
HAL Id: hal-02059831
https://hal.science/hal-02059831v1

Preprint submitted on 6 Mar 2019 (v1), last revised 28 Apr 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DIFFUSION LIMIT FOR A KINETIC EQUATION
WITH A THERMOSTATTED INTERFACE

Giada Basile, Tomasz Komorowski, Stefano Olla

To cite this version:
Giada Basile, Tomasz Komorowski, Stefano Olla. DIFFUSION LIMIT FOR A KINETIC EQUATION
WITH A THERMOSTATTED INTERFACE. 2019. �hal-02059831v1�

https://hal.science/hal-02059831v1
https://hal.archives-ouvertes.fr


DIFFUSION LIMIT FOR A KINETIC EQUATION WITH A THERMOSTATTED

INTERFACE

GIADA BASILE, TOMASZ KOMOROWSKI, AND STEFANO OLLA

Abstract. We consider a linear phonon Boltzmann equation with a reflecting/transmitting/absorbing

interface. This equation appears as the Boltzmann-Grad limit for the energy density function of a

harmonic chain of oscillators with inter-particle stochastic scattering in the presence of a heat bath

at temperature T in contact with one oscillator at the origin. We prove that under the diffusive

scaling the solutions of the phonon equation tend to the solution ρ(t, y) of a heat equation with the

boundary condition ρ(t, 0) ≡ T .

1. Introduction

We consider a linear phonon Boltzmann equation in contact with a heat bath at the origin. This

equation describes the evolution, after a proper kinetic limit, of the phonon energy in a chain of

harmonic oscillators with random scattering of velocities, where one oscillator is in contact with a

heat bath at temperature T .

We denoting by W (t, y, k) the energy density of phonons at time t ≥ 0, with respect to their

position y ∈ R and frequency variable k ∈ T - the one dimensional circle, understood as the interval

[−1/2, 1/2] with identified endpoints. The heat bath creates an interface localized at y = 0. Outside

the interface the density satisfies

(1.1) ∂tW (t, y, k) + ω̄′(k)∂yW (t, y, k) = γ0LW (t, y, k), (t, y, k) ∈ R+ × R∗ × T∗,

Here

R+ := (0,+∞), R∗ := R \ {0}, T∗ := T \ {0},

The parameter γ0 > 0 represents the phonon scattering rate. The scattering operator L, acting only

on the k-variable, is given by

LF (k) :=

∫

T

R(k, k′)
[
F
(
k′
)
− F (k)

]
dk′, k ∈ T
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for F belongs to Bb(T) - the set of bounded measurable, real valued functions. Here

(1.2) ω̄′(k) =
ω′(k)

2π
, k ∈ T,

where ω : T → [0,+∞) is the dispersion relation of the harmonic chain.

The interface conditions that describe the interaction of a phonon with a thermostat (placed at

y = 0), at temperature T > 0, are given as follows:

- the outgoing densities are given in terms of the incoming ones as

W (t, 0+, k) = p−(k)W (t, 0+,−k) + p+(k)W (t, 0−, k) + Tg(k), for 0 < k ≤ 1/2,

W (t, 0−, k) = p−(k)W (t, 0−,−k) + p+(k)W (t, 0+, k) + Tg(k), for −1/2 < k < 0.
(1.3)

where p−, p+, g : T → (0, 1] are continuous and

(1.4) p+(k) + p−(k) + g(k) = 1.

In other words, p−(k) and p+(k) are the reflection and transmission coefficients across the interface,

respectively. They correspond to the probabilities of the phonon being reflected, or transmitted, by

the interface. The quantity Tg(k) is the phonon production rate by the thermostat as well as the

absorption rate of the frequency k phonon by the interface. The parameter T > 0 is the heat bath

temperature. This equation has been obtained in [7], without the heat bath, as the Boltzmann-Grad

limit of the energy density function for a microscopic model of a heat conductor consisting of a one

dimensional chain of harmonic oscillators, with inter-particle scattering conserving the energy and

volume. In the presence of the thermostat, but with no scattering (the case γ0 = 0), the limit has

been proved [13]. It is believed that the limit also holds in case of the presence of scattering, i.e.

when γ0 > 0.

We are interested in the asymptotics of the solutions to (1.1) under the diffusive scaling, i.e. the

limit, as ǫ → 0, for W ε(t, y, k) = W (t/ε2, y/ε, k), i.e. we consider the equation

∂tW
ε(t, y, k) +

1

ε
ω̄′(k)∂yW

ε(t, y, k) =
γ

ε2

∫

T

R(k, k′)
[
W ε

(
t, y, k′

)
−W ε (t, y, k)

]
dk′, y 6= 0,

W ε(0, y, k) = W0(y, k),

(1.5)

with the interface conditions (1.3). Let R(k) =
∫
R(k, k′)dk′. In our main result, see Theorem 2.2

below, we prove that under the assumption

(1.6)

∫

T

ω′(k)2

R(k)
dk < +∞,
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and some other technical hypotheses, formulated in Sections 2.2 and 2.3 below, for any G ∈ C∞
0 (R×

T) -compactly supported, smooth function - we have

(1.7) lim
ǫ→0

∫

R×T

W ε(t, y, k)G(y, k)dydk =

∫

R×T

ρ(t, y)G(y, k)dydk,

where

∂tρ(t, y) = D∂2
yρ(t, y), (t, y) ∈ R+ ×R∗,(1.8)

ρ(t, 0±) ≡ T(1.9)

ρ(0, y) = ρ0(y) :=

∫

T

W0(y, k)dk.

The diffusion coefficient is given by

(1.10) D =
1

γ

∫
ω′(k)(−L)−1ω′(k) dk

that is finite by the assumption (1.6) and the properties of R(k, k′) made in section 2.2.

The result implies that only the absorption and the creation of phonons at the interface matter

in this diffusive scale. Phonons that are reflected or transmitted will come back to the interface, due

to scattering, and eventually get absorbed in a shorter time scale.

The diffusive limit has been considered, without the presence of interface, in [5, 11, 15]. It has

been shown there that, if (1.6) is in force, then the solutions of the initial problem (1.5) converge,

as in (1.7), to ρ(t, y) - the solution of the Cauchy problem for the heat equation (1.8). When the

condition (1.6) is violated a superdiffusive scaling may be required and the limit could be a fractional

diffusion. This case has been also considered in [6, 8, 11, 15].

The case of the diffusive limit of the solution of a kinetic equation with an absorbing boundary

has been considered in e.g. [14, 9, 10, 4, 3]. The diffusive limit with some other boundary conditions

has also been discussed in the review paper [2], see the references contained therein. A related result

for the radiative transport equation with some reflection/transmission condition has been obtained

in [1] for the steady state, giving rise to different boundary conditions. We are not aware of a similar

result in the dynamical case, as considered in the present paper.

The result for a fractional diffusive limit with the interface condition is a subject of the paper

[12].

2. Preliminaries and the statement of the main result

2.1. Weak solution of the kinetic equation with an interface. In what follows we denote

R− := (−∞, 0). Consider W̃ (t, y, k) := W (t, y, k) − T . It satisfies the equation (1.1) with the
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interface given by

(2.1) W̃ (t, 0+, k) = p−(k)W̃ (t, 0+,−k) + p+(k)W̃ (t, 0−, k)), for 0 < k ≤ 1/2,

and

(2.2) W̃ (t, 0−, k) = p−(k)W̃ (t, 0−,−k) + p+(k)W̃ (t, 0+, k), for −1/2 < k < 0.

Definition 2.1. A function W̃ : R̄+ × R × T → R is called a (weak) solution to equation (1.1)

with the interface conditions (2.1) and (2.2), provided that it belongs to L2
loc(R+, L

2(R × T)), its

restrictions W̃ι to R+ × Rι × T, ι ∈ {−,+} extend to continuous functions on R+ × R̄ι × T that

satisfy (2.1) and (2.2), and

0 =

∫ +∞

0

∫

R×T

W̃ (t, y, k)
[
∂tϕ(t, y, k) + ω̄′(k)∂yϕ(t, y, k) + γLϕ(t, y, k)

]
dtdydk

+

∫

R×T

W0(y, k)ϕ(0, y, k)dydk(2.3)

for any test function ϕ ∈ C∞
0 (R̄+ × R∗ × T),

2.2. Assumption about the dispersion relation and the scattering kernel. We assume that

ω(·) is even, belongs to C∞(T \{0}), i.e. it smooth outside k = 0. Furthermore we assume that ω(·)
is unimodal, that implies that kω′(k) ≥ 0 for k ∈ (−1/2, 1/2).

We assume that the scattering kernel is symmetric

(2.4) R(k, k′) = R(k′, k),

positive, except for 0 frequency, i.e.

(2.5) R(k, k′) > 0, (k, k′) ∈ T
2
∗

and the total scattering kernel

(2.6) R(k) :=

∫

T

R(k, k′)dk′

is such that the stochastic kernel

(2.7) p(k, k′) :=
R(k, k′)

R(k)
∈ C∞(T2).

In addition we assume that (1.6) is in force.

Example. Suppose that

R(k) ∼ R0| sin(πk)|β , |k| ≪ 1

for some β ≥ 0 and R0 > 0 and

(2.8) ω′(k) ∼ 2ω′
0 sign(k) | sin(πk)|κ, |k| ≪ 1
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for some κ ≥ 0. Then (1.6) holds, provided that

(2.9) 0 ≤ β < 1 + 2κ.

2.3. About the reflection, transmission and absorption coefficients. In [13] the coefficient

p±(k) and g(k) are obtained from the microscopic dynamics and depends on the dispersion relation

as follows.

Let γ > 0 (the thermostat strength) and

(2.10) g̃(λ) :=

(
1 + γ

∫

T

λdk

λ2 + ω2(k)

)−1

, Reλ > 0.

It turns out, see [13], that

(2.11) |g̃(λ)| ≤ 1, λ ∈ C+ := [λ ∈ C : Reλ > 0].

The function g̃(·) is analytic on C+. By Fatou’s theorem we know that

(2.12) ν(k) := lim
ǫ→0+

g̃(ǫ− iω(k))

exists a.e. in T and in any Lp(T) sense for p ∈ [1,∞). Denote

g(k) :=
γ|ν(k)|2
|ω̄′(k)|2 , P(k) :=

γν(k)

2|ω̄′(k)|

p+(k) := |1−P(k)|2(2.13)

p−(k) := |P(k)|2 .

It has been shown in Section 10 of [13] that

(2.14) Re ν(k) =

(
1 +

γ

2|ω̄′(k)|

)
|ν(k)|2.

This identity implies in particular that (1.4) is in force.

2.4. Scaled kinetic equations and the formulation of the main result. Consider W ε the

solution of a rescaled kinetic equations (1.5). Our main result can be stated as follows.

Theorem 2.2. Suppose that W0(y, k) = T+W̃0(y, k), where W̃0 ∈ L2(R×T). Under the assumptions

made about the scattering kernel R(·, ·) and dispersion relation ω(·), for any test function ϕ ∈
C∞
0 (R+ × R× T) we have

(2.15) lim
ǫ→0

∫ +∞

0
dt

∫

R×T

W ε(t, y, k)ϕ(t, y, k)dydk =

∫ +∞

0
dt

∫

R×T

ρ(t, y)ϕ(t, y, k)dydk,
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where ρ(·, ·) is the solution of the heat equation

∂tρ(t, y) = D∂2
yρ(t, y), (t, y) ∈ R+ × R∗,

(2.16)

ρ(0, y) = ρ0(y) :=

∫

T

W0(y, k)dk, ρ(t, 0) ≡ T, t > 0.

Here, the coefficient D > 0 is given by (4.6) below.

Defining W̃ ε = W ε − T , one can easily see that it also satisfies (1.5) with

(2.17) W̃ ε(t, 0+, k) = p−(k)W̃ ε(t, 0+,−k) + p+(k)W̃ ε(t, 0−, k), for 0 ≤ k ≤ 1/2,

and

(2.18) W̃ ε(t, 0−, k) = p−(k)W̃ ε(t, 0−,−k) + p+(k)W̃ ε(t, 0+, k), for −1/2 ≤ k ≤ 0.

The initial condition W̃ ε(0, y, k) = W̃0(y, k) := W0(y, k)−T belongs to L2(R×T). This means that

it is enough to prove Theorem 2.2 for T = 0. This proof is presented in Section 4.

3. Some auxiliaries

3.1. Some functional spaces. Let H1
+ be the Hilbert obtained as the completion of the Schwartz

class S(R× T) in the norm

‖ϕ‖2H1
+

:= ‖ϕ‖2L2(R×T) +

∫ +∞

0

∫

T

|ω′(k)|[∂yϕ(y, k)]2dydk

Similarly, we introduce H1
−.

Let H be the Hilbert space obtained as the completion of S(R× T) in the norm

(3.1) ‖ϕ‖2H := ‖ϕ‖2H1
−

+ ‖ϕ‖2H1
+

.

Let also

‖ϕ‖2H0
:=

∫

T

|ω′(k)|g(k)
{
[ϕ(0+, k)]2 + [ϕ(0−, k)]2

}
dk +

∫

R×T2

[ϕ(y, k′)− ϕ(y, k)]2dydkdk′

3.2. Apriori bounds. Computing the time derivative we have

(3.2)
1

2

d

dt
‖W̃ ε(t)‖2L2 = − γ

2ε2

∫
∞

−∞

dyD(W̃ ε(t, y, ·)) − 1

2ε

∫

T

ω̄′(k)
[
W̃ ε(t, 0−, k)2 − W̃ ε(t, 0+, k)2

]
dk,

with

(3.3) D(f) :=

∫

T2

R(k, k′)[f(k)− f(k′)]2dkdk′.
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Taking into account (2.17) and (2.18) we obtain
∫

T

ω̄′(k)
{
[W̃ ε(t, 0−, k)]2 − [W̃ ε(t, 0+, k)]2

}
dk

=

∫ 1/2

0
ω̄′(k)

{
[W̃ ε(t, 0−, k)]2 −

[
p−(k)W̃ ε(t, 0+,−k) + p+(k)W̃ ε(t, 0−, k)

]2}
dk

+

∫ 0

−1/2
ω̄′(k)

{[
p−(k)W̃ ε(t, 0−,−k) + p+(k)W̃ ε(t, 0+, k)

]2
− [W̃ ε(t, 0+, k)]2

}
dk.

After straightforward calculations (recall that coefficients p±(k) are even, while ω̄′(k) is odd) we

conclude that the right hand side equals

∫ 1/2

0
ω̄′(k)

{(
W̃ ε(t, 0−, k)2 + W̃ ε(t, 0+,−k)2

) (
1− p2+(k)− p2−(k)

)

−4p−(k)p+(k)W̃ ε(t, 0+,−k)W̃ ε(t, 0−, k)
}
dk.

Since p+(k) + p−(k) ≤ 1 we have 1− p2+(k)− p2−(k) ≥ 0. In addition,

det




1− p2+(k)− p2−(k) −2p−(k)p+(k)

−2p−(k)p+(k) 1− p2+(k)− p2−(k)


 =

[
1− (p+(k) + p−(k))

2
] [

1− (p+(k)− p−(k))
2
]
.

Using (1.4) we conclude that the quadratic form

(x, y) 7→
(
1− p2+(k)− p2−(k)

)
(x2 + y2)− 4p−(k)p+(k)xy

is positive definite as long as p+(k) + p−(k) < 1. The eigenvalues of the form can be determined

from the equation

0 =
[
1− λ− (p+(k) + p−(k))

2
] [

1− λ− (p+(k) − p−(k))
2
]
,

which yields

λ+ := 1− (p+(k)− p−(k))
2, λ− := 1− (p+(k) + p−(k))

2

and λ+ > λ−. Note that

2g(k) ≥ λ− = g(k) [1 + p+(k) + p−(k)] ≥ g(k).

Equality (3.2) allows us to obtain the following apriori bounds

‖W̃ ε(t)‖2L2(R×T) ≤ ‖W̃0‖2L2(R×T),

∫ t

0
ds

∫

R

D(W̃ ε(s, y, ·))dy ≤ ε2

γ
‖W̃0‖2L2(R×T),

∫ t

0
ds

∫ 1/2

0
ω̄′(k)g(k)dk

(
W̃ ε(s, 0−, k)2 + W̃ ε(s, 0+,−k)2

)
≤ ε‖W̃0‖2L2(R×T).

(3.4)
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By (2.17) and (2.18) we obtain that

W̃ ε(s, 0+, k)2 ≤ W̃ ε(s, 0−, k)2 + W̃ ε(s, 0+,−k)2, k ∈ (0, 1/2)

W̃ ε(s, 0−, k)2 ≤ W̃ ε(s, 0−,−k)2 + W̃ ε(s, 0+, k)2, k ∈ (−1/2, 0).
(3.5)

Then using the unimodality of ω(k) it follows that

(3.6)

∫ t

0
ds

∫

T

dk|ω′(k)|g(k)
(
W̃ ε(s, 0−, k)2 + W̃ ε(s, 0+, k)2

)
≤ 2ε‖W̃0‖2L2(R×T).

3.3. Uniform continuity at y = 0. Suppose that y > 0. Let

(3.7) Vε(t, y, k) :=

∫ t

0
W̃ ε(s, y, k)ds.

Since W̃ ε(s, y, k) satisfies (1.5) we can write

ε
[
W̃ ε(t, y, k)− W̃ ε(0, y, k)

]
+ ω̄′(k)∂yVε(t, y, k) = Fǫ(t, y, k),(3.8)

with

Fǫ(t, y, k) :=
γ

ε

∫

T

R(k, k′)
[
Vε

(
t, y, k′

)
− Vε (t, y, k)

]
dk′, y 6= 0.

Hence, using Cauchy-Schwarz inequality, we get

‖Fǫ(t, ·)‖2L2(R×T) =
(γ
ε

)2
∫

R×T

dydk

{∫ t

0
ds

∫

T

R(k, k′)
[
W̃ ε(s, y, k′)− W̃ ε(s, y, k)

]
dk′

}2

≤
(γ
ε

)2
∫

R×T

dydk

{∫ t

0
ds

∫

T

R(k, k′)dk′
}{∫ t

0
ds

∫

T

R(k, k′)
[
W̃ ε(s, y, k′)− W̃ ε(s, y, k)

]2
dk′

}

≤ t‖R‖∞
(γ
ε

)2
∫ t

0
ds

∫

R

D(W̃ ε(s, y, ·))dy.

Using the second estimate of (3.4) we conclude that for each t0 > 0

(3.9) sup
ǫ∈(0,1]

sup
t∈[0,t0]

‖Fǫ(t, ·)‖L2(R×T) ≤ γt0‖R‖∞‖W̃0‖2L2(R×T) < +∞.

From (3.8) we conclude that

∂yVε(t, y, k) =
F̃ǫ(t, y, k)

ω′(k)
, y, ω̄′(k) 6= 0,(3.10)

where

F̃ǫ(t, y, k) = Fǫ(t, y, k)− ε
[
W̃ ε(t, y, k) − W̃ ε(0, y, k)

]
.

From (3.9) and the first estimate of (3.4) we conclude

sup
ǫ∈(0,1]

sup
t∈[0,T ]

‖F̃ǫ(t, ·)‖L2(R×T) =: F̃∗(T ) < +∞.

We have

(3.11) ‖Vε(t, ·)‖H1
±
≤ ‖F̃ǫ(t, ·)‖L2(R×T) t ≥ 0.
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Since V̇ǫ(t) = W̃ǫ(t), from the first estimate of (3.4) we conclude that for any t0 > 0

sup
ǫ∈(0,1]

∥∥∥V̇ε

∥∥∥
L∞([0,t0];L2(R×T))

< +∞.

From (3.11) we get also (cf (3.1))

sup
ǫ∈(0,1]

‖Vε‖L∞([0,t0];H) < +∞.

Summarizing, we have shown the following.

Proposition 3.1. For any t0 > 0

(3.12) C(t0) := sup
ǫ∈(0,1]

(
‖Vε‖L∞([0,t0];H) +

∥∥∥V̇ε

∥∥∥
L∞([0,t0];L2(R×T))

)
< +∞

and

lim
ε→0+

‖Vε‖L∞([0,t0];H0)
= 0.

Denote by W 1,∞
0 ([0, t0];L

2(R × T)) the completion of the space of smooth functions f : [0, t0] →
L2(R× T) satisfying f(0) = 0, with respect to the norm

‖f‖W 1,∞

0
([0,t0];L2(R×T)) := sup

t∈[0,t0]
‖ḟ‖L2(R×T).

As a consequence of the above proposition we immediately conclude the following.

Corollary 3.2. The family (Vε(·))ǫ∈(0,1] is bounded in W 1,∞
0 ([0, t0];L

2(R × T)) ∩ L∞([0, t0];H) for

aby t0 > 0. Any ⋆-weak limit point V (·) of Vε(·), as ε → 0+, satisfies the following:

1) V (t, y, k) ≡ V̄ (t, y) :=

∫

T

V (t, y, k)dk for (t, y, k) ∈ R+ × R× T)

2) the mapping R+ ×Rι ∋ (t, y) 7→ V̄ (t, y) extends to a mapping from C(R̄+ × R̄ι), ι ∈ {−,+},
3) V (t, 0±) = 0 for each t > 0,

4) V (0, y) ≡ 0, y ∈ R.

4. Proof of Theorem 2.2

Thanks to the above estimates, we conclude that the solutions W̃ ε(·) are ⋆-weakly sequentially

compact in L∞
(
[0,+∞);L2

w(R× T)
)
, where L2

w(R×T) denotes L2(R×T) with the weak topology.

Suppose that W̄ (t, y, k) is a limiting point for some subsequence (W̃ εn(s, y, k)), where εn → 0. For

convenience sake we shall denote the subsequence by (W̃ ε(s, y, k)). Thanks to (3.4) for each t > 0

we have (cf (3.3))

(4.1) lim
ǫ→0

∫ t

0
ds

∫

R

D
(
W̃ ε(s, y, ·)

)
dy = 0

thus W̄ (t, y, k) ≡ ρ(t, y), for a.e. (t, y, k) ∈ R+ × R× T.
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Lemma 4.1. Equation

(4.2) − LX1 = ω̄′

has a unique solution such that ∫

T

X1(k)R(k)dk = 0

and

(4.3)

∫

T

X2
1 (k)R(k)dk < +∞.

Proof. Let µ be a Borel probability measure on T given by

µ(dk) =
R(k)

R̄
dk,

where

R̄ :=

∫

T

R(k)dk.

We can reformulate (4.2) as

(4.4) X1 − PX1 =
ω̄′

R
,

where, by virtue of (1.6), the right hand side belongs to L2(µ) and P : L2(µ) → L2(µ) is a symmetric

operator on L2(µ) given by

PF (k) :=

∫

T

p(k, k′)F (k′)dk′, F ∈ L2(µ).

The operator is a compact contraction and, since

∫

T

F (k)(I − P )F (k)F (k)µ(dk) = D(F )

we conclude that 1 is a simple eigenvalue, with the respective eigenspace spanned on the eigenvector

F0 ≡ 1. Thus the conclusion of the lemma follows, as ω̄′/R ⊥ F0. �

Proposition 4.2. For any function ϕ ∈ C∞
0 (R+ × R∗) we have

(4.5)

∫ +∞

0

∫

R

ρ(t, y)
[
∂tϕ(t, y) +D∂2

yyϕ(t, y)
]
dtdy = 0.

with

(4.6) 0 < D :=
1

γ

∫

T

ω̄′(k)X1(k)dk < +∞.
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Proof. The claim made in (4.6) follows immediately from the fact that X1 6= 0 and D = D(χ).

To prove (4.5) we apply a version of the perturbed test function technique. Let ϕε(t, y, k) be

determined by

(4.7) ϕε(t, y, k) = ϕ(t, y) + εχ1(t, y, k) + ε2χ2(t, y, k), y 6= 0.

where ϕ ∈ C∞
0 (R+ ×R∗) and χj(t, y, k), j = 1, 2 are yet to be determined.

We can write

0 =

∫ +∞

0

∫

R×T

∂t

[
W̃ ε(t, y, k)ϕε(t, y, k)

]
dtdydk

=

∫ +∞

0

∫

R×T

[
W̃ ε(t, y, k)∂tϕε(t, y, k) + ∂tW̃ ε(t, y, k)ϕε(t, y, k)

]
dtdydk

=

∫ +∞

0

∫

R×T

[
W̃ ε(t, y, k)∂tϕε(t, y, k) −

1

ε
ω̄′(k)∂yW̃ ε(t, y, k)ϕε(t, y, k) +

γ

ε2
LW̃ ε(t, y, k)ϕε(t, y, k)

]
dtdydk.

(4.8)

Since the support in the y variable of the test function ϕǫ(t, y, k) will turn out to be isolated from

0, the integration by parts yield the equation

0 =

∫ +∞

0

∫

R×T

W̃ ε(t, y, k)

[
∂tϕε(t, y, k) +

1

ε
ω̄′(k)∂yϕε(t, y, k) +

γ

ε2
Lϕε(t, y, k)

]
dtdydk.(4.9)

Substituting from (4.7) we obtain that the term in the brackets has the form

(4.10)
1

ǫ
I + II + ǫIIIǫ,

with

I := γLχ1 + ω̄′(k)∂yϕ(t, y),

II := γLχ2 + ω̄′(k)∂yχ1 + ∂tϕ(t, y),(4.11)

IIIǫ := ∂tχ1(t, y, k) + ε∂tχ2(t, y, k) + ω̄′(k)∂yχ2.

We stipulate that

(4.12) I = 0 and II = ∂tϕ(t, y) +D∂2
yyϕ(t, y).

The first condition yields

(4.13) χ1(t, y, k) = −1

γ
∂yϕ(t, y)L

−1ω̄′(k) = −1

γ
∂yϕ(t, y)X1(k),

while the second implies that χ2(t, y, k) is the solution of

γLχ2(t, y, k) = D∂2
yyϕ(t, y)− ω̄′∂yχ1(t, y, k).(4.14)
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Substituting from (4.13) we get

Lχ2(t, y, k) =
1

γ

(
D +

1

γ
ω̄′X1

)
∂2
yyϕ(t, y).(4.15)

Since (D + ω̄′X1/γ)/R belongs to L2(µ) and its orthogonal to constants, we can solve the equation

LX2 = D +
1

γ
ω̄′X1

using the same argument as in Lemma 4.1. Then,

χ2(t, y, k) =
1

γ
∂2
yyϕ(t, y)X2(k).

Clearly IIIǫ = O(1). Taking the limit in (4.9) we obtain (4.5), that ends the proof of the proposition.

�

Suppose that V̄ (t, y) is a limiting point for some subsequence

Vεn(t, y, k) =

∫ t

0
W̃ǫn(s, y, k)ds

where εn → 0, in the sense described by Corollary 3.2. We can also assume that the respective

sequence (W̃ε(·)) ⋆-weakly converge to ρ(t, y) in L∞
(
[0,+∞);L2

w(R× T)
)
.

For convenience sake we shall denote the subsequences by (Vε(·)), (W̃ε(·)), respectively. We have

(4.16) V̄ (t, y) =

∫ t

0
ρ(s, y)ds, for all t ≥ 0, and a.e. y.

Proposition 4.3. For any function ϕ ∈ C∞
0

(
R̄+ × R∗

)
we have

(4.17)

∫ +∞

0

∫

R

{
V̄ (t, y)

[
ϕ(t, y) +D∂2

yyϕ(t, y)
]
− ϕ(t, y)ρ0(y)

}
dtdy = 0.

with D given by (4.6) and ρ0 defined in (2.16).

Before showing the proof of the proposition we show how to finish, with its help, the proof of

Theorem 2.2. According to Proposition 4.3 V̄ (t, y) is a weak solution of the heat equation

∂tV̄ (t, y) = D∂2
yyV̄ (t, y) + ρ0(y)

satisfying V̄ (0, y) ≡ 0. According to part 3) of Corollary 3.2 we also have V̄ (t, 0±) ≡ 0, t ≥ 0. Hence,

V̄ (t, y) =

∫ t

0

1√
4πDs

∫

R±

{
exp

{
−(y − y′)2

4Ds

}
− exp

{
−(y + y′)2

4Ds

}}
ρ0(y

′)dy′, t, ±y > 0.

This, combined with (4.16), implies that

(4.18) ρ(t, y) =
1√
4πDt

∫

R±

{
exp

{
−(y − y′)2

4Dt

}
− exp

{
−(y + y′)2

4Dt

}}
ρ0(y

′)dy′, t, ±y > 0,
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which satisfies the conclusion of Theorem 2.2 for T = 0. The only thing yet to be shown is the proof

of Proposition 4.3.

Proof of Proposition 4.3. According to (3.8) we have

∂tVε(t, y, k) +
1

ε
ω̄′(k)∂yVε(t, y, k) =

γ

ǫ2
LVǫ(t, y, k) + W̃ ε(0, y, k)(4.19)

and obviously Vǫ(0, y, k) = 0 a.e. Let ϕε(t, y, k) be given by (4.7). From (4.19) we can write

0 =

∫ +∞

0

∫

R×T

∂t [Vε(t, y, k)ϕε(t, y, k)] dtdydk

=

∫ +∞

0

∫

R×T

{[
Vε(t, y, k)∂tϕε(t, y, k) −

1

ε
ω̄′(k)∂yVε(t, y, k)ϕε(t, y, k)(4.20)

+
γ

ε2
LVε(t, y, k)ϕε(t, y, k)

]
+ W̃ ε(0, y, k)ϕε(t, y, k)

}
dtdydk

=

∫ +∞

0

∫

R×T

{
Vε(t, y, k)

[
∂tϕε(t, y, k) +

1

ε
ω̄′(k)∂yϕε(t, y, k)

+
γ

ε2
Lϕε(t, y, k)

]
+W0(y, k)ϕε(t, y, k)

}
dtdydk.

Substituting from (4.7) we obtain that the term in the square brackets has the form (4.10), with I,

II and IIIǫ as given in (4.16). Taking the limit in (4.20) we obtain (4.7). �
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