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Abstract

The AEWMA (Adaptive Exponentially Weighted Moving Average) chart is a scheme that
combines the Shewhart and the classical EWMA charts in a smooth way. In this paper, a new
nonparametric AEWMA-type chart for count data, based on the sign statistic (denoted as the
CAEWMA SN chart), is proposed without requiring any parametric probability distribution
for the underlying process. The most valuable characteristics of this work are: i) it combines
the advantages of a nonparametric control chart with the best overall shift detection properties
of an AEWMA-type chart, ii) only positive integer-valued weights are used for the monitoring
of count data, and the plotted statistic is also an integer and iii) an appropriate discrete-time
Markov chain technique is provided to compute the exact run length properties of the proposed
chart without any expensive simulation or unreliable approximation. Detailed guidelines and
recommendations for selecting the chart’s parameters are provided with two illustrative exam-
ples. An extensive comparative study demonstrates the superiority of the CAEWMA SN chart
over a number of existing control charts, including a discrete EWMA-type sign chart, two clas-
sical continuous EWMA-type charts and a GWMA-type sign chart, for detecting a wide range
of location shifts.

Keywords: Adaptive EWMA Sign Chart; Count Data; Distribution-free Chart

1 Introduction
In the field of SPM (Statistical Process Monitoring), control charts have been considered as the most
effective technique for monitoring various kind of process characteristics, commonly the process lo-
cation or scale. The main types of control charts are the Shewhart, the CUSUM (Cumulative Sum)
and the EWMA (Exponentially Weighted Moving Average) charts. Most of these charts, however,
critically rely on the pre-specified size of the shift. As the practitioner only has a vague information
about the magnitude of the actual shift size when the process goes out-of-control, it is generally
difficult to exactly pre-determine it in advance. For this reason, instead of trying to define a unique
shift size, it could be wiser to simply define a range of potential shift sizes for which the control
scheme would be designed to quickly react. With this in mind, Capizzi and Masarotto (2003) have
proposed an Adaptive EWMA chart (denoted as AEWMA), for monitoring continuous data, which
combines the Shewhart and the classical EWMA schemes in a smooth way. In their study, the
smoothing parameter could be seen as a function of the difference between the current observation
and the last AEWMA statistic value. A single AEWMA chart could thus be designed for efficiently
detecting both a small mean shift δmin and a large mean shift δmax(> δmin) simultaneously. Since the
adaptive scheme provides an excellent flexibility, it has been updated on several occasions after its
inception, see, for instance, Saleh et al. (2013), Aly et al. (2015, 2017) and Tang et al. (2017, 2018a,b).
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It is worth noting that the existing control charts are usually designed with a specific parametric
model assumption (most commonly the normal distribution) about the population. However, such
an assumption should be ideally verified using either exploratory approaches (e.g. graphical) or
confirmatory ones (e.g. hypothesis testing). If the underlying process distribution is in doubt or the
actual distribution is different from the assumed one, the properties of these parametric charts can
be highly affected in such situations. For example, according to Noorossana et al. (2016), the EWMA
chart would have an increased false alarm rate for skewed and heavy-tailed distributions. Besides, the
effect of parameter estimation on control chart properties is also an important research topic. When
the parameters are estimated, the control charts performance is known to differ from the performance
of the corresponding chart with known parameters due to the variability of the estimators. Problems
that are associated with this are “What is the minimal number of Phase I samples required to ensure
an adequate performance in Phase II?” and “How should the Phase II control limits be adjusted
to compensate for the insufficient number of Phase I samples?” For example, Saleh et al. (2015)
suggested to use 600 samples of size n = 5 if λ = 0.1, 900 samples if λ = 0.5 and 1000 samples if
λ = 1.0 to reduce the variation in the EWMA X̄ chart performance. Therefore, these researches
can be of a limited interest as, in practice, the underlying process distribution is often not explicitly
known to assume normality (or any specific parametric distribution), and practitioners may not have
a sufficient amount of Phase I data to obtain an accurate estimation of the parameter(s).

At this point, it is reasonable for quality practitioners to use nonparametric methods in some
situations. The advantages of nonparametric control charts are: i) simplicity, ii) no requirement for
a particular distribution, iii) better robustness and outlier resistance and iv) advantage in start-up
or short-run situations. Therefore, a nonparametric control chart is a recommended alternative as
its in-control properties remain valid for any distributions. The increasing trend of practical uses
of nonparametric control charts have been seen, for example, in Chakraborti et al. (2015), Mukher-
jee and Marozzi (2017) and Triantafyllou (2018). A class of Shewhart-type distribution-free control
charts has been considered by Albers and Kallenberg (2004), Bakir (2004), Chakraborti and Eryilmaz
(2007), Jones-Farmer et al. (2009) and Human et al. (2010).

On the other hand, nonparametric EWMA-type charts have gained more attention in practice
because of their higher ability to react faster against small and moderate shifts in the process parame-
ter(s). A nonparametric EWMA chart using a change-point formulation based on the Mann-Whitney
statistic was investigated in Zhou et al. (2009). Li et al. (2010) investigated two nonparametric
analogs of the CUSUM and EWMA control charts based on the Wilcoxon rank-sum test. Zou
and Tsung (2010) proposed a control chart based on the integration of a powerful nonparametric
goodness-of-fit test and the classical EWMA control scheme, which is efficient in detecting poten-
tial shifts in location, scale, and shape parameters. Graham et al. (2011) studied a nonparametric
EWMA control chart based on the Wilcoxon signed-rank statistic for the location. A two-sided
nonparametric Phase II EWMA control chart using the exceedance statistics, has been proposed
in Graham et al. (2012). Based on the same exceedance statistics, Graham et al. (2017) further
investigated various aspects related to an efficient design and execution issues concerning the non-
parametric EWMA control charts previously proposed in Graham et al. (2012). Chakraborty et al.
(2016) proposed a distribution-free GWMA control chart based on the Wilcoxon signed-rank statistic
and Abid et al. (2017) investigated the performance of an EWMA signed-rank chart using ranked set
sampling. Compared with the signed-rank chart, the advantage of the sign chart is that the latter
can also be used for an asymmetrical distribution. A new version of the EWMA sign control chart
based on an arcsine transformation of the sign statistic has been proposed in Yang et al. (2011).
Aslam et al. (2014) proposed a new nonparametric EWMA sign control chart based on the repetitive
sampling. Lu (2015) extended Yang et al. (2011)’s study to a nonparametric GWMA sign chart
for monitoring deviations from the process target. For more discussion on multivariate sign EWMA
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control charts, readers may refer to Zou and Tsung (2011), Zi et al. (2013) and Haq and Khoo (2018).

However, it is important to note that, if nonparametric statistics (like the sign or the Wilcoxon
signed-rank statistics) are defined on integer-valued domains, the use of the classical EWMA scheme
(with a real-valued smoothing parameter λ) or the classical AEWMA scheme (with a real-valued
score function ϕ) will lead to statistics that are not integer-valued any longer. In this case, the
computation of the run length properties relies either on pure simulation techniques or on the use of
a discrete time Markov chain after discretization of the control limits interval. The former approach
clearly relies on how many simulation runs are randomly generated. For example, Li et al. (2010)
suggested a N = 100, 000 replications to verify the results using Monte Carlo simulations. The second
approach, unfortunately, also leads to an unreliable results (ARL for example) as it heavily fluctuates
due to the number of states selected for the Markov chain and the discrete nature of the statistic
to be monitored, see Weiß (2009), Rakitzis et al. (2015) and Castagliola et al. (2018). In this work,
we extend a discrete version of the AEWMA scheme introduced by Capizzi and Masarotto (2003) in
order to enhance its detection capability for nonparametric statistics. An appropriate Markov chain
technique is developed to guarantee exact results for the run length distribution, i.e. without any ap-
proximation. This simplifies the performance analysis without running a large number of simulations.

The remainder of this paper is organized as follows: Section 2 discusses the idea of the CEWMA
SN chart. The proposed CAEWMA SN chart is presented in Section 3. An appropriate discrete-
time Markov chain methodology to compute the exact run length properties of the proposed chart
is provided in Section 4. Section 5 is concerned with some optimal designs of the CAEWMA SN
chart: i) the ARL-based design for the detection of a specific magnitude of shift in subsection 5.1
and, ii) the AARL-based design for the detection of a range of unknown shifts in subsection 5.2. The
in-control robustness is compared to the parametric AEWMA chart for the mean in Section 6. Two
illustrative examples are shown in Section 7 and, finally, some conclusions and future researches are
given in Section 8.

2 The CEWMA SN control chart
Let us assume that, at time t = 1, 2, . . ., we have a Phase II subgroup {Xt,1, Xt,2, . . . , , Xt,n} of size
n ≥ 1, and Xt,j comes from an unknown continuous distribution with c.d.f. (cumulative distribution
function) FX(x|θ), where θ is the location parameter. Without loss of generality, we consider the
sample median θ as the location parameter to be monitored. The process is said to be in-control if
θ = θ0 and when the process is out-of-control, we have θ = θ1. Define the sign statistic

SNt =
n∑
j=1

sign(Xt,j − θ0), t = 1, 2, . . . , (1)

where

sign(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

. (2)

The statistic SNt is linearly related to the statistic Tt through the relationship SNt = 2Tt− n, where
Tt = #{Xt,j > θ0, j = 1, 2, . . . , n}, i.e. Tt is the number of observations {Xt,1, Xt,2, . . . , , Xt,n} larger
than θ0. Accordingly, the value of SNt can be a positive or a negative integer in {−n,−n+2, . . . , n−
2, n}. For an in-control process, i.e. P (Xt,j < θ0|θ = θ0) = P (Xt,j > θ0|θ = θ0) = p0 = 0.5,
the statistic Tt follows a binomial distribution Bin(n, 0.5). Consequently, monitoring the deviation
θ = θ1 from the process target is equivalent to monitoring a change in the process proportion p1 6= p0.
Consequently, monitoring the deviation θ = θ1 from the process target is equivalent to monitoring a
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change in the process proportion p1 6= p0 with p1 = P (Xt,j > θ0|θ = θ1). In this case they are two
situations:

• either the change p0 → p1 occurs between subgroups and, in this case, if the change already
happened, Tt simply follows a binomial distribution Bin(n, p1) with p.m.f. (probability mass
function) fTt(t) = fB(t|n, p1) =

(
n
t

)
pt1(1− p1)n−t.

• either the change p0 → p1 occurs within subgroups and the first n0 observationsXt,1, Xt,2, . . . , Xt,n0

are assumed to be in-control while, the last n1 observations Xt,n0+1, Xt,n0+2, . . . , Xt,n (with
n = n0+n1) are assumed to be out-of-control. Conquequently, in this case, we have Tt = Tt0+Tt1
where Tt0 = #{Xt,j > θ0, j = 1, 2, . . . , n0} and Tt1 = #{Xt,j > θ0, j = n0 + 1, n0 + 2, . . . , n}.
This implies that Tt is the sum of two binomial random variables, the first one Tt0 with parame-
ters (n0, p0) and the second one Tt1 with parameters (n1, p1). In this situation, the distribution
of Tt is no longer a binomial distribution but its p.m.f. fTt(t) can nevertheless be obtained for
t = 0, 1, . . . , n as

fTt(t) =

min(n0,t)∑
x=max(0,t−n1)

fB(x|n0, p0)fB(t− x|n1, p1).

For simplicity, all the results in this paper will assume the first situation (shifts occur between
subgroups) for which Tt follows a binomial distribution. The second situation (shifts occur within
subgroups) will not be investigated in the paper. Notably, we only consider the SN chart to moni-
tor location shifts. However, the proposed technique can also work exactly the same for any other
nonparametric statistics like, for instance, the Wilcoxon signed-rank statistic for the location, see
Graham et al. (2011) or the Ansari-Bradley statistic for the dispersion, see Gibbons and Chakraborti
(2010).

The plotting statistic {Y1, Y2, . . .} of the classical continuous EWMA chart is obtained by sequen-
tially accumulating the sign statistics {SN1, SN2, . . .} and it is defined as Yt = (1 − λ)Yt−1 + λSNt,
where λ ∈ (0, 1] is a real valued smoothing constant (i.e. a fixed weight). However, it is important
to note that, by applying the classical EWMA chart, the values of the statistic Yt are not integers
anymore, and the results (ARL for instance) obtained by using the Markov chain method are only
approximations, which does not necessarily monotonically converge as the number of the Markov
chain states increases. This fact was also emphasized by Weiß (2009). At this point, Rakitzis et al.
(2015) proposed the new CEWMA monitoring technique for count data, in which not only the ob-
servations but also the EWMA statistic Yt are all integers. Furthermore, Castagliola et al. (2018)
extend this idea for monitoring the sequence {SN1, SN2, . . .} (denoted as CEWMA SN) using the
following formula

(γX + γY )Yt +Rt = γXSNt + γY Yt−1 +Rt−1︸ ︷︷ ︸,
Bt−1

(3)

where (γX , γY ) ∈ N2 are two positive integer-valued parameters to be fixed, Bt−1
def
= γY Yt−1 + Rt−1,

Yt is the quotient of the Euclidean division

Yt =

⌊
γXSNt +Bt−1

γX + γY

⌉
, (4)

where b. . .e denotes the rounded towards zero integer (i.e. b3.5e = 3 and b−3.5e = −3, for instance)
and Rt ∈ {−γX − γY + 1, . . . , γX + γY − 1} is the remainder of this Euclidean division, i.e.

Rt = γXSNt +Bt−1 − (γX + γY )Yt. (5)
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It is important to note that the values R1, R2, . . . just need to be computed but they are not moni-
tored. Only the values Y1, Y2, . . . are monitored. For more details about the CEWMA chart and the
CEWMA SN chart, the interested reader can refer to Rakitzis et al. (2015) and Castagliola et al.
(2018).

3 The CAEWMA SN control chart
The CEWMA SN chart proposed in Castagliola et al. (2018) uses a pair of integer-valued constants
(γX , γY ) that can be designed in order to optimally detect a specific magnitude of the shift. However,
in practice, it is quite difficult to pre-determine the exact size of the shift. A natural option is to
find a potential tendency presented in the data and translate it in a time-varying weight. Therefore,
to provide a robustness to various magnitudes of shifts in count data, motivated by Capizzi and
Masarotto (2003), we propose the following new adaptive EWMA (denoted as CAEWMA SN) scheme
for count data

(γX + γY )Yt +Rt︸ ︷︷ ︸ = ϕ(et) + (γX + γY )Yt−1 +Rt−1︸ ︷︷ ︸,
Ct Ct−1

(6)

where ϕ(et) = ϕ(SNt − Yt−1) is a score function and Ct
def
= (γX + γY )Yt + Rt. The term Yt is the

quotient of the Euclidean division

Yt =

⌊
ϕ(SNt − Yt−1) + Ct−1

γX + γY

⌉
, (7)

where b. . .e also denotes the rounded towards zero integer and Rt ∈ {−γX −γY + 1, . . . , γX +γY −1}
is equal to

Rt = ϕ(SNt − Yt−1) + Ct−1 − (γX + γY )Yt. (8)

Particularly, note that the value of Yt−1 can also be rewritten as

Yt−1 =

⌊
Ct−1

γX + γY

⌉
. (9)

This definition allows to use the information contained in Yt−1 when we define the transient states
Ct−1 of the discrete-time Markov chain (for more details refer to Section 4). When the initial values
Y0 = y0, R0 = r0 are defined and, the current values SNt, Yt−1, Rt−1 as well as the score function
ϕ(et) are fixed, both Yt and Rt are uniquely defined. It goes without saying that the error terms et
between SNt and Yt−1 are also integers, so a new score function, similar to the Huber’s score function,
has to be proposed here. This score function is defined as

ϕ(e) =


e(γX + γY ) + kγY if e < −k
eγX if |e| ≤ k
e(γX + γY )− kγY if e > k

, (10)

where k is also a positive integer-valued parameter. Note that:

• when k → ∞, ϕ(e) = eγX . In that case, replacing ϕ(e) by eγX = (SNt − Yt−1)γX in (6)
gives (γX + γY )Yt +Rt = γXSNt + γY Yt−1 +Rt−1 and the proposed scheme coincides with the
CEWMA SN chart of Castagliola et al. (2018);
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• when k = 0, ϕ(e) = e(γX + γY ). In this case the CAEWMA SN chart reduces to a ordinary
Shewhart SN chart.

Therefore, the CAEWMA scheme can be regarded as a smooth combination of the Shewhart and
the CEWMA schemes. Concerning the initial values y0 and r0, a natural choice is y0 = E(SNt) = 0
and r0 = 0. While, if a head-start feature is desired, any choice of y0 6= 0 or r0 6= 0 can be considered.
The process is considered to be out-of-control whenever Yt exceeds the control limit (−h, h), where
h > 0 is a positive integer value to be fixed.

4 Run length properties
Control charts are generally evaluated in terms of their RL (Run length) distributions, where the
RL represents the number of samples plotted on the control chart before a signal is declared, i.e.
RL = inf{t ≥ 1|Yt ≤ −h or Yt ≥ h}. Let Q be the (2m + 1, 2m + 1) matrix of probabilities qi,j
corresponding to the 2m+ 1 transient states, i.e.

Q =



q−m,−m · · · q−m,−1 q−m,0 q−m,1 · · · q−m,m
...

...
...

...
...

...
...

q−1,−m · · · q−1,−1 q−1,0 q−1,1 · · · q−1,m

q0,−m · · · q0,−1 q0,0 q0,1 · · · q0,m

q1,−m · · · q1,−1 q1,0 q1,1 · · · q1,m
...

...
...

...
...

...
...

qm,−m · · · qm,−1 qm,0 qm,1 · · · qm,m


. (11)

The RL distribution is determined by the transition probability matrix Q and the initial probability
vector s, which can be represented by a (2m + 1, 1) vector s = (s−m, . . . , s−1, s0, s1, . . . , sm). Since
the RL is a Discrete Phase-type (DPH) random variable of parameters (Q, s), the p.d.f. fRL(`|Q, s)
and the c.d.f. FRL(`|Q, s) of the run length distribution of the CAEWMA SN chart can be easily
obtained as:

fRL(`|Q, s) = sᵀQ`−1(I−Q)1, (12)
FRL(`|Q, s) = 1− sᵀQ`1, (13)

where I is the (2m+ 1, 2m+ 1) identity matrix and 1 is a (2m+ 1, 1) vector of 1’s. Although there is
no simple formula for the central moment µi = E ((RL− E(RL))i) of order i ≥ 1 of a DPH random
variable RL, there is a simple formula for the factorial moment νi = E(RL(RL− 1) . . . (RL− i+ 1))
of order i, which is given by

νi = i!sᵀ(I−Q)−iQi−11. (14)

Specifically, when i = 1, 2, we may easily conclude that

ν1 = sᵀ(I−Q)−11, (15)
ν2 = 2sᵀ(I−Q)−2Q1. (16)

Now, we can easily establish a compact formula for the mean ARL = E(RL) and the standard
deviation SDRL = σ(RL) of the RL distribution, that is

ARL = ν1, (17)

SDRL =
√
ν2 − ν2

1 + ν1. (18)
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Particularly, in order to perform the previous computations of the RL properties, we need to know
the elements of matrix Q and vector s. Let us assume that the process is in the in-control state at
time t− 1. For the CEWMA SN chart, Rakitzis et al. (2015) and Castagliola et al. (2018) suggested
to define the transient states of the discrete-time Markov chain as the integers bt−1 = γY yt−1 + rt−1

with yt−1 ∈ {−h + 1, . . . , h − 1} and rt−1 ∈ {−γX − γY + 1, . . . , γX + γY − 1}. The possible states
of the Markov chain are i ∈ {−b,−b + 1, . . . , b} with b = bmax = −bmin = γX + hγY − 1, and the
total number of transient states is 2m + 1 = 2b + 1 = 2(γX + hγY − 1) + 1. Therefore, given that
the Markov chain is in state i at time t− 1, for each value SNt ∈ {−n,−n+ 2, . . . , n− 2, n}, we can
obtain yt and rt using (4) and (5). If −h < yt < h, then the Markov chain moves to the transient
state j = γY yt + rt with a probability fB(SNt+n

2
|n, p). If yt ≤ −h or yt ≥ h, the process is considered

as out-of-control and the potential assignable cause(s) must be found and removed.

However, for the proposed CAEWMA SN chart, the information of yt−1 is also needed when
the Markov chain is in state i at time t − 1. Moreover, we notice that, once the state i ∈
{bmin, bmin + 1, . . . , bmax} is defined, the values of yt−1 and rt−1 are not uniquely determined. For
example, when γX = 4, γY = 6 and h = 5, then yt−1 ∈ {−4, . . . , 4}, rt−1 ∈ {−9, . . . , 9} and
bmax = −bmin = γX +hγY −1 = 33. This implies that i = γY yt−1 +rt−1 = 25 ∈ {−33, . . . , 33} and the
combination can consist of either yt−1 = 4 and rt−1 = 1 or yt−1 = 3 and rt−1 = 7. Consequently, the
CAEWMA sequence of plotting statistics Y1, Y2, . . . is designed as in (6) and we define the set of states
ct−1 = (γX +γY )yt−1 +rt−1 for yt−1 ∈ {−h+1, . . . , h−1} and rt−1 ∈ {−γX−γY +1, . . . , γX +γY −1}.
As the minimum value of ct−1 is cmin = (γX + γY )(−h+ 1)− γX − γY + 1 = −h(γX + γY ) + 1 and the
maximum one is cmax = (γX + γY )(h− 1) + γX + γY − 1 = h(γX + γY )− 1, then all the states of the
discrete-time Markov chain at time t−1 for the CAEWMA SN chart are i ∈ {−c,−c+1, . . . , c} with
c = cmax = −cmin, and the total number of transient states is 2m+1 = 2c+1 = 2(h(γX +γY )−1)+1.
At time t − 1, for ∀i ∈ {−c,−c + 1, . . . , c}, from (9) the unique values of yt−1 =

⌊
i

γX+γY

⌉
and

rt−1 = i − (γX + γY )yt−1 can be determined. For the same example, when γX = 4, γY = 6 and
h = 5, then yt−1 ∈ {−4, . . . , 4}, rt−1 ∈ {−9, . . . , 9} and cmax = −cmin = h(γX + γY ) − 1 = 49. This
implies that i = 25 ∈ {−49, . . . , 49}, and the unique correspondence is yt−1 = 2 and rt−1 = 5 for
(γY + γX)yt−1 + rt−1 = 25.

(Please insert Table 1 here)

A detailed example on how to implement this discrete-time Markov chain approach for a CAEWMA
SN chart is now presented. Table 1 shows the structure of the matrix Q for the case n = 10, h = 3,
γX = 1, γY = 3 and k = 10. It should be noted that the matrix presented in Table 1 is not the actual
matrixQ but only its structure, i.e. for a better visualization, we use the values of SNt to represent the
probabilities qi,j = fB(SNt+n

2
|n, p) and we use the “.” to represent the positions where the probabilities

qi,j = 0. For instance, all the “−6” should be replaced by the probability fB(−6+10
2
|10, p) = fB(2|10, p)

and all the “6” should be replaced by the probability fB(6+10
2
|10, p) = fB(8|10, p). According to the

definition, we have 2m+ 1 = 2(h(γX + γY )− 1) + 1 = 2× (3× (1 + 3)− 1) + 1 = 23 transient states
i, j ∈ {−11,−10, . . . , 11}. In order to explain how the algorithm presented above works, let us start
by the first case i = −11. For this value, we have yt−1 =

⌊
i

γX+γY

⌉
= −2. Now, depending on the

value of SNt, we have:

• If SNt ∈ {−10,−8,−6,−4}, then −k ≤ et ∈ {−8,−6,−4,−2} ≤ k(= 10), so ϕ(et) = etγX ∈
{−8,−6,−4,−2} and yt =

⌊
ϕ(et)+i
γX+γY

⌉
= {−4,−4,−3,−3}, respectively. As yt ≤ −h(= −3), the

process moves to the absorbing state.
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• If SNt = −2, then −10 ≤ et = 0 ≤ 10, so ϕ(et) = etγX = 0 and yt =
⌊

0+(−11)
4

⌉
= −2. As

−3 < yt < 3, we have rt = ϕ(et) + i− (γX + γY )yt = 0 + (−11)− (1 + 3)× (−2) = −3, and the
process moves to the transient state j = (γX + γY )yt + rt = (1 + 3)× (−2) + (−3) = −11 with
a probability qi,j = fB(SNt+n

n
|n, p) = fB(−2+10

2
|n, p) = fB(4|10, p).

• If SNt = 0, then −10 ≤ et = 2 ≤ 10, so ϕ(et) = etγX = 2 and yt =
⌊

2+(−11)
4

⌉
= −2. As

−3 < yt < 3, we have rt = 2+(−11)−(1+3)×(−2) = −1, and the process moves to the transient
state j = (1 + 3)× (−2) + (−1) = −9 with a probability qi,j = fB(0+10

2
|n, p) = fB(5|10, p).

...

• If SNt = 10, then et = 12 > 10, so ϕ(et) = et(γX + γY ) − kγY = 12 × (1 + 3) − 10 × 3 = 18

and yt =
⌊

18+(−11)
4

⌉
= 1. As −3 < yt < 3, we have rt = 18 + (−11) − (1 + 3) × 1 = 3,

and the process moves to the transient state j = (1 + 3) × (1) + 3 = 7 with a probability
qi,j = fB(10+10

2
|n, p) = fB(10|10, p).

More details about the algorithm can be seen in Appendix 1. Finally, the initial probability
vector s = (s−m, . . . , s−1, s0, s1, . . . , sm) contains the probabilities that the Markov chain starts in a
given state. We set 1 in the entry corresponding to (γX + γY )y0 + r0 and 0 in the remaining ones. If
y0 = r0 = 0 (no head-start feature), then we have s0 = 1 and si = 0 for i ∈ {−m, . . . ,−1, 1, . . . ,m}.
Once the matrix Q and the vector s are defined, we can easily obtain the RL properties of the
CAEWMA SN chart. Note also that the proposed algorithm works exactly the same for any other
discrete distributions with some trivial modifications, i.e. in the determination of the transient prob-
ability qi,j, the p.m.f. fB(. . . |n, p) of the binomial distribution must be replaced by the proper p.m.f.

It is also important to note that, even if the CAEWMA SN chart can be theoretically used with
a relatively small sample size n ∈ {2, . . . , 7}, it is practically impossible to design it in order to
guarantee an acceptable and sufficiently large in-control ARL like ARL0 = 200, 370.4 or 500, as
for most control charts unless n is sufficiently large. For instance, Chakraborti et al. (2011) and
Castagliola et al. (2018) have shown that the sample size n ≥ 9 in order to be able to obtain a
sufficiently large in-control, industry standard, ARL value.

5 Design of the CAEWMA SN scheme
The ARL (Average Run Length) is the most widely used index to evaluate the efficiency of control
charts. For a fair comparison, the same ARL0 value is usually taken when the process is in-control
(p = p0 = 0.5) and, when the process is out-of-control (p = p1 6= p0), the smaller the ARL1 value,
the better the performance of the control chart. Therefore, the optimization of a CAEWMA SN
chart consists in finding the combination (h∗, γ∗X , γ

∗
Y , k

∗) that gives the minimum ARL1 or AARL1

(Average ARL1) based on a given ARL0. This combination can be obtained using the following two
steps procedure:

1. Firstly, we have to search for the parameters combinations (h, γX , γY , k) that yield the de-
sired in-control ARL0. Note that, because of the discreteness of the monitoring statistic
Yt, ARL(h, γX , γY , k, n, p0) = ARL0 cannot be always exactly achieved. Hence, to satisfy
ARL(h, γX , γY , k, n, p0) ≈ ARL0, only the combinations (h, γX , γY , k) with a value of∣∣∣ARL(h,γX ,γY ,k,n,p0)−ARL0

ARL0

∣∣∣ ≤ ζ will be considered, where ζ is a pre-specified threshold.
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2. Secondly, among these combinations, some optimal combinations (h∗, γ∗X , γ
∗
Y , k

∗) can be selected
for providing an optimal ARL1 value for a specific shift popt (subsection 5.1) or an optimal
AARL1 value for a range of unknown shifts Ωopt (subsection 5.2). In order to find the optimal
combination (h∗, γ∗X , γ

∗
Y , k

∗) for fixed values of n and popt or Ωopt, we used an exhaustive search
methodology based on the algorithm in Appendix 2.

In the rest of this paper, ARL0 = 370.4 and ζ = 0.05 will be considered. Moreover, since for the
sign chart we have ARL(h, γX , γY , k, n, p1) = ARL(h, γX , γY , k, n, 1 − p1), it is only necessary to
investigate the case p1 ∈ (0, 0.5), in which a value of p1 close to p0 = 0.5 corresponds to a “small”
shift, while a value of p1 close to 0 corresponds to a “large” shift from the target value.

5.1 Properties for detecting a specific magnitude of shift

Most control charts are effective in detecting the shift of a particular size popt. For example, Shewhart-
type charts are efficient in detecting large shifts, and EWMA-type charts can be constructed to
perform well for either detecting small or large shifts. Small values of the smoothing parameter λ
are used to quickly detect small shifts, while large values are used to efficiently signal the occurrence
of large shifts. This is also consistent with the results of the CEWMA SN chart in Castagliola et al.
(2018), where the smoothing ratio γX

γX+γY
can be viewed as the classical real smoothing parameter λ.

For the CAEWMA SN chart, the ARL-based design is aimed at selecting the optimal combination
(h∗, γ∗X , γ

∗
Y , k

∗) such that

(h∗, γ∗X , γ
∗
Y , k

∗) = argmin
(h,γX ,γY ,k)

ARL(h, γX , γY , k, n, popt), (19)

subject to
ARL(h∗, γ∗X , γ

∗
Y , k

∗, n, p0) ≈ ARL0. (20)

Here, in order to investigate the optimal out-of-control values ARL1 for a specific value of the
shift popt and to help practitioners in the implementation of the CAEWMA SN chart, in Table
2, we exhibit some optimal combinations (h∗, γ∗X , γ

∗
Y , k

∗) (first line of each block) for specified
shifts popt ∈ {0.05, 0.1, . . . , 0.45}, along with the out-of-control (ARL1, SDRL1) (second line) for
n ∈ {10, . . . , 25}. Moreover, as a comparison, the minimum out-of-control (ARL1, SDRL1) (third line)
of the CEWMA SN chart are also presented. As an example, if the desired in-control ARL0 = 370.4
and the exact shift is popt = 0.4, from Table 2, when the sample size is n = 10, the optimal combi-
nation of parameters (h∗, γ∗X , γ

∗
Y , k

∗) of the CAEWMA SN chart is (2, 9, 113, 10), giving the smallest
possible out-of-control ARL1 of 20.1. For the same case, the minimum ARL1 value for the CEWMA
SN chart is ARL1 = 24.8.

(Please insert Table 2 here)

Through the results in Table 2, the following conclusions are observed:

• As expected, when the sample size n increases, the optimal out-of-control ARL1 decreases. For
example, when popt = 0.45, as n increases from 10 to 15, the minimum ARL1 value decreases
from 53.2 to 39.1 for the CAEWMA SN chart, and it decreases from 61.1 to 42.4 for the
CEWMA SN chart.

• Given a fixed value of n, the larger the value of popt, the smaller the smoothing ratio γ∗X
γ∗X+γ∗Y

.

For example, when n = 16, we have γ∗X
γ∗X+γ∗Y

= 7
7+9
≈ 0.44 for popt ∈ {0.05, 0.10, 0.15}, γ∗X

γ∗X+γ∗Y
=

9



9
9+25

≈ 0.26 for popt = 0.30 and γ∗X
γ∗X+γ∗Y

= 5
5+93

≈ 0.05 for popt = 0.45. This is consistent with
the results of EWMA-type charts as investigated in Yang et al. (2011) and Castagliola et al.
(2018).

• The CAEWMA SN chart outperforms the CEWMA SN chart when the sample size is small
n ≤ 15. This is especially true for large shifts (i.e. popt ≤ 0.15) and small shift (i.e. popt ≥ 0.40).
For example, when n = 10, the CEWMA SN chart has the minimum ARL1 = 2.2 for popt = 0.05
and the minimum ARL1 = 61.1 for popt = 0.45. While the minimum ARL1 values of the
CAEWMA SN chart for popt = {0.05, 0.45} are 1.4 and 53.2, respectively. As soon as n
becomes larger, the performance of the CAEWMA SN and CEWMA SN charts are nearly the
same.

In conclusion, if the exact size of the shift can be pre-determined, the superiority of the CAEWMA
scheme is not so significant. However, in practice, the problem is that this “optimal” scheme strongly
depends on the specified magnitude of the shift popt, but specifying the exact shift size could be
too restrictive as practitioners may not have a historical knowledge of the process. In this case,
the control chart based on the minimum ARL1 strategy, for a specified shift popt, will be seriously
affected if a different shift size actually occurs in practice. As a consequence, it seems that a scheme,
which can offer a reasonable protection for both small and large shifts simultaneously, is a best choice.

5.2 Properties for detecting a range of unknown shifts

An alternative approach to design a control chart is to optimize its performance for a whole range of
shifts Ωopt rather than for one or two particular shifts. As AEWMA-type schemes are smooth com-
bination of Shewhart-type and EWMA-type schemes, they have an advantage over the EWMA-type
schemes which can only be designed to detect either small or large shifts, and over the Shewhart-type
schemes which are known to be insensitive to small shifts. Thus, an optimal design based on a whole
range of shifts is more reasonable for the CAEWMA SN chart to achieve a good AARL performance.

If we assume that fp1(p) is the p.d.f. of the shift p1 over the range Ωopt, and ωp1(p) is a nonnegative
function representing the weight associated to p1 then, the AARL-based design of the CAEWMA
SN chart has the following form:

(h∗, γ∗X , γ
∗
Y , k

∗) = argmin
(h,γX ,γY ,k)

AARL(h, γX , γY , k, n,Ωopt), (21)

subject to
ARL(h∗, γ∗X , γ

∗
Y , k

∗, n, p0) ≈ ARL0, (22)

with
AARL =

∫
Ωopt

ωp1(p)ARL(h, γX , γY , k, n, p)fp1(p)dp. (23)

As practitioners do not have a specific preference concerning the actual shape of the shift distribu-
tion, we assumed that the shift follows a discrete uniform distribution fp1(p) ∼ U [pmin, pmax], where
pmin and pmax are the lower and upper bounds of the shift, respectively. Concerning the weight func-
tions ωp1(p), there are no specific rule for choosing it. It just helps to avoid over-correction against
small shifts (because the ARL1 values for small shifts are quite larger than that for large shifts). In
this paper, we assume a weight function ωp1(p) = 1

p
. Other weight functions can be discussed in a

similar way, and interested readers can refer to Ou et al. (2012) and Aly et al. (2017) for more details.

(Please insert Table 3 here)
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Table 3 displays some optimal parameters of CAEWMA SN charts obtained using the above
strategy based on a whole range of shifts Ωopt = {0.05, 0.10, . . . , 0.45}. To evaluate the properties
for various shifts, the RMI (Relative Mean Index) proposed by Han and Tsung (2006) is used and it
is defined as follows:

RMI(T ) =
1

N

N∑
i=1

(
ARL(T, p

(i)
1 )− ARL∗(p

(i)
1 )

ARL∗(p
(i)
1 )

)
, (24)

where ARL(T, p
(i)
1 ) denotes the ARL value of the control chart T when detecting the shift p(i)

1 ,
and ARL∗(p

(i)
1 ) is the minimum ARL value of all charts compared when detecting p

(i)
1 , where

p
(i)
1 is the ith shift and N is the number of shifts considered in the comparison (for example, if
p1 ∈ {0.05, 0.10, . . . , 0.45} then N = 9 and p(1)

1 = 0.05, . . . , p
(9)
1 = 0.45). So RMI(T ) can be consid-

ered as a relative efficiency measure of the given control charts, compared with the best chart, when
detecting the shift p(i)

1 . Obviously, a smaller value for RMI(T ) means that the control chart T has a
better performance for detecting shifts on the whole.

In Tables 4 to 7, we compare the ARL and RMI performance of the CAEWMA SN chart, with
the standard and the arcsine transformed EWMA SN charts of Yang et al. (2011), the GWMA SN
chart of Lu (2015) as well as the CEWMA SN chart of Castagliola et al. (2018). Note that, the ARL
values of the GWMA SN can be computed only via simulations while, for others, the Markov chain
approach can be applied.

Comparisons with the EWMA SN chart

The standard (denoted as EWMA-S) and the arcsine transformed (denoted as EWMA-A) EWMA
SN charts proposed in Yang et al. (2011) were calculated for various values of (k∗, λ∗) for the subgroup
size n ∈ {9, 10, . . . , 25}. These combinations correspond to an ARL0 close to the standard of 370.4.
Tables 4 and 5 compare respectively the ARL values of the CAEWMA SN chart with the EWMA-S
and EWMA-A charts when n = 20. Agreeing with the recommendations in Table 1 of Yang et al.
(2011), the EWMA SN charts are designed with five values of λ (i.e. 0.05, 0.15, 0.3, 0.6, 0.9) and the
considered CAEWMA SN chart is designed for Ωopt = {0.05, 0.10, . . . , 0.45}, i.e.(h∗, γ∗X , γ∗Y , k∗) =
(4, 4, 23, 14), as shown in Table 3 when n = 20.

(Please insert Tables 4 to 5 here)

We found that, for both EWMA-S and EWMA-A charts, small values of λ could help in detect-
ing small shifts more quickly, and large values of λ could help in detecting larger shifts faster. This
means that a single EWMA SN (regardless EWMA-S or EWMA-A) chart can be designed to detect
either small or large shifts effectively, but not both simultaneously. For example, in Table 4, if the
EWMA-S chart, with λ = 0.05, can be efficient in the detection of small shifts (e.g. p1 = 0.45), it is
unfortunately insensitive to moderate or large ones (e.g. p1 ≤ 0.3). Moreover, it can be found that,
both the EWMA-S and EWMA-A charts can just provide a slightly better performance than the
CAEWMA SN chart when the shift size is close to the value for which they have been optimized. For
other shift sizes, the CAEWMA SN chart also provides additional protection, even if the actual shift
is very different from its specified size. For instance, in Table 5, the EWMA-A chart with λ = 0.05
achieves the minimum ARL1 = 31.0 for p1 = 0.45 followed by the ARL1 = 36.6 of the CAEWMA SN
chart, while for p1 ≤ 0.4, the CAEWMA SN chart performs much better than the EWMA-A chart
with a λ = 0.05.

Comparisons with the GWMA SN chart

11



Table 6 is similar to Tables 4 and 5 but with the EWMA SN charts replaced by the GWMA
SN chart. The run length distribution of the GWMA SN chart is a function of (L, q, α), where L
denotes the width of the control limit, q is the weight parameter and α is a parameter to adjust the
kurtosis of the weighting function. For a fixed value of α, a large value of q of the GWMA SN chart is
highly sensitive in detecting small shifts. The optimal combinations (2.929, 0.4, 0.6), (2.925, 0.6, 0.9),
(2.771, 0.87, 0.9) and (2.490, 0.95, 0.9) are suggested in Table 4 of Lu (2015) for detecting various
shifts, including small, moderate and large shifts, respectively.

(Please insert Table 6 here)

The simulation results show that the GWMA SN chart is slightly more efficient than the EWMA
SN chart in detecting small shifts, but none of them, of course, can perform uniformly better for all
shift sizes. However, it is interesting to note that the relative efficiency loss of the CAEWMA SN
chart for small (or large) shift sizes is negligible but the relative efficiency gain for large (or small)
shift sizes is remarkable. For instance, in Table 6, when compard with the GWMA SN chart with
q = 0.87, the percentage increase (i.e.,

∣∣ARLAEWMA
1 − ARLEWMA

1

∣∣ /ARLEWMA
1 × 100%) in the ARL

values of the CAEWMA SN chart for p1 = 0.45 is 7.33% (|36.6 − 34.1|/34.1), while the percentage
decrease at p1 = 0.1 is 33.30% (|1.4 − 2.1|/2.1). The superiority of the CAEWMA SN chart in
catching up with a wide range of shifts has also been verified in terms of the RMI performance.
For example, the GWMA SN chart with q = 0.6 achieves the smallest RMI = 0.11 value among all
GWMA designs while, we observe that the RMI value of the CAEWMA SN chart is only 0.08.

Comparisons with the CEWMA SN chart

The combinations (K∗, γ∗X , γ
∗
Y ) provided in Table 3 of Castagliola et al. (2018) are optimal in

the sense that, among all the possible combinations for ARL0 ≈ 370.4, the noted one gives the
smallest ARL1 value for p1 ∈ {0.05, 0.1, . . . , 0.45}, respectively. In Table 7, we present the optimal
combinations (K∗, γ∗X , γ

∗
Y ) and the ARL values of the CEWMA SN chart for n = 20. Due to the

discreteness of the parameters, it could exist a combination (K∗, γ∗X , γ
∗
Y ) having the minimum ARL1

for several shifts. For example, the combination (9, 7, 4) simultaneously provides the minimum ARL1

for small shifts p1 ∈ {0.05, 0.1, 0.15}, the combination (8, 1, 1) for moderate shifts p1 ∈ {0.2, 0.25},
the combination (4, 3, 16) for large shifts p1 ∈ {0.35, 0.4}, etc.

(Please insert Table 7 here)

The results also show that the CAEWMA SN chart has superior efficiency for detecting a wide
range of shifts as we would expect. It can be seen that:

• For small shifts p1 ≥ 0.35, the proposed CAEWMA SN chart has a similar performance as for
the CEWMA SN chart with (4, 3, 16) and (2, 4, 87), but it is more competitive for large shifts
p1 ≤ 0.2.

• For moderate shifts 0.15 ≤ p1 < 0.35, the proposed CAEWMA SN chart has a similar perfor-
mance as for the CEWMA SN chart with (7, 7, 11), but it is more competitive for large shifts
p1 < 0.15 and small shifts p1 ≥ 0.35.

• For large shifts p1 < 0.15, the proposed CAEWMA SN chart has a similar performance as for
the CEWMA SN chart with (9, 7, 4) and (8, 1, 1), but it is more competitive for small shifts
p1 ≥ 0.35.
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To conclude, from the comparisons in terms of the RMI measure shown in Tables 4 to 7, it is obvi-
ous that the CAEWMA SN chart achieves the best performance among all competing designs. This
agrees with the expectation of the superiority of AEWMA-type schemes over EMWA-type schemes
in catching up with a wide range of shifts. Since the CAEWMA SN chart preserves its property as a
more competitive scheme for detecting small and large shifts simultaneously, thus we recommend the
implementation of the CAEWMA SN chart if the actual size of the shift is unpredictable in practice.

6 In-control robustness
From a practical standpoint, we further investigate the in-control robustness of the corresponding
parametric AEWMA scheme in order to get more insight concerning the benefits of the proposed
nonparametric chart. The in-control robustness is the key to the proper design and implementation
of any control chart, lack of which can render its out-of-control shift detection capability almost
meaningless. Therefore, it is of interest to compare the in-control performance of the CAEWMA
SN chart with the parametric AEWMA chart (designed for normality) when the underlying distri-
butional assumption is violated. Our study includes a wide collection of symmetric distributions
including the normal and non-normal ones: (i) the standard Normal distribution NOR(0, 1); (ii) the
scaled Student’s t-distribution, t(4)/

√
4/4− 2; (iii) the Laplace distribution (or double exponential)

LA(0, 1/
√

2); (iv) the Logistic distribution, LG(0,
√

3/π); (v) the Contaminated Normal (CN) dis-
tribution, i.e. a mixture c.d.f. FCN(x) = (1− τ)Φ(x|0, 1) + τΦ(x|0, 2) with a level of contamination
τ = 0.1. All the distributions under consideration have have been selected in order to have a mean
equal to 0 and a standard deviation equal to 1 (for the CN data, the “dominant” part of the data come
from a NOR(0, 1) distribution), so that the results are easily comparable across distributions. The
values of the in-control RL characteristics have been estimated via Monte Carlo simulation (50,000
runs) resulting in a standard error is less than 0.1%. The results are shown in Figures 1 and 2 for
subgroup size n = 10 and 20, respectively.

(Please insert Figures 1 and 2 here)

In each boxplot of Figures 1 and 2, the mean of the run-length distribution is marked with a
circle. As the CAEWMA SN chart is a distribution free chart, the first (leftmost) boxplot is the
one corresponding to the CAEWMA SN chart independently of the distribution under consideration.
The five remaining boxplots correspond to the AEWMA chart for the five distribution under consid-
eration. Also, a reference line was inserted on the vertical axis at 500, which is the desired nominal
ARL0 value in this case.

From Figures 1 and 2, it can be seen that the AEWMA X̄ chart is not robust and its in-control
run-length distribution is highly affected by a change in the underlying distribution. For example,
focussing on ARL0 as a measure of location, for n = 20, the ARL0 of the AEWMA X̄ chart varies
from 500.0 (when the underlying distribution is NOR(0, 1)) to 314.7 (for t(4)/

√
4/4− 2), 428.4 (for

LA(0, 1/
√

2), 471.1 (for LG(0, 1/
√

2)) and 169.1 (for CN), respectively. In addition, for n = 10, the
ARL0 values of the AEWMA X̄ chart are much smaller than 500 for all the considered distributions.
The consequence will be many more false alarms than it was nominally expected. On the other hand,
the CAEWMA SN chart has stable performances for all distributions under consideration, indicating
that this nonparametric scheme has a better non-normal robustness and outlier resistance.
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7 Two illustrative examples

7.1 Beverage example

The goal of this example is to illustrate the use of the CAEWMA SN chart when the underlying
distribution cannot be exactly ascertained. As in Celano et al. (2016) and Castagliola et al. (2018),
a soft drink filling process is considered, and the quality characteristic X is the quantity of CO2 dis-
solved within the soft drink. In fact, taking account of the thin wall and the high bottling pressure
of polyethylene terephthalate (PET) bottles, there is a need for a strict control of the dissolved CO2

level. For confidentiality reasons, the in-control median value θ0 can not be explicitly reported here.
In Table 8, we report the deviation from target values Xt,j − θ0 of the quantity of dissolved CO2 for
t = 1, 2, . . . , 10 periods and j = 1, 2, . . . , 7 corresponding to a Phase II implementation.

The practitioner decided to use control charts designed for detecting a shift of popt = 0.4 based
on ARL0 = 370.4. The optimal set of parameters of the CAEWMA SN chart are found to be
(h∗, γ∗X , γ

∗
Y , k

∗) = (5, 1, 6, 3) and the competing optimal CEWMA SN chart (h∗, γ∗X , γ
∗
Y , k

∗) = (3, 2, 7)
recommended in Castagliola et al. (2018) is also constructed. Normality has been tested and not
rejected for observations from the measurement system, but the in-control σ0 is unknown. Therefore,
the parametric AEWMA X̄ chart (h∗, λ∗, k∗) = (0.811, 0.15, 3.25) is also constructed and we use the
the sample standard variance S̄V = 1

10

∑10
t=1 SV,t to estimate the σ0, where V̄t = 1

n

∑n
k=1 Vt,k and

SV,t =
√

1
n−1

∑n
k=1(Vt,k − V̄t).

The monitoring statistics of the parametric AEWMA X̄ chart, the CAEWMA SN chart and the
CEWMA SN chart are thus plotted against their control limits, in Figure 3. It can be seen that the
AEWMA chart does not show any out-of-control signal in the process location. The CAEWMA SN
chart signals at the 5th observation followed by the CEWMA SN chart at 6th, suggesting an upward
shift in the process median (i.e. more CO2 dissolved in each bottle). The parametric AEWMA X̄
chart signals at 7th. This performance difference can be explained by the presence of the “noise”
observations in the samples (in Celano et al. (2016), it was proved that the observations are from a
mixture of two normal distributions.), which increases the value of the sample standard deviation,
thus reducing the sensitivity of the parametric AEWMA X̄ chart to a shift in the process mean.

This is not surprising, as in practice, normality can be often in doubt or may not be justified
because of lack of information or data, and the proposed CAEWMA SN chart offers an effective
alternative over available parametric and nonparametric control charts.

(Please insert Table 8 and Figure 1 here)

7.2 Manufacturing example

The goal of this example is to illustrate the superiority of the CAEWMA SN chart for detecting
a range of shifts Ωopt. For the sake of comparison, the competing CEWMA SN chart is also con-
structed. The data-set is taken from a printed circuit manufacturing industry. The quality level of
their products is monitored with subgroups of size n = 12 and it consists of 30×12 observations from
a normal distribution with an in-control mean/median θ0 = 50 and an in-control standard deviation
σ0 = 1.0. We consider two different out-of-control situations, one for detecting 0.5 × σ0 (a small
shift p1 ≈ 0.31) and one for detecting 1.5 × σ0 (a large shift p1 ≈ 0.07) in the last 20 observations.
The desired ARL0 value is fixed at 370.4. Based on Table 3 of Castagliola et al. (2018), the optimal
combinations (K∗, γ∗X , γ

∗
Y ) = (7, 7, 5) and (3,3,19) of CEWMA SN charts (denoted as CEWMA-1

and CEWMA-2) designed for popt = 0.05 and 0.3, respectively, are considered here. Concerning the
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CAEWMA SN chart, based on the searching procedure in Section 5.2, the optimal combination is
obtained to be (h∗, γ∗X , γ

∗
Y , k

∗) = (4, 2, 7, 9).

The data of the deviation from target valuesXt,j−θ0 and the statistics SNt, together with statistics
Yt and Rt of the CEWMA-1, the CEWMA-2 and the CAEWMA charts, are shown in Tables 9 and
10. When the process is in-control (i.e. the first t = 1, 2, . . . , 10 observations), we can observe that
the three charts are all in an in-control state. In Table 9, for the small shift p1 ≈ 0.31 case, both the
CEWMA-2 and the CAEWMA charts signal at the 18th observation and the CEWMA-1 chart signals
at the 24th observation. While, for the large shift p1 ≈ 0.07 case in Table 10, the CAEWMA chart
signals at the 10th observation followed by the CEWMA-1 chart at 11th and the CEWMA-2 chart
at 12th. Note that the CAEWMA chart is not only as effective as the CEWMA-2 chart when the
shift is small, but it is also more effective for large shifts than the two CEWMA charts. Therefore,
We can conclude that the CAEWMA scheme is more sensitive to various shifts than the CEWMA
scheme in this example. In Figures 2 and 3, we also have plotted the three charts corresponding to
the data in Tables 9 and 10, respectively.

(Please insert Tables 9 and 10, and Figures 2 and 3 here)

8 Conclusions
In this paper, we propose a new nonparametric CAEWMA SN chart with exact run length proper-
ties, which combines the advantages of a nonparametric control chart with the better overall shift
detection properties of the AEWMA scheme. An in-depth study to gain insight into its design,
implementation and performance has been done. More precisely: i) An appropriate discrete time
Markov-chain technique is presented to calculate the exact run length distribution and the asso-
ciated performance characteristics without expensive simulations or unreliable approximations; ii)
To aid practical implementation, some optimal parameters are presented and for a more thorough
assessment of the chart’s performance, we also calculate the RMI for an overall assessment when a
range of shifts are considered; iii) We propose two optimal designs based on the ARL and the AARL
as performance measures, respectively. A simulation study demonstrates that the proposed control
chart not only performs robustly for different distributions, but also is efficient in detecting various
magnitude of shifts.

A possible topic for further research would be to extend a modified version, a CAEWMAWilcoxon
signed-rank chart, which probably provides a better efficiency for monitoring observations of sym-
metric distributions. Moreover, adaptations to the case for monitoring the process dispersion (scale)
when the distribution of observations is unknown, would also be a very challenging issue to be
investigated as an extension of this research.
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Appendix 1

Algorithm Computation of transient probabilities qi,j
Define n, p, h, γX , γY and k
c← h(γX + γY )− 1
For i = −c,−c+ 1, . . . , c

For SNt = −n,−n+ 2, . . . , n− 2, n

yt−1 ←
⌊

i
γX+γY

⌉
et ← SNt − yt−1

If et < −k
ϕ(et)← et(γX + γY ) + kγY

Else if et > k
ϕ(et)← et(γX + γY )− kγY

Else −k ≤ et ≤ k
ϕ(et)← etγX

End If
yt ←

⌊
ϕ(et)+i
γX+γY

⌉
If −h < yt < h Then
rt ← ϕ(et) + i− (γX + γY )yt
j ← (γX + γY )yt + rt
qi,j ← fB(SNt+n

2
|n, p)

End If
End For

End For
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Appendix 2
The following Algorithm is used in Section 5 to find the optimal combination (h∗, γ∗X , γ

∗
Y , k

∗):

Algorithm For detecting a specific magnitude of the shift popt

Define n, p0 = 0.5, popt ∈ (0, 0.5)
ARL0 ← 370.4
ARL∗ ←∞
For h = 1, 2, . . . , n

For k = 1, 2, . . . , n
For γX = 1, 2, . . . , 10
γY ← 0
Repeat
γY ← γY + 1

Until
∣∣∣ARL(h,γX ,γY ,k,n,p0)−ARL0

ARL0

∣∣∣ ≤ 0.05

If ARL(h, γX , γY , k, n, popt) < ARL∗ Then
ARL∗ ← ARL(h, γX , γY , k, n, popt)
h∗ ← h,γ∗X ← γX ,γ∗Y ← γY and k∗ ← k

End If
End For

End For
End For

Algorithm For detecting a range of unknown shifts Ωopt

Define n, p0 = 0.5, Ωopt = {0.05, 0.1, . . . , 0.45}
ARL0 ← 370.4
AARL∗ ←∞
For h = 1, 2, . . . , n

For k = 1, 2, . . . , n
For γX = 1, 2, . . . , 10
γY ← 0
Repeat
γY ← γY + 1

Until
∣∣∣ARL(h,γX ,γY ,k,n,p0)−ARL0

ARL0

∣∣∣ ≤ 0.05

AARL← 0
For p1 = 0.05, 0.1, . . . , 0.45

AARL← AARL + ωp1 × ARL(h, γX , γY , k, n, p1)
End For
If AARL(h, γX , γY , k, n,Ωopt) < AARL∗ Then

AARL∗ ← AARL(h, γX , γY , k, n,Ωopt)
h∗ ← h,γ∗X ← γX ,γ∗Y ← γY and k∗ ← k

End If
End For

End For
End For
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Table 1: Structure of the matrix Q for the case n = 10, h = 3, γX = 1, γY = 3 and k = 5

j
-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

i

-11 -2 . 0 . 2 . 4 . 6 . 8 . . . . . . . 10 . . . .

-10 . -2 . 0 . 2 . 4 . 6 . 8 . . . . . . . 10 . . .

-9 -4 . -2 . 0 . 2 . 4 . 6 . 8 . . . . . . . 10 . .

-8 . -4 . -2 . 0 . 2 . 4 . 6 . 8 . . . . . . . 10 .

-7 . -4 . -2 . 0 . 2 . 4 . 6 . 8 . . . . 10 . . . .

-6 -6 . -4 . -2 . 0 . 2 . 4 . 6 . 8 . . . . 10 . . .

-5 . -6 . -4 . -2 . 0 . 2 . 4 . 6 . 8 . . . . 10 . .

-4 -8 . -6 . -4 . -2 . 0 . 2 . 4 . 6 . 8 . . . . 10 .

-3 -8 . -6 . -4 . -2 . 0 . 2 . 4 . 6 . 8 . 10 . . . .

-2 . -8 . -6 . -4 . -2 . 0 . 2 . 4 . 6 . 8 . 10 . . .

-1 -10 . -8 . -6 . -4 . -2 . 0 . 2 . 4 . 6 . 8 . 10 . .

0 . -10 . -8 . -6 . -4 . -2 . 0 . 2 . 4 . 6 . 8 . 10 .

1 . . -10 . -8 . -6 . -4 . -2 . 0 . 2 . 4 . 6 . 8 . 10

2 . . . -10 . -8 . -6 . -4 . -2 . 0 . 2 . 4 . 6 . 8 .

3 . . . . -10 . -8 . -6 . -4 . -2 . 0 . 2 . 4 . 6 . 8

4 . -10 . . . . -8 . -6 . -4 . -2 . 0 . 2 . 4 . 6 . 8

5 . . -10 . . . . -8 . -6 . -4 . -2 . 0 . 2 . 4 . 6 .

6 . . . -10 . . . . -8 . -6 . -4 . -2 . 0 . 2 . 4 . 6

7 . . . . -10 . . . . -8 . -6 . -4 . -2 . 0 . 2 . 4 .

8 . -10 . . . . . . . -8 . -6 . -4 . -2 . 0 . 2 . 4 .

9 . . -10 . . . . . . . -8 . -6 . -4 . -2 . 0 . 2 . 4

10 . . . -10 . . . . . . . -8 . -6 . -4 . -2 . 0 . 2 .

11 . . . . -10 . . . . . . . -8 . -6 . -4 . -2 . 0 . 2
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Table 2: Optimal combinations (h∗, γ∗X , γ
∗
Y , k

∗) (first line of each block) and the out-of-control
(ARL, SDRL) (second line) for the CAEWMA SN chart along with the corresponding out-of-
control (ARL, SDRL) (third line) for the CEWMA SN chart based a specific magnitude of the
shift popt ∈ {0.05, 0.1, . . . , 0.45}

popt
Type 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

n = 10

CAEWMA
(7,9,5,6) (7,9,5,6) (5,9,16,7) (5,9,16,7) (5,9,14,9) (4,5,13,10) (4,5,13,10) (2,9,113,10) (2,9,113,10)
(1.4,0.6) (1.9,0.9) (2.6,1.2) (3.5,1.7) (4.7,2.3) (6.8,3.4) (11.3,7.2) (20.1,9.6) (53.2,37.3)

CEWMA (2.2,0.4) (2.6,0.6) (3.1,0.8) (3.7,1.2) (4.8,1.9) (6.8,3.4) (11.3,7.2) (24.8,20.2) (61.1,24.6)
n = 11

CAEWMA
(6,1,1,10) (6,1,1,10) (6,1,1,10) (6,1,1,10) (5,9,16,9) (4,5,15,11) (4,8,24,11) (4,5,15,11) (2,1,14,10)
(1.4,0.5) (1.8,0.7) (2.3,1.0) (3.1,1.6) (4.3,2.0) (6.1,2.9) (9.9,6.0) (21.3,16.5) (49.2,33.8)

CEWMA (2.1,0.3) (2.4,0.5) (2.8,0.8) (3.5,1.1) (4.4,1.7) (6.1,2.9) (9.9,6.0) (21.3,16.5) (57.9,22.8)
n = 12

CAEWMA
(6,6,7,10) (6,6,7,10) (6,6,7,10) (6,6,7,10) (6,6,7,10) (4,7,24,9) (4,7,24,9) (3,7,44,11) (2,2,30,11)
(1.5,0.5) (1.8,0.6) (2.3,0.8) (2.9,1.3) (4.0,2.1) (5.8,2.6) (9.2,5.3) (16.8,10.0) (45.4,29.7)

CEWMA (1.5,0.5) (1.8,0.6) (2.3,0.9) (3.1,1.5) (4.5,2.8) (6.4,2.2) (9.3,4.1) (16.9,10.0) (45.8,29.8)
n = 13

CAEWMA
(9,9,2,10) (9,9,2,10) (9,9,2,12) (9,9,2,12) (5,5,11,10) (5,5,11,10) (4,10,37,10) (3,10,67,11) (2,7,109,11)
(1.1,0.4) (1.4,0.6) (1.9,1.0) (2.8,1.7) (3.7,1.6) (5.3,2.7) (8.4,4.4) (16.2,9.2) (43.5,27.7)

CEWMA (1.1,0.4) (1.4,0.6) (1.9,1.0) (2.8,1.8) (3.9,1.8) (5.5,2.4) (8.5,4.4) (16.9,11.6) (53.8,20.2)
n = 14

CAEWMA
(8,8,5,8) (8,8,5,8) (8,8,5,8) (8,8,5,8) (6,7,11,9) (5,7,16,11) (4,2,8,11) (3,3,23,11) (2,7,116,12)
(1.2,0.4) (1.5,0.6) (1.9,0.9) (2.6,1.4) (3.7,1.9) (5.3,2.5) (8.1,4.2) (15.1,8.2) (41.0,25.0)

CEWMA (1.2,0.4) (1.5,0.7) (2.0,1.1) (2.9,1.8) (4.6,3.4) (8.2,6.9) (17.2,3.5) (25.7,6.6) (51.1,19.0)
n = 15

CAEWMA
(8,5,3,13) (7,5,5,12) (7,1,1,12) (7,3,3,12) (6,8,13,11) (5,9,23,11) (4,7,29,12) (3,2,15,13) (2,1,18,12)
(1.2,0.4) (1.5,0.6) (1.9,0.8) (2.4,1.1) (3.4,1.5) (4.8,2.2) (7.6,3.7) (14.2,7.4) (39.1,23.5)

CEWMA (2.0,0.1) (2.1,0.3) (2.3,0.5) (2.8,0.8) (3.5,1.3) (4.9,2.2) (7.7,3.7) (14.2,7.2) (42.4,32.5)
n = 16

CAEWMA
(8,7,9,7) (8,7,9,7) (8,7,9,7) (7,7,8,11) (7,7,8,11) (5,9,25,11) (4,2,9,13) (3,1,8,15) (2,5,93,13)
(1.0,0.2) (1.3,0.5) (1.7,0.9) (2.4,0.9) (3.2,1.5) (4.7,2.1) (7.3,3.3) (13.4,6.8) (37.5,21.6)

CEWMA (1.0,0.2) (1.2,0.5) (1.6,0.8) (2.2,1.4) (3.5,2.6) (4.8,2.0) (7.3,3.3) (13.4,6.8) (39.2,29.4)
n = 17

CAEWMA
(8,8,9,8) (8,10,11,8) (8,10,11,8) (8,8,7,10) (8,8,7,10) (5,3,8,16) (5,3,8,16) (4,5,23,14) (2,3,58,15)
(1.1,0.2) (1.3,0.5) (1.6,0.7) (2.2,1.1) (3.1,1.7) (4.5,1.9) (7.0,3.7) (13.0,7.9) (35.2,19.6)

CEWMA (1.2,0.4) (1.5,0.5) (1.9,0.6) (2.4,1.0) (3.3,1.7) (4.5,1.9) (7.0,3.7) (13.1,7.9) (35.2,19.6)
n = 18

CAEWMA
(9,9,5,14) (9,9,5,14) (8,7,6,13) (8,7,6,13) (8,7,6,13) (6,6,13,11) (5,3,9,16) (4,8,40,14) (2,1,20,17)
(1.1,0.2) (1.3,0.5) (1.6,0.7) (2.1,0.9) (3.0,1.5) (4.2,2.1) (6.6,3.4) (12.5,7.2) (33.6,18.3)

CEWMA (1.2,0.4) (1.6,0.5) (1.9,0.6) (2.3,0.8) (3.0,1.3) (4.3,1.9) (6.6,3.4) (12.5,5.8) (33.6,18.3)
n = 19

CAEWMA
(8,7,17,7) (8,7,17,7) (8,7,17,7) (8,7,17,7) (7,7,10,13) (7,7,10,13) (5,8,27,12) (4,5,27,13) (2,1,21,15)
(1.0,0.1) (1.1,0.4) (1.4,0.7) (2.1,1.3) (2.8,1.2) (4.0,2.0) (6.3,3.2) (12.1,6.7) (32.8,17.5)

CEWMA (1.1,0.2) (1.3,0.5) (1.6,0.6) (2.1,0.9) (2.9,1.5) (4.1,1.8) (6.5,3.8) (12.2,5.4) (32.8,17.5)
n = 20

CAEWMA
(8,7,8,11) (8,7,8,11) (8,7,8,11) (8,7,8,11) (8,7,8,11) (6,7,16,13) (5,4,13,15) (4,3,16,16) (2,3,66,16)
(1.0,0.1) (1.1,0.4) (1.4,0.6) (1.9,0.9) (2.7,1.5) (3.9,1.7) (6.2,3.0) (11.4,6.2) (32.0,16.6)

CEWMA (1.1,0.3) (1.3,0.5) (1.7,0.6) (2.1,0.8) (2.8,1.2) (4.0,1.9) (6.4,2.5) (11.4,6.2) (32.0,16.6)
n = 21

CAEWMA
(8,4,5,11) (8,9,11,11) (8,9,11,11) (8,9,11,11) (8,8,9,13) (7,10,17,12) (6,4,9,18) (4,5,28,16) (3,7,74,15)
(1.0,0.1) (1.2,0.4) (1.4,0.6) (1.9,0.8) (2.5,1.2) (3.8,1.9) (5.9,3.2) (11.0,5.8) (31.0,20.1)

CEWMA (1.0,0.1) (1.2,0.4) (1.4,0.6) (1.9,0.9) (2.7,1.5) (3.8,1.8) (5.9,3.2) (11.0,5.8) (31.1,20.1)
n = 22

CAEWMA
(12,9,1,21) (12,9,1,21) (12,9,1,22) (12,9,1,22) (8,9,11,13) (7,7,13,12) (6,9,22,15) (4,1,6,17) (3,2,21,17)
(1.0,0.1) (1.1,0.3) (1.3,0.5) (1.7,1.0) (2.5,1.1) (3.6,1.7) (5.7,2.9) (10.5,5.3) (29.4,19.0)

CEWMA (1.0,0.1) (1.1,0.3) (1.3,0.5) (1.7,1.0) (2.7,1.9) (3.7,1.6) (5.7,2.8) (10.5,5.3) (29.5,19.0)
n = 23

CAEWMA
(10,6,4,12) (10,9,6,12) (10,9,6,12) (10,9,6,12) (8,5,7,12) (8,4,5,16) (6,3,8,14) (4,8,51,15) (3,4,45,16)
(1.0,0.1) (1.1,0.3) (1.3,0.5) (1.7,0.8) (2.4,1.1) (3.4,1.7) (5.5,2.7) (10.5,5.2) (28.4,17.7)

CEWMA (1.0,0.1) (1.1,0.3) (1.3,0.5) (1.7,0.9) (2.4,1.1) (3.6,2.0) (5.6,2.7) (11.0,4.4) (28.5,17.7)
n = 24

CAEWMA
(9,8,9,11) (9,8,9,11) (9,8,9,11) (10,10,7,13) (10,10,7,13) (8,8,11,14) (6,6,17,15) (5,2,8,18) (3,10,116,19)
(1.0,0.1) (1.1,0.3) (1.3,0.5) (1.7,0.7) (2.3,1.2) (3.4,1.6) (5.3,2.5) (10.0,5.7) (27.2,16.6)

CEWMA (1.0,0.1) (1.1,0.3) (1.3,0.5) (1.7,0.8) (2.4,1.3) (3.5,1.5) (5.4,2.5) (10.0,5.7) (27.2,16.6)
n = 25

CAEWMA
(10,4,5,9) (10,4,5,9) (10,4,5,9) (10,4,5,9) (9,1,1,16) (8,6,9,13) (6,7,19,18) (5,5,22,16) (3,2,24,17)
(1.0,0.0) (1.0,0.2) (1.2,0.4) (1.5,0.8) (2.2,1.0) (3.3,1.6) (5.2,2.4) (9.6,5.2) (26.7,16.1)

CEWMA (1.0,0.0) (1.0,0.2) (1.2,0.4) (1.6,0.8) (2.3,1.1) (3.3,1.5) (5.2,2.4) (9.7,5.2) (26.8,16.1)
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Table 3: Some optimal CAEWMA SN charts based on a whole range of shifts Ωopt ∼
{0.05, 0.10, . . . , 0.45}

n h∗ γ∗X γ∗Y k∗ n h∗ γ∗X γ∗Y k∗

10 3 1 6 8 18 3 10 97 12
11 3 7 43 9 19 3 1 10 13
12 4 2 7 9 20 4 4 23 14
13 3 7 50 10 21 3 3 35 13
14 3 10 81 10 22 4 7 43 15
15 3 4 33 11 23 4 8 51 15
16 3 6 53 11 24 4 4 27 16
17 3 5 51 11 25 4 8 59 14

Table 4: Comparisons of Standard EWMA SN and CAEWMA SN charts when n = 20, p0 = 0.50
and ARL0 ≈ 370.4

p
EWMA-S(k∗, λ∗) CAEWMA(h∗, γ∗X , γ

∗
Y , k

∗)

(2.49, 0.05) (2.77, 0.15) (2.89, 0.3) (2.93, 0.6) (2.89, 0.9) (4,4,23,14)

0.50 376.0 352.5 364.2 364.9 373.6 373.7
0.45 31.1 38.1 57.2 103.1 173.4 36.6
0.40 12.3 11.2 13.5 24.1 51.5 11.5
0.35 7.6 6.2 6.2 8.7 17.3 6.5
0.30 5.6 4.3 3.9 4.4 7.0 4.5
0.25 4.4 3.3 2.9 2.8 3.5 3.3
0.20 3.7 2.7 2.3 2.1 2.1 2.6
0.15 3.2 2.3 2.0 1.4 1.4 2.0
0.10 2.9 2.1 1.9 1.1 1.1 1.4
0.05 2.6 2.0 1.6 1.0 1.0 1.1
RMI 0.33 0.17 0.15 0.20 0.55 0.08

Table 5: Comparisons of Arcsine EWMA SN and CAEWMA SN charts when n = 20, p0 = 0.50 and
ARL0 ≈ 370.4

p
EWMA-A(k∗, λ∗) CAEWMA(h∗, γ∗X , γ

∗
Y , k

∗)

(2.491, 0.05) (2.801, 0.15) (2.925, 0.3) (2.989, 0.6) (3.00, 0.9) (4,4,23,14)

0.50 370.4 370.5 370.2 372.0 370.9 373.7
0.45 31.0 38.9 57.8 104.5 158.4 36.6
0.40 12.2 11.3 13.5 24.2 45.4 11.5
0.35 7.5 6.1 6.1 8.6 15.5 6.5
0.30 5.4 4.2 3.8 4.3 6.6 4.5
0.25 4.2 3.2 2.8 2.7 3.4 3.3
0.20 3.5 2.6 2.2 1.9 2.0 2.6
0.15 2.9 2.2 1.8 1.5 1.4 2.0
0.10 2.5 1.9 1.5 1.2 1.1 1.4
0.05 2.1 1.6 1.2 1.0 1.0 1.1
RMI 0.28 0.14 0.11 0.21 0.49 0.09
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Table 6: Comparisons of GWMA SN and CAEWMA SN charts when n = 20, p0 = 0.50 and
ARL0 ≈ 370.4

p
GWMA(L∗, q∗, α∗) CAEWMA(h∗, γ∗X , γ

∗
Y , k

∗)

(2.929, 0.4, 0.6) (2.925, 0.6, 0.9) (2.771, 0.87, 0.9) (2.490, 0.95, 0.9) (4,4,23,14)

0.50 373.5 370.9 373.5 374.1 373.7
0.45 94.2 67.3 34.1 30.6 36.6
0.40 22.6 15.5 11.1 12.8 11.5
0.35 9.0 6.6 6.5 7.7 6.5
0.30 4.5 3.9 4.5 5.6 4.5
0.25 2.8 2.7 3.5 4.3 3.3
0.20 1.9 2.1 2.8 3.5 2.6
0.15 1.4 1.7 2.4 3.1 2.0
0.10 1.2 1.3 2.1 2.7 1.4
0.05 1.0 1.1 2.0 2.2 1.1
RMI 0.18 0.11 0.18 0.29 0.08

Table 7: Comparisons of CEWMA SN and CAEWMA SN charts when n = 20, p0 = 0.50 and
ARL0 ≈ 370.4

p
CEWMA(K∗, γ∗X , γ

∗
Y ) CAEWMA(h∗, γ∗X , γ

∗
Y , k

∗)

(9, 7, 4) (8, 1, 1) (7, 7, 11) (4, 3, 16) (2, 4, 87) (4,4,23,14)

0.50 358.5 370.4 384.2 370.2 370.2 373.7
0.45 101.5 84.4 66.5 37.3 37.3 36.6
0.40 24.3 19.2 15.3 11.4 11.4 11.5
0.35 8.9 7.5 6.6 6.4 6.4 6.5
0.30 4.5 4.1 4.0 4.5 4.5 4.5
0.25 2.9 2.8 2.9 3.5 3.5 3.3
0.20 2.1 2.1 2.3 2.9 2.9 2.6
0.15 1.7 1.7 1.9 2.4 2.4 2.0
0.10 1.3 1.3 1.6 2.1 2.1 1.4
0.05 1.1 1.1 1.3 2.0 2.0 1.1
RMI 0.17 0.11 0.09 0.13 0.13 0.04
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Table 8: Phase II sample of the beverage example

t
Vt,k = Xt,k − θ0 V̄t SV,t SNt

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

0 - - - - - - -
1 -0.01 -0.04 0.08 -0.08 0.03 -0.02 0.08 0.01 0.06 -1
2 -0.05 0.01 0.01 0.06 0.00 0.00 0.11 0.02 0.05 3
3 0.06 -0.05 -0.01 -0.03 0.04 0.05 0.07 0.02 0.05 1
4 0.03 -0.02 0.02 0.04 0.02 -0.01 0.08 0.02 0.03 3
5 0.02 0.07 0.01 0.03 0.01 0.01 0.08 0.03 0.03 7
6 0.11 0.10 0.08 0.10 0.11 0.04 0.06 0.09 0.03 7
7 0.08 0.11 0.12 0.12 0.13 0.12 0.06 0.11 0.03 7
8 0.07 0.04 0.06 0.07 0.07 0.05 0.07 0.06 0.01 7
9 0.04 0.01 0.01 0.00 -0.02 0.03 0.08 0.02 0.03 4
10 -0.01 0.04 0.02 0.00 0.01 0.01 0.14 0.03 0.05 4
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Figure 1: Boxplot-like graphs of the in-control RL distributions of the CAEWMA SN chart (first
boxplot on the left) and the AEWMA X̄ chart (remaining 5 boxplots on the right) when n = 10
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Figure 2: Boxplot-like graphs of the in-control RL distributions of the CAEWMA SN chart (first
boxplot on the left) and the AEWMA X̄ chart (remaining 5 boxplots on the right) when n = 20
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(a) Data in Table 8
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Figure 3: Control charts applied to the beverage example
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(a) Data in Table 9
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(b) CEWMA-1
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Figure 4: Control charts applied to the small shift data of manufacturing example
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(a) Data in Table 10
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Figure 5: Control charts applied to the large shift data of manufacturing example
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