of the paper

Our goal is to give another class of non Markovian terminal values ξ such that (5)
becomes:

lim inf
t→T

Y (t) = ξ.

This class is constructed using the functional Itô calculus developed by [3, 4, 5, 9] (see [3]
for an overview and the references therein). Roughly speaking, ξ is a smooth functional
F of the paths of a continuous diffusion process X (solution of the SDE (13)) and of its
bracket [X], satisfying some integrability assumption (see Condition (C)). As presented
in the subsection 2.2, our condition includes the Markovian case studied in [16], but also
the integral of X w.r.t. t or some approximation of the process X.

The paper is decomposed as follows. In Section 1, we recall known results concerning
BSDEs with singular terminal condition and the functional Itô calculus, in particular the
definition of smooth functionals. In Section 2, we give the setting of our continuity result
(condition (C)) and we state our result (Theorem 1). In the rest of the section we prove
our statement and provide several examples satisfying our required assumptions.

To finish this introduction, let us discuss some points, which are left as future research.
From [3], we know that the functional Itô calculus is also valid for more general semi-
martingales X. In particular continuity is not really relevant in this framework. However
the presence of jumps requires a very careful discussion about the possibility of jumping
inside the singularity set of ξ (see [16] for the Markovian case). This is the reason why
we impose the continuity of X. Moreover to avoid again very technical arguments, we do
not consider locally smooth functionals (see [3, Definition 5.2.10]).

1 Setting and known results

We consider a filtered probability space (Ω,F ,P,F = (Ft)t≥0). The filtration is as-
sumed to be complete and right continuous. Note that all martingales have right contin-
uous modifications in this setting and we will always assume that we are taking the right
continuous version, without any special mention. We assume that (Ω,F ,P,F = (Ft)t≥0)
supports a d-dimensional Brownian motion W . In this paper for a given T ≥ 0, we denote:

• D (resp. D(0, T )): the set of all predictable processes on R+ (resp. on [0, T ]).
L2
loc(W ) is the subspace of D such that for any t ≥ 0 a.s.∫ t

0

|Z(s)|2ds < +∞.

• Mloc: the set of càdlàg local martingales orthogonal to W . If M ∈Mloc then

[M,W i](t) = 0, 1 ≤ i ≤ k.

• M is the subspace of Mloc of martingales.
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On Rd, |.| denotes the Euclidean norm and Rd×d′ is identified with the space of real
matrices with d rows and d′ columns. If z ∈ Rd×d′ , we have |z|2 = trace(zz∗).

Now to define the solution of our BSDE, let us introduce the following spaces for p ≥ 1.

• Dp(0, T ) is the space of all adapted càdlàg processes X such that

E

(
sup
t∈[0,T ]

|X(t)|p
)
< +∞.

For simplicity, X∗ = supt∈[0,T ] |X(t)|.

• Hp(0, T ) is the subspace of all processes X ∈ D(0, T ) such that

E

[(∫ T

0

|X(t)|2dt
) p

2

]
< +∞.

• Mp(0, T ) is the subspace of M of all martingales such that

E
[
([M ](T ))

p
2

]
< +∞.

• Sp(0, T ) = Dp(0, T )×Hp(0, T )×Mp(0, T ).

If M is a Rd-valued martingale in M, the bracket process [M ](t) is

[M ](t) =
d∑
i=1

[M i](t),

where M i is the i-th component of the vector M .
We consider the BSDE (1)

Y (t) = ξ +

∫ T

t

f(s, Y (s), Z(s))ds−
∫ T

t

Z(s)dW (s)−
∫ T

t

dM(s).

Here, the random variable ξ is FT -measurable with values in R and the generator f : Ω×
[0, T ]×R×Rd → R is a random function, measurable with respect to Prog ×B(R)×B(Rd)
where Prog denotes the sigma-field of progressive subsets of Ω × [0, T ]. The unknowns
are (Y, Z,M) such that

• Y is progressively measurable and càdlàg with values in R;

• Z ∈ L2
loc(W ), with values in Rd;

• M ∈Mloc with values in R.

For notational convenience we will denote f 0(t) = f(t, 0, 0).
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Assumptions

• ξ and f 0 are non negative and P(ξ = +∞) > 0. S is the set of singularity:

S = {ξ = +∞}.

• The function y 7→ f(t, y, z) is continuous and monotone: there exists χ ∈ R such
that a.s. and for any t ∈ [0, T ] and z ∈ Rk

(A1) (f(t, y, z)− f(t, y′, z))(y − y′) ≤ χ(y − y′)2.

• For every n > 0 the function

(A2) sup
|y|≤n
|f(t, y, 0)− f 0

t | ∈ L1((0, T )× Ω).

• f is Lispchitz in z, uniformly w.r.t. all parameters: there exists L > 0 such that for
any (t, y), z and z′: a.s.

(A3) |f(t, y, z)− f(t, y, z′)| ≤ L|z − z′|.

Note that no assumption on f 0 (expect non negativity) is required. Conditions (A1)-(A3)
will ensure existence and uniqueness of the solution for a version of BSDE (1), where
the terminal condition ξ is replaced by ξ ∧ n and where the generator f is replaced by
fn = f − f 0 + (f 0 ∧ n) for some n > 0 (see BSDE (8) below). We obtain the minimal
supersolution (see Theorem 1) with singular terminal condition ξ by letting the truncation
n tend to ∞. To ensure that in the limit (when n goes to ∞) the solution component Y
attains the value ∞ on S at time T but is finite before time T , we suppose that

• There exists a constant q > 0 and a positive process a such that for any y ≥ 0

(A4) f(t, y, z) ≤ −(a(t))y|y|q + f(t, 0, z).

Moreover, in order to derive the a priori estimate, the following assumptions will hold.

• There exists some ` > 1 such that

(A5) E
∫ T

0

[(
1

qa(s)

) `
q

+
(
f 0(s)

)`]
ds < +∞.

Definition 1 The generator f satisfies Condition (A) if all assumptions (A1)–(A5) hold.

Example 1 (Toy example) The function f(y) = −y|y|q satisfies all previous condi-
tions. It corresponds to generator (3) with αt = (1/q)1/q and γt = 0.

�

Remark 1 In [12] or in [16], we consider some weaker integrability conditions on f 0 (see
(A6) in [12] and (A6∗) and (A8) in [16]). These weak hypotheses can be also assumed
here. But since it is not the core of this paper, we work under this stronger (but easier to
check) condition (A5) on f 0.
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1.1 Known results

In [11, 13], we proved that if ξ ∈ Lp(Ω), for some p > 1, then under Conditions (A)
there exists a unique solution (Y, Z,M) in Sp(0, T ) to the BSDE (1). In [12], the following
result is proved.

Proposition 1 (Theorem 1 in [12]) Under Condition (A) there exists a process (Y, Z,M)
such that

• (Y, Z,M) belongs to S`(0, t) for any t < T .

• A.s. for any t ∈ [0, T ], Yt ≥ 0.

• For all 0 ≤ s ≤ t < T :

(6) Y (s) = Y (t) +

∫ t

s

f(t, Y (r), Z(r))dr −
∫ t

s

Z(r)dW (r) +M(t)−M(s).

• If the filtration F is left-continuous at time T , (Y, Z,M) is a super-solution in the
sense that a.s. (5) holds:

lim inf
t→T

Y (t) ≥ ξ.

Any process (Ỹ , Z̃, M̃) satisfying the previous four items is called super-solution of the
BSDE (1) with singular terminal condition ξ.

In [12], a key point in the construction of the solution is the following a priori estimate:

Y (t) ≤ K`,L

(T − t)1+1/q

E

 ∫ T

t

[(
1

qa(s)

)1/q

+ (T − s)1+1/qf 0(s)

]`
ds

∣∣∣∣Ft


1/`

(7)

=
K`,L

(T − t)1+1/q
Γ(t)

where K`,L is a non negative constant depending only on ` and L and this constant is a
non decreasing function of L and a non increasing function of `. Condition (A5) implies
that a.s. Yt < +∞ on [0, T ).

Remark 2

• The constants K`,L and ` > 1 come from the growth condition on f w.r.t. z.

• If f(y) = −y|y|q, a(t) = 1, L = 0, and we obtain as in [15]:

Yt ≤
(

1

q(T − t)

)1/q

.

• The solution (Y, Z,M) obtained by approximation is minimal, that is if (Ỹ , Z̃, M̃)

is another non negative super-solution, then for all t ∈ [0, T ], P-a.s. Ỹt ≥ Yt.
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Now we give the main ideas of the proof of the existence result (Theorem 1). It is
important to study the behaviour of Y in the next sections. The approach in [12] is to
approximate our BSDE by considering a terminal condition of the form ξn := ξ ∧ n and
observe asymptotic behaviour. In the rest of the paper, (Y n, Zn,Mn) will be the solution
of the truncated BSDE:

Y n(t) = ξ ∧ n+

∫ T

t

fn(s, Y n(s), Zn(s))ds−
∫ T

t

Zn(s)dW (s)−
∫ T

t

dMn(s).(8)

Here fn(t, y, z) is the generator obtained by the truncation on f 0:

(9) fn(t, y, z) = (f(t, y, z)− f 0(t)) + (f 0(t) ∧ n).

Existence and uniqueness of (Y n, Zn,Mn) comes from Theorem 2 in [11]. Moreover using
comparison argument (see [11] or [18]) we can obtain for m ≤ n: 0 ≤ Y m(t) ≤ Y n(t).
And for any n, Y n satisfies Estimate (7) (Proposition 2 in [12]). This allows us to define
Y as the limit of the increasing sequence (Y n

t )n≥1:

∀ t ∈ [0, T ], Y (t) := lim
n→∞

Y n(t).

Proposition 3 in [12] shows that there exists a constant C such that for any 0 < t < T

E

[
sup
0≤s≤t

|Y n(s)− Y m(s)|` +

(∫ t

0

|Zn(s)− Zm(s)|2ds
)`/2

+ [Mn −Mm](t)`/2

]
(10)

≤ CE
[
|Y n(t)− Y m(t)|`

]
+ CE

∫ t

0

|f 0(s) ∧ n− f 0(s) ∧m|`ds.

Since Y n(t) converges to Y (t) almost surely, with the a priori estimate (7), Condition (A5)
and Inequality (10), thanks to the dominated convergence theorem, we can deduce that for
every ε > 0, (Y n, Zn,Mn)n≥1 converges to (Y, Z,M) in S`(0, T − ε). The limit (Y, Z,M)
satisfies for every 0 ≤ t < T , for all 0 ≤ s ≤ t the dynamics (6) and Y satisfies Inequality
(7). Note that all these results are obtained without the left-continuity assumption on the
filtration F. But since the solution (Y, Z,M) satisfies the dynamic (6) only on [0, T − ε]
for any ε > 0, we cannot derive directly the existence of a left limit at time T for Y .

Note that on Z we also have a stronger integrability result:

Proposition 2 Under Condition (A), there exists a constant C independent of n such
that the process Zn satisfies:

E
[∫ T

0

(T − s)ρ
(
|Zn(s)|2

)
ds

]`/2
≤ C.

The constant ρ satisfies ρ >
2

q
+ 2

(
1− 1

`

)
=

2

q
+

2

`∗
, if `∗ is the Hölder conjugate of `.

In the sequel we assume that q > 2. W.l.o.g. we can assume that 1 < ` < 2q
2+q

in condition

(A5) such that 2
q

+ 2
(
1− 1

`

)
< 1 and we can choose ρ < 1 in the above proposition. In

particular if the generator is f(y) = −y|y|q (Example 1), then we can take q > 2 and
` = 1, which was supposed in [15]. In this particular case, the constant C is explicitely

given by: C = 16 (1/q)2/q.
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1.2 Functional Itô calculus

We adopt the notations and the setting developed in [5, 3]. We simply copy the main
definitions; all details can be found in these two works.

Consider D([0, T ],Rd × S+
d ), the space of all càdlàg functions defined on [0, T ] with

values in Rd × S+
d , where S+

d is the set of positive d × d matrices. For a path ω ∈
D([0, T ],Rd), ωt = ω(t ∧ ·) is the path stopped at time t and ωt− = ω1[0,t[ + ω(t−)1[t,T ],
where ω(t−) is the left limit of ω at time t.

The space of stopped paths Υ is defined as the quotient space of [0, T ]×D([0, T ],Rd×
S+
d ) by the equivalence relation:

(t, ω) ∼ (t′, ω′)⇔ (t = t′ and ωt = ωt′).

This space is endowed with the distance

d∞((t, ω), (t′, ω′)) = ‖ωt − ωt′‖∞ + |t− t′|.

And (Υ, d∞) is a metric space and a closed subset of ([0, T ]×D([0, T ],Rd × S+
d ); ‖ · ‖∞).

The notion of non-anticipative, continuous, left-continuous and boundedness-preserving
functionals is defined in [5, Definitions 2.1, 2.3, 2.4 and 2.5] and we denote by C0,0([0, T ))
(resp. C0,0([0, T )), resp. B([0, T ))) the set of continuous (resp. left-continuous, resp.
boundedness-preserving) functions on Υ. In the sequel we assume that F : Υ → R is a
non-anticipative functional with predictable dependence with respect to v:

(11) ∀(t, x, v) ∈ Υ, F (t, x, v) = F (t, xt, vt−).

Let us briefly recall the definition of the horizontal and vertical derivatives. Let F :
Υ → R be a non-anticipative functional. The horizontal derivative DF of F at (x, v) ∈
D([0, t],Rd × S+

d ) is the limit (if it exists)

DF (t, x, v) = lim
h↓0

F (t+ h, xt, vt)− F (t, xt, vt)

h
.

If the limit exists for all (x, v), the map D : Υ→ R defines a non-anticipative functional
DF , called the horizontal derivative (see [5, Definition 3.1]).

Now from [5, Definition 3.2], F is vertically differentiable at (t, x, v) if the map defined
on Rd by e 7→ F (t, xt + e1[t,T ], vt) is differentiable at 0. The vertical derivative ∇ωF at
(t, x, v) is the gradient of the previous map:

∇ωF (t, x, v) =

(
lim
h→0

F (t, xt + hei1[t,T ], vt)− F (t, xt, vt)

h
, i = 1, . . . , d

)
.

Let us recall [5, Definition 3.6]:

Definition 2 (C1,k functionals) Define C1,k([0, T )) as the set of left-continuous func-
tionals F ∈ C0,0

l such that

• F admits a horizontal derivative DF (t, ω) for all (t, ω) ∈ ΛT , and the map DF (t, ·) :
(D([0, T ],Rd), ‖.‖∞)→ R is continuous for each t ∈ [0, T [;
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• F is k times vertically differentiable with ∇j
ωF ∈ C0,0

l .

We define C1,k
b ([0, T )) as the set of functionals F ∈ C1,k such that DF , ∇ωF, . . . ,∇k

ωF
belong to B(ΛT ).

In the sequel we will use the change of variable formulas.
Theorem 4.1 in [5]. Let F ∈ C1,2

b verifying (11). Let X be a continuous Rd-valued
semimartingale with absolutely continuous quadratic variation

[X](t) =

∫ t

0

A(u)du,

where A is an S+
d -valued process. Then for t ∈ [0, T ]

F (t,Xt, At) = F (0, X0, A0) +

∫ t

0

DF (u,Xu, Au)du(12)

+

∫ t

0

∇ωF (u,Xu, Au)dX(u) +
1

2

∫ t

0

Tr
(
∇2
ωF (u,Xu, Au)d[X](u)

)
.

This result implies in particular that X = F (·, X,A) is a continuous semimartingale for
any F ∈ C1,2

b . In the sequel, we need some integrability properties of X . Let us recall
that the classical norm on semimartingales is defined in [7], Section VII.3 (98.1)-(98.2) or
[17], Section V.2. Nevertheless this norm is not sufficient in our case and we follow the
ideas of [3, Section 7.5]. For p ≥ 1, we define Ap(F) as the set of continuous F-predictable
absolutely continuous processes H = H(0) +

∫ ·
0
h(t)dt with finite variation such that

‖H‖pAp = E
(
|H(0)|p +

∫ T

0

|h(t)|pdt
)
< +∞.

We consider the direct sum
Sp = Mp(0, T )⊕Ap(F).

Any process S ∈ Sp is an F-adapted special semimartingale with a unique decomposition
S = M + H, where M ∈ Mp(0, T ) with M(0) = 0 and H ∈ Ap(F) with H(0) = 0.
Let us remark that by Jensen’s inequality, the norm defined on Sp is stronger than the
norm of semimartingales defined in [7]. Moreover if S ∈ Sp, then S ∈ Dp(0, T ) by the
Burkhölder-Davis-Gundy inequality. The interested reader can find in [3, Chapter 7] how
the vertical and horizontal derivatives can be defined on this space Sp.

2 Continuity at time T in the non-Markovian setting

First note that we do not impose any further condition on the generator. In the sequel
we assume that X is the solution of the SDE (13)

(13) X(t) = ζ(t) +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dW (s)

The coefficients b(·, ·, φ) : Ω× [0, T ]→ Rd and σ(·, ·, φ) : Ω× [0, T ]→ Rd×d are defined for
every continuous function φ and satisfy the standard conditions:
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• b, σ are Lipschitz continuous w.r.t. φ uniformly in t and ω, i.e. there exists a
constant Kb,σ such that for any (ω, t) ∈ Ω× [0, T ], for any φ and ψ in C([0, T ];Rd):
a.s.

|b(t, φ)− b(t, ψ)|+ |σ(t, φ)− σ(t, ψ)| ≤ Kb,σ‖φt − ψt‖∞.

• b and σ growth at most linearly:

|b(t, 0)|+ |σ(t, 0)| ≤ Cb,σ.

• ζ is a progressively measurable continuous stochastic process such that for some
% ≥ 0, ζ ∈ D%(0, T ).

Recall that φt is the stopped path of φ, which implies that

‖φt − ψt‖∞ = sup{|φ(u)− ψ(u)|, 0 ≤ u ≤ t}.

Let us emphasize that X is not a Markovian process since the drift and the volatility
matrix may depend on the whole trajectory of X. Under those assumptions, the forward
SDE (13) has a unique strong continuous solution X (see [14, Theorem 3.17]), such that

(14) E

[
sup
t∈[0,T ]

|X(t)|%
]
≤ C%.

To lighten the notation, the dimensions of X and of the Brownian motion are the same.
But this condition is not crucial and we can also work with different dimensions. The
process X is a continuous semimartingale with

[X](t) =

∫ t

0

σ(s,Xs)σ
∗(s,Xs)ds =

∫ t

0

A(s)ds.

We assume that Condition (C) holds, namely:

C1. There exists a measurable function Φ : R→ [0,+∞] and F ∈ C1,2
b such that

ξ = Φ(F (T,XT , AT )).

We denote R = {Φ < +∞} which is supposed to be an open subset of R and we
suppose that P(ξ =∞) > 0.

C2. For any compact set K ⊂ R, E(ξ1K(F (T,XT , AT ))) < +∞.

C3. F (·, X,A) is in Sp for p = q+1
q
`∗, where `∗ is the Hölder conjugate of the constant

` > 1 of Condition (A5).

C4. ∇ωF is in D`∗(0, T ) and % in (14) is equal to `∗.

11



Recall that (C3) implies that F (·, X,A) is in Dp(0, T )

E

[
sup
t∈[0,T ]

|F (t,Xt, At)|p
]
< +∞,

and that σ(·, X)∇ωF (·, X,A) belongs to Hp(0, T )

(15) E

[(∫ T

0

[(∇ωF (s,Xs, As))
∗A(s)∇ωF (s,Xs, As)] ds

)p/2]
< +∞.

Moreover the Itô formula (12), together with (13), implies that

F (t,Xt, At) = F (0, X0, A0) +

∫ t

0

Θ1(u)du+

∫ t

0

∇ωF (u,Xu, Au)σ(u,Xu)dW (u),

with

Θ1(s) =

{
DF (s,Xs, As) +∇ωF (s,Xs, As)b(s,Xs)

+
1

2
Tr
(
∇2
ωF (s,Xs, As)A(s)

)}
.

From (C3), we obtain that

E
∫ T

0

|Θ1(s)|pds < +∞.

Remark 3 Recall that if q > 2, in order to apply Proposition 2, we have chosen ` <
2q

q + 2
. Hence

p =
q + 1

q
`∗ > 2

q + 1

q − 2
= 2 +

6

q − 2
.

In particular if q is close to 2, p is large.
Instead of condition (C4), we may assume that ∇ωF is also in Sp, following the idea

of [3, Section 7.5].

Let us state our main result.

Theorem 1 Under the hypotheses (A) and (C), with q > 2, the minimal supersolution
Y satisfies a.s.

lim inf
t→T

Yt = ξ.

12



2.1 Proof of Theorem 1

Let (Y n, Zn,Mn) be the solution of the BSDE (8) with terminal condition ξ ∧ n and
generator fn

Y n(t) = ξ ∧ n+

∫ T

t

fn(s, Y n(s), Zn(s)) ds−
∫ T

t

Zn(s) dW (s)−Mn(T ) +Mn(t).

Let us emphasize that the process Y n is bounded on Ω× [0, T ].
Let φ : R → R+ be a C∞-function with compact support included in R. We apply

Itô’s formula to the process Y nφ(F (·, X,A)) between 0 and t:

Y n(t)φ(F (t,Xt, At)) = Y n(0)φ(F (0, X0, A0)) +

∫ t

0

φ(F (s,Xs, As))Z
n(s)dW (s)

+

∫ t

0

Y n(s)φ′(F (s,Xs, As))∇ωF (s,Xs, As)σ(s,Xs)dW (s)

+

∫ t

0

φ(F (s,Xs, As))dM
n(s)

+

∫ t

0

φ′(F (s,Xs, As))∇ωF (s,Xs, As)σ(s,Xs)Z
n(s)ds

−
∫ t

0

fn(s, Y n(s), Zn(s))φ(F (s,Xs, As))ds

+

∫ t

0

Y n(s)φ′(F (s,Xs, As))Θ1(s)ds+
1

2

∫ t

0

Y n(s)φ′′(F (s,Xs, As))Θ2(s)ds.

with

Θ2(s) =
1

2
(∇ωF (s,Xs, As)σ(s,Xs)) (∇ωF (s,Xs, As)σ(s,Xs))

∗ .

Now we decompose the quantity with the generator fn as follows:∫ t

0

φ(F (s,Xs, As))fn(s, Y n(s), Zn(s))ds

=

∫ t

0

φ(F (s,Xs, As))(f(s, Y n(s), 0)− f 0(s))ds

+

∫ t

0

φ(F (s,Xs, As))(f
0(s) ∧ n)ds

+

∫ t

0

φ(F (s,Xs, As)) (f(s, Y n(s), Zn(s))− f(s, Y n(s), 0)) ds

=

∫ t

0

φ(F (s,Xs, As))(f(s, Y n(s), 0)− f 0(s))ds

+

∫ t

0

φ(F (s,Xs, As))(f
0(s) ∧ n)ds

+

∫ t

0

φ(F (s,Xs, As))ζ
n(s)Zn(s)ds

13



where ζns is a d-dimensional random vector defined by: for i = 1, . . . , d

ζ i,n(s) =
(f(s, Y n(s), Zn(s))− f(s, Y n(s), 0))

Zi,n(s)
1Zi,n(s)6=0.

From Condition (A3), |ζn(s)| ≤ K. Hence we obtain

Y n(t)φ(F (t,Xt, At)) = Y n(0)φ(F (0, X0, A0))(16)

+

∫ t

0

φ(F (s,Xs, As)) [Zn(s)dW (s) + dMn(s)]

+

∫ t

0

Y n(s)φ′(F (s,Xs, As))∇ωF (s,Xs, As)σ(s,Xs)dW (s)

+

∫ t

0

Ψn(s)Zn(s)ds−
∫ t

0

φ(F (s,Xs, As))(f
0(s) ∧ n)ds

−
∫ t

0

φ(F (s,Xs, As))(f(s, Y n(s), 0)− f 0(s))ds

+

∫ t

0

Y n(s) [φ′(F (s,Xs, As))Θ1(s) + φ′′(F (s,Xs, As))Θ2(s)] ds

with

Ψn(s) = φ′(F (s,Xs, As))∇ωF (s,Xs, As)σ(s,X(s)) + φ(F (s,Xs, As))ζ
n(s).

Recall that for a fixed n, Y n is bounded, (Zn,Mn) belong to Hp(0, T )×Mp(0, T ) for any
p ≥ 1. From Condition (C3) on F (·, X,A), taking the expectation in (16) leads to: for
t ∈ [0, T ]

E [Y n(T )φ(F (T,XT , AT ))] = E [Y n(t)φ(F (t,Xt, At))](17)

−E
[∫ T

t

φ(F (s,Xs, As))(f
0(s) ∧ n)ds

]
−E

[∫ T

t

φ(F (s,Xs, As))(f(s, Y n(s), 0)− f 0(s))ds

]
+E

[∫ T

t

Y n(s) [φ′(F (s,Xs, As))Θ1(s) + φ′′(F (s,Xs, As))Θ2(s)] ds

]
+E

[∫ T

t

Ψn(s)Zn(s)ds

]
.

From the assumptions (C1) and (C2) on ξ = Φ(F (T,XT , AT )), we have for any n:

(18) E(Y n(T )φ(F (T,XT , AT )) ≤ E[Φ(F (T,XT , AT ))φ(F (T,XT , AT ))] < +∞.

From the a priori estimate (7), Assumption (A5) and from the boundedness of φ, for any
t < T

(19) E(Y n(t)φ(F (t,Xt, At))) ≤
1

(T − t)1/q+1
E(Γ(t)φ(F (t,Xt, At))) < +∞

14



Since φ is bounded and f 0 ∈ L1((0, T )× Ω) (Condition (A5)):

(20) E
∫ T

0

φ(F (s,Xs, As))(f
0
s ∧ n)ds ≤ C.

Now we treat the two terms in (17) containing Y n. Firstly, by condition (A4) remark
that:

−
∫ t

0

φ(F (s,Xs, As)) (f(s, Y n(s), 0)− f(s, 0, 0)) ds(21)

≥
∫ t

0

φ(F (s,Xs, As))a(s)|Y n(s)|1+qds.

Secondly with Hölder’s inequality we obtain for j = 1 or 2:∫ t

0

|Y n(s)φ(j)(F (s,Xs, As))Θj(s)|ds ≤
[∫ t

0

φ(F (s,Xs, As))a(s)|Y n(s)|1+qds
] 1

q+1

×
[∫ t

0

a(s)−1/qφ(F (s,Xs, As))
−1/q|φ(j)(F (s,Xs, As))|

q+1
q |Θj(s)|

q+1
q ds

] q
q+1

.

To control the second quantity, we will be more specific about the test-function φ. We will
assume that φ = ψγ where ψ belongs to C∞b (Rd) with support in R and γ > 2(q + 1)/q.
Under this setting, there exists a constant C depending only on ψ and γ such that

|φ′|+ |φ′′| ≤ Cψγ−2.

Thus for γ > 2(q + 1)/q and j = 1 or 2

φ(F (s,Xs, As))
−1/q|φ(j)(F (s,Xs, As))|(q+1)/q ≤ Cψ(F (s,Xs, As))

γ−2(q+1)/q,

which is bounded. By condition (A5), a−1/q is in L`(Ω× [0, T ]). By the assumption (C3),

the quantity |Θj|
q+1
q is in L`∗(Ω× [0, T ]). We deduce that there exists a constant C such

that for any t ∈ [0, T ]

E
[∫ t

0

|Y n(s)φ(j)(F (s,Xs, As))Θj(s)|ds
]

(22)

≤ C

[
E
∫ t

0

a(s)φ(F (s,Xs, As))(Y
n(s))q+1ds

] 1
q+1

.
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We use Hölder’s and Young’s inequalities to obtain:∫ t

0

| [φ′(F (s,Xs, As))∇ωF (s,Xs, As)σ(s,Xs) + φ(F (s,Xs, As))ζ
n(s)]Zn(s)|ds

≤
∫ t

0

|Ψn(s)|Zn(s)ds

≤
[∫ t

0

(T − s)ρ|Zn(s)|2ds
]1/2 [∫ t

0

|Ψn(s)|2

(T − s)ρ
ds

]1/2
≤ 1

`

[∫ t

0

(T − s)ρ|Zn(s)|2ds
] `

2

+
1

`∗

[∫ t

0

|Ψn(s)|2

(T − s)ρ
ds

] `∗
2

≤ 1

`

[∫ t

0

(T − s)ρ|Zn(s)|2ds
] `

2

+
1

`∗

(
T 1−ρ

1− ρ

) `∗
2

sup
t∈[0,T ]

|Ψn(t)|`∗

Taking the expectation and thanks to Proposition 2, the first term on the right-hand side
is bounded. For the second term, φ, φ′ and ζn are bounded. From condition (C4), we
deduce that there exists a constant C such that for any n

(23) E
∫ T

0

|Ψn
sZ

n
s |ds ≤ C.

Coming back to (17) with t = 0 and using (18), (19) with t = 0, (20), (21), (22) and
(23), we deduce that for any function φ = ψγ with γ > 2(q+ 1)/q, there exists a constant
C independent of n such that

(24) 0 ≤ E
∫ T

0

a(s)φ(F (s,Xs, As))|Y n(s)|1+qds ≤ C < +∞.

Moreover by the monotone convergence theorem, we can pass to the limit when n goes
to +∞ in the first four terms of (17). For the last two terms (containing Y n and Zn), let
us summarize the arguments (see details in [15]). Estimate (24) shows that the sequence

a
1

1+qφ(F (·, X,A))
1

1+qY n is bounded in L1+q(Ω× (0, T )). Using a weak convergence result
and extracting a subsequence if necessary, and arguing as in the proof of Estimate (22),
we can pass to the limit in the term

E
[∫ T

t

Y n(s) [φ′(F (s,Xs, As))Θ1(s) + φ′′(F (s,Xs, As))Θ2(s)] ds

]
.

From Proposition 2, there exists a subsequence, which we still denote as (T − ·)1/(2ρ)Zn,
and which converges weakly in the space L2(Ω × (0, T )) to a limit, and the limit is
(T − ·)1/(2ρ)Z, because we already know that Zn converges to Z in H`(Ω× (0, T − δ)) for
all δ > 0. Let us define on [0, T ) the d-dimensional random vector ζ by: for i = 1, . . . , d

ζ i(s) =
(f(s, Y (s), Z(s))− f(s, Y (s), 0))

Zi(s)
1Zi(s) 6=0
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and Ψ is defined as Ψn, replacing ζn by ζ. Again |ζ(s)| ≤ K and we have shown that
Ψn/(T −·)1/(2ρ) and Ψ/(T −·)1/(2ρ) are in L`∗(Ω;L2(0, T )). For any ε > 0, we deduce that
there exists δ > 0 such that

E
∫ T

T−δ
(|Ψn

sZ
n
s |+ |ΨsZs|) ds ≤ ε/2.

On the interval [0, T − δ], the sequence (Y n, Zn) converges to (Y, Z) in D`(0, T − δ) ×
H`(0, T − δ). Hence

lim
n→+∞

E
∫ T−δ

0

|Ψn
sZ

n
s −ΨsZs| ds = 0.

In other words the sequence ΨnZn converges in L1(Ω× (0, T )) to ΨZ and

E
∫ T

0

|Ψ(s)Z(s)|ds ≤ C.

Passing to the limit in (17) implies:

E [Y (T )φ(F (T,XT , AT ))] = E [Y (t)φ(F (t,Xt, At))](25)

−E
[∫ T

t

φ(F (s,Xs, As))f
0(s)ds

]
−E

[∫ T

t

φ(F (s,Xs, As))(f(s, Y (s), 0)− f 0(s))ds

]
+E

[∫ T

t

Y (s) [φ′(F (s,Xs, As))Θ1(s) + φ′′(F (s,Xs, As))Θ2(s)] ds

]
+E

[∫ T

t

Ψ(s)Z(s)ds

]
.

Estimate (24) also holds with Y , and once again from (20), (21), (22) and (23), we can
let t go to T in (25) in order to have:

E
[
(lim inf

t→T
Yt)φ(F (T,XT , AT ))

]
≤ lim

t→T
E[Ytφ(F (t,Xt, At))] = E[ξφ(F (T,XT , AT ))].

Recall that we already know that lim inft→T Yt ≥ ξ a.s. This last inequality shows that in
fact a.s.

lim inf
t→T

Yt = ξ.

This achieves the proof of Theorem 1.
The proof of Theorem 1 shows that the limit of Yt exists in mean in the following

sense: for smooth function φ

lim
t→T

E(Ytφ(F (t,Xt, At))) =

{
E(ξφ(F (T,XT , AT ))) if supp(φ) ∩ S = ∅,
+∞ if E(φ(F (T,XT , AT ))1S) > 0.
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2.2 Some examples

Several examples of smooth functionals are given in [5] or [3]. There are also interesting
counterexamples (see [5, Section 3.2]).

First we can recover the Markovian case if for some smooth function h ∈ C1,2([0, T ]×
Rd)

F (t,Xt, At) = h(t,X(t)),

and if X satisfies the SDE

(26) X(t) = x+

∫ t

0

b(s,X(s)) ds+

∫ t

0

σ(s,X(s)) dW (s)

Here the coefficients b : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd×d are Lipschitz
continuous w.r.t. x uniformly in t and b and σ growth at most linearly. Under this
setting, the SDE has a unique strong continuous solution X such that (14) holds for
any % ≥ 1. Then DF (s,Xs, As) = ∂th(t,X(t)), ∇ωF (s,Xs, As) = ∇xh(t,X(t)) and
∇2
ωF (s,Xs, As) = D2

xh(t,X(t)), where D2
x is the Hessian matrix w.r.t. x. In this case

Equation (17) is the same as the classical Itô formula used in [16]. If we assume that h
and its derivatives are of linear growth w.r.t. x, uniformly in time and ω, then using (14),
the assumptions (C3) and (C4) are satisfied.

As a second example, we consider the case where X is the solution of (13) and

F (t,Xt, At) =

∫ t

0

h(s,X(s))A(s)ds

where h is a continuous function on [0, T ] × Rd. Then DF (s,Xs, As) = h(s,X(s))A(s),
∇ωF (s,Xs, As) = 0 and Conditions (C3) and (C4) are satisfied trivially verified if % is
sufficient large and if h is of linear growth w.r.t. x. Moreover Equation (16) can be
simplified:

Y n
t φ(F (t,Xt, At)) = Y n

0 φ(F (0, X0, A0)) +

∫ t

0

φ(F (s,Xs, As)) [Zn(s)dW (s) + dMn(s)]

−
∫ t

0

fn(s, Y n
s , Z

n
s )φ(F (s,Xs, As))ds+

∫ t

0

Y n
s φ
′(Fs(Xs, As))h(s,X(s))A(s)ds.

Other examples are given by [5, Examples 4 and 5], namely

F (t, xt, vt) = x(t)2 −
∫ t

0

v(u)du, F (t, xt, vt) = exp

(
x(t)− 1

2

∫ t

0

v(u)du

)
.

Conditions on b and σ can be easily found such that (C3) and (C4) hold, especially if X
is given by (26).

Let us finish with the weak Euler-Maruyama scheme as in [6]. We still consider the
SDE (13) with b = 0 and the non-anticipative functional Xn given by the recursion

Xn(tj+1) = Xn(tj) + σ(tj, X
n
tj

)(W (tj+1)−W (tj)).
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For a Lipschitz functional h : D([0, T ],Rd)→ R, consider the “weak Euler approximation”

Fn(t) = E
[
g(Xn

T )|FWt
]

of the conditional expectation E
[
g(XT )|FWt

]
, where FW is the filtration generated by the

Brownian motion W . This weak approximation is computed by initializing the scheme
on [0, t] with ω (a path of the Brownian motion) and then iterating the scheme with the
increments of the Wiener process between t and T . Then Fn ∈ C1,∞

loc (see [6, Theorem
3.1]). Moreover since we have a martingale, Θ1(s) = 0. Under our setting and thanks to
[6, Theorem 4.1], (C3) holds. (C4) does not hold on the whole interval [0, T ]. Nevertheless
this functional is locally regular ([6, Definition 7]) and on our neighbourhood of T , one
can easily get (C4) provided that g is bounded for example.
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[3] R. Cont. Functional Itô calculus and functional Kolmogorov equations. In Stochastic
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