
HAL Id: hal-02059533
https://hal.science/hal-02059533v1

Submitted on 6 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Algorithmic Skeletons for Metaheuristics
Alexis Pereda, David R.C. Hill, Claude Mazel, Bruno Bachelet

To cite this version:
Alexis Pereda, David R.C. Hill, Claude Mazel, Bruno Bachelet. Parallel Algorithmic Skeletons for
Metaheuristics. 20ème congrès de la société française de Recherche Opérationnelle et d’Aide à la
Décision (ROADEF), Feb 2019, Le Havre, France. �hal-02059533�

https://hal.science/hal-02059533v1
https://hal.archives-ouvertes.fr


Parallel algorithmic skeletons for metaheuristics

Alexis Pereda1, David R.C. Hill1, Claude Mazel1, Bruno Bachelet1

Université Clermont Auvergne, CNRS, LIMOS, Clermont-Ferrand, France
{alexis.pereda, david.hill, claude.mazel, bruno.bachelet}@uca.fr

Keywords: algorithmic skeletons, parallelization, metaheuristics, metaprogramming

1 Introduction
Designing parallel software is a difficult task, but it became essential in modern computing.
This is notably true in Operational Research (OR) where many algorithms can benefit greatly
from parallelization. It has led to the development of software frameworks that ease the parallel
design of OR algorithms (e.g. [1]), based on object-oriented and template programming. New
design possibilities arose with the advances of template metaprogramming, especially in the
C++ language.

Our goal is to design a library able to produce efficient parallel implementations of an al-
gorithm from the knowledge of its structure with no runtime overhead. We propose to use
algorithmic skeletons [2] in order to describe OR algorithms and make them ready for paral-
lelization. For this purpose, metaprogramming techniques are used first to provide facilities to
describe an OR algorithm as a composition of algorithmic skeletons, and secondly to analyze
and transform the skeleton, at compile-time, into an efficient code to be executed at runtime.

In a first step, we focus on metaheuristics because, as they are generic structures, they
naturally adapt to algorithmic skeletons.

2 Modeling algorithmic skeletons

Algorithm 1 GRASP
function GRASP(iterMax, P)

for i = 1..iterMax do
S ← constructiveHeuristic(P )
S ← localSearch(S)

end for
S∗ ← best(S)
return S∗

end function

In order to produce a parallel version of an algorithm, we
need to get some information about its functioning. As
an example, the general scheme of a Greedy Randomized
Adaptive Search Procedure (GRASP) for a problem P is
shown in algorithm 1. We can represent this algorithm
as in figure 1. The circles represent parameterizable parts
of the algorithm and the remainder describes the interac-
tions between parts. This kind of modeling is known as an
algorithmic skeleton and is commonly used in paralleliza-
tion [2]. We chose to implement an algorithmic skeleton solution using template metaprogram-
ming in C++ because it enables compile-time code generation, resulting in near zero runtime
overhead.

GRASP can be split into two main elements: the outer structure, a farm repeating the
inner structure and keeping the best result (Sel); and a series of a constructive heuristic (CH)
followed by a local search (LS). We have defined several primary skeletons, including Serial
and FarmSel. The first one corresponds directly to a series of tasks. The second one is more
complex: it will run its task N times and keep the best result by applying a selector. The task,
N and the selector are parameters of the skeleton.



S

CH ... CH

LS ... LS

Sel

M

se
ria

l

FIG. 1: GRASP
skeleton

Iter

S

M ... M

LS ... LS

Sel1

M

Sel2

FIG. 2: ELS
skeleton

Using these primary skeletons, it is possible to create composite skeletons.
The C++ code below is the description of a GRASP using this terminology:
it is decomposed in two declarations, the one on the left that describes the
structure of the skeleton (i.e. the organization of the tasks), and the other
on the right that sets how the different inner tasks interact with each other
(i.e. how data are transferred between tasks).
template<

typename CH, typename LS,
typename Sel

>
using SkelGRASPStructure =
FarmSelStructure<

SerialStructure<CH, LS>,
Sel

>;

template<typename Problem, typename Solution>
using SkelGRASPLinks =
FarmSelLinks<Solution(Problem),

SerialLinks<R<1>(P<0>),
Solution(P<0>),
Solution(R<0>)

>,
Solution(Solution, Solution)

>;

One interesting aspect of algorithmic skeletons is composability. The ex-
ample above uses only primary skeletons, but it is possible to use composite
skeletons as part of another skeleton, which occurs frequently. For example,
as its local search, GRASP could use an Evolutionary Local Search (ELS)
which skeleton, shown in figure 2, replaces LS in the GRASP skeleton. See
the example below:
using GRASPxELS = SkelGRASP
< tsp::Problem, tsp::Solution, RGreedy<tsp::Solution>, ELS, SelectMin >;

Thanks to the description provided by skeletons, we propose a library
able to generate either a sequential or a parallel implementation of the al-
gorithms, tailored to the structure. Our library handles multiple layers of
skeletons and multiple levels of parallelism: for example, in the composition
GRASPxELS, both the outer structure of GRASP and the inner structure
of ELS (framed in figure 2) can be parallelized. This approach allows us
to integrate optimization algorithms inside the skeleton-to-code transfor-
mation process, for instance to decide on the best way to distribute work
among the processing units.

3 Conclusion
We propose a C++ library providing skeletons for common metaheuristics that can be in-
stantiated by giving the missing parts in the form of functions or lambda expressions. The
library also allows describing your own skeletons. From the skeleton information, we can gen-
erate at compile-time a tailored sequential or parallel implementation. Defining algorithmic
skeletons with template metaprogramming makes possible the implementation of compile-time
algorithms to optimize the distribution of parallel tasks. All this work is performed by the
compiler so it does not imply runtime overhead compared to handwritten implementations. Fu-
ture work includes developing more primary skeletons and well-known OR skeletons in order
to evaluate the library on more complex OR algorithms.

References
[1] S. Cahon, N. Melab, and E.-G. Talbi. “ParadisEO: A Framework for the Reusable Design

of Parallel and Distributed Metaheuristics”. In: Journal of Heuristics 10.3 (May 2004),
pp. 357–380.

[2] J. Darlington et al. “Parallel Programming Using Skeleton Functions”. In: PARLE ’93
Parallel Architectures and Languages Europe. Ed. by G. Goos et al. Vol. 694. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1993, pp. 146–160.


