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Abstract
The purpose of this study is to prepare a source of re-

alistic looking images in which optimal steganalysis is pos-
sible by enforcing a known statistical model on image pixels
to assess the efficiency of detectors implemented using ma-
chine learning. Our goal is to answer the questions that
researchers keep asking: “Are our empirical detectors close
to what can be possibly detected? How much room there
is for improvement?” or simply “Are we there yet?” Our
goal is achieved by applying denoising to each image in a
dataset of real images to remove complex statistical depen-
dencies introduced by processing and, subsequently, adding
noise of simpler and known statistical properties that al-
lows deriving a closed form expression of a likelihood ra-
tio test. The theoretical upper bound informs us about the
amount of further possible improvement. Three content-
adaptive stego algorithms in the spatial domain and simple
LSB matching are used to assess the performance of a con-
volutional neural network detector and a detector based on
rich models with respect to the derived upper bound on per-
formance. The short answer to the posed question is “We
are much closer now but there is still non-negligible room
for improvement.”

Motivation
Steganography is the art of covert communication in

which messages are hidden in cover objects so that the
very existence of the secrets cannot be established. The
objective of steganalysis is to detect the usage of steganog-
raphy and do so as reliably as possible. A popular choice
for cover objects today are digital multi media files, such
as digital images, audio, and video. Such objects are
ideal for covert communication for two reasons. They con-
tain an indeterministic component, the acquisition noise,
that helps mask the presence of steganographic embed-
ding changes. Additionally, the inherent complexity of
these objects is hard to capture using tractable and es-
timable statistical models, which further complicates de-
tection. Steganographers fine-tune their embedding algo-
rithms to locally adapt to content complexity since com-
plicated textures and small-scale details are extraordinar-
ily difficult to model statistically. This forced stegana-
lysts to use complex high-dimensional (rich) media mod-
els [14, 20, 8, 15, 16, 25, 10, 11, 2] and, recently, non-linear
hierarchical models with a large number of parameters,
deep neural networks [23, 1, 29, 28, 30, 31, 34, 6, 27, 33].

It should be stressed that, fundamentally, it is the un-
availability of statistical models for natural images that is
responsible for this seemingly never ending spiral develop-

ment. Steganography in artificial sources (sources with a
known statistical model) can be perfectly secure1 as cov-
ers can be synthesized [3] to communicate at a positive
rate (payload whose size is linear w.r.t. the number of
cover elements) [22, 26]. Likewise, optimal detectors of im-
perfect steganography methods in artificial sources can be
constructed and their performance computed.

The situation is quite different for empirical sources
that lack description using tractable and estimable statis-
tical models. All steganographic methods inevitably be-
come imperfect and the size of their secure payload sub-
linear in the number of pixels due to the so-called square
root law [19, 13, 18, 17]. Detectors can be built that can
distinguish between cover and stego objects better than
randomly guessing. Without a cover model, however, we
are unable to assess how good our steganography methods
are and how well our detectors perform.

This paper is an attempt to address this problem by
forming an artificial source of realisticly looking images
while forcing a known statistical model on pixels to al-
low derivation of optimal statistical tests for benchmarking
empirical detectors built using machine learning. While it
is entirely possible to synthesize artificial images for this
purpose, the authors believe that it is valuable to keep a
more realistic dataset with images visually similar to pop-
ular sources, such as BOSSbase 1.01 [4], in which content
adaptive schemes execute changes with a similar selection
channel as in the original source. We also need to avoid
sources in which steganography would be too easy or too
hard to detect while making sure that an optimal detector
can be derived. Since these requirements are in conflict,
preparing a suitable source of both cover and stego images
is quite challenging

The idea for the cover source proposed in this paper
was inspired by the experiment reported in Fig. 5 of [24].
The authors selected one BOSSbase image, denoised it, and
then created 10,000 different versions of the same image by
adding to it 10,000 independent realizations of sensor ac-
quisition noise. Steganalysis in such a homogeneous cover
source with the spatial rich model (SRM) [14] and MiPOD
embedding algorithm [24] was reported to be rather close
in terms of the Receiver Operating Characteristic (ROC)
to the optimal statistical test designed for the noise com-
ponent. However, for a heterogeneous source with images
of diverse content, the SRM detector lagged behind the op-
timal Likelihood Ratio Test (LRT) quite a bit most likely
due to the inability of the empirical detector to deal with

1In Cachin’s sense [7].
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the diversity of natural images (Fig. 6 in [24]).
The strategy adopted in this paper is to start with an

existing dataset, apply a denoising filter to all images to re-
move complex noise introduced during acquisition and the
subsequent development of the image from the raw sensor
capture to a viewable form. Then, independent realizations
of a Gaussian noise whose variance was estimated per pixel
from the original images is reintroduced to force a known
and tractable noise model in the cover source. This needs
to be executed with care to prevent introducing depen-
dencies among stego pixels. In particular, the pixels costs
cannot be computed from the cover itself as the stego pix-
els would be dependent, which would prevent derivation of
a closed-form LRT.

The proposed cover source dataset is described in the
next section. TBD

Cover source
In this section, we first describe in detail the cover

source preparation and then discuss the specific choices
that were made.

The cover source was generated the from the union
of BOSSbase 1.01 [4] and BOWS2 [5] grayscale images re-
sized from their original 512× 512 size in Matlab (using
’imresize.m’ with default parameters) to 20,000 256×256
grayscale images. The smaller image size was selected in
anticipation that the best empirical detectors will be deep
neural networks, which typically require smaller images for
effective training to fit reasonable size minibatches to the
memory of current GPUs. We note that the leading per-
formers in the spatial domain, the YeNet [32], Yedroujd-
Net [33], and the SRNet [6], were trained and benchmarked
on this same database. The union of both databases with
20,000 256× 256 grayscale images will be denoted B. We
note that should future deep architectures require more
than 20,000 images, cropping instead of resizing the origi-
nal images would produce four times as many, 80,000 im-
ages, for a bigger dataset.

The formation of the dataset is explained in five steps
and an additional, sixth, step needed for creating the stego
images in a way that allows computation of an optimal
statistical test.

Step 1: Estimate pixel variance
MiPOD’s variance estimator (Section V in [24]) was

applied to all 20,000 images from B to estimate the local
variance of pixels’ noise residual. For a given image and its
pixel (i, j), 1≤ i, j ≤ 256, we denote its estimated variance
σ2
ij . Note that the output of MiPOD’s estimator is lower

bounded: σ2
ij ≥ 0.01 for all (i, j).

Step 2: Denoising
All images from B were first denoised to remove com-

plex dependencies among pixels introduced by the RAW
developer and subsequent processing. We used the wavelet
denoising method described in [21] with Daubechies 8-tap
wavelets and standard deviation of the removed Gaussian
i.i.d. noise σden = 10. The pixel values in the denoised im-
age were left in their non-rounded form but were clipped

to the interval corresponding to 8-bit grayscale images
[0,255].

Step 3: Narrowing dynamic range
As the third step, the dynamic range of each denoised

and clipped image was narrowed to the range [15,240] by
linearly mapping the interval [0,255] to [15,240] using :

g(x) = 15+ 225
255x. (1)

The scaled values were also rounded to integers, which
we will denote µij ∈ {15, . . . ,240}. The resulting 8-bit
grayscale image with a narrower dynamic range, which we
denote µij , will next be noisified with the variances esti-
mated in Step 1 and further adjusted in Step 4.

Step 4: Adjusting the variance
The estimated pixel variances σ2

ij were adjusted so
that the probability of a pixel getting out of the 8-
bit dynamic range [0,255] after noisification is at most
2.87×10−7, the probability of a one-sided 5σ-outlier. This
was done by making sure that σij is smaller or equal to
one fifth of the distance between the pixel mean µij to the
dynamic range boundary (0 or 255) :

σ′ij = min
{1

5 min{µij ,255−µij},σij
}
. (2)

Additionally, we also introduced a floor for the vari-
ance to be able to simplify the optimal test using the fine
quantization limit approximation :

σij = max{σ′ij ,σ0}. (3)

In this paper, experimented with σ0 ∈ {0.5,1}.

Step 5: Noisifying
The noisified pixel cij is obtained by adding to µij a

sample ξij from N (0,σ2
ij), rounding to an integer and clip-

ping to [1,254] to make sure the embedding will be free to
modify all pixels by ±1 without getting out of the dynamic
range. In other words, in our dataset we impose the cover
image model from MiPOD – pixels are realizations of inde-
pendent Gaussian variables N (µij ,σ2

ij) that are rounded
to integers (denoted with the square bracket [·]), and then
clipped to a finite dynamic range. Symbolically,

cij = [µij + ξij ] (4)

cij =


cij if 1≤ cij ≤ 254
1 if cij ≤ 0
254 if cij ≥ 255.

(5)

The cover image pixels thus follow a p.m.f. pij , cij ∼
pij :

pij(m) =



0 m= 0
Qij
(
m− 1

2
)

m= 254
Qij
(
m− 1

2
)
−Qij

(
m+ 1

2
)

1<m< 254
1−Qij

(
m+ 1

2
)

m= 1
0 m= 255
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(6)

with Qij(x) defined as the tail probability of N (µij ,σ2
ij) :

Qij(x), Pr{N (µij ,σ2
ij)> x}. (7)

The values cij form the data source used in our exper-
iments. This cover source will be denoted B(σ0).

Stego images
The stego methods used in this study are all ternary

embedding algorithms that change the (i, j)th pixel by ±1
with equal probability βij . Since we curbed the cover val-
ues in Step 5 to the interval [1,254], the embedding does
not need to be constrained in any way – all pixels can
be changed either way. For content adaptive steganog-
raphy, the probabilities (change rates) βij are determined
from pixel costs, which are typically computed from a local
neighborhood of pixel (i, j). This dependence is quite com-
plicated as the costs are usually computed in a non-linear
fashion from outputs of several high-pass filters. Thus,
computing βij from the noisified cover cij would create
complex dependencies among stego pixels, preventing thus
a closed-form expression for the distribution of stego pixels
and tractable evaluation of the associated likelihood ratio
test.

We resolved this problem by computing the pixel costs
(change rates βij) from the corresponding original image
from B. Another possibility is to compute the costs from a
different independent noisification of the image. Both ver-
sions gave similar results in our experiments. The former
was used as default for the rest of this paper.

Since βij now does not depend on the specific noisifi-
cation of the image and since the embedding changes are
executed independently, the stego pixel p.m.f. is factoriz-
able. In particular, it is a product of the following Gaussian
mixtures qij over all pixels :

qij(m) = (1−2βij)pij(m) +βijpij(m−1)
+βijpij(m+ 1). (8)

For S-UNIWARD, HILL, and WOW, the change rates
were obtained from an embedding simulator (e.g., assum-
ing optimal source coding).

Optimal test
Given an image with pixels sij , the steganalyst is fac-

ing the following statistical hypothesis test for all (i, j) :

H0 :sij ∼ pij
H1 :sij ∼ qij . (9)

We will assume that the parameters of the added MVG
noise, the mean µij , and the variance σ2

ij , are known. We
also assume that the change rates βij are known. Un-
der these assumptions, the test is simple, and the optimal
statistic is the log-likelihood ratio

Λ(s) =
∑
i,j

Λij =
∑
i,j

log
(
qij(sij)
pij(sij)

)
(10)

by the statistical independence of pixels. For convenience,
we will use the following normalized form of the log-LRT :

Λ?(s) =

∑
i,j Λij −EH0 [Λij ]√∑

i,j V arH0 [Λij ]
, (11)

where

EH0 [Λij ] =
∑
i,j

pijΛij (12)

V arH0 [Λij ] =
∑
i,j

pijΛ2
ij −

(
EH0 [Λij ]

)2
. (13)

Under the fine quantization limit, σ0 ≤ σij for all i, j,
and as the number of pixels approaches infinity, the Lin-
deberg’s version of the Central Limit Theorem implies

Λ?(s) 
{
N (0,1) under H0
N (%,1) under H1

, (14)

where  means convergence in distribution and % =∑
i,j σ

−4
ij β

2
ij > 0 is the deflection coefficient.

Discussion
The denoising step in the preparation of the cover

source is essential because we give the means of the MVG
(the denoised signal) to the optimal test while the network
would have to deal with the complexity of numerous noise
sources that occur in natural images. By adding the MVG
to the denoised image, we force the cover complexity to
be primarily in the noise component. This way, both the
optimal test and the network need to deal with the con-
tent complexity due to indeterminism, the added noise. Of
course, the network still needs to learn a model for the
(heterogeneous) denoised content.

Because the added noise mimics the content complex-
ity of the original image (a combination of the indetermin-
ism in the original image and texture), when the change
rates βij are computed from the noisified cover cij , the
costs profile (change rates) of the tested content-adaptive
algorithms looks similar to the costs (change rates) com-
puted from the original image from B (see Figure 1). This
justifies our choice of computing the change rates from the
original image.

Note that since pij(0) = pij(255) = 0, the boundary
values do not occeur in covers from B(σ0), and whenever
the embedding produces these “forbidden” values, the LRT
becomes infinity, arranging for a perfect detection in this
case. Fortunately, due to our choice of the standard devi-
ation σij (2)–(3), this occurs with very small probability.
In our tests, we typically saw at most one such image.

The scaling and clipping of the dynamic range in
Step 3 was also necessary because otherwise the embed-
ding would have to be adjusted not to change the bound-
ary value 255 up and 0 down, which would reintroduce
a dependence between a specific noisification cij and the
change rates βij , preventing the derivation of a closed-form
expression for the LRT.
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Figure 1. Sorted total change rate computed for ten images (above) from B(1) for HILL at 0.4 bpp. Blue: change rates computed from the original images,
Red: from noisified covers cij .
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Experiments
Figure 2 shows the ROCs of three detectors – the op-

timal LRT (11), the convolutional network SRNet [6], and
the maxSRM [12] with the low-complexity linear classi-
fier [9]. The SRNet and the maxSRM were trained on
2×15,000 images (out of which 2×1000 were used for val-
idation for the SRNet) randomly selected from our dataset
and tested on the remaining 2×5,000 images. The SRNet
was first trained on the “easier” dataset B(0.5) from a ran-
dom initialization. Then, the trained SRNet was used as
a seed for training on B(1). The LRT’s performance was
computed on the same testing set. Table 1 shows the com-
parison in terms of three scalar performance descriptors –
the minimal total error probability PE under equal priors

PE = min
FFA

1
2(PFA +PMD), (15)

the false-alarm rate at 50% detection, PFA(0.5), and the
missed-detection rate for 5% false alarm, PMD(0.05).

The SRNet is markedly better than the detector with
maxSRM. For S-UNIWARD, the gap between the bound
and the ROC of the empirical detector was roughly cut by
half. For HILL, there seems more room for improvement.
In both cases, our analysis shows space for improvement for
both embedding algorithms especially for low false alarms.

Justification of design choices
In this section, we provide a justification for the

choices made when creating the dataset in Section “Cover
source.” First, we demonstrate the impact of narrowing
the dynamic range of cover images and the effect of floor-
ing the noise variance with σ2

0 for noisification (the failure
to comply with the fine quantization assumption).

Figure 4 left shows the distribution of the normalized
LRT Λ? (11) under H0 on a dataset created by skipping
both Step 3, narrowing the dynamic range, and Step 4,
adjusting the variance for noisification, for the alternative
hypothesis with stego images embedded with S-UNIWARD
at payload 0.4 bpp. The right figure shows the same distri-
bution when including Step 3 but skipping Step 4. The val-
ues below the figures are the mean, variance, skewness, and
kurtosis. The normalized LRT is much closer to N (0,1)
when the dynamic range is narrowed but its skewness and
kurtosis still indicates deviations from a Gaussian distri-
bution.

This deviation is due to the failure of complying with
the fine quantization limit needed for the asymptotic re-
sult (14) to hold. To further investigate this issue, we se-
lected the BOSSbase image BOSSbase ’559.pgm’, which
contains many pixels with a small noise variance σ2

ij , and
executed the following experiment. The image was inde-
pendently processed 10,000 times as described in Section
“Cover model” with and without flooring the variance with
σ2

0 in Step 4. Figure 5 shows the distribution of Λ? for
the 10,000 noisifications for both the cover and stego ver-
sions of this image with S-UNIWARD at 0.4 bpp. The
top two graphs are for the dataset B(∞), i.e., when not
flooring the variance with σ2

0 while the bottom two graphs
show the effect of enforcing the fine quantization limit with

σ0 = 1. Notice that when not enforcing the fine quantiza-
tion limit, under both hypotheses (9) the distribution of the
LRT fails to follow (14) – the distribution is asymmetrical
with a thicker right tail, which is pronounced especially
for the alternative hypothesis. After flooring the variance,
however, both distributions become much closer to the ex-
pected limit N (0,1).

Finally, we comment on an alternative to scaling down
the dynamic range of the images to resolve the problem
with boundary conditions, and that is to skip the scaling
and allow the embedding to change pixel values to −1 and
256. Of course, the existence of a single pixel with one
of these two values is 100% indicative of embedding. The
LRT will “see” this since for such stego pixels the LR will
be infinite. However, an empirical detector that forms the
test statistic by computing noise residuals or convolutions
of the input image may not.

To test this approach, we prepared a different ver-
sion of our dataset in which the scaling (1) as well as the
variance adjustment (2)–(3) were skipped. The detection
performance of the LRT for S-UNIWARD at 0.4 bpp is
shown in Figure 6 together with the ROC for the SRNet.
The third ROC (SRNet-Adjusted) is for the performance
of the SRNet with its output augmented by the fact that
whenever pixels −1 and 256 are present in the image, it
is automatically labeled as stego. The performance of this
“informed” SRNet is very close to the theoretical upper
bound. Figure 7 shows the distribution of the normalized
LRT across cover images. Notice that the distribution in-
deed matches N (0,1) even though it is still slightly asym-
metric. This is because we do not have the fine quantiza-
tion assumption satisfied. This measure was not selected
for our experiments, however, because of the rather artifi-
cial setup as the stego images are not really images.

I am not sure about this experiment as we ig-
nore the fine quantization limit condition here. It
would make sense if we floored the variance. Shall
we redo?
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Figure 6. ROCs when permitting changes to −1 and 256, “SRNet-
Adjusted”: helping SRNet by pronouncing the test image ’stego’ if it contains
−1 or 256.
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Figure 2. ROCs for (top down) S-UNIWARD, HILL, WOW at 0.4 bpp, and LSBM for total change rate β = 0.03 for the optimal test (LRT), SRNet, and
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PE PFA(0.5) PMD(0.05)
HILL SUNI WOW LSBM HILL SUNI WOW LSBM HILL SUNI WOW LSBM

SRNet .2521 .2348
maxSRM .2847 .3078

LRT .1826 .1611

Table 1. Performance of three empirical detectors in terms of PE, PFA(0.5), and PMD(0.05).
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Figure 3. Contrasting the performance of the LRT and SRNet for payloads 0.2, 0.4, and 0.6 bpp for S-UNIWARD on B(0.5) and B(1). Place holder only.
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with Step 3 included but not Step 4. The values below the figures are the mean, variance, skewness, and kurtosis.
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Figure 5. Distribution of Λ? and its mean, variance, skewness, and kurtosis for 10,000 different noisifications of BOSSbase image ’559.pgm’. Left: covers,
Right: stego images for S-UNIWARD 0.4 bpp. Top: dataset B(∞), Bottom: B(1).
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Figure 7. Distribution of the normalized LRT on cover images across the
dataset when permitting changes to −1 and 256. S-UNIWARD at 0.4 bpp.

Conclusions
TBD
All code used to produce the results in this paper,

including the network configuration files are available from
http://dde.binghamton.edu/download/.
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