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Summary

The ability of discrete element models to describe quantitatively (and not only qual-
itatively) the constitutive behaviour of a dense sand is assessed in this paper. Two
kinds of 3D discrete models are considered. Both consider spheres as elementary
particles. Nevertheless the first model implements a contact law with rolling resis-
tance whereas the second takes into account clumps made of two spheres. The
discrete models are calibrated and validated from mechanical tests performed on
a dense Hostun sand with a true triaxial apparatus. The calibration is carried out
from axi-symmetric drained compression tests, while the validation is discussed from
monotonic and cyclic stress proportional loading paths and from a circular stress path
in the deviatoric stress plane. The quality of the predictions of the discrete models are
evaluated by comparison with the predictions given with advanced phenomenolog-
ical constitutive relations, mainly an incrementally non-linear relation. Predictions
given by the discrete models are remarkable, particularly when it is put in perspective
with respect to the very few number of mechanical tests required for their calibra-
tion. However, these results and conclusions were reached in enabling conditions and
some limitations of such discrete models should be kept in mind.

1 INTRODUCTION

1.1 From continuous to discrete constitutive modeling

Granular media are a typical example of media with a discernable discrete microstructure, constituted by the grain assembly.

For some macroscopic aspects of their behavior the existence of this microstructure can not be ignored, like for instance the

thickness of shear bands (which depends drastically on grain size among other less important parameters) or phenomena as

segregation, erosion, etc... The most manageable way to take into account this microstructure while preserving the framework of
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continuous mechanics is certainly to enrich the classical description by introducing an internal length through second gradient

theories1, Cosserat mechanics2 or non-local integral constitutive relations3. However some difficulties remain still present like

the questions of bifurcations, instabilities, losses of uniqueness and failure modes, technically intricate to be efficiently solved in

the framework of enriched continuummechanics. Another type of difficulties concern the question of themanageable description

of the behavior of granular materials by phenomenological elasto-plastic constitutive relations. This behavior is essentially

incrementally non-linear (the relation between the incremental stress and the incremental strain is non-linear)4, what induces

some difficulties in the mathematical - and thus also the numerical - treatment of this kind of relations. Let us recall that, in

elasto-plasticity, the rheological functional is non-differentiable5. Besides, beyond the incremental non-linearity, the question

of the definition and evolution laws of the plastic internal variables is very intricate particularly in the case of non-proportional

or cyclic loading paths.

Facing these irreducible difficulties to describe the elasto-plastic behavior of granular media in a continuum mechanics

framework, another way appears as promising by considering molecular dynamics method or the so-called direct numerical

simulations (DNS). In the case of granular materials, the application of molecular dynamics technics to grain assemblies has

led to a class of numerical methods called by the generic name of “Discrete Element Methods” (DEM). Molecular dynamics

is essentially based on the idea that the complexity of the real world is due to the extremely big number of atoms, molecules,

grains, ... in interaction, and not to the complexity of the interaction laws themselves. This is particularly well verified for gran-

ular media, where a simple dry Coulombian intergranular friction (one single mechanical parameter !) allows to describe the

whole complexity of the mechanical behavior of an assembly of millions of grains in contact6,7. However a question is rising

here: in which extent are DEM models able to describe quantitatively (thus, not only qualitatively) this complex behaviour as it

is observed experimentally for non-proportional loading paths or in cyclic loading ?

DEM has been widely used in geomechanics as a tool to perform numerical experiments on a representative elementary vol-

ume (REV) in order to investigate, on one hand, the constitutive behaviour of geomaterials at the scale of the REV8,9 and, on

the other hand, the underlying mechanisms at the grain scale or the contact scale7,10. Besides, the modelling or large scale in

situ problems for engineering applications relies usually on a continuum approach with phenomenological constitutive rela-

tions embedded in finite element or finite difference methods. Today, such continuum approaches require only a relatively low

computational cost. Nevertheless, the permanently growth of the computing power, the optimisation of the DEM code11, and

the optimisation of the numerical methods themselves (by using for instance a particle refinement method12 or a multi-domain

FEM-DEMmethod13) offer today the possibility to tackle with the DEM boundary value problems defined in the laboratory (as

for instance a cone penetration test in a calibration chamber14) or in situ (such as soil reinforcement with geosynthetics15 or rigid
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inclusions16 for example). In a near future the modelling or large scale field applications should even be feasible with numeri-

cal methods involving, at least partially, some discrete elements. In this context, the question of the ability of DEM models to

describe quantitatively the behaviour of geomaterials seems particularly relevant.

1.2 A benchmark inspired from the Cleveland workshop

To assess properly the predictive ability of constitutive models, the most convincing way is certainly to apply the methodology

which was taken into account in the eighties to compare each other the predictive capacities of the available constitutive relations

at that time. The most important step in this methodology was probably the organization of international workshops specifically

devoted to this comparison. The last one was organized in Cleveland in Case Western Reserve University (CWRU) on 22-24

july 198717. 27 different phenomenological elasto-plastic constitutive relations have been compared as objectively as possible.

For that, some calibration tests were sent, before the workshop, to the 27 authors or users of constitutive relations for sands to

allow them to calibrate their models by determining the constitutive parameters. In the same time, some predictions on other

loading paths were asked and they should be sent to CWRU with a deadline fixed before the workshop. Then, during the work-

shop, the predictions produced by the 27 constitutive relations have been compared to the experimental results, just revealed at

the workshop time. The patronage of the workshop was assured by the American NSF, ASCE, ASTM and French CNRS. What

will interest us in the present paper are the prediction paths, for which DEM predictions are here presented and analysed.

Three kinds of prediction paths have been considered for Cleveland workshop:

(i) Proportional stress paths in plane stress conditions with a constant Lode’s coefficient (usually called “b”) equal to 0.3 and

0.7 (paths applied in a true triaxial machine),

(iia) A cyclic torsional path with 5 cycles, the last one being pursued until failure (paths applied in a hollow cylinder apparatus),

(iii) A 3D stress path, circular in a deviatoric stress plane and followed twice (paths applied in the true triaxial apparatus).

The main conclusions have been the following ones roughly speaking:

(i) For the proportional stress paths, about 70% of the elasto-plastic constitutive relations gave satisfying results, more or less

independently to the details of the models,

(iia) For the cyclic torsional path, not any model was able to produce reasonable quantitative predictions: the question of

principal stress and strain axis rotation was a fully open question,
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(iii) For the 3D circular stress path, only incrementally non-linear models gave quantitatively acceptable results: for a strongly

non-proportional path the incremental non-linearity of sand behavior plays a basic role.

To check the predictive capacities of DEM to model complex granular behavior, it is proposed in this paper to simulate by

DEM the three above paths. In fact, paths (iia) have been replaced by other cyclic paths (iib) obtained in the same true triaxial

apparatus as paths (i) and (iii), in order to be perfectly consistent for the calibration tests and the validation tests, therefore

all performed on the same true triaxial machine and simulated by the same cubical numerical sample. Paths (iib) consist in

proportional stress paths at constant mean pressure and involve from six to height loading/unloading cycles. Because quantitative

predictions are sought here, it was necessary to consider DEMmodels able to be calibrated on lab tests performed on real sands.

Two classical solutions are available to reproduce realistically the high friction angles of real sands: spherical grains with a

rolling resistance or clump elements. Thus both these DEM models are considered in this paper.

Eventually the DEM results are plotted as well as the predictions produced by an incrementally non-linear phenomenological

model, exactly as presented during Cleveland workshop. The comparison with more conventional elasto-plastic models is also

considered in the case of the path (iii). The objective here is to give some insights into the following question: are the predictive

capacities of DEM models (with very few mechanical parameters) better than the ones of an incrementally non-linear model

(with many parameters), which has been considered as successful in Cleveland workshop ?

The outline of the paper follows logically. The considered sand and the true triaxial machine are briefly presented in section 2.

Then both the DEMmodels and the phenomenological relations are also briefly recalled with their calibration procedures (sect. 3

and 4). The three validation paths (i), (iib) and (iii) are defined and the predictions, carried out by the DEM models and the

phenomenological relation, are compared with the experimental results (sect. 5). Finally, main conclusions are discussed in

section 6.

2 EXPERIMENTAL CHARACTERIZATION OF HOSTUN SAND “RF”

2.1 Hostun sand “RF”

Two different sands were used for the Cleveland Workshop: the Reid Bedford sand and the Hostun sand “RF”. Only the exper-

imental results obtained with the Hostun sand are considered in this paper. A description of this sand is given by Flavigny et

al.18 and the main characteristics are recalled below.

The Hostun sand “RF” is composed of angular grains with a uniform grain size distribution (Fig. 1 ) and a mean grain size

D50 = 0.35 mm. Depending on the technique used the minimum void ratio was found in the range emin ∈ [0.624; 0.648] (by

excluding the moist tamping technique) and the maximum void ratio in the range emax ∈ [0.961; 1.041]. All the experimental
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tests used in this paper were performed from sand samples with an initial void ratio of 0.626 (or 0.636, depending on the

reference: Lanier and Zitouni19 or Zitouni20 respectively) corresponding to a very dense initial state.

2.2 The true triaxial apparatus

Experimental tests were carried out with the true triaxial apparatus (TTA)20,19 developed at the former “Institut deMécanique de

Grenoble” presently called 3SR Laboratory. The TTA consists in a parallelepipedic box made of six rigid steel platens. Platens

can move in such a way that the inside box deforms by staying parallelepipedic as shown in Figure 2 . The sand sample, initially

cubical (10×10×10 cm3) and enclosed inside a rubber membrane (with a cubical shape as well), is placed inside the box formed

by the rigid platens. The interface between the outside face of the rubber membrane and the platens is lubricated to avoid shear

stress development on the sample boundary. Consequently, only compressive normal stresses are applied by the platens on the

six sample faces and stress and strain principal directions coincide with the normals to the platens. The translation of the platens

in the direction normal to the platen/sample interface is performed with six electric motors synchronized two by two. Then, the

three principal components of stresses or strains are controlled independently by controlling the kinematic of the platens: either

directly for strains by adjusting the platen displacements, or indirectly for stresses thanks to a closed-loop control. Consequently,

all loading programmes defined with principal values of stresses and/or strains can be applied.

The principle of the TTA is very close to the discrete numerical models used in this study and presented in the next section.

In particular, in both cases the sample (or the elementary periodic cell) is parallelepipedic and each principal stress or strain

component is independently controlled (or independently measured / computed). Moreover, for conventional axisymmetric

triaxial apparatuses the initial cylindrical sample may take a barrel shape during the compression. Therefore, the description

of the rubber membrane in the numerical model is required to take into account such a sample deformation. Concerning the

TTA, as the sample keep at any times the shape of a parallelepiped there is no need to take into account a membrane effect

FIGURE 1 Grading curve of the Hostun sand “RF”, after Flavigny et al.18.
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and the numerical modeling is rather simplified. For these different reasons the possible discrepancies between experimental

soil responses and simulated ones due to differences in the experimental and numerical boundary conditions are, indeed not

completely eliminated, but at least limited.

3 PREDICTIVE MODELS

3.1 Phenomenological constitutive relation

From a general point of view, phenomenological relations are built inside a mathematical framework given by continuum

mechanics principles and laws, and by some assumptions issued from experiments usually performed on material samples. So

the principle of determinism implies the existence of a tensorial relation between the stress increment tensor, d�, the strain incre-

ment tensor, d", and the time increment, dt. Moreover, if only elasto-plastic materials are considered (rate-indepent media), this

function is independent of dt and homogeneous of degree 1. Now the application of Euler’s Identity for homogeneous functions

implies the existence of the elasto-plastic tangent tensorsM or equivalently N21:

d" =M(u) d� or d� = N(v) d" (1)

where u = d�∕||d�|| and v = d"∕||d"|| represent the unit vectors in the directions respectively of the incremental stress and

the incremental strain.

In the following a vectorial notation considering the six-dimensional related spaces is adopted for convenience. Then for

example the strain vector (previously tensor) writes:

d"� = (d"11, d"22, d"33,
√

2d"23,
√

2d"31,
√

2d"12) (2)

Now by keeping only both the first terms in a Taylor’s expansion ofM, we obtain the incrementally non-linear relation of second

order22:

d"� =M1
�� d�� +

1
||d�||

M2
�� d�� d� (3)

FIGURE 2 Principle of the true triaxial apparatus (TTA) with rigid platens, initial geometry on the left and deformed geometry
on the right (after Lanier and Zitouni19).
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In equation (3), it is easy to check the incremental non-linearity of the relation (describing the irreversibility of plastic stains) and

its homogeneity of degree 1 (describing the non-viscous character of the elasto-plastic strains) with respect to six variables d�� .

With some additional assumptions (like the orthotropy of the incremental relation), both the tensors M1 and M2 can be

calibrated on triaxial tests in compression and in extension. By taking into account all types of constitutive parameters, sixteen

coefficients have to be determined in the fully general calibration procedure.

This model has been utilised by Darve and Dendani23 in Cleveland workshop. The predictions of this model called “INL2”,

as presented in the workshop, will be recalled in this paper for quantitative comparisons with two DEM models as discussed in

the introduction and presented in the next section.

Another way to build an elasto-plastic relation consists to decompose additively the incremental strain into an elastic part and

a plastic part. Then, in a first step, an elastic tensor is introduced to express the elastic incremental strain as a function of the

incremental stress. An elastic stress domain has to be defined, where the elastic model will be applied. From the boundary of this

domain (the so-called “elastic limit” or equivalently “loading surface”) some plastic strains appear. The direction of these strains

is given by a flow rule (generally considered as non-associated for geomaterials), expressed from the normal to a plastic potential.

Eventually the consistency equation allows to fully determine the incremental plastic strain by giving its norm. But, even outside

the elastic domain, the experiments show that, for an unloading, the strains are essentially elastic: this can be viewed also as the

consequence of the incremental non-linearity of elasto-plasticity. Thus a loading-unloading criterion has to be introduced which

is related to the normal direction to the boundary of the elastic domain. Eventually the hardening variables allow to describe

the crucial evolution of this boundary (and of the plastic potential) with the loading path and/or the stress state. The hardening

is called “isotropic” if the elastic limit is growing homothetically with the stress state and “kinematical” if the elastic limit is

translating. Both these kinds of elasto-plastic relations are also considered in this paper, in the case of the circular loading path

in the deviatoric stress plane (Section 5.3) by presenting the predictions in Cleveland Workshop of elasto-plastic relations with

an isotropic hardening (model called “EPIH”) and a kinematical hardening in addition to the isotropic one (called “EPKH”).

3.2 Discrete numerical models

Two 3D discrete numerical models have been used, they are based on the discrete element method (DEM) as introduced by

Cundall and Strack24. A classical iterative process that successively alternates the resolution of Newton’s second law of motion

for each grain (or particle) and the actualization of the interaction forces at each inter-granular contact point is used to achieve

the numerical simulation. The elementary particles implemented in both models are spherical particles. However, soil grain

shape (angularity, anisotropy) plays a major role in the constitutive behaviour of soils. In particular realistic shear strengths of
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soils cannot be described with a straightforward implementation of spherical particles in the DEM, resulting in an excessive

rotation of particles.

The two models considered here differs mainly in the way to overcome this issue. In the first model, DEM-R, a resistance to

the relative rolling between two particles in contact is added to the contact law. This additional constraint to the contact law is

an indirect way to reflect the influence of real angular grains on their motion. In the second model, DEM-C, the non spherical

shape of the grains is more directly taken into account by forming rigid clusters of elementary spherical particles grouped two

by two for the sake of simplicity.

Of course it is possible today to implement in the DEM more advanced geometrical models of discrete particles mimicking

quite closely the actual grain shape. However such advanced geometrical models of particles lead to a strong increase of the

computational cost (already not negligible for a classical DEM model) and the implicit introduction of additional geometric

parameters in the model. The choice have been made here to focus on relatively light DEMmodels involving each one only four

or five mechanical parameters to emulate cohesionless granular materials and which are currently used to study boundary value

problems related to civil engineering applications25,26,27,16,28 (one or two additional parameters would be required to represent

cohesive materials).

3.2.1 Initial porosity of the discrete models

The initial porosity is an important state parameter in soil mechanics since it reflects how a sheared soil sample is prone to

producing dilatation and higher peak shear strength, depending on the difference between the initial density and the density at

the critical state. In the same way, the initial porosity of the numerical granular assemblies will play a fundamental role and its

choice is not necessarily straightforward. Therefore, the ways to choose the initial porosity for the DEM-R and DEM-C models

are shortly discussed here after. Three main different options can be followed.

First, the initial absolute porosity of the numerical sample could be assigned as identical to the initial porosity of the real

soil sample. The hypothesis behind this option is that the numerical assembly should produce the same volumetric deformation

(porosity change) as the soil sample for an initial numerical porosity identical to the real one. If numerical and real grain shapes

are different (e.g. spheres instead of angular sand grains) there is no reason to reach in these conditions the same volumetric

deformation (unless the volumetric deformation is corrected with some ad hoc parameters of the model). If the grain shape is

very different we could even imagine to obtain opposite volumetric deformations (contraction instead of dilation for instance).

Second, the relative density of the numerical sample (computed with respect to some numerical maximum and minimum

initial density states) could be fixed to match the relative density of the real soil sample. Similarly, it would assume that an

identical relative density leads to an identical volumetric deformation. The latter implies that maximum and minimum initial

density states of the numerical assembly emulate the same volumetric deformations as the ones measured from soil samples
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initially at the maximum and minimum states of density respectively. Again this is not insured if the shape of the grains (and

the complete micro-structure) is not reproduced numerically. Nevertheless, the application of this option shows that generally

volumetric deformations simulated with the model in these conditions is relatively close to the real ones.

A third option consists in defining the initial absolute numerical porosity as the one resulting in the same volumetric defor-

mation (porosity change) as the real one, and depending on the difference between the initial porosity and the one at the critical

state (depending itself on the particle shapes). In this context, it is considered that the porosity does not have an absolute meaning

but is defined relatively to the dilative properties of the medium.

Two slightly different strategies have been followed for the two DEM models. Concerning the DEM-C model the initial

porosity is chosen with a process half-way between the options two and three. At the beginning, the initial relative density of the

model is fixed equal to the initial relative density of the soil sample. Then the initial density is adjusted from this starting point

to approach more closely, if necessary, the volume change during the compression. For the DEM-R model the initial porosity

is chosen according to the third option. These strategies for the choice of the porosity are embedded in the methodologies of

calibration of the models presented in the two next sections.

3.2.2 DEM with rolling resistance (DEM-R)

For the discrete model, identified as DEM-R in this paper, an inter-granular contact law involving a rolling moment acting

against the relative rotation of the particles in contact is considered in addition to the more classical Coulombian friction model.

For a couple of interacting particles presenting an overlap �n and a normal n⃗ to the tangent contact plane the normal and

tangential contact forces write respectively (see Figure 3 a):

F⃗n = kn �n n⃗ (4)

ΔF⃗t = −ktΔu⃗t (5)

where kn and kt are normal and tangential stiffnesses considered constant. F⃗t has to be computed incrementally from the relative

tangential displacement u⃗t at the contact point due to the non linearity introduced by the Coulombian friction. The latter implies

that:

||F⃗t|| ≤ ||F⃗n|| tan'c (6)

with 'c the contact friction angle.
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FIGURE3 Rheological models of the contact laws and clumps of particles: (a) model of the contact in the normal and tangential
direction; (b) model of the rolling resistance at contact; (c) & (d) clump C1 & C2 with a distance between particle centers equal
to D or D∕2 respectively (where D is the particle diameter).

The rolling moment at contact, M⃗r, is defined from a rolling stiffness kr (also considered as constant) and acts against the

relative rolling rotation of the particles �⃗r (Figure 3 b):

ΔM⃗r = −krΔ�⃗r (7)

It is limited by a plastic threshold expressed as:

||M⃗r|| ≤ ||F⃗n|| �r min(R1, R2) (8)

where R1 and R2 are the radii of the two spheres in contact and �r is the plastic rolling coefficient.

Finally, to make the macroscopic elastic parameters of the granular assembly independent of the particle size, the contacts

stiffnesses are defined from a stiffness modulus Ec and dimensionless tangential and rolling coefficients, �t and �r respectively:

kn = 2Ec
R1R2
R1 + R2

; kt = �t kn; kr = �rR1R2 kt (9)

Consequently the five mechanical parameters of the model DEM-R are: �r, 'c , Ec , �t and �r.

If the elastic parameters are chosen sufficiently close to the rigid limit then the plastic properties of the granular assembly at

the macroscopic scale depend on the contact plastic parameters (�r and 'c) only and the macroscopic elastic properties are fixed

by the elastic contact properties (Ec , �t). The choice of the mechanical parameters has been performed in accordance with this

condition by following the calibration methodology defined by Aboul Hosn et al.29. Only a brief recall about this methodology

is given here.

• The first step consists in calibrating �r to fit the shear strength at large deformation (at critical state) which depends only on

�r (if 'c is not too low29). In this objective, a cloud of non-overlapping particles is isotropically compacted until reaching

the target confining pressure. 'c is fixed arbitrarily to 30o in order to start from a medium dense material (but in all cases
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shear strength at large deformation is independent of the initial density) and the value of �r is calibrated to fit the critical

shear strength.

• In a second step, the volumetric deformation (dilatancy/contractancy) and the peak shear strength are approached as close

as possible by tuning the initial sample density. In the present case, where a dense sand sample is considered, the initial

density is progressively increased by lubricating the contact during the compaction phase. The latter is done by choosing a

contact friction for compaction lower than the nominal contact friction angle used to simulate the mechanical test. Further

information concerning the initial compaction of numerical granular assemblies via an isotropic compaction can be found

for instance in the works of Combe and Roux30 or Aboul Hosn et al.29.

• In a third step the nominal value of the contact friction angle is calibrated (if necessary) to improve the reproduction of

the volumetric deformation and the peak shear strength.

• Finally in a fourth step the contact stiffness modulus Ec and the tangential coefficient �t are adjusted to improve, if

necessary, the reproduction of the slopes at low deformation of the macroscopic stress-strain response and of the volume

variation respectively (see for instance the plots of �1∕�3 vs "1 and ΔV ∕V vs "1 in Figure 5 ), reflecting partly the elastic

properties of the soil sample.

It is worth nothing that no calibration is performed on the rolling coefficient �r as it does not influence the macroscopic

properties if it is sufficiently high (i.e. close enough to the rigid limit). This can be checked simply by repeating simulations

with higher values of �r, the macroscopic mechanical response should be unchanged. Besides, this calibration methodology

emphasized the importance of:

• the plastic rolling coefficient, �r, which constitutes an indirect way to describe the angular grain shapes; the latter is known

to be a preponderant factor in the load bearing capacity of a granular soil, as a sand for instance

• the initial density of the sample, which is classically known to be a determining state parameter to describe the mechanical

response of granular matters.

3.2.3 DEM with clump (DEM-C)

For the discrete model identified in this paper as DEM-C, except the fact that clumps of two spheres were used to avoid rolling,

contact laws and numerical calibration process are rather similar than those previously described. By sake of simplicity and

in order to approach reasonably the mechanical macroscopic behaviour of the experimental material, we opted, for this study,

for numerical samples composed of unbreakable clumps of two juxtaposed (Clump C1) or overlapped (Clump C2) particles of
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same diameter D (Figures 3 c & 3 d respectively). For Clumps C2 the distances between the centers of the two spheres of one

cluster are equal to D∕2.

The contact interaction law between clumps is actually defined between the contacting spheres belonging respectively to

each clump. Normal and tangential contact forces between spheres (Figure 3 a) are computed according to equations 4 and 5,

and by taking into account the Coulombian friction as expressed in equation 6. There is no rolling resistance at contact point

between two spheres considered for the DEM-C model. Then, the DEM-C model includes 4 mechanical parameters 'c , Ec , �t

(defined in Equation 9) and the distance between sphere centres composing the clumps.

The creation of numerical samples consists in positioning the clusters randomly in a defined volume at a fixed density using the

process of radius expansion with a decrease of friction (REDF process). This process is started by an initial randomly positioning

of small clumps in a loose state. The radius of the particles composing the clumps is progressively increased and leads to the

rearrangement of the granular assembly. The use of a particular value of the friction during the radius expansion process leads

to a particular value of the porosity (detail descriptions of the REDF process were given by Chareyre and co-workers31,32).

The calibration process for DEM-C33, based on the comparison between numerical and experimental triaxial tests, follows a

rather similar procedure as the one given for DEM-R.

• Firstly, themain parameter dealingwith the rolling resistancemechanisms is adjusted, i.e. the elongation (distance between

particle centres) of the clumps, in order to reach the experimental shear strength at large deformations.

• Generally, values of the numerical relative density identical to the experimental ones give numerical answers, in terms

of volume variation during shearing, close to the real one. Hence, in a second step, the initial relative porosity, assigned

at the beginning as equal to the relative porosity of the experiment, is now tuned from this starting point to approach as

close as possible the experimental volume change during the compression.

• In a third step the nominal value of the contact friction angle (i.e. the one used to simulate the triaxial compression) is

defined in order to obtain the right value of the peak shear strength.

• Finally the contact stiffness modulus Ec and the tangential coefficient �t are fixed to approach the experimental elastic

characteristics of the soil sample.
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4 MODEL CALIBRATIONS ON AXI-SYMMETRIC COMPRESSION AND EXTENSION

TESTS

4.1 Experimental data for calibrations

Axisymmetric and drained (i.e. �2 = �3 = p0 = cst.) compression and extension test results were provided for the calibration

of the models for the benchmark of Cleveland. Three different confining pressures were considered (p0 = 200; 350; 500 kPa).

Compression tests were performed for all the confinements, whereas extension tests were carried out for confinements of 200 kPa

and 500 kPa only. Characteristics of calibration tests are resumed in Table 1 . For some tests (CH1 andCH5) unloading-reloading

cycles were performed.

Note that repeatability tests were presented by Zitouni20 but they are not reproduced in this paper to avoid an excessive number

of figures. The test results retained for the calibration were, among others, the ones where the strain localization was the most

delayed in order to provide experimental data the most representative of the actual constitutive behaviour of the Hostun sand.

An isotropic compression (named CH617,34) including several unloading-reloading cycles was also given as a calibration test

for the Cleveland benchmark. However, none of the calibration procedures for the models considered in this paper (INL2 and

DEMmodels) requires an isotropic compression path. Consequently, the experimental data from the isotropic compression have

not been used here.

4.2 Calibration of the phenomenological model INL2

The whole methodology of calibration of the model INL2 is not given here for a sake a concision. A complete presentation of the

calibration would require a detailed presentation of the model and its internal constituents which constitutes actually an article

in itself. The description of the calibration on the Hostun sand RF has been detailed by Darve and Dendani23. We recall here that

the calibration of the model INL2 requires three axisymmetric drained compressions and three axisymmetric drained extensions

TABLE 1 Characteristics of the axi-symmetric drained compression and extension tests; the names correspond to the names
of the experimental tests17,34.

Name Type Confinement
(Exp. test) p0 (kPa)

CH1 Compression 200
CH2 Compression 500
CH3 Extension 200
CH4 Extension 500
CH5 Compression 350



14 SIBILLE ET AL

performed respectively at three different confining pressures. As only two extension tests were provided, unloading/reloading

cycles performed in test CH5 at the intermediate confining pressure or 350 kPa were also used here for the calibration of the

model.

The results of the calibration of the model is displayed in Figure 4 . In this figure, as the other ones of this paper, experimental

results are displayed with thick magenta (or grey in black and white printings) lines; whereas simulated responses are displayed

with thin, generally black, lines. The calibration of the INL2 relation leads to the identification of sixteen constitutive parameters

of the model (also given in Darve and Dendani23).

The simulated responses to the different compression and extension tests fit particularly well the experimental data. For large

deformations (typically for "1 > 10 %) the simulated shear strength starts to deviates from the experimental one. For this

range of deformation the localization of the deformations is generally well developed20 accentuating the softening behaviour in

the experimental stress-strain response. Localization of deformation is not taken into account by such a constitutive modelling

aiming to describe the intrinsic mechanical behaviour of the soil. The description of the localization (and the related stress-

strain softening) would require to consider a boundary value problem with a numerical method (as the finite element or the finite

difference method) integrating the INL2 model (or other phenomenological constitutive relations).

4.3 Calibration of the discrete model DEM-R

A parallelepipedic periodic cell including 10,000 spherical particles have been considered for this study (Salot et al.33 shown

that a minimum number of 8,000 particles should be considered in 3D to constitute a representative elementary volume). The

particle size distribution of the numerical sample is almost identical to that of the Hostun sand RF displayed in Figure 1 .

Only the extreme parts of the distribution (i.e. particles smaller than 0.125 mm and larger than 0.63 mm), representing a very

low mass fraction of the soil, have been discarded. The calibration of the model as described in section 3.2.2 requires a single

compression test. Consequently, even if several experimental compressions (and extensions) are available, the compression test

performed at the intermediate confining pressure of 350 kPa (test CH5) was the only one used for the calibration. The identified

model parameters are given in Table 2 for an initial state of the numerical granular assembly at a void ratio e = 0.563.

The simulated responses to all the triaxial compression and extension loadings are presented in Figure 5 . Actually, the

simulation of tests other than test CH5, with the parameters identified from test CH5, can be seen here as a first set of validation

of the model DEM-R. In the same way unloading/reloading cycles present in tests CH5 and CH1 were not used for calibration,

as no parameters of the model are related to unloading/reloading cycles. Hence, their simulations constitute also real predictions.
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FIGURE 4 Calibration of the model INL2 from drained compression and extension tests. Experimental results are displayed
with thick magenta (or grey in black and white printings) lines, whereas simulated responses are displayed with thin black lines.
This plotting convention holds, generally, for all the figures in this paper.

General comments can be done for all the compressive tests (i.e. whatever the confining pressure). The model is slightly too

stiff in the hardening regime. However, as no parameter of the model is directly related to this behaviour it is almost pointless

to try to correct totally this difference with the experimental data. Besides, the volumetric response of the model is slightly

less dilatant than the sand sample. The dilatancy depends, in the model, on the contact friction angle and on the initial density

state. Nevertheless, contact friction angle and initial density impact also the axial stress peak and the chosen parameters result
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from the best compromise found between the description of the peak shear strength and the volumetric response. The shear

strength of the test used for calibration (CH5) is well described whereas it is very slightly overestimated for the test CH2, where

the confining pressure is higher, and more largely underestimated for the test CH1, performed at a lower confining pressure.

Consequently, the model fails to describe accurately the change of mobilized friction angle with mean pressure. As discussed in

Aboul Hosn et al.29 it may be related to the Coulombian friction model (Eq. 6) where the contact friction angle is independent

of the normal contact force, which is of course consistent with the Coulombian model but may not be totally true (more likely

for high confining pressure and easily degradable grains).

Concerning the unloading/reloading cycles, they are quite well described for test CH1 and the simulated response is slightly

too soft (for both unloading and reloading paths) for the test CH5. However, here again no parameter is related to this cyclic

response and the response is satisfactory knowing that no fitting is possible. In the sameway, the simulated responses to extension

tests (CH3 and CH4) are pure predictions of the model with a good agreement with the experimental data.

4.4 Calibration of the discrete model DEM-C

The definition and the calibration of the models DEM-C and DEM-R have been performed independently by two different

operators, limiting therefore possible interferences on the choice of the constitutive parameters for each model respectively.

For the DEM-C model a parallelepipedic assembly of 8,000 clumps, enclosed within six rigid and frictionless walls, has been

used. The grading of the numerical material is defined by a uniform distribution in weight of the clump sizes (with a size ratio

between the large and small clumps of 2), minimizing therefore the number of small particles and the duration of the numerical

simulations. Again, for this kind of model, a single compression test is needed for the calibration, according to the process

described in section 3.2.3. The compression test CH2, at a confining compression of 500 kPa, has been used here for calibration

(Figure 6 ). Clumps of type C1 were selected because they are the ones (among clumps C1 and C2) leading to a shear strength

at large deformations the closest from the experimental shear strength, even if the simulated strength is still too low (i.e. more

complex clumps made for instance of three particles should be considered to increase the particle interlocking).

The parameters identified for the DEM-C model are shown in Table 3 with an initial relative density of the numerical

sample of 93.3% (computed with respect to the highest and smallest density numerically reachable with the REDF compaction

TABLE 2 Parameters of the model DEM-R calibrated on the Hostun sand RF from the triaxial compression CH5.

�r 'c Ec �s �r
(deg) (MPa)

0.55 19 500 0.3 5.0
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FIGURE 5 Calibration of the model DEM-R (with rolling resistance) from the drained compression CH5 (bottom) and
simulated responses on other compression and extension tests.

process33). This high relative density identified numerically is in agreement with the initial density measured experimentally

which is in the range of the highest densities for the Hostun sand.

The peak shear strength is correctly reproduced by the model however the simulated dilatancy is more important than the

experimental one. The higher dilatancy of the model is consistent (as suggested by Rowe’s law) with the fact that the difference

between the shear strength at large deformations (i.e. at critical state) and at the peak is more important for the model than for
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the real sand. Finally, the contact stiffness has been chosen as a compromise leading to underestimating the initial macroscopic

stiffness but overestimating the stiffness in the hardening regime.

Similarly to theDEM-Rmodel, the simulations of the compression tests CH1 andCH5,with the parameters identified from test

CH2, are also shown in Figure 6 . The prediction of the soil stiffness for this two compressions is improved with respect to what

was obtained for the calibration test, particularly for the test CH5 where both the initial macroscopic stiffness and the stiffness

in the hardening regime are quite well described. Nonetheless, the peak shear strength of tests CH1 and CH5 is underestimated

in particular for the test CH1 performed at the lowest confining pressure. As for the DEM-R model, the Coulombian friction

model used at the contact scale is not suitable to describe the slight dependence of the internal (macroscopic) friction angle on

the mean pressure.

5 VALIDATION ON COMPLEX LOADING PATHS

The three models, INL2, DEM-C and DEM-R together with the two elasto-plastic models, EPIH and EPKH, will be all consid-

ered for comparison in the case of the circular stress loading path in deviatoric stress plane, presented at the end of this section.

Nevertheless, monotonous and cyclic stress proportional loading paths are first considered. For the sake of concision, simula-

tions with the INL2 and DEM-R models only are presented for the monotonous case and for the cyclic case the DEM-R model

alone is considered.

5.1 Monotonous stress proportional loading paths

Stress proportional paths are defined from the parameter b kept constant for a given loading path:

b =
�2 − �3
�1 − �3

= cst. (10)

with �1, �2 and �3 denoting the principal stresses such that �1 > �2 > �3. In other words, the parameter b characterizes the

intermediate stress with respect to the minor and major principal stresses. For instance, b = 0 corresponds to an axisymmetric

compression (�2 = �3); whereas b = 1 is an axisymmetric extension (�1 = �2). An additional condition to b = cst. should

TABLE 3 Parameters of the model DEM-C calibrated on the Hostun sand RF from the triaxial compression CH2.

'c Ec �s clump
(deg) (MPa)

19 150 1.0 C1
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FIGURE 6 Calibration of the model DEM-C (with clumps C1 and C2) from the drained compression test CH2 (top-right) and
simulated responses on other compression tests (for clump C1 only).

be stated to fully define the stress state. Then, either the intermediate stress �2 or the mean pressure p is also fixed for a given

loading path. In this section both b and �2 are fixed.

The experimental and simulated tests are performed by controlling the principal strain "1 to impose a compression in direction

‘1’ (i.e. "̇1 > 0). Consequently, �1 constitutes a response parameter of the soil, �2 is kept fixed and �3 is imposed such that:

�3 =
�2 − b �1
1 − b

(11)
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Two monotonous stress proportional loadings are considered. As resumed in Table 4 , they are both performed after an

isotropic compression up to p0 = 500 kPa, thus �2 is fixed to 500 kPa for the two loadings whereas b = 0.286 for one loading

and b = 0.667 for the other.

The three principal stresses and the volumetric strains are presented in Figures 7 and 8 to compare the predictions of

the INL2 and DEM-R models with the experimental data. Nevertheless, it is worth noting that �2 and �3 are imposed via the

loading program and do not constitute response parameters. They are displayed in order to show the stress state is actually three-

dimensional (and not only axisymmetric); but experiments and models should be compared by focusing on response parameters,

i.e. �1 and the volumetric strain "v.

The loading phase only has been simulated with the INL2 model (Fig. 7 ), as the unloading was not provided for the Cleveland

Workshop, whereas both loading and unloading have been described with the DEM-R model.

The stress responses �1 simulated by the two models are surprisingly very close. For b = 0.286 (test SFHD512) �1 is overes-

timated by the two models INL2 and DEM-R, even if this overestimation is slightly more important for the DEM-R model. For

b = 0.667 (test SFHD514) the prediction of �1 by the two models is in good agreement with the experimental data. The simu-

lations with the DEM-R model of the axisymmetric compression and extension at a confining pressure of 500 kPa (test CH2 in

Figure 5 ) show that the maximum shear strength is overestimated in compression whereas it is rather well predicted in exten-

sion. As the loading path for b = 0.286 is closer to the axisymmetric compression path than the one for b = 0.667, this could

explain, at least partially, why there is an overestimation of �1 for b = 0.286 with the model DEM-R and not for b = 0.667.

The models INL2 and DEM-R differ mainly with respect to the volumetric deformations. The prediction given by the model

INL2 is better than the one of the DEM-R model. In particular, the model DEM-R fails in describing the initial volumetric

reduction for b = 0.667. This result could have been expected as the latter path is relatively close to the axisymmetric extension

path (obtained for b = 1.0) for which the model misses the almost isochoric response of the sand sample at the initiation of the

TABLE 4 Characteristics of the stress proportional loading paths, the name of the loading refers to the names given to the
experimental tests20 (17 for the names into brackets).

Name Type Initial confinement �2 = cst. or p = cst. b
(Exp. test) p0 (kPa)

SFHD512 (HH1) monotonous 500 �2 = p0 = cst. 0.286
SFHD514 (HH2) monotonous 500 �2 = p0 = cst. 0.667
SFHD72 cyclic 500 p = p0 = cst. 0.667
SFHD216 cyclic 200 p = p0 = cst. 0.0
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FIGURE 7 Validation of the model INL2 on stress proportional loading paths at constant intermediate stress.

extension loading (tests CH3 and CH4 in Figure 5 ).

Apart from this difference, the strong reduction of the dilatancy (occurring from "1 ≈ 0.042 for b = 0.286 and from "1 ≈ 0.03

for b = 0.667) is not described by the models INL2 and DEM-R. As indicated by Lanier and Zitouni19 this change in the

volumetric strain rate is attributable to the localization of deformations occurring quite early in such tests (apparently “less

stable than axisymmetric ones”19). By definition the model INL2 is a model of the intrinsic constitutive behavior of the soil and

discards the localization of deformations. Concerning the model DEM-R, even if the localization of deformation could happen in

such a numerical granular assembly, the low number of particles used here (10,000 for a 3D assembly) restrains its development.

Consequently, this divergence of the models with respect to the experimental data is actually expected. Furthermore, Both

model predictions are in good agreement between themselves and constitute therefore a rather trustworthy prediction of the

volumetric deformation that would occur if it would be possible to delay the localization in the experimental tests. Similarly,

the overestimation by the models of the axial stress initially pointed out for b = 0.286 may not be due to a defect of models
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FIGURE 8 Validation of the model DEM-R (with rolling resistance) on stress proportional loading paths at constant
intermediate stress.

only, but also to the localization of deformation in the experimental response taking away the measured stress states from what

should be the intrinsic ones.

Finally, during the unloading phase, the major and minor principal stress directions are inverted. In these conditions, the effect

on the macroscopic behaviour of the zone of localized deformations, appeared during the loading phase, could be assumed as

less important during the unloading phase (unless a new localized zone develops during the unloading phase with an orientation

consistent with the new principal stress directions). The shape rather regular of the experimental plots of the stresses and of the

volume change for the unloading phase (contrary to the loading phase) supports this hypothesis (although it is not a proof). In

the framework of this assumption, the predictions of the models can still be compared to the experimental measurements in the

unloading phase; accordingly the good estimation by the model DEM-R of the residual volumetric deformation and the residual

axial stress after the complete unloading is worthy of note.
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5.2 Cyclic stress proportional loading paths

Cyclic loadings combined with stress proportional conditions are investigated in this section. These loading paths were not

considered for the benchmark of the workshop of Cleveland. Consequently, experimental data has been extracted from the PhD

thesis of Zitouni20. In the framework of phenomenological constitutive modeling, the description of the response to cyclic

loadings requires constitutive relations specifically designed for that purpose and implementing particular history parameters.

DEM models implicitly integrate the whole history of a loading by explicitly describing the evolution of the micro-structure

induced by the loading. Therefore, it is interesting to evaluate a DEM model in such loading conditions.

As in the previous section the stress proportional condition is performed by fixing the parameter b (Eq. 10). However, the

additional loading condition consists here in keeping constant the mean pressure equal to the confinement reached after the

preliminary isotropic compression: p = p0. Here again, tests are performed by controlling the principal strain "1, consequently

�1 is a response parameter and �2 and �3 are imposed such that:

�2 =
1 − 2 b
b − 2

�1 + 3 p0
1 − b
2 − b

(12)

�3 =
b + 1
b − 2

�1 +
3 p0
2 − b

(13)

Two cyclic loadings are considered, they differ from the mean pressure and the value of b as detailed in Table 4 . One loading

with b = 0.667 leads to a three-dimensional stress state, whereas the other one with b = 0 is actually an axi-symmetric test with

respect to direction ‘1’. Cycle amplitude is fixed with respect to the principal strain "1. For both tests the amplitude of the first

loading/unloading cycle is relatively important. Then the amplitude of the following cycles is reduced and kept constant such

that Δ"1 = 3.8% for the test SFHD216 and Δ"1 = 4.9% for SFHD721.

Concerning the first loading/unloading cycle, the comments previously given about the model DEM-R can be repeated here:

• underestimation of the axial stress �1 and of the dilatancy for the first loading phase of test SFHD216 (b = 0 and p =

200 kPa), which is actually an axisymmetric compression at a “low” confining pressure as for test CH1 (cf. Fig. 5 );

• initial compaction of the first loading phase of test SFHD72 (b = 0.667) not described by the model as for test SFHD514

(Fig. 8 ), which are both close to the axisymmetric extension path (see test CH4 in Figure 5 );

• larger discrepancy between predicted and experimental volumetric deformation for test SFHD72 when localization of

deformation occurs, as for test SFHD514 in Figure 8 ;

1Amplitudes indicated in 20 areΔ"1 = 3.75% andΔ"1 = 5.0% for SFHD216 and SFHD72 respectively, they differ slightly from the amplitudes given here and directly
measured on the plots of the experimental results displayed in the same reference 20.
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FIGURE 9 Validation of the model DEM-R on cyclic stress proportional loading paths at constant mean stress; experimental
results are in continuous magenta (grey) line and simulation in dashed black line.

• good estimation of the residual stress-strain state after the first loading/unloading cycle for both b values, as for tests

SFHD512 and SFHD514 in Figure 8 . As discussed in the previous section, this point holds for the cyclic test SFHD72

under the assumption that the localization of deformations, developed during the loading, has a negligible impact on the

macroscopic response during the unloading phase (which can be still considered as essentially intrinsic). For the test

SFHD216 there is no evident sign of strain localization during the first loading and this assumption could be discarded.

All these results illustrate the robustness of the discrete model with respect to the produced predictions. They are consistent

from one kind of loading path to another (even if these predictions are indeed more or less good regarding the experimental

results), which can be considered as a sound behaviour of the model when used in boundary value problems where loading
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paths are not known a priori at all material points.

Again, if we assume that the initial zone of localization of deformations, developed during the first loading phase for the

test SFHD72, has a negligible impact on the experimental response during the next unloading phases, and also on the other

reloading phases (essentially because the low strain amplitude for these other reloading phases may limit the reactivation of

the initial localized zone) the model predictions can be compared with the experimental results along all the cycles for both

tests, SFHD72 (8 loading/unloading cycles) and SFHD216 (6 cycles). The accordance with the experimental results is quite

surprising; only the compaction during cycles for SFHD216 is overestimated, with a numerical prediction of the final volumet-

ric strain of -0.84 % instead of about -0.20 % experimentally. Effectively, discrete models are probably today the only ones able

to give such a quality of prediction for cyclic loadings (in real 3D stress conditions for test SFHD72) with only five mechanical

parameters and a calibration performed from a single monotonous compression test (i.e. without any parameter calibrated on a

cyclic response). Phenomenological constitutive relations need to embed ad hoc history parameters representing indirectly the

evolution of the soil micro-structure. In discrete models the micro-structure is described explicitly all along the loading path

(i.e. at every computational time step) which constitutes a strength, leading with few parameters to this quality of results; but

also a weakness because a such explicit description of the micro-structure requires a relatively important computational cost.

Finally, the quality of the prediction may depend on the amplitude of the cycles. Here the amplitude of each cycle is quite

large (up to more than 6 to 9 % of deformation in the axial direction for the first cycle and then almost 4 to 5 % of deformation

for the following cycles); it involves at each time important changes in the micro-structure of the granular assembly and the

initial state of the soil (the initial configuration of the micro-structure) is probably not the leading factor. For smaller cycles, the

micro-structure may stay relatively stable and the initial state may prevail. The description of the micro-structure of a natural soil

(formed under specific conditions) with a discrete model is a very difficult task (even for granular soils), whereas the change in

the micro-structure induced by the mechanical loading is probably more directly taken into account by the model. Consequently,

the prediction of the discrete model might have not been so good for smaller loading/unloading cycles.

5.3 Circular loading path in the deviatoric stress plane

For this last type of loading path, predictions from the INL2 model and both DEM-R and DEM-C models are considered after

defining the loading path in itself. These predictions will be put also in perspective with respect to the ones given by more

conventional elasto-plastic constitutive relations in order to have a global view including rather fundamentally different kinds

of models.
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The circular stress path in the deviatoric plane consists in continuously changing the Lode angle (which is actually the control

parameter of the loading) while the mean pressure and the stress deviator are kept constant. The Lode angle '� is here defined

from the axis s1 (which is the projection of the �1 axis on the deviatoric plane).

The stress deviator intensity is characterized via the second stress invariant defined by:

I2� =
√

tr
(

s2
)

(14)

where s is the deviatoric stress tensor. The circular stress path was carried out for p = 500 kPa and I2� = 420 kPa. Preliminary,

an isotropic compression is performed up to p0 = 500 kPa, followed by a compression on direction ‘3’ (i.e. '� = −120o) with

a constant mean pressure, p = p0, to reach the expected value of I2� . In terms of principal stresses it means the latter is an

axi-symmetric compression where �1 and �2 are imposed such that:

�1 = �2 =
3 p − �3
2

(15)

while �3 is increased up to 842.93 kPa. Finally the circular stress loading is performed. It is constituted of two revolutions in the

deviatoric stress plane representing an evolution of '� from −120o to +600o. Then the mechanical state is fully stress controlled

with principal stresses given by:

�1 = p +
√

2∕3 I2� cos('�)

�2 = p +
√

2∕3 I2� cos('� − 120o) (16)

�3 = p +
√

2∕3 I2� cos('� + 120o)

The strain response path is itself represented in the deviatoric strain plane. From a practical point of view a 2D orthonormal

coordinate system was used to plot the strain response. The coordinates (X, Y ) representing a strain state ("1, "2, "3) projected

in the deviatoric plane are computed as35:

X =
√

2∕3 cos 30o ("1 − "2) = ("1 − "2) ∕
√

2

Y =
√

2∕3
(

sin 30o ("1 + "2) − "3
)

=
√

2∕3
(

("1 + "2)∕2 − "3
)

(17)

Predictions of the three models INL2, DEM-R and DEM-C are compared with the experimental data in Figure 10 in terms

of volumetric deformation and of the strain path in the deviatoric strain plane. Among the three models the best prediction is

given by the model INL2 regarding both the deviatoric strain path and the volumetric deformations.

Both DEM-R and DEM-C models underestimate the deformations generated by the circular stress loading when they are

projected in the deviatoric strain plane. This difference appears even as more important when the volumetric deformation

is considered. The gap between simulated and experimental volumetric deformations can be split into two contributions.
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FIGURE 10 Validation of the models INL2, DEM-R and DEM-C on the circular stress loading path, the strain response in the
deviatoric strain plane is displayed on the left and the volumetric response in terms of the Lode angle '� on the right.

First, experimentally the sand sample compacts, during the initial compression on direction ‘3’ (i.e. at constant Lode angle

'� = −120 deg) and at constant mean pressure, down to a relative volume change of -0.34 %. Second, irreversible volumetric

deformations progressively accumulate during the circular stress loading to reach at the end of the test a total volume change

of -2.0 %. The first compaction during the initial compression is predicted, but underestimated, by the model DEM-C, whereas

the model DEM-R fails to describe it, showing a compression occurring almost at constant volume (although the discrete

model actually deforms during this phase, as it is visible in the deviatoric strain plane, but in an almost purely deviatoric way).

Inversely, the DEM-R model presents irreversible volumetric deformation during the circular loading, but not as large as the
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FIGURE 11 Mohr-Coulomb criteria (for internal friction angle of 39o and 45o) and the circular stress loading path in the
deviatoric stress plane.

experimental one, while rather reversible volumetric deformation of low amplitude are described with the model DEM-C.

The Mohr-Coulomb criteria for internal friction angles of 39o and 45o (representing the failure envelopes of the dense Hostun

sand in compression and extension respectively) are compared in Figure 11 with the imposed circular stress path in the devia-

toric stress plane. The circular stress path stays included within the Mohr-Coulomb limit condition, quite far from the latter in

the compression directions ('� = −120; 0 and 120o) and very close to the criterion in the directions of extension ('� = −60; 60

and 180o). Therefore, the soil sample is somehow subjected to loading and unloading cycles in the hardening zone and particu-

larly quite far from the maximum shear strength in the compression directions. The main weakness of the DEM-R and DEM-C

models highlighted in axi-symmetric conditions (see Figures 5 and 6 ) is the overestimation of the stiffness in the harden-

ing regime, resulting in underestimating the deformations induced by the circular stress loading (which is stress controlled by

definition).

To resume the models DEM-R an DEM-C involve few mechanical parameters but in return there is no parameter to fit

directly the stiffness of the simulated response in the hardening regime. From another side, the stiffness in the hardening regime

for the INL2 model depends directly on one parameter (among the 16 constitutive parameters of the model) and the simulated

responses fit closely the experimental results for the axi-symmetric compressions and extensions paths (Figure 4 ). In the same

way, the principal strains resulting from the circular stress loading are closely predicted (Figure 12 ).

To assess the relevance of the discrete numerical models with respect to constitutive relations more classically used in an

engineering context, the predictions to the circular stress loading with two elasto-plastic models are considered below. These

predictions were also extracted from the Cleveland’s Benchmark. The first elastoplastic model36 includes a single yield (or
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FIGURE 12 Response of the models in terms of principal strains to the circular stress loading path.

bounding) surface associated with an isotropic hardening mechanism (EPIH model); whereas the second model37 implements

two yield surfaces, one related to an isotropic hardening mechanism and the second to a kinematic hardening mechanism (EPKH

model). Despite this difference, a non-associated flow rule is considered for both models and they require almost the same

number of constitutive parameters (11 and 12 parameters for the EPIH and EPKHmodels respectively). The simulated responses

are shown in Figure 13 .
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Elastoplastic models

FIGURE 13 Elastoplastic constitutive relations: simulated response to the circular stress loading path for an isotropic hardening
mechanism (EPIH model, after Saleeb and Lou36) and a kinematic hardening (EPKH model, after Cambou and Jafari37) in
addition to the isotropic one.

The EPIHmodel does not lead to any noticeable deformation during the initial compression at constant mean pressure contrary

to what was observed experimentally. According to the authors36 it is the consequence of a too high shear elastic modulus

(which would implicitly means the deformation during this first phase is essentially elastic). Then deformations induced by the

circular stress loading are largely underestimated, no hysteresis is described concerning the deviatoric strain and a very slight

volume increase is predicted instead of a global compaction. The analysis of the experimental data19 shows the irreversible

compaction of the sand sample occurs around the directions of compression ('� = −120, 0, 120, ..., deg) whereas the dilatancy

is observed in the vicinity of the directions of extension ('� = −60, 60, 180, ..., deg). Consequently, the EPIH model fails to

describe the global compaction probably because the stress path stays within the yield surface, avoiding the development of

plastic deformations, particularly for the directions of compression where a plastic compaction would be expected.
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Concerning the EPKH model, the prediction of the deviatoric and volumetric strains during the initial compression phase at

constant mean pressure is excellent (even better than with the INL2 relation). Similarly, predictions are also very good at the

very beginning of the circular loading up to a Lode angle of about -90o. In other words, as long as the Lode angle is nearly

fixed the model give a very good prediction but then deformations are underestimated and a dilatant volumetric behaviour is

predicted instead of a contractive one. Cambou and Jafari37 explained that the yield surface was pushed in the direction of s3

(i.e. the direction of compression) during the initial compression. Then plastic strain develops at the beginning of the circular

loading; but, at a given point, the stress path points inward the yield surface and the simulated response turns into an elastic one

limiting the plastic compaction of the medium.

Putting the simulations with the discrete element models in perspective with respect to the two last ones based on elasto-

plastic models shows that, although the predictions with the DEM on the circular path is not quantitatively totally right, they

are generally safer than those from the elastoplastic models (which are actually advanced elastoplastic constitutive relations).

Probably because all the possible irreversible mechanisms at the grain scale implicitly taken into account with the DEM cannot

be described via some few yielding surfaces. Increasing the number of yielding surfaces and the related hardening mechanisms

(requiring each time additional parameters to be defined) would improve the prediction, but for very high number of yielding

surfaces it will actually tend towards a fully incrementally non-linear relation as the INL2 model.

The quality of the prediction of the discrete element models in the hardening regime could eventually be improved thanks

to a more thorough description of the soil micro-structure (grain shape) and its initial state (fabric and connectivity). However,

this would imply more sophisticated models and sample generation processes30,38 more heavy to implement for a routine use.

An example is given here with the DEM-R model for which the connectivity of the initial granular assembly has been chosen

such that the model presents a stiffness in the hardening regime closer to the experimental one. All the mechanical parameters

of the model identified in the initial calibration were kept the same (Table 2 ) and the initial sample density is also unchanged.

Initial states of the granular assembly at a fixed density and different coordination numbers (i.e. different average numbers of

interactions per particle) were achieved by adding an inter-particle adhesion during the isotropic compaction of the numerical

sample. This inter-particle adhesion is then removed at the end of the isotropic compaction.

The “new” calibration of the model with an initial coordination number of 2.23 (instead of 3.35 for the initial calibration)

is presented in Figure 14 . Thanks to this improvement the experimental stress-strain response in the hardening regime is now

well described. The simulated response to the circular stress loading path with this new calibration is compared with the initial

“blind prediction” in Figure 15 . As the stiffness in the hardening regime has been reduced with the new calibration, thanks to a

lower initial connectivity, the deformations generated by the circular stress path are slightly more important. Hence the change

brought by the new calibration is in the right direction, but this improvement is not enough to reproduce closely the strain path
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Model: DEM-R

FIGURE 14 Calibration of the initial coordination number for the DEM-Rmodel with respect to the axisymmetric compression
test CH5, the initial calibration of the model is also shown for comparison.

in the deviatoric strain plane, as well as the volume change.

To investigate other possibilities for improving the prediction on the circular stress loading path with the discrete models a

short parametric study is presented in the following. Moreover, in order to stay within the scope of this paper, considering the

rather simple numerical models DEM-R and DEM-C as defined so far, the calibration of the coordination number as discussed

previously is discarded. Only some contact parameters, and the initial sample density are concerned by this parametric study.

There is no constitutive parameter for the DEM-R and DEM-Cmodels independently related to the stiffness of the stress-strain

response in the hardening regime. Nevertheless, some mechanical parameters or the initial density can impact this behaviour

but they will also affect other mechanical properties. For instance the contact friction angle will impact the hardening behaviour

but also the maximum shear strength and the dilatancy, as the initial density; or the contact stiffness will also affect the initial
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Model: DEM-R

FIGURE 15 Simulation of the circular stress path with the DEM-R model for which the coordination number at the initial state
has been calibrated; comparisonwith the previous “blind prediction” (performedwith the initial calibration) and the experimental
result.

macroscopic stiffness. Consequently, the improvement of the simulated response in the hardening zone through such a parametric

study will necessarily result in a degradation of the prediction of other macroscopic mechanical properties.

For the DEM-Rmodel a slight increase of the initial porosity (n = 0.369 instead of n = 0.359, line “looser state” in Fig. 16 ) or

a slight reduction of the contact friction angle ('c = 17o instead of 'c = 19o, line “smoother contacts” in Fig. 16 ) are sufficient

to almost correct the too low deformations predicted by the “blind prediction” as the model is globally less stiff. However, as

expected the initial calibration with respect to the axisymetric compression test CH6 has been degraded: the maximum shear

strength and dilatancy are now underestimated as shown in Figure 17 .

A similar trend is observed with the model DEM-C as shown in Figures 18 and 19 . A looser initial state (relative density

of 73.3 % instead of 93.3 %), or smoother contacts ('c = 16o instead of 'c = 19o), or even softer contacts (Ec = 100 MPa

instead of Ec = 150 MPa) result in larger deviatoric deformation. However, in the case of this model a contractive behaviour
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Model: DEM-R

FIGURE 16 Comparison of the simulated responses to the circular stress loading with the DEM-R model for the parameters
calibrated from test CH6 (blind prediction) and for a looser initial state or smoother contacts.

(as observed experimentally) was never reached, and even a globally dilatant behaviour is found in the “smoother contacts”

case. The latter case is the one which has led to the more important shear strength reduction (Figure 19 ) and consequently the

circular stress loading is more prone to activate an irreversible dilatant response occurring beyond the characteristic state.

A final attempt is carried out with the DEM-C model by using the clump C2 instead of C1 (Figures 3 c & d), corresponding

to a reduction of the clump elongation by a factor 2. As the elongation affects the overall macroscopic mechanical properties,

the calibration of the other parameters of the model from test CH2 have been repeated by taking into account this new clump

shape. The calibration result is presented in Figure 6 and the new values of the model parameters are: 'c = 38o,Ec = 100MPa

and �s = 1 for an initial relative density of 34.5 %. With this set of parameters the response to a drained compression is very

similar to the one given by the parameters used for the “blind prediction” excepted the shear strength at large deformation which
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Model: DEM-R

FIGURE 17 Simulations of the calibration test CH6 with the DEM-R model for a looser initial state and smoother contacts
than the ones used for the blind prediction.

depends on the clump elongation only and cannot be corrected from the other model parameters. As the pre-peak behaviour

is rather the same, the simulated response to the circular stress loading path with clump C1 (“blind prediction”) and C2 are

very close (Figure 20 ). In other words, as the clump elongation is directly related to the critical state it cannot really affect the

simulated response to the circular stress loading which is mainly fixed by the mechanical behaviour in the hardening regime and

close to the maximum shear strength.

This parametric study shows that a change in the parameters of the models (DEM-R or DEM-C) leading to a reduction of

the stiffness in the hardening regime, and accompanied by a reduction of the maximum shear strength, make possible a better

prediction of the strain response to the circular stress loading. This is at least true in the deviatoric strain plane where some of the

numerical predictions are even very good. On the contrary, a reduction of the stiffness in the hardening regime only (i.e. without

a reduction of the maximum strength), as obtained by tuning the sample connectivity at the initial state, improves slightly the
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Model: DEM-C

FIGURE 18 Comparison of the simulated responses to the circular stress loading with the DEM-C model for the parameters
calibrated from test CH2 (blind prediction) and for a looser initial state, smoother contacts, and softer contacts respectively.

prediction of the strain response but was not enough to reach a really satisfying result. A conclusion from these results could

be that there is experimentally a progressive degradation of the contact properties between sand grains along the circular stress

loading performed at a mean pressure of 500 kPa. Such a degradation would result in a slight reduction of the maximum shear

strength at the macroscopic scale. It could also participate to the important irreversible reduction of volume occurring when the

stress path is around the directions of compression (i.e. for '� close to -120; 0 and 120o) that the models (DEM-R, DEM-C,

but also the elasto-plastic relations) fail to describe correctly. Hence a better description of the initial state of the sand sample

would not be the only improvement to bring to the DEM-R and DEM-C models. Nevertheless, without available experimental

data concerning the sand after the circular stress loading, the question of the degradation of the sand grains stays open.
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Model: DEM-C

FIGURE 19 Simulations of the calibration test CH2 with the DEM-C model for a looser initial state, smoother contacts, or
softer contacts than the ones used for the blind prediction.

6 CONCLUDING DISCUSSION

Two discrete element models were considered in this paper, one implementing clumps made of two spherical particles (DEM-

C), the other considering a resistance to the rolling at the contact point between spherical particles (DEM-R). As illustrated

in the section 5.3, there is no strong differences in the quality of the prediction (in both qualitative and quantitative points of

view) between these two models. Nevertheless, the prediction ability of the DEM-R model may be considered as slightly more

refined, probably because of the too simple clump shape considered for the DEM-C model resulting in a too high rotation of

clumps around their axis of symmetry (see Figure 3 c & d). The three-dimensional angular shape of the Hostun sand, used

here as reference, may be better taken into account with a contact law including a resistance to rolling, even if it can be viewed

as a less direct (or more phenomenological) approach than the use of clumps. Despite this difference, the comments given here

after holds for both types of models.
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Model: DEM-C

FIGURE 20 Comparison of the simulated response with the model DEM-C to the circular stress loading with two different
clump elongations.

A strong advantage of the discrete numerical models is their good prediction ability in the range of large deformations for

monotonous or cyclic loadings (at least for a low number of cycles since the case of numerous cycles -hundreds or more- has

not been checked in this study), together with a calibration process requiring a single compression test. In such cases the loading

history play an important role and it is implicitly embedded in the model. The explicit description at any loading step of the

micro-structure and of the inter-particle interactions constitutes a memory of the previous loading (as it does in real granular

material), and ad hoc history parameters as defined in phenomenological relations are useless.

In return, the simulated response for low deformations and monotonous loadings may depend on the initial micro-structure.

It can constitute a drawback in the sense it may not be straightforward to simulate the process (followed in laboratory to create

the soil sample, or resulting of the natural soil sedimentation) leading to the initial state of the soil. Besides, the possible

degradation of the particles of the soil under a relative high stresses, is completely discarded by the considered models. In
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this paper the simulations of the deformations for the circular loading stress path constitute an illustration of the limitations of

discrete models in these conditions. Another illustration of the drawback related to the initial state can be found in Aboul Hosn et

al.29 where constitutive simulations with the DEM-Rmodel have been compared with mechanical tests performed on very loose

sand samples (created by moist tamping and with an initial relative density of 20 %39). The validation of the model on loading

paths, different from the calibration paths, were far to be conclusive. This was assumed to result from the very particular sand

micro-structures (made of macropores40,41) obtained with the moist tamping technique and not suitably represented through the

generation of the numerically sample.

Consequently, it is not because the discrete numerical model appears in this paper as rather efficient to describe the mechan-

ical constitutive behaviour of an initially dense Hostun sand, that the model can be expected efficient as well for other granular

soils, or even the same Hostun sand but with a different initial micro-structure. Of course, numerical preparation methodologies

simulating a micro-structure closer to the real one could be implemented, however this departs from the objective in this paper

to keep the models and their implementations rather simple for a possible use in an engineering context.

To resume, for initially dense granular soils, discrete numerical models should present a good quantitative prediction of the

mechanical response in particular at large deformations (for instance to describe the failure and some complex mechanisms

related to the ultimate state behaviour of a structure) or even in cyclic conditions. If in addition only few information is avail-

able to calibrate the model (for instance a single drained compression or even a single direct shear test) discrete models could

even be the only model reasonable to consider for prediction on complex loading paths. For low deformations (as occurring

typically when structures are designed with respect to serviceability limit state criteria) and monotonous loadings, classical

non-associated phenomenological constitutive relations where the hardening regime can be adjusted with ad hoc parameters

(as elasto-plastic constitutive relations) could be preferable to a discrete numerical method. The predictions of such constitu-

tive relations in these conditions can be reasonable, with probably a more straightforward use and representing for sure a much

lower computational cost. Nevertheless, as soon as a significant part of the soil body is subjected to non-proportional loading

paths (i.e. not rectilinear, as the circular stress loading path considered in this paper), a conventional elasto-plastic relation may

produce wrong material responses. On the other hand the discrete element method will very probably always give reasonable

responses and more physically acceptable results, since the most significant physics is taken into account in this method.
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