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Genus theory and ϵ-conjectures on p-class groups

Georges Gras

Introduction

For any number field K, we denote by Cℓ K the class group of K in the restricted sense and by Cℓ K ⊗ Z p its p-class group, for any prime number p; to avoid any ambiguity, we shall write Cℓ K ⊗ F p for the "p-torsion group", often denoted Cℓ K [p] in most papers, only giving the p-rank rk p (Cℓ K ) of Cℓ K . One knows the following classical result (weak form of theorems of Brauer, Brauer-Siegel, Tsfasman-Vladȗt ¸-Zykin [START_REF] Tsfasman | Infinite global fields and the generalized Brauer-Siegel theorem, Dedicated to Yuri I. Manin on the occasion of his 65th birthday[END_REF][START_REF] Zykin | Brauer-Siegel and Tsfasman-Vladȗt ¸theorems for almost normal extensions of global fields[END_REF]):

For all ε > 0 there exists a constant C d,ε such that

# Cℓ K ≤ C d,ε • ( √ D K ) 1+ε
, where d is the degree of K and D K the absolute value of its discriminant.

But it is clear that, arithmetically, the behaviour of the p-Sylow subgroups of Cℓ K depends, in conflicting manners (regarding p), on many parameters (signature, ramification, prime divisors of d, action of Galois groups, etc.).

After the Cohen-Lenstra-Martinet, Adam-Malle, Delaunay-Jouhet, Gerth, Koymans-Pagano,... heuristics, conjectures, or density statements, on the order and structure of Cℓ K ⊗ Z p [4,[START_REF] Cohen | Étude heuristique des groupes de classes des corps de nombres[END_REF][START_REF] Adam | A class group heuristic based on the distribution of 1eigenspaces in matrix groups[END_REF][START_REF] Malle | On the distribution of class groups of number fields[END_REF][START_REF] Delaunay | The Cohen-Lenstra heuristics, moments and p j -ranks of some groups[END_REF][START_REF] Gerth | Densities for certain ℓ-ranks in cyclic fields of degree ℓ n[END_REF][START_REF] Koymans | On the distribution of Cℓ(K)[ℓ ∞ ] for degree ℓ cyclic fields[END_REF], many authors study and prove inequalities of the form # (Cℓ K ⊗ F p ) ≤ C d,p,ε • ( √ D K ) c+ε , with positive constant c < 1 as small as possible (e.g., under GRH, the inequality

# (Cℓ K ⊗ F p ) ≤ C d,p,ε • ( √ D K ) 1-1 p (d-1
) +ε [10, Proposition 1]; see also [14, § 1.1] for more examples and comments). The various links between this ε-conjecture and the above classical heuristics (or results) are described in [START_REF] Pierce | On a conjecture for p-torsion in class groups of number fields: from the perspective of moments[END_REF] For a general history upon today about such inequalities, we refer to some recent papers of the bibliography (e.g., [9,[START_REF] Ellenberg | Reflection principles and bounds for class group torsion[END_REF][START_REF] Frei | Average bounds for the p-torsion in class groups of cyclic extensions[END_REF][START_REF] Pierce | On a conjecture for p-torsion in class groups of number fields: from the perspective of moments[END_REF][START_REF] Widmer | Bounds for the p-torsion in class groups[END_REF]) in which the reader can have a more complete list of recent contributions. For short, we shall call "p-rank ε-conjecture" the case:

# (Cℓ K ⊗ F p ) ≤ C d,p,ε • ( D K ) ε ,
and "strong ε-conjecture" the case:

# (Cℓ K ⊗ Z p ) ≤ C d,p,ε • ( D K ) ε .
These kind of results do not separate the case of totally real fields, for which we know that the class number is rather small, regarding the case of non totally real fields (see the tables in Washington's book [42] and papers by Schoof as [START_REF] Schoof | Class numbers of real cyclotomic fields of prime conductor[END_REF][START_REF] Schoof | Computing Arakelov class groups[END_REF], among many contributions; however, some real fields may have exceptional large class numbers regarding D K [START_REF] Daileda | Non-abelian number fields with very large class numbers[END_REF][START_REF] Daileda | Maximal class numbers of CM number fields[END_REF]). Moreover, by nature, the results that we have quoted deal with upper bounds of the p-rank rk p (Cℓ K ) and precisely we shall see that genus theory gives, when it applies, large and maximal p-ranks and possibly unbounded orders, which probably makes harder proofs by classical complex analytic way.

Remark 1.1. Nevertheless, many arguments and computations are in favor of the strong ε-conjecture

# (Cℓ K ⊗ Z p ) ≤ C d,p,ε • ( √ D K ) ε
, except possibly for subfamilies of density zero, even if such a conjecture is "a conjecture at infinity for fixed p" because, as we shall see in numerical calculations, the constants C d,p,ε are enormous, especially for d = p, so that, for "usual fields", the inequalities are trivial up to some huge values of the discriminant. So it will be difficult to give convincing computations "at infinity".

In this context, we shall only prove the case of the p-rank ε-conjecture for degree p cyclic fields K (Theorem 2.5):

Main Theorem. Denote by Cℓ K the class group of any number field K. Let p ≥ 2 be a prime number; then the p-rank ε-conjecture saying that: # (Cℓ K ⊗ F p ) ≪ d,p,ε ( √ D K ) ε for all K of degree d, is true for the subfamily of all cyclic extension F/Q of degree d = p.

For these fields, with Galois group G =: σ , we shall use the exact sequence:

1 → (Cℓ K ⊗ Z p ) G -→ Cℓ K ⊗ Z p -→ (Cℓ K ⊗ Z p ) 1-σ → 1
and consider the "non-genus part" (Cℓ K ⊗ Z p ) 1-σ (or set of "exceptional p-classes") as a random object for which densities results are known (see Remark 2.2). The case d = p = 2 is known from Gauss genera theory, but its generalization is not obvious since for p = 2 the p-rank is canonical (given by Chevalley's formula (1)) while for p > 2 it depends on the algorithm which determines the complete structure of Cℓ K ⊗ Z p ; indeed, for d = p = 2 and any class γ such that γ 2 = 1, we can write

γ σ-1 = γ σ+1-2 = N K/Q (γ) γ -2 = 1, which does not work for d = p > 2.
To our knowledge, for d = p > 2, only the case of cyclic cubic fields is proved [10, Corollary 1, case (3)] for the 3-rank ε-conjecture. For CM fields, we shall try to put the "minus part" of Cℓ K ⊗ Z p in "duality" with the "plus part" of the torsion group T K of the Galois group of the maximal abelian p-ramified pro-p-extension of K for which, on the contrary, we know that there is no complete strong ε-conjecture because of some explicit families of density zero. This suggests that, for any given p, the strong ε-conjecture may be true "for almost all field" in a sense to be specified.

A possible obstruction due to exceptional p-classes

We shall illustrate the above comments with a family of fields with optimal p-ranks, and give numerical illustrations with PARI/GP [START_REF]PARI/GP[END_REF] programs.

2.1. Definition of the family (F N,p ) N ≥1 . We consider a fixed prime p ≥ 2 and the sequence of all odd prime numbers ℓ k , totally split in Q(µ p ), whence such that ℓ k ≡ 1 (mod p). For p > 2, let F N,p be any cyclic extension of degree p, of global conductor f N,p = N k=1 ℓ i , for any N ≥ 1. For p = 2 we shall consider

F N,2 := Q( √ ± ℓ 1 • • • ℓ N ) = Q( √ ± 3 • 5 • • • ℓ N )
with ± such that 2 be unramified, and consider the restricted sense for class groups, which is more canonical for our purpose. We may consider degree p cyclic extensions ramified at p without any modification of the forthcoming reasonings, except an useless complexity of redaction (this modifies the above conductors up to the constant factor p 2 or 8). The discriminant D N,p of F N,p is the product of the conductors associated to each nontrivial character of G N,p := Gal(F N,p /Q), thus D N,p = f p-1 N,p . There are (p -1) N -1 such fields, all contained in Q(µ

ℓ 1 •••ℓ N ).
The Chevalley formula [3] gives the number of ambiguous classes (i.e., invariant by G N,p ) which is equal to the genus number for cyclic fields:

(1)

# Cℓ F N,p ⊗ Z p G N,p = p N -1 .
It is obvious that the group of ambiguous classes is p-elementary of p-rank N -1 ≤ rk p (Cℓ F N,p ) and generated by the ramified primes

l i | ℓ i , 1 ≤ i ≤ N , with a (non-trivial) relation N i=1 l n i i = (a), a ∈ F × N,p , due to the classical Kummer theory over Q(µ p ) giving F N,p (µ p ) = Q(µ p )( p √ α), α ∈ Q(µ p ) ×
depending of canonical Gauss sums.

2.2. About the exceptional p-classes. We know that # (Cℓ F N,p ⊗ F p ) and # (Cℓ F N,p ⊗ Z p ), both depend of a non-predictible algorithm that we recall below; this shows that the so-called Brumer-Silverman-Duke-Zhang-Ellenberg-Venkatesh ε-conjecture on the p-ranks is not so different from the strong ε-conjecture, in a logical point of view, except that we shall see that the p-rank is an O(N ) contrary to # (Cℓ F N,p ⊗ Z p ) whose order of magnitude is unknown.

Definition 2.1. Let δ(N ) ≥ 0 be such that # (Cℓ F N,p ⊗ F p ) = p N -1+δ(N ) and let ∆(N ) ≥ δ(N ) be such that # (Cℓ F N,p ⊗ Z p ) = p N -1+∆(N ) .
In other words, p ∆(N ) = # (Cℓ F N,p ⊗ Z p ) 1-σ measures what we shall call the set of "exceptional p-classes" (i.e., non-invariant) obtained via the classical filtration of Cℓ F N,p ⊗ Z p (a general theoretical and numerical approach was given in [START_REF] Gras | Sur les p-classes d'idéaux dans les extensions cycliques relatives de degré premier p, I[END_REF][START_REF] Gras | Sur les p-classes d'idéaux dans les extensions cycliques relatives de degré premier p, II[END_REF] and [START_REF] Stevenhagen | Rédei-matrices and applications[END_REF] after the historical papers of Inaba [START_REF] Inaba | Über die Struktur der ℓ-klassengruppe zyklischer Zahlkörper von Primzahlgrad ℓ[END_REF], Redei-Reichardt [START_REF] Redei | Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers[END_REF], Fröhlich [START_REF] Fröhlich | The generalization of a theorem of L. Rédei's, Qart[END_REF][START_REF] Fröhlich | The genus field and genus group in finite number fields I[END_REF] and others; for a wide generalization to ray class groups and a survey, see [START_REF] Gras | Invariant generalized ideal classes -structure theorems for p-class groups in p-extensions[END_REF]). Then N -1 + δ(N ) is the p-rank.

Remark 2.2. During the writing of this paper we have been informed, by Peter Koymans and Carlo Pagano, of their work [START_REF] Koymans | On the distribution of Cℓ(K)[ℓ ∞ ] for degree ℓ cyclic fields[END_REF] proving that the p-class groups of cyclic degree p fields have, under GRH, the (explicit) distribution conjectured by Frank Gerth III [START_REF] Gerth | Densities for certain ℓ-ranks in cyclic fields of degree ℓ n[END_REF] and generalizing results of Jack Klys by means of methods developed by Etienne Fouvry-Jürgen Klüners, Alexander Smith and others. These results prove that the strong ε-conjecture for degree p cyclic fields K is true (in the meaning that this occurs with probability 1), except possibly for very sparse families of fields of density zero. One deduces this from [28, Theorem 1.1] by proving that for any map h : R → R, such that h(X) → ∞ as X → ∞, we have the following density property about the sets of exceptional p-classes of the p-class groups:

lim X→∞ # K : √ D K < X & # Cℓ(K) ⊗ Z p 1-σ > h( √ D K ) # {K : √ D K < X} = 0.
The possible infinite "bad families" of degree p cyclic fields K are such that for some fixed ε and for any C > 0:

# Cℓ(K) ⊗ Z p 1-σ > C √ D K ε p N -1 =: C h ε ( D K ),
where N is the number of ramified primes of K; we shall verify Section 2.3 that these functions h ε fulfill the condition at infinity. But the Theorem 2.5 shall prove (unconditionally) the p-rank ε-conjecture.

2.2.1. The algorithm. Recall briefly the computation of δ(N ) and ∆(N ) in the purpose of some probabilistic considerations. Let F be any degree p cyclic extension of Q with N ≥ 1 ramified primes, put M := Cℓ F ⊗ Z p , and let σ be a generator of G := Gal(F/Q) ≃ Z/pZ. Let I F be the group of ideals of F , prime to p, and let M i =: cℓ F (I i ), i ≥ 0, I i ⊂ I F , defined inductively by M 0 := 1, and:

M i+1 /M i := (M/M i ) G , for 0 ≤ i ≤ m -1,
where m ≥ 1 is the least integer i such that M i = M (i.e., such that

M i+1 = M i ). Then M i = {c ∈ M, c (1-σ) i = 1} for all i ≥ 0 and M 1 = M G .
The sequence # (M i+1 /M i ), 0 ≤ i ≤ m, decreases to 1 and is bounded by # M 1 due to the injective maps

M i+1 /M i ֒→ M i /M i-1 ֒→ • • • ֒→ M 2 /M 1 ֒→ M 1
defined by the operation of 1σ.

We have, for the fields F , the formulas [START_REF] Gras | Invariant generalized ideal classes -structure theorems for p-class groups in p-extensions[END_REF]Corollary 3.7], for all i ≥ 0:

# M i+1 /M i = p N -1 (Λ i : Λ i ∩ N F/Q (F × )) & Λ i := {x ∈ Q × , (x) ∈ N F/Q (I i )}, with I 0 = 1 and Λ 0 = 1.
The progression of the algorithm depends on the x ∈ Λ i , (x) = N F/Q (A), A ∈ I i , such that x = N F/Q (y), y ∈ F × , giving the equation:

(y) = A • B 1-σ ,
in which the solutions B (non-predictible) become new elements to be added to I i to built I i+1 ⊇ I i , then Λ i+1 ⊇ Λ i , and so on.

Put, for all i ≥ 0,

# M i+1 /M i := p N -1-t N i , t N i ≥ 0, where p t N i | p N -1 is the index (Λ i : Λ i ∩ N F/Q (F × )) (since x ∈ Λ i is norm of an ideal,
it is locally a norm everywhere, except perhaps at the N ramified primes, but the product formula for Hasse's normic symbols gives the above divisibility). We have:

t N 0 = 0 ≤ t N 1 ≤ • • • ≤ t N m = N -1. Then # M = # (Cℓ F ⊗ Z p ) = i≥0 # M i+1 /M i = p m (N -1)-m i?=1 t N i .
We have the following result that we shall use to test the ε-conjecture.

Lemma 2.3 ([18, Lemma 4.2]). Let F/Q be a degree p cyclic extension with N ≥ 1 ramified primes. Then rk p (Cℓ F ) = (p-1)•(N -1)-p-2 i=1 t N i . Whence this yields δ(N ) = (p -2) • (N -1) -p-2 i=1 t N i .
We see that the p-rank may vary in the interval [N -1, (p -1) (N -1)] and is always O(N ) as N → ∞ which shall be of a great importance; the p-rank is equal to N -1, for all F/Q of degree p, if and only if p = 2 as we have seen. In the same manner, the p r -ranks are given by the expressions:

r (p-1)-1 i=(r-1) (p-1) N -1 -t N i = (p -1) • (N -1) - r (p-1)-1 i=(r-1) (p-1) t N i .
It is clear that the normic indices depend on the F p -ranks of N × N -matrices of suitable Hilbert symbols [20, Ch. VI, § 2] generalizing, for instance, Rédei's matrices for the computation of the 4-ranks of a quadratic field.

But we emphasize the fact that if some heuristics on the F p -rank of these matrices are natural, the number of steps of the algorithm (i.e., m) only depends on distribution results (see Remark 2.2).

whose F q -dimension is a multiple of the residue degree of q in Q(µ p )/Q, which explains the rarity of such divisibilities for large residue degrees.

2.3. Estimation of C p,p,ε for the fields F N,p . As we have explained, we do not consider degree p cyclic extensions F/Q ramified at p. This shall modify the forthcoming computations by some O(1) without any consequence on the statements since p is fixed in all the sequel.

We need a lower bound of the kth prime number ℓ k ≡ 1 (mod p) to get an estimation of f N,p .

We thank Gérald Tenenbaum for valuable indications for the good formula, from [40, Notes on Chapitre I, § 4.6], due to a result of Montgomery-Vaughan giving, for the kth prime number ℓ k ≡ 1 (mod p):

(2)

ℓ k > p-1 2 • k • log ℓ k p , for all k ≥ 1. Indeed, if π(x; 1, p) := # {ℓ ≤ x; ℓ ≡ 1 (mod p)} then: π(x; 1, p) ≤ 2 x (p -1) log x p ; whence the result taking x = ℓ k since π(ℓ k ; 1, p) = k.
We intend to test, for the family (F N,p ) N ≥1 of discriminants D N,p := D F N,p , the strong ε-conjecture, that is to say:

(3) # (Cℓ F N,p ⊗ Z p ) =: p N -1+∆(N ) ≤ C p,p,ε • ( D N,p ) ε , where ∆(N ) = (m -1) • (N -1) -m-1 i=1 t N i ≥ 0,
related to the set of exceptional p-classes, has only a probabilistic value depending on m and the t N i . It will be easy, from the forthcoming calculations, to test the p-rank εconjecture, # (Cℓ

F N,p ⊗ F p ) ≤ C p,p,ε • ( D N,p ) ε , but considering instead the weaker inequality: p N -1+δ(N ) = p (p-1) (N -1)-p-2 i=1 t N i ≤ C p,p,ε • ( D N,p ) ε ,
even in the less favorable case t N i = 0, for 1 ≤ i ≤ p -2 and replacing for all N , D N,p by a lower bound D ′ N,p (in other words the existence of an inequality p (p-1) (N -1) ≤ C ′ p,p,ε • ( D ′ N,p ) ε proves the p-rank ε-conjecture for all degree p cyclic fields). We fix p and put D N,p =:

D N =: f p-1 N . The strong form is equivalent to prove that p N -1+∆(N ) ( √ D N ) ε is bounded as N → ∞, whence (N -1 + ∆(N )) log(p) -ε • p-1 2 N k=1 log(ℓ k ) < ∞, as N → ∞.
We then have, replacing ℓ k by a lower bound ℓ ′ k , to compute, using (1), ( 2), (3), the following quantity:

X(N ) := (N -1 + ∆(N )) log(p) -ε • p-1 2 N k=1 log(ℓ ′ k ) = (N -1 + ∆(N )) log(p) -ε • p-1 2 N k=1 log p-1 2 + log(k) +log 2 ℓ k p .
We verify that

N k=1 log 2 ℓ k p
can be neglected, subject to adding -1 to the sum, and consider, instead:

X(N ) = (N -1 + ∆(N )) log(p) -ε • p-1 2 -1 + N k=1 log p-1 2 + log(k) = (N -1 + ∆(N )) log(p) -ε • p-1 2 -1 + N • log p-1 2 + log(N !) .
The expression of N ! leads to log

(N !) = N log(N ) -N + 1 2 log(N ) + O(1), whence, with γ p := log p-1 2 -1: X(N ) =(N -1 + ∆(N )) log(p) -ε • p-1 2 N log(N ) + N • γ p + 1 2 log(N ) + O(1)
. Now we write X(N ) under the form:

(4)

X(N ) = N log(p) + ∆(N ) log(p) -ε • p-1 2 N log(N ) -log(p) -ε • p-1 2 N • γ p -ε • p-1 4 log(N ) -ε • O(1) = N • -ε • p-1 2 log(N ) + ∆(N ) N log(p) + log(p) -log(p) N -ε • O(1) = N • -ε • p-1 2 log(N ) + ∆(N ) N log(p) + (1 -N -1 ) log(p) -ε • O(1) . Replacing ∆(N ) by the maximal value (p -2) (N -1) of δ(N ), the dominant term -ε • p-1 2 log(N ) ensures the existence of a positive constant C ε since (p-1) (N -1) N log(p) = O(1) giving: (5) X 0 (N ) = -ε p-1 2 N log(N ) + N (p -1) log(p) -ε O(1) -o(1)
. It is easy to verify that X 0 (N ), as function of N , admits, for an N 0 ≫ 0, a computable maximum, only depending on p and ε (e.g., for p = 7, ε = 0.1,

N 0 ≈ 2935394 • 10 10 , X 0 (N 0 ) ≈ 88 • 10 14 ).
This proves the p-rank ε-conjecture for the family (F N,p ) N ≥1 , even assuming always a maximal p-rank (p -1) (N -1). Whence we can state: Theorem 2.5. Let p ≥ 2 be a given prime number. (i) The p-rank ε-conjecture on the existence, for all ε > 0, of a constant

C d,p,ε such that # (Cℓ K ⊗ F p ) ≤ C d,p,ε • ( √ D K )
ε for all K of degree d, is true for the subfamily of all cyclic extension F/Q of degree d = p.

(ii) For any cyclic extension F/Q of degree p, let ∆(N ) ≥ 0 be defined by ) , where N is the number of ramified primes. Then the strong ε-conjecture,

# (Cℓ F ⊗ Z p ) = p N -1+∆(N
# (Cℓ K ⊗ Z p ) ≤ C d,p,ε • ( √ D K ) ε
, is true for the family of degree p cyclic extensions under the condition ∆(N ) ≪ N log(N ).

Proof. Consider arbitrary prime numbers ℓ n i ≡ 1 (mod p), 1 ≤ i ≤ N , and a field K, cyclic of degree p, of conductor N i=1 ℓ n i . Thus D K ≥ D F N and the maximal p-rank of Cℓ K is still (p -1) (N -1). We have seen that if we put δ(N ) = (p -2) (N -1) in (4), giving (5), the main term ensures the existence of the constant C p,p,ε . We omit the details when p 2 (or 8) divides the conductor.

Very probably, considering the Remark 2.2, ∆(N ) is almost all the time of order much less than N log(N ) since p r -ranks are in practice very rare for r ≥ 2 as well as a maximal p-rank equal to (p -1) (N -1) (see § 2.2.2); but the dominant terms in (4) being ∆(N ) log(p)ε • p-1 2 N log(N ), this may give some trouble for the proof of an universal strong ε-conjecture assuming for instance ∆(N ) = O(1) log(N ), or more, for infinite families of degree p cyclic fields, even of density zero.

2.4.

A lower bound for C p,p,ε . This part is not essential for our purpose, but it will show that a lower bound of C p,p,ε is of the same order of magnitude as for the upper bound deduced from [START_REF] Cohen | Étude heuristique des groupes de classes des corps de nombres[END_REF]. We shall use the following property which may be justified from results given in [START_REF] Maynar | On the Brun-Titchmarsh theorem[END_REF]. For all k ≥ 1, the kth prime ℓ k ≡ 1 (mod p) fulfills, for some constants c p only depending on p, the inequality

ℓ k < c p ((p -1) k) • log((p -1) k) < c p ((p -1) k) 2 . Then: (N -1 + δ(N )) log(p) ≤ log(C ε ) + ε p-1 2 N k=1 log(ℓ k ) ≤ log(C ε ) + ε p-1 2 N k=1 log(c p ) + 2 log(p -1) + 2 log(k) ≤ log(C ε ) + ε p-1 2 • N γ ′ p + 2 log(N !)
, where γ ′ p := log(c p ) + 2 log(p -1) > 0. Whence, from the value of log(N !):

(N -1 + δ(N ))log(p) ≤ log(C ε ) + ε p-1 2 2N log(N ) + N γ ′′ p + log(N ) + O(1) , with γ ′′ p = γ ′ p -2 > 0. Thus: (6) log(C ε ) ≥ (N -1 + δ(N )) log(p) -ε (p -1) N log(N ) -ε p-1 2 N γ ′′ p -ε p-1 2 log(N ) -ε O(1) ≥ N • -ε (p -1) log(N ) + δ(N ) N log(p) + O(1) .
Remarks 2.6. (i) As soon as we replace ε by c + ε, 0 < c < 1, as it is done in much papers giving general proofs for

# (Cℓ K ⊗ F p ) ≤ C d,p,c,ε • ( √ D K ) c+ε , the above computations becomes, replacing ∆(N ) by δ(N ): log(C p,p,c,ε ) ≤ N • -(c + ε) • p-1 2 log(N ) + δ(N ) N log(p) + O(1) log(C p,p,c,ε ) ≥ N • -(c + ε) • (p -1) log(N ) + δ(N ) N log(p) + O(1)
. For ε → 0, the formulas ( 5) and ( 6) give a limit value

C p,c of C p,p,c,ε such that log(C p,c ) ≈ (N -1 + δ(N )) log(p) -c p-1 2 N log(N ) -N O(1)
, rapidely negative as N increases, giving for degree p cyclic fields, an obvious proof of the "p-rank (c + ε)-property".

(ii) If we replace Q by a number field k and the fields F N,p by the degree p cyclic extensions F k,N,p of k with N ramified prime ideals of k, the details of computations are more complicate, but the results and comments are similar since the p-rank of Cℓ F k,N,p is still equivalent to O(N ) because of the exact sequence of genus theory and the inequalities [16, Theorem IV.4.5.1]:

N -c k,p ≤ rk p Cℓ G F k,N,p ≤ N + c ′ k,p
, where the constants c k,p , c ′ k,p depend on the p-classes and units of k. Then, the general algorithm computing the p-rank via the filtration (M i ) i≥0 is identical up to similar modifications (see [18, § 4.4]) and shall give the prank ε-conjecture for the relative degree p cyclic case without too much difficulties. The case of abelian p-extensions may be accessible from the p n -cyclic cases, with some effort... The proof of the strong ε-conjecture, for the degree p cyclic extensions of k, remains, theoretically, open, but is clearly not a folk conjecture for such very particular real fields because of the possible generalization of the density results of [START_REF] Koymans | On the distribution of Cℓ(K)[ℓ ∞ ] for degree ℓ cyclic fields[END_REF] and the conclusion, about the possible existence of pathological families of density zero, is still relevant. Meanwhile a particular study of the algorithm giving ∆(N ), independently of any density results, should be a crucial step for many questions in number theory.

PARI/GP programs computing Cℓ F N,p

3.1. Structure of some Cℓ F N,p . The following numerical results show that exceptional p-classes (indicated by * ) are not excessively frequent for these fields. We examine the cases p = 3, 5, 7, then p = 2 (one must precise p and the conductor f = ℓ 1 • • • ℓ N , ℓ i ≡ 1 (mod p), in the following program giving all the (p -1) N -1 fields of conductor f ):

{p=3;f=7*13*19*31*37;V=polsubcyclo(f,p);d=matsize(V);d=component(d,2); for(k=1,d,P=component(V,k);if(nfdisc(P)!=f^(p-1),next);K=bnfinit(P,1); C8=component(K,8);C81=component(C8,1);h=component(C81,1); Cl=component(C81,2);print("p=",p," f=",f," P=",P," Cl=",Cl))} p=3 f=1983163=7*13*19*31*37 4. Genus theory -Abelian p-ramification theory 4.1. Reminders on Genus theory. For wide information on genus theory, see for example [START_REF] Fröhlich | The genus field and genus group in finite number fields I[END_REF][START_REF] Furuta | The genus field and genus number in algebraic number fields[END_REF][START_REF] Gras | Class Field Theory: from theory to practice[END_REF][START_REF] Jaulent | Unités et classes dans les extensions métabéliennes de degré np s sur un corps de nombres algébriques[END_REF][START_REF] Maire | Genus theory and governing fields[END_REF][START_REF] Razar | Central and genus class fields and the Hasse norm theorem[END_REF].

4.1.1. Genus field and genus number g K/k . Introduce the genus field according to an extension K/k (we shall take k = Q in the sequel) which is the maximal subextension H K/k of H K (in the restricted sense) equal to the compositum of K with an abelian extension of k:

H K H K/k KH k K H ab K K ab H k K ∩H k K ab H k k Thus H K/k
is for instance equal to the compositum of K with H ab K (the maximal abelian subextension of H K /k), according to the diagram above, where K ab is the maximal abelian subextension of K/k. The genus number is g K/k := [H K/k : KH k ]. When K/k is cyclic, the genus number g K/k is equal to the number of invariant classes by Gal(K/k) given by Chevalley's formula [START_REF] Adam | A class group heuristic based on the distribution of 1eigenspaces in matrix groups[END_REF]. In the general Galois case, we have the similar expression

g K/k = # Cℓ k • l e ab l [K ab : k] • (E pos k : E pos k ∩ N K/k )
, where E pos k is the group of totally positive units of k, e ab l the index of ramification of l in K ab /k and N K/k the group of local norms in K/k. A general formula does exist for non-Galois fields (e.g., [START_REF] Gras | Class Field Theory: from theory to practice[END_REF]Theorem IV.4

.2 & Corollaries]).

4.1.2. Variants of the strong ε-conjecture. Since the p-genus group of K may be an obstruction to the strong ε-conjecture, we may consider, in the exact sequence 1

→ Cℓ ′ K ⊗ Z p → Cℓ K ⊗ Z p → Gal(H K/Q /K) ⊗ Z p → 1, the number # (Cℓ ′ K ⊗ Z p ) (
giving the number of exceptional p-classes instead of the whole p-class group) and propose the following form of the ε-conjecture: Conjecture 4.1. For a number field K, let H K be its Hilbert's class field, H K/Q its genus field and Cℓ ′ K := Gal(H K /H K/Q ). Let p be a prime number. For all ε > 0 there exists

C ′ d,p,ε such that # (Cℓ ′ K ⊗Z p ) ≤ C ′ d,p,ε •( √ D K )
ε holds for all K of degree d, except possibly for sparse families of density zero.

One may ask what happens for a "global" strong ε-conjecture on the form:

# Cℓ K ≤ C d,ε • ( D K ) ε .
The paper [START_REF] Daileda | Non-abelian number fields with very large class numbers[END_REF] of Ryan Daileda recalls some results by Littlewood showing that (under GRH) there exist imaginary quadratic fields with arbitrary large discriminant for which

# Cℓ K ≥ c • √ D K log 2 (D K )
, where c is an absolute constant. For real quadratic fields a result of Montgomery and Weinberger is that there exist real quadratic fields with arbitrary large discriminant whose class numbers satisfy

# Cℓ K ≥ c • √ D K log 2 (D K ) log(D K )
. Analogous results are known for cyclic cubic fields and Daileda proves that there exists an absolute constant c > 0 so that there are totally real non-abelian cubic fields, with

arbitrary large discriminant satisfying # Cℓ K ≥ c • √ D K log 2 (D K ) log(D K ) 2
. All this has been generalized to CM number fields in [START_REF] Daileda | Maximal class numbers of CM number fields[END_REF]. So, if we consider an inequality of "strong global ε-conjecture" type:

# Cℓ K ≤ C d,ε • ( D K ) ε , for all K of degree d, any infinite family K of fiields K such that # Cℓ K ≥ c • √ D K , for a constant c > 0, independent of K ∈ K, yields: log( C d,ε ) ≥ log(c) + (1 -ε) • log( D K ),
which is absurd. In other words, there is in general no strong global εconjecture; nevertheless the question of the strong form we have considered (for p fixed and for Cℓ K or Cℓ ′ K ):

# (Cℓ K ⊗ Z p ) ≤ C d,p,ε • ( D K ) ε ,
depends on the finiteness of fields K such that # (Cℓ K ⊗ Z p ) ≥ c p • √ D K . For instance, in the quadratic case and p > 2, this should give some p-class groups for which the p-rank and/or the exponent tend to infinity with D K ; even in the imaginary case, this may occur only for very sparse families. As far as the program has run, it slows down between C = 6 • 10 4 and C = 7 • 10 4 , but no conclusion is possible as expected from the above. But the most spectacular fact, that we have discover, is that, for each local maximum C, the corresponding discriminant is prime (whence h odd) whatever ε, as shown by this short excerpt: We have no counterexample in the selected interval D ≤ 2 • 10 9 and no serious explanation, but if we test the local maxima of We shall examine elsewhere all these strange phenomena which seems valid for all p and suggest the existence of families for which the p-part of the class number has maximal values, so that log(

D h C -3 1 
# Cℓ K ( √ D K ) ε instead of 2 -(N-1) # Cℓ K ( √ D K ) ε ,
# (Cℓ K ⊗ Z p )) log( √ D K ) → 1 as D K → ∞.
4.1.4. Reciprocal study. To try to suggest the existence of analogous families giving huge p-class groups, a trick is to consider normic equations, in integers a, b, of the form:

a 2 + m b 2 = 4 • q p ρ , gcd(a, b) ∈ {1, 2},
where q > 1 is any fixed integer and ρ an exponent as large as possible; then when a ≥ 1 increases, we deduce b and the square free integer m. This kind of experiment has shown, in [17, § 5.3], that there exist huge discriminants giving interesting p-adic invariants. Moreover the function:

C K,p := log( # (Cℓ K ⊗ Z p )) log( √ D K ) ,
giving (for any ε > 0):

log(C ε ) ≥ C K,p -ε • log( D K ),
may constitute an obstruction for the strong ε-conjecture as soon as:

lim inf K∈K C K,p > 0
for an infinite subfamily K of the set of imaginary quadratic fields. But a priori, this does not affect the p-rank ε-conjecture.

Of course, the right member of the normic equation being rapidely too large when ρ increases, the experimentation is very limited regarding PARI/GP possibilities. However, even for small values of ρ predicting, a priori, pclasses of order aroud p ρ we obtain much large orders, and the following numerical results may be convincing enough about the infiniteness of such utmost examples. Many families are described by means of parametized radicals as the family of fields K = Q( k 2q n ) with any prime q = 2, k 2q n < 0, in which Cℓ K has, under some conditions on the parameters, an element of order n (see [2, Theorem 3.1] and its bibliography); applied to n = p r , we get, for C K,p , the upper bound O(1) r p r → 0 as r → ∞, not sufficient to give "bad families".

It is difficult to say if some of the above huge discriminants may be obtained with explicit parametrized expressions.

4.2. Reminders on p-ramification theory. We intend to give now some analogies with the torsion group T K of the Galois group of the maximal abelian p-ramified (i.e., unramified outside p and ∞) pro-p-extension of K; this extension contains the p-Hilbert class field of K (in the ordinary sense) and the compositum of the Z p -extensions of K. This Galois group introduces the "normalized" p-adic regulator of K defined in [21, § 5].

Since in this section the non-p-part of the class group does not intervene, unless otherwise stated, we shall put, by abuse of notation, Cℓ K := Cℓ K ⊗ Z p .

4.2.1. Structure of the p-torsion group T K . Let K be any number field and let p ≥ 2 be a prime number; we denote by p | p the prime ideals of K dividing p. Consider the group E K of p-principal global units of K (i.e., units ε ≡ 1 (mod p|p p)). For each p | p, let K p be the p-completion of K and p the corresponding prime ideal of the ring of integers of K p ; then let:

U K := u ∈ p | p K × p , u = 1 + x, x ∈ p | p p & W K := tor Zp (U K ),
the Z p -module of principal local units at p and its torsion subgroup.

We consider the diagonal embedding

E K ⊗ Z p -→ U K whose image is E K , the topological closure of E K in U K .
We assume in this paper that K satisfies the Leopoldt conjecture at p. 

1 → W K µ K ---→ tor Zp U K E K log ---→ tor Zp log U K log(E K ) → 0. Put W K := W K /µ K & R K := tor Zp log(U K )/log(E K ) . Then the above exact sequence becomes 1 → W K ---→ tor Zp U K E K log ---→ R K → 0.
Let K be the compositum of the Z p -extensions, H K the p-Hilbert class field and H pr K the maximal Abelian p-ramified pro-p-extension, of K. Then let H bp K be the Bertrandias-Payan field (compositum of the p-cyclic extensions of K embeddable in p-cyclic extensions of arbitrary large degree).

In the following diagram, class field theory yields:

Gal(H pr K /H K ) ≃ U K /E K and Gal(H pr K /H bp K ) ≃ W K .
We denote by Cℓ K the subgroup of the p-class group Cℓ K corresponding to Gal(H K / K ∩ H K ) by class field theory.

Then R K is isomorphic to Gal(H bp K / KH K ):

≃ WK TK ≃ CℓK ≃ CℓK ≃ UK/EK H pr K KH K H bp K ≃ RK K H K K ∩H K K We have # T K = # Cℓ K • # R K • # W K and the following inequalities: (7) rk p (T K ) ≤ rk p ( Cℓ K ) + rk p (R K ) + rk p (W K ) ≤ rk p (Cℓ K ) + r 1 + r 2 -1 + # S K ,
where (r 1 , r 2 ) is the signature of K and S K the set of p-places of K. So, for a constant degree d, the p-rank ε-conjecture for the p-class groups implies the p-rank ε-conjecture for the torsion groups T K and conversely since we have the other inequality:

(8) rk p (Cℓ K ) ≤ rk p ( Cℓ K ) + rk p (Gal( K ∩ H K /K)) ≤ rk p ( Cℓ K ) + r 2 + 1 ≤ rk p (T K ) + r 2 + 1.
For more precise rank formulas for T K , see [16, Corollary III.4.2.3] and the reflection theorem that we shall recall in § 4.4.

The p-adic

Brauer-Siegel conjecture for T K . We have proposed in [START_REF] Gras | Heuristics and conjectures in direction of a p-adic Brauer-Siegel theorem[END_REF], for the totally real case, after extensive numerical computations, the following conjecture:

Conjecture 4.3. Let p ≥ 2 be prime and let d be a given degree. For any number field K (under Leopoldt's conjecture), let T K be the torsion group of the Galois group of the maximal abelian p-ramified pro-p-extension of K.

There exists a constant C d,p such that:

# T K ≤ ( D K ) C d,p
, for all K totally real of degree d.

We put, for p fixed and for any totally real number field K:

(9) C K,p := log( # T K ) log( √ D K ) ≤ C d,p .
In practice, C K,p may be much smaller than 1 (and it is often 0), except very sparse cases as that of

K = Q( √ 19 
) and p = 13599893, for which # T F =: p N -r+ ∆(N ) , ∆(N ) ≥ 0, where r ≥ 0 depends on p-adic properties of the ramified primes ℓ = p, and we may estimate that, as N → ∞:

T K = R K ≃ Z/pZ, whence C K,p = log( # T K ) log( √ 4 × 19) = log ( 
C F ≈ (N -r + ∆(N )) log(p) p-1 2 N log(N ) + N γ p + 1 2 log(N ) + O(1) ∼ c p • 1 + o(1) log(N ) ,
where c p = 2 log(p) p-1 and assuming a small order of magnitude of ∆(N ). Give a program computing (in Cp) C F ; in the imaginary quadratic case for p = 2, the conjectural inequality implies # ( Cℓ F ) ≤ ( D F ) C 2,2 (indeed, 4.3. p-adic Brauer-Siegel conjecture versus ε-conjectures. The padic Brauer-Siegel Conjecture 4.3 concerns more essentially the totally real case for the following reasons which are yet given by the rank inequalities ( 7) and (8).

4.3.1.

Analysis by means of CM-fields. We have, with obvious notations and p = 2:

Cℓ K = Cℓ - K Cℓ + K , T K = T - K T + K , R K = R - K R + K , W K = W - K W +
K ; but we have the following properties which explain the differences between real fields and non real ones (under the Leopoldt conjecture):

One sees some influence of genus theory since, for D = -101091716, we have C K,2 ≈ 0.977771 because of # T K = 2 13 , but to be put in relation with C K,2 ≈ 0.982227 for D = -1347524, of the first interval, with # T K = 2 10 .

The structure of the class group given by PARI/GP is [1024, 2, 2, 2].

Then consider the program computing the structure of T K [23, Programme I, § 3.2] that we recall for the convenience of the reader (choose p, nt such that p nt be a multiple of the exponent of T K , then the polynomial P): {p=2;nt=32;P=x^2+101091716;K=bnfinit(P,1);Kpn=bnrinit(K,p^nt); S=component(component(Kpn,1),7);r=component(component(S,2),2)+1;

For D K = -136159455, we get W K ≃ Z/3Z, T K ≃ Z/3 7 Z × Z/3Z and Cℓ K ≃ Z/3 6 Z × Z/3Z (using the instruction quadclassunit(-136159455)). We obtain, generalizing to arbitrary degrees, the following heuristic:

There is no absolute strong ε-conjecture for the T K groups of totally real number fields K and T K is essentially governed by the normalized p-adic regulator R K . Nevertheless, as for p-class groups, one may conjecture that the exceptions to the strong ε-conjecture are due to sparse subfamilies of density zero.

Recall that, from ( 7) and ( 8), the p-rank ε-conjecture for the T K does exist if and only if the p-rank ε-conjecture does exist for the p-class groups Cℓ K .

4.4. Reflection theorem and p-rank ε-conjectures. Another justification of the above comments is to recall the reflection theorem [22] which exchanges, roughly speaking, "imaginary components" of p-class groups Cℓ with "real components" of p-torsion groups T , and conversely, subject to consider fields K containing the group µ p of pth roots of unity. In full generality, the following result precises [START_REF] Daileda | Maximal class numbers of CM number fields[END_REF] and (8) when µ p ⊂ K: -1 ≤ rk p (T ord K )rk p (Cℓ res K ) ≤ # S -1;

1 The mentions "ord", "res" are related to the case p = 2; for p > 2, since µp ⊂ K, the two notions coincide.

since # S -1 is bounded in the family of number fields, of fixed degree d, this relation shows that any p-rank ε-conjecture, true for an invariant, is fulfilled by the other. When µ p ⊂ K, one must use the field K(µ p ) and the general reflection theorem with p-adic characters ([16, Theorem II.5.4.5], [22]).

The reflection theorem has been used in [START_REF] Ellenberg | Reflection principles and bounds for class group torsion[END_REF], in a different manner, using many split primes in K(µ p ), the notion of Arakelov class group (see e.g., [START_REF] Schoof | Minus class groups of the fields of the ℓ-th roots of unity[END_REF]), and the following analytic explanation by the authors: Roughly, the point is that small non-inert primes in a number field represent elements of the class group which tend not to satisfy any relation with small coefficients. Thus the existence of many such primes contributes significantly to the quotient of the class group by its ℓ-torsion, yielding the desired upper bounds.

It would be interesting to deepen these approaches that have connections through class field theory, complex and p-adic analytic methods.

  , § 1.1, Theorem 1.2, Remark 3.3].

4. 1 . 3 .

 13 Computation of some successive local maxima. The following program, for imaginary quadratic fields, allows a study of this question by computing the successive local maxima of C ′ 2,ε , in C, the discriminant and the class number obtained for each local maximum, in D and h, respectively: {eps=0.05;Cm=0;bD=2;BD=10^9;for(D=bD,BD,e=valuation(D,2);M=D/2^e; if(core(M)!=M,next);if((e==1||e>3)||(e==0&Mod(M,4)!=-1)||(e==2&Mod(M,4)!=1), next);h=qfbclassno(-D);N=omega(D);C=h/(2^(N-1)*(sqrt(D)^eps)); if(C>Cm,Cm=C;print("D=",-D," h=",h," C=",C)))}

  {p=3;rho=4;q=2;Y=4*q^(p^rho);ba=1;Ba=sqrt(Y);H=1;for(a=ba,Ba,B=Y-a^2; m=core(B);D=m;if(Mod(m,4)!=-1,D=4*m);b=component(core(B,1),2); if(gcd(a,b)>2,next);h=qfbclassno(-D);vh=valuation(h,p);hp=p^vh; if(hp>H,H=hp;Cp=log(hp)/log(sqrt(D));Hp=component(quadclassunit(-D),2); d=component(matsize(Hp),2);L=List;for(k=1,d,c=component(Hp,k); w=valuation(c,p);if(valuation(c,p)!=0,listput(L,p^w))); print("D=",D," a=",a," b=",b," Cp=",Cp," hp=",hp," Hp=",L)))} rho=4 D=9671406556917033397649407 a=1 b=1 Cp=0.152767 hp=81 Hp=[81] D=197375644018714967298967 a=5 b=7 Cp=0.204814 hp=243 Hp=[243] D=9671406556917033397648447 a=31 b=1 Cp=0.229151 hp=729 Hp=[729] D=9671406556917033397648319 a=33 b=1 Cp=0.267343 hp=2187 Hp=[729,3] D=9671406556917033397644647 a=69 b=1 Cp=0.305534 hp=6561 Hp=[243,27] D=9671406556917033397435039 a=463 b=1 Cp=0.343726 hp=19683 Hp=[19683] D=9671406556917033397373783 a=525 b=1 Cp=0.381918 hp=59049 Hp=[59049] D=9671406556917033395993039 a=1287 b=1 Cp=0.420110 hp=177147 Hp=[177147] D=9671406556917033372819119 a=4983 b=1 Cp=0.496494 hp=1594323 Hp=[531441,3]

4. 3 . 3 .

 33 Conclusion. Consider a prime p and a fixed degree d. Assume, tentatively, a strong ε-conjecture for the groups T K in the case of totaly real number fields K of degree d, which implies a strong ε-conjecture for the p-class groups. We then have the existence, for all ε > 0, of a constant C d,p,ε such that: log( # T K ) ≤ log( C d,p,ε ) + ε • log D K ;then introduce the function C K,p :(10) C K,p := log( # T K ) log √ D K ≤ log( C d,p,ε ) log √ D K + ε. So, when D K → ∞, we get C K,p = ε + o(1). But in [17, § 5.3], we have proved that there exist explicit infinite families of real quadratic fields for which C K,p ≈ 1 (contradiction).

Proposition 4 . 4 (

 44 [START_REF] Gras | Class Field Theory: from theory to practice[END_REF] Theorem III.4.2.2]). Let K be a number field containing µ p and fulfilling Leopoldt's conjecture at p. Then we have the rank formula (reflection theorem)1 rk p (T ord K ) = rk p (Cℓ S res K ) + # S -1,where S is the set of p-places of K and Cℓ S res K the S-class group Cℓ res K /cℓ res (S). So, rk p (Cℓ S res K ) = rk p (T ord K ) -( # S -1) yields: rk p (Cℓ res K ) ≤ rk p (Cℓ S res K ) + rk p (cℓ res (S)) ≤ rk p (T ord K ) -( # S -1)rk p (cℓ res (S)) ≤ rk p (T ord K ) + 1, giving :

  we have for instance the following normal behaviour:

	D=Mat([71, 1])		h=7	C=6.2924037512976056357336190628721157852
	D=[5, 1; 19, 1]	h=8	C=7.1391564091327201771370767959908455517
	D=[7, 1; 17, 1]	h=10	C=8.8738345254872857598506328581670649858
	(...)			
	D=Mat([63839, 1])	h=423	C=320.78438186581184951419633278279394585
	D=[23, 1; 2833, 1]	h=424	C=321.37826092893978747476207092089453868
	D=[113, 1; 607, 1]	h=434	C=328.53606501556853121813362584226004750
	D=[19, 1; 23, 1; 163, 1] h=440	C=332.76370450428389891215784283045533831
	D=[41, 1; 1831, 1]	h=454	C=342.90123385517606193005461615124054801
	D=[19, 1; 37, 1; 113, 1] h=468	C=352.97586311634473415004028909597003881
	D=[43, 1; 1973, 1]	h=480	C=361.43179021472306392157190052394995551
	D=Mat([88079, 1])	h=487	C=366.35924203761999218970143789845358049
	In the same way, if we compute the successive maxima of the 3-class groups,
	we obtain a similar result:	
	{p=3;bD=1;BD=10^9;Cm=0;for(D=bD,BD,e=valuation(D,2);M=D/2^e;
	if(core(M)!=M,next);if((e==1||e>3)||(e==0&Mod(M,4)!=-1)||(e==2&Mod(M,4)!=1),
				}
	D=-23	h=3	hp=3	C=0.70075861284442195481324
	D=-199	h=9	hp=9	C=0.83019007976763598642971
	D=-983	h=27	hp=27	C=0.95661698654993161545339
	D=-3671	h=81	hp=81	C=1.07074359233325762042197
	D=-29399	h=243	hp=243	C=1.06778367209896382287404
	D=-178559	h=729	hp=729	C=1.09019287826209803280171
	D=-2102999	h=2187 hp=2187	C=1.05643959875714455523718
	D=-14868719	h=6561 hp=6561	C=1.06436822551851827813563
	D=-98311919	h=19683 hh=19683 C=1.07451592116950263349372
	Then, for p = 2:		
	{p=2;bD=1;BD=10^9;Cm=0;for(D=bD,BD,e=valuation(D,2);M=D/2^e;
	if(core(M)!=M,next);if((e==1||e>3)||(e==0&Mod(M,4)!=-1)||(e==2&Mod(M,4)!=1),
	next);h=qfbclassno(-D);hp=p^valuation(h,p);Cp=hp;if(Cp>Cm,Cm=Cp;
	C=log(Cp)/log(sqrt(D));print("D=",-D," h=",h," hp=",hp," C=",C)))}
	D=-15	h=2	hp=2	C=0.511916049619630978775355357
	D=-39	h=4	hp=4	C=0.756801438067480149325544162
	D=-95	h=8	hp=8	C=0.913262080279460212705801846
	D=-399	h=16	hp=16	C=0.925899677503555682939700450
	D=-791	h=32	hp=32	C=1.038687593312750474942887870
	D=-2519	h=64	hp=64	C=1.062075159346033035976072133
	D=-10295	h=128	hp=128	C=1.050289653382181398975491576
	D=-39431	h=256	hp=256	C=1.048009122470377471769618833
	D=-132599	h=512	hp=512	C=1.057783767181715434360601717
	D=-328319	h=1024	hp=1024	C=1.091420745999194423260975917
	D=-1333631	h=2048	hp=2048	C=1.081244297733198664388474474
	D=-4599839	h=4096	hp=4096	C=1.084346236368631648159879902
	D=[3, 1; 5, 1] D=-18855359	h=8192	h=2 hp=8192	C=1.8690792417830016333288729232969402612 C=1.075781736259555689965062133
	D=Mat([23, 1]) D=-63836951	h=3 h=16384 hp=16384 C=1.079918254667737276882538104 C=2.7738186178906946066060851321251971632
	D=[3, 1; 13, 1] D=-266675639 h=32768 hp=32768 C=1.071791801714607295960939150 h=4 C=3.6499202570298105632113852382187054319
	D=Mat([47, 1]) D=-966467519 h=65536 hp=65536 C=1.072093388756179498237226639 h=5 C=4.5411678851245642203257405092290144795

next);h=qfbclassno(-D);hp=p^valuation(h,p);Cp=hp;if(Cp>Cm,Cm=Cp; C=log(Cp)/log(sqrt(D));print("D=",-D," h=",h," hp=",hp," C=",C)))

  Lemma 4.2. Let µ K be the group of global roots of unity of p-power order of K. Under the Leopoldt conjecture for p in K, we have tor Zp (E K ) = µ K and the exact sequence (where log is the p-adic logarithm):

	Whence the following p-adic result ([21, Lemma 3.1, Corollary 3.2], [16,
	Lemma III.4.2.4], [26, Définition 2.11, Proposition 2.12]):

  Estimation of C F N,p ,p . Put F := F N,p and C F N ,p =: C F for p fixed. Then, from the computations in Subsection 2.3, using for T F the analog of Chevalley's formula given in[START_REF] Gras | Class Field Theory: from theory to practice[END_REF] Theorem IV.3.3], we can put similarly

	But Cℓ K = 1.	13599893) log( √ 4 × 19)	= 7.5855.
	4.2.3.		
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Cl= [START_REF] Daileda | Maximal class numbers of CM number fields[END_REF][START_REF] Daileda | Maximal class numbers of CM number fields[END_REF][START_REF] Daileda | Maximal class numbers of CM number fields[END_REF][START_REF] Daileda | Maximal class numbers of CM number fields[END_REF]* f=10004681 P=x^7-x^6-4287720*x^5+1224450448*x^4+5079527488960*x^3 -2161274540764336*x^2-1677161713287529664*x+812143879436422435328 Cl=[7,7,7,7]* f=10004681 P=x^7-x^6-4287720*x^5-1306733845*x^4+4849019638720*x^3 +2420349994235592*x^2-659732951886568641*x-207964718993797238079 Cl=[7,7,7,7]* f=10004681 P=x^7-x^6-4287720*x^5+5756570941*x^4-3107102879720*x^3 +760318637129246*x^2-74394888056758073*x+1594979915105904419 Cl=[7,7,7,7] f=10004681 P=x^7-x^6-4287720*x^5-1746939809*x^4+2392910471944*x^3 +1648023037138232*x^2+241022177190387487*x-9669121620934915453 Cl=[7,7,7,7]* f=10004681 P=x^7-x^6-4287720*x^5-4188081973*x^4-284662313448*x^3 +706702291060440*x^2+90226184532822239*x-3998693323498243787 Cl=[7,7,7,7]* f=10004681 P=x^7-x^6-4287720*x^5-2227164497*x^4+1569805356712*x^3 +369664737597974*x^2-166416491455189217*x+3813962316737479895 Cl=[7,7,7,7]* f=10004681 P=x^7-x^6-4287720*x^5-3307670045*x^4+1296557509240*x^3 +1587033521303494*x^2+232482552302284071*x-10617355312468435915 Cl=[203,7,7]=[203]x[7,7,7] f=10004681 P=x^7-x^6-4287720*x^5+1654651731*x^4+4187910318240*x^3 -1965195178959414*x^2-1012216801097102473*x+451605062388713519719 Cl=[14,14,14]=[2,2,2]x[7,7,7] f=10004681 P=x^7-x^6-4287720*x^5+1544600240*x^4+4818925558272*x^3 -2343209264562096*x^2-1609606088655340480*x+886992887186768275456 Cl=[203,7,7]=[203]x[7,7,7] f=10004681 P=x^7-x^6-4287720*x^5-1306733845*x^4+4427622475000*x^3 +1798213808544282*x^2-1313378138040048441*x-613859706212867719587 Cl=[301,7,7]=[301]x[7,7,7] p=11 f=137149 P=x^11+x^10-62340*x^9-2099173*x^8+998038116*x^7+30321726924*x^6 -5078707527329*x^5+3275334221180*x^4+8066546096404148*x^3 -214723422858644515*x^2+1902599837479513519*x-4121588229203611219 Cl=[253,11]=[23]x[11,11] f=137149 P=x^11+x^10-62340*x^9-727683*x^8+1217887963*x^7+33409088063*x^6 -7760886906947*x^5-350751766601032*x^4+3398347545513222*x^3 +236507399684756272*x^2+2593585988882665302*x+8529384350363670191 Cl=[979,11]=[89]x[11,11] f=137149 P=x^11+x^10-62340*x^9-1550577*x^8+1265615815*x^7+66889353347*x^6 -7866931610939*x^5-712972865698216*x^4-12900860936489076*x^3 +143276981594922336*x^2+1596818122984871186*x+3178173588229813309 Cl=[737,11]=[67]x[11,11] f=137149 P=x^11+x^10-62340*x^9-7310835*x^8+70636578*x^7+43296296622*x^6 +1378934348258*x^5-28471672310749*x^4-944763467217249*x^3 +12433374265353417*x^2+31266667418235948*x-324164722946199831 Cl=[253,11]=[23]x[11,11] f=137149 P=x^11+x^10-62340*x^9-727683*x^8+1153290784*x^7+18055120364*x^6 -7130815486262*x^5-134781314432095*x^4+13777568483843493*x^3 +310799275320778321*x^2+883774494827373474*x-5728549445587601897 Cl=[253,11]= [START_REF] Gras | On p-rationality of number fields[END_REF]x [START_REF] Fröhlich | The generalization of a theorem of L. Rédei's, Qart[END_REF][START_REF] Fröhlich | The generalization of a theorem of L. Rédei's, Qart[END_REF] For p = 2, F N,2 may be real or complex; as we know, the 2-rank is always N -1 and any exceptional classes give non-trivial 4-ranks. The PARI/GP instruction bnfnarrow allows the 2-structure in the restricted sense: {m=1;for(N=2,100,el=prime(N);m=(-1)^((el-1)/2)*el*m;P=x^2-m; K=bnfinit(P,1);L=bnfnarrow(K);Cl=component(L,2);print("m=",m," Cl=",Cl))} m=-15 Cl=[2] m=+105 Cl=[2,2] m=-1155 Cl=[2,2,2] m=-15015 Cl=[12,2,2,2] m=-255255 Cl=[16,2,2,2,2]* m=+4849845 Cl=[4,2,2,2,2,2]* m=-111546435 Cl=[42,2,2,2,2,2,2] m=-3234846615 Cl=[308,2,2,2,2,2,2,2]* m=+100280245065 Cl=[2,2,2,2,2,2,2,2,2] m=+3710369067405 Cl=[34,2,2,2,2,2,2,2,2,2] m=+152125131763605 Cl=[2,2,2,2,2,2,2,2,2,2,2] m=-6541380665835015 Cl=[28284,2,2,2,2,2,2,2,2,2,2,2]* m=+307444891294245705 Cl=[14,2,2,2,2,2,2,2,2,2,2,2,2] m=+16294579238595022365 Cl=[2,2,2,2,2,2,2,2,2,2,2,2,2,2] m=-961380175077106319535 Cl=[1210734,2,

* m=-20364840299624512075310661735 Cl=[362626834,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] m=+1608822383670336453949542277065 Cl=[4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]* m=-133532257844637925677812008996395 Cl=[2322692420,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]* D=-1005843 m=-1005843 vptor=7 Cp=0.702107244840955486811297669 D=-1007492 m=-251873 vptor=8 Cp=0.8023131911871206028276870051 (...) D=-1327972 m=-331993 vptor=8 Cp=0.7865966565831969109249007496 D=-1345476 m=-336369 vptor=9 Cp=0.8841001125437591214944446738 D=-1347524 m=-336881 vptor=10 Cp=0.982227596578129040877631145 p=2, Interval [10^7, 2*10^7] D=-10000004 m=-2500001 vptor=3 Cp=0.25802570416574861895099915 (...) D=-10000136 m=-2500034 vptor=3 Cp=0.25802549285588586651933610 D=-10000212 m=-2500053 vptor=4 Cp=0.34403382825873844184039068 D=-10000228 m=-2500057 vptor=5 Cp=0.43004224263528166242354902 (...) D=-10001220 m=-2500305 vptor=5 Cp=0.43003959612044524303603555 D=-10001355 m=-10001355 vptor=7 Cp=0.6020549303754533561270683 (...) D=-10028164 m=-2507041 vptor=10 Cp=0.8599356519990630566433445 D=-11423624 m=-2855906 vptor=10 Cp=0.8530415407428446759627785 D=-11434244 m=-2858561 vptor=11 Cp=0.9382920445879771130663980 D=-19227908 m=-4806977 vptor=11 Cp=0.9092149504336010969244116 p=2, Interval [10^8, 2*10^8] D=-100000011 m=-100000011 vptor=2 Cp=0.15051499693318294862950 D=-100000020 m=-25000005 vptor=3 Cp=0.225772494296692430574969 (...) D=-100000072 m=-25000018 vptor=3 Cp=0.225772487923331962924891 D=-100000120 m=-25000030 vptor=4 Cp=0.301029976053644338278634 (...) D=-100000228 m=-25000057 vptor=4 Cp=0.301029958404363471726365 D=-100000324 m=-25000081 vptor=6 Cp=0.451544914074197327895496 (...) D=-100009811 m=-100009811 vptor=6 Cp=0.45154258866246136591601 D=-100009988 m=-25002497 vptor=7 Cp=0.526799636159210448373252 (...) D=-100042692 m=-25010673 vptor=9 Cp=0.677301796362621931199437 D=-100120215 m=-100120215 vptor=11 Cp=0.8277784989602807429303 D=-100703939 m=-100703939 vptor=11 Cp=0.8275173634473368234393 D=-101091716 m=-25272929 vptor=13 Cp=0.97777114254342282551717 D=-196241540 m=-49060385 vptor=13 Cp=0.94380528108729550144090

Then we obtain

(b) Case p = 3. {p=3;bD=10^6;BD=2*10^6;Lp=log(p);vp=0;n=8; for(D=bD,BD,e=valuation(D,2);M=D/2^e;if(core(M)!=M,next); if((e==1 || e>3)||(e==0 & Mod(M,4)!=-1)||(e==2 & Mod(M,4)==-1),next); m=D;if(e!=0,m=D/4);P=x^2+m;K=bnfinit(P,1);Kpn=bnrinit(K,p^n); C5=component(Kpn,5);Hpn0=component(C5,1);Hpn=component(C5,2); Hpn1=component(Hpn,1);vptor=valuation(Hpn0/Hpn1,p)-(n-1); if(vptor>vp,vp=vptor);if(vptor>=vp,Cp=vptor*Lp/log(sqrt(D)); print("D=",-D," m=",-m," vptor=",vptor," Cp=",Cp)))} p=3, Interval [10^6, 2*10^6] D=-1000011 m=-1000011 vptor=1 Cp=0.1590402916116620131420348520 D=-1000020 m=-250005 vptor=1 Cp=0.1590401880079362819278196125 D=-1000043 m=-1000043 vptor=1 Cp=0.1590399232477087416304663599 (...) D=-1020548 m=-255137 vptor=3 Cp=0.4764198506806243371783107010 D=-1021332 m=-255333 vptor=4 Cp=0.6351912130796763789096457580 D=-1022687 m=-1022687 vptor=5 Cp=0.7939129439088033794338891302 (...) D=-1898859 m=-1898859 vptor=5 Cp=0.7599296140003213455753306574 p=3, Interval [10^7, 10^7+10^6] D=-10002927 m=-10002927 vptor=3 Cp=0.40895365007950900178024254 D=-10003224 m=-2500806 vptor=4 Cp=0.54527052902405852884991426 (...) D=-10065279 m=-10065279 vptor=4 Cp=0.54506139909286008239956811 D=-10066440 m=-2516610 vptor=5 Cp=0.68132187532448910070906763 (...) D=-14316744 m=-3579186 vptor=5 Cp=0.66675746065456780942779488 D=-14547531 m=-14547531 vptor=6 Cp=0.79933316809564910995167969 (...) D=-19767512 m=-4941878 vptor=6 Cp=0.78474406738375920976115602 p=3, Interval [10^8, 10^8+10^7] D=-100075971 m=-100075971 vptor=4 Cp=0.477101585455621088296257 D=-100080003 m=-100080003 vptor=5 Cp=0.596375677517090310811391 (...) D=-100787315 m=-100787315 vptor=5 Cp=0.596147767754605081482216 D=-100867844 m=-25216961 vptor=6 Cp=0.715346318656502973478053 (...) D=-117344127 m=-117344127 vptor=6 Cp=0.709521342553855083402930 D=-119846559 m=-119846559 vptor=7 Cp=0.826835890443221508331985 (...) D=-135140024 m=-33785006 vptor=7 Cp=0.821531794828164970116186 D=-136159455 m=-136159455 vptor=8 Cp=0.938516745792290367614873

(i) # R - K = 1 since all the units of infinite order of K are real;

may be large (but with bounded rank) since Gal( K/K) -≃ Z

K is most often trivial and does not intervene in estimations of class groups for d fixed;

(iv) # R + K is the main p-adic invariant which may be nontrivial for much primes p, even if we have conjectured in [START_REF] Gras | Les θ-régulateurs locaux d'un nombre algébrique : Conjectures padiques[END_REF] that it is trivial for all p large enough;

(v) # Cℓ + K is essentially equal to # Cℓ + K since the part of the Hilbert class field, contained in the cyclotomic Z p -extension, is very limited;

4.3.2. Computation of C K,p for imaginary quadratic fields. We shall illustrate the cases p = 2, then p = 3, in various intervals of negative discriminants to observe the local decreasing of the variable C K,p (9). Note that for p > 3, the group W K is trivial contrary to the cases p = 2 and 3 where W K may be Z/pZ, which must probably be discarded in our considerations.

(a) Case p = 2. The case p = 2 is interesting because of the influence of exceptional classes and gives (v p ( # T K ) in vptor, C K,p in Cp):