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Abstract: In this paper, we propose informed weighted non-negative matrix factorization (NMF)
methods using an αβ-divergence cost function. The available information comes from the exact
knowledge/boundedness of some components of the factorization—which are used to structure the NMF
parameterization—together with the row sum-to-one property of one matrix factor. In this contribution,
we extend our previous work which partly involved some of these aspects to αβ-divergence cost functions.
We derive new update rules which are extendthe previous ones and take into account the available
information. Experiments conducted for several operating conditions on realistic simulated mixtures of
particulate matter sources show the relevance of these approaches. Results from a real dataset campaign
are also presented and validated with expert knowledge.

Keywords: non-negative matrix factorization; informed NMF; robust cost function; source apportionment;
air pollution

1. Introduction

Source apportionment consists of estimating the particulate matter (PM) sources present in the
ambient air together with their relative concentrations. A source is fully characterized by a profile which
gathers the m chemical species’ proportions (expressed in ng/µg) that constitute it. Usually, several,
say n, PM samples are collected using an automated sampler, then characterized to asses the chemical
composition. Each of them can be written as a mixture of p profiles, with different concentrations
(expressed in ng/m3). Mathematically, if we respectively denote by X, G, and F as the non-negative n×m
data matrix, n× p contribution matrix, and p×m profile matrix, the collected data reads

X ≈ G · F. (1)

While being known under the name of (blind) source separation in the signal/image processing
community, Equation (1) is called the receptor model in the chemistry community. In practice, the latter
should satisfy the following properties [1]:
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1. The entries of G and F are non-negative (one cannot assume a negative mass in G nor a negative
proportion of chemical species in F).

2. The product G · F must fit the data matrix X.
3. When one entry of the product (G · F)ij does not fit the entry xij, we should then check

xij � (G · F)ij, (2)

i.e., the estimated mass of a chemical species in a sample should not be above the corresponding
measured one.

As a consequence, estimating the unknown matrices G and F is mainly performed using positive
matrix factorization (PMF) [2] and, in particular, using its popular version from the US Environmental
Protection Agency.

Independently from the PMF investigations done by the chemistry community, Equation (1) has
been massively considered by the signal/image processing and the machine learning communities which
processed it with non-negative matrix factorization (NMF) techniques [3].

The general idea behind NMF is to minimize a discrepancy measure between X and the estimated
product G · F. Such a problem has been extensively studied in the past years. Historically—apart from
pioneering work [4]—most methods are based on an alternating optimization of the factor matrices.
NMF has been massively investigated because of the more interpretable results it provides when compared
with methods without sign constraints. NMF was successfully applied to many fields, e.g., hyperspectral
unmixing [5,6], astrophysics [7,8], fluorescence spectroscopy for agro-food analysis [9], audio signals [10],
or environmental data processing [11].

It should be noticed that NMF is flexible and can take into consideration additional assumptions to
provide a better estimation of the NMF factors. In the literature, assumptions such as sparseness [12,13],
fixed row and/or column sums [13,14], structure in the matrix factors [15,16], or orthogonality
constraints [17] were investigated.

Solving Equation (1) can be performed by appropriately choosing a discrepancy measure between
X and GF. When this measure is the Frobenius norm of their difference, the possible presence of a few
outliers may corrupt the NMF enhancement. As a consequence, robust NMF methods were proposed to
deal with a predefined number of outliers. While some of them decompose the data matrix into the sum
of a low-rank and a sparse matrix—where the latter contains the outlying component [18]—most ones
consider some modified cost functions as dissimilarity measures which gave rise to flexible and robust
algorithms, e.g., Bregman-NMF [19], α-NMF [20], β-NMF [21,22], αβ-NMF [23], Correntropy-NMF [24],
Huber-NMF [25] (it should be noticed that the Huber cost function has also been considered for robust
PMF [26]).

Lastly, it should be noticed that in receptor models, each data point xij is provided with an uncertainty
measure σij and PMF actually solves a weighted optimization problem [4,26]. Weighted extensions of NMF
have been also considered, e.g., to enhance the factorization [27] or to deal with missing entries [28,29].
However, it is known than both the PMF [30] and the standard NMF techniques face some convergence
issues (however, the convergence of NMF is guaranteed under some separability assumptions [3] which
are not satisfied in practice in the considered application and which are thus out of the scope of this
paper) [3].

As a consequence, we investigated the enhancement provided by informed NMF. In Ref. [31], the use
of a Gaussian plume model enables us to assess the presence or absence of some punctual sources,
depending on wind measures, and source and sensor locations which allowed us to fix some entries of
G to zero. In the absence of a punctual source, such an information should be dropped. In Ref. [32],
an informed NMF-based weighted criterion takes into consideration the known values of some terms of F
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(Informed NMF has also been proposed in [33] where the known entries are seen as a penalization term in
the NMF optimization problem) in order to improve the separation. For that purpose, we introduced a
specific parameterization for NMF methods using a Frobenius norm. This approach should be considered
as a flexible NMF counterpart of [34] in between blind source separation—where no information on F is
provided—and regression, where F is fully known. While it was shown in practice to be less sensitive than
blind NMF to convergence issues, this method can still be affected by outliers which are present in many
receptor modeling problems.

In this paper, we thus extend our previous work [32] by (i) investigating and discussing several
αβ-divergence expressions, (ii) exploring different data normalization procedures combined with set
values (as profiles are chemical species proportions, the rows of F are normalized), and (iii) adding
minimum and maximum bounds to some of the unknown values of F. The methods we propose in this
paper have been partially introduced in [35,36], in the framework of the β-divergence only. We generalize
here [35,36] to the αβ-divergence and we provide a detailed study of their performance, shown on both
realistic simulations and real data campaign.

The remainder of the paper is structured as follows. We recall some properties of the αβ-divergence
in Section 2. Section 3 introduces our proposed NMF parameterization—which puts on light the special
structure of the profile matrix in the NMF algorithm—while Section 4 is dedicated to the problem
formulation. We introduce our proposed methods in Section 5 that we test in Section 6. Lastly, we
conclude about the proposed work in Section 7. Appendix A introduces update rules for an alternative
informed αβ-NMF method.

2. Robust Cost Functions

2.1. Introduction to Modified Cost Functions

Chemical data often face some particular measures whose characteristics substantially differ from
those which are commonly observed. From a signal processing point of view, such data may be considered
as outliers which may degrade the performance of classical algorithms using the Frobenius norm in their
cost function. Such an issue is often addressed in the field of robustness where the challenge is to design
new algorithms which take into account the above corrupted data.

Apart from the low-rank plus sparse decomposition [18], robust NMF algorithms using modified cost
functions were investigated. Indeed, these robust functions provide less penalization to large entries of the
residual matrix, which is defined as

R , X− G · F. (3)

Among them, the Huber cost function accounts for the differentiable connection between the `2

and `1 norms, according to the residual value with respect to an adaptive cutoff parameter. Another
popular modified cost function stands for the correntropy measure [24] which accounts for a bounded and
non-convex discrepancy measure.

In contrast with the above measures, the αβ-divergence is not a norm as it is not symmetrical. Figure 1
shows an example of the behavior of such functions which are penalizing the values of the residual in
different ways. As mentioned earlier, the αβ-divergence is the only cost function to present a possible
asymmetric behavior around the null residual value. Hopke [1] highlighted the need for methods dedicated
to chemical source apportionment which enforce a positive residual value. This situation fits well with the
configuration described in Figure 1.
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Figure 1. Behavior of several dissimilarity measures with respect to the residual value.

2.2. αβ-Divergence

The αβ-divergence (For special values of α, β, the reader is invited to consult [23]) is a parametric
discrepancy measure which may be used to evaluate the gap between two scalar quantities p and q, i.e.,
∀(α, β, α + β) 6= 0,

Dα,β(p||q) =
−1
αβ

(
pαqβ − α

α + β
pα+β − β

α + β
qα+β

)
. (4)

Special values of the parameters lead to very famous divergence measures [23], such as α-divergences
or β-divergences [21]. These divergences are different from classical norms in the sense that they check
some common properties—e.g., non-negativity—while others such as symmetry, scalability and triangular
inequality are not satisfied.

Cichocki et al. [23] study the influence of the parameters α and β on the robustness of the estimated
data (they also establish general connections between the general αβ-divergence and the scaled α

α+β -order
α-divergence with an α + β zoom of its arguments ). To this aim, they express the sensitivity to outliers by
computing the differentiation with respect to an unknown parameter here replaced for simplicity with an
entry of F, namely Frj, i.e.,

∂Dα,β(X ‖ X̂)
∂Frj

= −∑
i

∂X̂i,j

∂Frj
(X̂ij)α+β−1︸ ︷︷ ︸

weight

ln1−α(Xij/X̂ij)︸ ︷︷ ︸
α-zoom

, (5)

where
X̂ij , ∑

r
GirFrj , (G · F)ij, (6)

and

ln1−α(z) =

{
zα−1

α , if α 6= 0,
ln(z), if α = 0.

(7)
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Considering Equation (6), the expression
∂X̂i,j

∂Frj
= Gir may be replaced in Equation (5), leading to

∂Dα,β(X ‖ X̂)
∂Frj

= −∑
i

Gir (X̂ij)α+β−1︸ ︷︷ ︸
αβ weight

ln1−α(Xij/X̂ij)︸ ︷︷ ︸
α-zoom

(8)

For the sake of comparison, sensitivity equations of M-estimators [37] are usually designed for the
weighted Frobenius cost function (corresponding to α = 1 and β = 1 in a αβ-divergence), i.e.,

∂D1,1(X ‖ X̂)
∂Frj

= −∑
i

Gir Wij︸︷︷︸
weight

(X− G · F)ij︸ ︷︷ ︸
Residual entry

(9)

where Wij accounts for the general entry of the weight matrix. This weight is usually viewed as a confidence
index into the corresponding data. As a consequence, a large residual together with a large weight leads to
large modifications in the estimates. In the frame of Equation (8), the weight entry reads

Wij =
(X̂ij)α+β−1 ln1−α(Xij/X̂ij)

Rij
= (X̂ij)α+β−1︸ ︷︷ ︸

αβ weight

1
α

(Xij)α − (X̂ij)α

(Xij − X̂ij)︸ ︷︷ ︸
α-zoom weight

. (10)

Figure 2 describes the α-zoom weight as a function of the ratio
Xij

X̂ij
for different values of α. It turns

out that α < 1 provides small weight to large values of the ratio
Xij

X̂ij
. In other words, this situation does not

induce big changes in the estimates. Outliers such as Xij ≥ X̂ij will be allowed in this context.
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Figure 2. The α-zoom weight.

Equation (8) combines two effects, namely an α-zoom and an αβ weight effect. When α > 1,

the emphasis of the α-zoom is put on larger values of the ratio
Xij

X̂ij
while the emphasis is put on smaller

values of this ratio when α < 1. These properties are recalled in Table 1. The αβ weight effect in (X̂ij)α+β−1

is expressed as a function of α + β in Table 2.
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Table 1. Properties of α-zoom.

α 0 <
Xij

X̂ij
< 1 Xij

X̂ij
> 1

α > 1 small zoom large zoom
α < 1 large zoom small zoom

Table 2. Weighting effect on the αβ-divergence.

α + β 0 < X̂ij < 1 X̂ij > 1

α + β < 1 large weighting small weighting
α + β > 1 small weighting large weighting

To summarize, α can be used to control the influence of large or small ratios in the estimator through
the α-zoom, while β provides some control on the weighting of the ratios depending on the demand to
better fit to larger or smaller values of the model [23]. Gathering these properties, the space of values (α, β)
may be partitioned in several areas as described in Figure 3.

Figure 3. Different areas as a function of α and β.

Each zone allows a certain kind of outliers. Areas 1 and 2 allow outliers of the form Xij > X̂ij for large
and small amplitudes of X̂ij, respectively. Areas 3 and 4 accept outliers such as Xij < X̂ij for large and
small amplitudes of X̂ij, respectively. Areas 1 and 3 favor a better fit to small values of X while areas 2 and
4 favor a better fit to large ones. As a consequence, for our considered application, we propose to favor
a best fit for major species with respect to minor species. This leads to considering the case α + β > 1.
Secondly, if the estimation does not fit the data, we prefer keeping situations where Xij > X̂ij holds, as
explained in Section 1 and in [1]. This fact results in the choice α < 1. These two conditions give rise to
an area of interest which is area 2 and which is kept along the article (for convexity reasons in NMF [23],
area 2 should be delimited to β < 1).

2.3. Existing NMF Methods with Parametric Divergences

NMF methods are formulated as the global minimization of a cost function under the non-negativity
of both factors G and F. Aside from pioneering work [4], NMF is classically performed through an
iterative procedure which alternatively minimizes—for a fixed F (respectively G)—a discrepancy between
X and G · F. Multiplicative update rules were firstly proposed in [38] for the Frobenius norm and the
Kullback–Leibler divergence. While being easy to implement, multiplicative algorithms only ensure
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that the cost function does not increase within iterations, which is not sufficient for getting a limit point.
The study of NMF convergence through the Karush–Kuhn Tucker (KKT) conditions was explored by Lin
[39]; stationarity is only a necessary condition of a local minimum. Moreover, some limit points which are
not stationary may exist, especially if some components of F and G are initialized to zero.

Moreover, most algorithms are sensitive to the initialization and to the presence of outliers.
Parametric divergences may reduce the influence of this last drawback by an appropriate choice of
the hyperparameters.

Cichocki et al. [20] proposed multiplicative update rules with α-divergence. The developed rules
were based on the majorization-minimization (MM) strategy [40] but they may also be obtained in a
heuristic way by using the KKT conditions or partial derivatives of the cost function as well.

Févotte and Idier [21] proposed to use the β-divergence as a cost function and derived
different kinds of rules according to three different strategies involving the heuristic approach, the
majorization-minimization strategy [40] and a new one called majorization-equalization. This last strategy
provides a larger step size and a faster convergence. Hennequin et al. stated that the β-divergence could
be viewed as a special case of Bregman divergence [41], thus leading us to apply Bregman divergence
theorems to β-divergence. Cichocki et al. [23] proposed NMF based on generalized αβ-divergences in the
framework of majorization-minimization (MM).

Extending the work in [27,42] from the one hand and in [23] from the other hand, we introduced
in [35] a weighted β-NMF (β-WNMF) defined for β ∈ [0; 1]. It is straightforward to extend it to a Weighted
αβ-NMF which amounts to minimizing a weighted αβ-divergence,

min
G�0,F�0

Dα,β
W (X ‖ G · F) , min

G�0,F�0
∑
i,j

WijDα,β (xij ‖ (G · F)ij
)

, (11)

and yields
Fk+1 = Fk ◦ N α,β

F (Gk , Fk), Gk+1 = Gk ◦ N α,β
G (Gk , Fk), (12)

where

N α,β
F (G, F) ,

GT ·
(

W ◦ Xα ◦ (G · F)β−1
)

GT · (W ◦ (G · F)α+β−1)


1
α

, (13)

N α,β
G (G, F) ,


(

W ◦ Xα ◦ (G · F)β−1
)
· FT

(W ◦ (G · F)α+β−1) · FT


1
α

, (14)

and X ◦ Y and X
Y respectively denote the componentwise product and division between two matrices.

W is a weight matrix used to model the uncertainties σij associated to the data samples xij, and whose

general element wij is set to wij , σ
−(α+β)
ij . This approach encompasses several other methods, especially

αβ-NMF [23] if W = 1nm, i.e., for any i and j, wij = 1, and β-NMF [21] if additionally α = 1.
Apart from multiplicative updates, NMF based on alternating direction method of multipliers

(ADMM) were recently proposed [43] for their ability to perform distributed computations for large
scale data and in particular, Sun and Févotte introduced an approach based on the β-divergence [22] while
Zhu and Honeine [24] proposed a correntropy-based approach for large deviations. Such fast approaches
are not required for the considered chemical application where the global computation time is not an issue.
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3. Constraint Parameterization

In this paper, we assume the values of some components of the profile matrix F to be provided or
bounded by experts. We thus propose a formalism which takes into account this knowledge. It extends
our previous parameterization [32] which only considered equality constraints.

Let ΩE and ΩI be two p× m binary matrices which inform the presence/absence of equality and
inequality constraints on each element fij of the matrix F, respectively, i.e.,

ωE
ij =

{
1 if fij is known,
0 otherwise,

ω I
ij =

{
1 if fij is bounded,
0 otherwise.

(15)

We then define the p×m binary matrices ΩE and Ω
I as ΩE

, 1pm −ΩE and Ω
I
, 1pm −ΩI , where

1pm is the p×m matrix of ones. By construction, we obtain

ΩE ◦ΩI = 0, ΩI � Ω
E. (16)

We denote by ΦE the p×m sparse matrix of set values, i.e.,

ΦE , F ◦ΩE. (17)

Please note that ϕE
ij—the (i, j)-th element of ΦE—is equal to zero when ωE

ij = 0. We can easily prove that

ΦE ◦ΩE = ΦE, ΦE ◦ΩE = 0. (18)

Similarly, we define ΦI+ and ΦI− the p× m sparse matrices of upper and lower bounds (equality
constraints could be considered as inequalities, with the same upper and lower bounds. However, in some
preliminary tests, we found our proposed approaches to outperform those using bound constraints only),
respectively, i.e.,

ΦI− � F ◦ΩI � ΦI+. (19)

Let fi and ϕE
i be the i-th column of F and ΦE, respectively. A column fi may be expressed as

fi = ϕE
i + Γiθi , (20)

where θi and Γi are respectively the (p− li)× 1 vector of free parameters and the p× (p− li) orthonormal
basis of free parameters [32]. From Equation (20), we define ∆ fi as

∆ fi , fi − ϕE
i = Γiθi , (21)

and ∆F as the matrix gathering each column ∆ fi, i.e.,

∆F , F− ΦE. (22)

Following the stages in [32]—which combine Equations (17), (18) and (22)—we obtain the matrix
form of Equation (20):

F = ΩE ◦ ΦE +Ω
E ◦∆F. (23)
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This expression of F puts on light its specific structure, as F is expressed as the sum of its set and free
parts. Moreover, combining Equations (16) and (23) leads to

F = ΩE ◦ ΦE +Ω
E ◦ΩI ◦∆F +Ω

E ◦ΩI ◦∆F, (24)

which shows that the free part of F may be decomposed as a bounded part and an unconstrained one.

4. General Problem Formulation

The proposed informed NMF methods consist of estimating the matrices G and F in order to get an
approximate factorization (1) under the above constraints, i.e.,

min
G�0,F�0

Dα,β
W (X ‖ G · F) s.t.


F ◦ΩE = ΦE,
ΦI− � F ◦ΩI � ΦI+,
F · 1mm = 1pm,

(25)

where the weighted divergence Dα,β
W ( · ‖ · ) is defined in Equation (11). The first constraint ensures

that some predefined components of F are set while the second one forces the selected components to
be bound-constrained. The last condition enforces each row of F to be normalized, i.e., ∑m

j=1 fij = 1,
∀i = 1 . . . p (Please note that the normalization met in remote sensing [44]—where the sum of each row of F
is equal to one—is not similar, except in a noiseless case in the framework of exact factorization. Moreover,
the normalization also differs from the one met in mobile sensor calibration [13] as the normalization is
approximately satisfied in the latter).

The main challenge in the Equation (25) consists of finding solutions which are satisfying all the
above constraints. The first constraint leads to consider the parametrization (23) that we used in [32].
By substituting the parametrization (23), Equation (25) becomes a constrained NMF with respect to G and
∆F, i.e.,

min
G�0,∆F�0

Dα,β
W

(
X||G · (ΩE ◦ ΦE) + G · (ΩE ◦∆F)

)
s.t.

{
ΦI− � ∆F ◦ΩI � ΦI+,
∆F · 1mm = 1pm − ΦE · 1mm.

(26)

The last condition is derived from the last one in Equation (25) combined with Equation (22).
In the case of bound constraints only, no dedicated parameterization exists, but projective methods

have been developed [45]. The row sum-to-one constraint has been taken under account by using a special
parameterization in [14]. However, dealing with all the constraints together at the same time is a difficult
task. We thus propose a less elegant, yet efficient strategy which consists of considering them sequentially.
By dropping the bound constraint, we obtain the following reduced problem:

min
G�0,∆F�0

Dα,β
W

(
X||G · (ΩE ◦ ΦE) + G · (ΩE ◦∆F)

)
s.t. ∆F · 1mm = 1pm − ΦE · 1mm.

(27)

As an alternative to the above problem, please note that by combining Equations (1) and (23),
we obtain

X− G · (ΩE ◦ ΦE) ≈ G · (ΩE ◦∆F). (28)
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We can thus derive a slightly different problem, i.e.,

min
G�0,∆F�0

Dα,β
W

(
X− G · (ΩE ◦ ΦE)||G · (ΩE ◦∆F)

)
s.t. ∆F · 1mm = 1pm − ΦE · 1mm,

(29)

which yieldsslightly different update rules. We proposed in [35] some multiplicative update rules to
solve Equation (29) in the case of β-divergence only. The extension to the αβ-divergence is derived in
Appendix A.

As explained above, instead of looking for the solution of Equation (26) directly, we sequentially
consider each additional set of information, i.e., we first estimate ∆F and F that we then normalize
and project onto the set of admissible solutions (or that we project and then normalize, respectively)
within iterations.

5. Proposed Informed αβ-NMF Methods

5.1. Weighted αβ-NMF with Set Constraints

In this section, we firstly aim to solve Equation (27) without the sum-to-one constraint. The whole
strategy follows the majoration-minimization technique [40] and consists of (i) finding a majoring function
which is convex with respect to the unknown parameters, and (ii) minimizing this auxiliary function
instead of the original one.

Proposition 1. Update rules for the free part of the profile matrix are

4Fk+1 ← 4Fk ◦ΩE ◦ Nα,β
F (Gk , Fk), (30)

where (denoting λ , α + β− 1), we define

Nα,β
F (G, F) ,

(
GT(W ◦ Xλ ◦

(
X− GΦE)1−β ◦ (G(4F))β−1)

GT(W ◦ Xλ ◦
(
X− GΦE)−λ ◦ (G(4F))λ)

) 1
α

. (31)

Proof. We consider a column of the data since the divergence may be split into independent partial
divergences. Using the notations defined in Section 3, we hereafter drop the index i for the vectors
4 f

i
, Γiθi, ϕE

i
, θi, and for the matrix Γi. Let k be the current iteration index and let us define

U , GΓ. (32)

Expression (32) together with Equation (21) provide

Dα,β
w (x ‖ GϕE + G∆ f ) = Dα,β

w (x ‖ GϕE + Uθ). (33)

The weighted αβ-divergence between two corresponding column vectors reads

Dα,β
w (x ‖ G f ) = ∑

i
wix

α+β
i hα,β

(
(GϕE)i + ∑j uijθj

xi

)
, (34)
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where ∀(α, β, α + β) 6= 0,

hα,β(z) ,
1

αβ

[
α

α + β
+

β

α + β
zα+β − zβ

]
. (35)

Provided that hα,β(1) = 0 and noticing that hα,β(z) is convex for z ≥ 0 and β ∈ [min(1, 1− α); max(1, 1−
α)] [23], Jensen’s inequality may be applied twice, i.e.,

hα,β

(
(GϕE)i + ∑j uijθj

xi

)
≤

(x− GϕE)i

xi
hα,β

(
∑j uijθj

(x− GϕE)i

)
(36)

and

hα,β

(
∑j uijθj

(x− GϕE)i

)
≤ ∑

j

uijθ
k
j

∑l uilθ
k
l

hα,β

(
θj ∑l uilθ

k
l

(x− GϕE)iθ
k
j

)
, (37)

where the superscript k is the current iteration number and θj is the j-th element of the free parameter
vector θ introduced in Equation (20). Equation (34) together with expressions (36) and (37) yield the
following auxiliary function:

Hα,β
2,w(θj, θk

j ) = ∑
i

wi xα+β−1
i (x− GϕE)i ∑

j

uij θk
j

∑l uil θk
l
· hα,β

(
θj ∑l uil θk

l

(x− GϕE)i θk
j

)
. (38)

Canceling its gradient
∂Hα,β

2,w(θj ,θk
j )

∂θj
leads to the optimum, i.e.,

(
θj

θk
j

)α

=
∑
i

wiuij(x− GϕE)1−β
i xλ

i (∑l uilθ
k
l )β−1

∑
i

wiuijxλ
i (x− GϕE)−λ

i (∑l uilθ
k
l )λ

, (39)

which reads in its vector form(
θ

θk

)α

=
UT[w ◦ xλ ◦ (x− GϕE)1−β ◦ (Uθk)β−1]

UT[w ◦ xλ ◦ (x− GϕE)−λ ◦ (Uθk)λ]
. (40)

By combining Equation (21) with the above relationship, we derive the expression of one column of
the matrix4F:

4 f k+1

4 f k =

(
ΓUT [w ◦ xλ ◦ (x− GϕE)1−β ◦ (Uθk)β−1]

ΓUT [w ◦ xλ ◦ (x− GϕE)−λ ◦ (Uθk)λ]

) 1
α

. (41)

By replacing U according to Equation (32), and by noticing that ΓΓT = diag(ωE), it results in the new
update rule:

4 f k+1 ← 4 f k ◦ωE ◦ N f k , (42)

where

N f k ,

GT
[
w ◦ xλ ◦ (x− GϕE)1−β ◦ (G4 f k)β−1

]
GT
[
w ◦ xλ ◦ (x− GϕE)−λ ◦ (G4 f k)λ

]


1
α

. (43)

Similarly to [35], we derive the update rules by writing the matrix form of Equation (43), which
completes the proof.
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Appendix A proposes the update rules for the problem (29). These rules are almost similar to those
introduced above as they present some differences in the multiplicative mask. We show in Appendix A
that the update rules proposed in the main part of this paper extend the ones proposed in Appendix A by
iteratively updating the weights.

Update rules for G correspondto an unconstrained αβ-WNMF driven by Equation (12) since no
information is available on G. Their validity is only guaranteed within the convex domain, i.e., for β ∈
[min(1, 1− α); max(1, 1 − α)]. Outside this domain, some additional assumptions on the reconstructed
data are needed to ensure the local convexity property [23]. As we chose to set α and β so that they belong
to area 2 in Figure 3, the convexity domain reduces the possible area to the intersection between area 2 and
the half-plane β ≤ 1.

5.2. Normalization Procedures

In the considered application, the rows of the profile matrix are summed to one. This case is different
from the one encountered in hyperspectral unmixing [44]—since our constraint cannot be split into
independent vectorial subproblems—and in mobile sensor calibration [13] as the sum-constraint is
only approximately satisfied in the latter. As a consequence, in our previous work [32,35], we used
to normalize the matrices G and F in each iteration, after estimating them. We reformulate these steps
below (see Section 5.2.1) while we investigate an alternative normalization procedure in Section 5.2.2.
They are introduced in the framework of the above approach but the rules may be applied to our previous
work [32,35] as well.

5.2.1. Classical Normalization

Let us define F̃ as the normalized profile matrix and G̃ the corresponding scaled contribution matrix.
In order to hold the sum-to-one property, Lantéri et al. [14] proposed a change of variables under the
form (please note that the normalization constraint can also be solved as a penalization term in the NMF
problem formulation [13]. This setting is interesting when the sum constraint is approximately satisfied,
which is not the case for the considered application).

F̃ij =
Fij

m
∑
j=1

Fij

, (44)

which may be written under matrix form as

F̃ =
F

F · 1mm
. (45)

This equation enables to normalize the rows of F whereas the symmetric version enables to scale the
columns of G correspondingly, i.e.,

G̃ = G ◦ [1nm · FT]. (46)

The product G̃ · F̃ then reads

G̃ · F̃ =
F

F · 1mm
·
(

G ◦ [1nm · FT]
)

, (47)
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which results in the expression of its general entry:

(G̃ · F̃)ij = ∑
k

Gik

∑
l

Fkl
· Fki · ∑

l
Fkl = ∑

k
Gik Fki = (G · F)ij. (48)

This means that the matrix product is maintained throughout the normalization process. Since the
cost function to minimize only depends on this product, this property ensures the same decrease as in the
unconstrained case within iterations.

The normalized expression of F—denoted F̃—at iteration k + 1 then reads

F̃k+1 ←
ΦE ◦ΩE +∆F̃k ◦ΩE ◦ Rα,β

F

[ΦE ◦ΩE +∆F̃k ◦ΩE ◦ Rα,β
F ] · 1mm

, (49)

where

Rα,β
F ,

{
Mα,β

F (G, F) for Problem (29),
Nα,β

F (G, F) for Problem (27),
(50)

and where4F̃k stands for the free part of the normalized matrix F̃ defined by4F̃k , F̃k ◦ΩE. Noticing that

4F̃k ◦ΩE = F̃k ◦ΩE (51)

we express Equation (49) with respect to F̃k:

F̃k+1 ←
ΩE ◦ ΦE + F̃k ◦ΩE ◦ Rα,β

F[
ΩE ◦ ΦE + F̃k ◦ΩE ◦ Rα,β

F

]
· 1mm

. (52)

Similarly, we derive the update rules for G̃k+1, i.e.,

G̃k+1 ← G̃k ◦ N α,β
G (G̃k , Fk+1) ◦

[
1nm · (ΩE ◦ ΦE + F̃k ◦ΩE ◦ Rα,β

F )T
]

, (53)

where N α,β
G (G̃k , Fk+1)—defined in Equation (14)—is computed with the unnormalized matrix Fk+1

which reads
Fk+1 = ΩE ◦ ΦE + F̃k ◦ΩE ◦ Rα,β

F . (54)

Equations (52) and (53) thus provide the update rules for our first normalized and constrained WNMF
method denoted αβ-N1-constrained and weighted NMF (CWNMF) below. Although the set profiles are
lost within iterations due to the normalization process, we noticed in preliminary tests that they were
recovered asymptotically.

5.2.2. Alternative Normalization

As an alternative, we now propose a second normalization which keeps the set constraints on F
within iterations. Starting with Equation (30) that we normalize, it turns out that

4F̃k+1 ←
∆F̃k ◦ΩE ◦ Rα,β

F

(∆F̃k ◦ΩE ◦ Rα,β
F ) · 1mm

◦ (1pm − ΦE · 1mm), (55)
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where (1p×m − ΦE · 1mm) accounts for the matrix involving the sum of the free components for each source,
and the other part of the expression represents the different proportions within the free profiles. Using the
property (51), alternative update rules may be derived

F̃k+1 ← ΩE ◦ ΦE +
Ω

E ◦ F̃k ◦ Rα,β
F[

Ω
E ◦ F̃k ◦ Rα,β

F

]
1mm

◦ (1pm − ΦE · 1mm). (56)

This normalization keeps the constraints verified within iterations but may move along directions
different from the steepest descent direction. During this process, the contribution matrix does not require
a scale factor as in the first method since the scale factor is only applied to the free parameters of F.
We then estimate Gk+1 using the unconstrained rules defined in Equations (12) and (14). The update
rules (12) and (56) are associated with our second normalized and constrained WNMF method denoted
αβ-N2-CWNMF below.

5.2.3. Description of Algorithm Acronyms

We proposed above some update rules for two methods for normalized and constrained WNMF.
However, we also proposed different update rules in Appendix A for which the above normalizations can
be applied. As these methods minimize the divergence between G∆F and the Residual X− GΦE, we add
a “-R” to their acronym. Table 3 outlines the necessary information for each method. The pseudo code for
αβ-Nx-CWNMF(-R) methods is shown in Algorithm 1.

Algorithm 1 αβ-Nx-constrained weighted non-negative matrix factorization (CWNMF) residual
(-R) method.

i← 0
while i ≤ N do

Update F at fixed G according to Equation (52) or (56)
Update G at fixed F according to Equation (12) or (53)
i← i + 1

end while

Table 3. Our different non-negative matrix factorization (NMF) methods with normalization.

Acronym F G Mask on F Mask on G

αβ-N1-CWNMF-R Equation (52) Equation (53) Mα,β
F (G̃k , F̃k) N α,β

G (G̃k , Fk+1)
αβ-N1-CWNMF Equation (52) Equation (53) Nα,β

F (G̃k , F̃k) N α,β
G (G̃k , Fk+1)

αβ-N2-CWNMF-R Equation (56) Equation (12) Mα,β
F (Gk , F̃k) N α,β

G (Gk , F̃k+1)
αβ-N2-CWNMF Equation (56) Equation (12) Nα,β

F (Gk , F̃k) N α,β
G (Gk , F̃k+1)

5.3. Bound-Constrained Normalized and Weighted αβ-NMF

We now focus on problem (25) which involves several kinds of constraints which should coexist
simultaneously. To our knowledge, only Lin [45] deals with bound constraints and proposes to adapt the
stepsize of projected gradient techniques in order to both decrease the cost function while holding the
constraints. However, the work was devoted to bound constraints only, and his solution does not suit our
problem with normalization.
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As explained above, we propose to tackle them by applying a projection onto the admissible domain.
Bound constraints act as safety barriers which prevent unrealistic solutions. However, the combination
of normalization and projection should be applied in a predefined order. We thus propose below
two structures:

1. the bound constraint projection followed by a normalization stage,
2. or the normalization followed by the projection.

5.3.1. Informed NMF with Bound Constraints and Normalization

In this subsection, we consider update rules for N2-CWNMF methods. The same kind of procedure
should be done for N1-CWNMF approaches proposed above. We assume that we get at iteration k a
normalized matrix F̃k and an unscaled (indeed, no scaling is applied on G in N2-CWNMF, as explained in
Section 5.2.2) contribution matrix Gk. Combining Equations (24) and (54) provide

Fk+1 = ΦE ◦ΩE +∆F̃k ◦ΩE ◦ΩI ◦ Rα,β
F +∆F̃k ◦ΩE ◦ΩI ◦ Rα,β

F , (57)

which may be simplified by using Equation (51), i.e.,

Fk+1 = ΦE ◦ΩE + F̃k ◦ΩE ◦ΩI ◦ Rα,β
F + F̃k ◦ΩE ◦ΩI ◦ Rα,β

F . (58)

Applying the bound constraint then consists of

Fk+1 = ΦE ◦ΩE + F̃k ◦ΩE ◦ΩI ◦ Rα,β
F + P

ΩI (F̃k ◦ΩE ◦ Rα,β
F ), (59)

where P
ΩI (.) is the projection operator defined by

P
ΩI (U) ,


ΩI ◦ ΦI− if ΩI ◦U � ΦI−,
ΩI ◦ ΦI+ if ΩI ◦U � ΦI+,
ΩI ◦U otherwise.

(60)

The second normalization proposed in Section 5.2.2 consists of scaling the free part without changing
the set components, which reads

F̃k+1 = ΦE ◦ΩE +
F̃k ◦ΩE ◦ΩI ◦ Rα,β

F + P
ΩI (F̃k ◦ΩE ◦ Rα,β

F )

(F̃k ◦ΩE ◦ΩI ◦ Rα,β
F + P

ΩI (F̃k ◦ΩE ◦ Rα,β
F )) · 1mm

◦ (1pm − ΦE1mm). (61)

This rule keeps the sum-to-one constraint and the set values. The bound constraints may be lost within
because of the normalization but were found to be asymptotically recovered in our tests. The associated
updates for G follows the unconstrained ones and it has not to be corrected by a scale factor, i.e.,

Gk+1 = Gk ◦ N α,β
G (Gk , F̃k), (62)

where N α,β
G (Gk , F̃k) has been introduced in Equation (14). The rules (61) and (62)—associated to our

informed NMF approach named αβ-BN2-CWNMF—do not ensure the cancellation of the gradient of
Equation (38) along iterations but they preserve two set of constraints among the three ones. Let us recall
that the approach using the first proposed normalization—denoted αβ-BN1-CWNMF—can be derived
with the same strategy. The pseudo code for αβ-BN1-CWNMF method is shown in Algorithm 2.
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Algorithm 2 αβ-BN1-CWNMF method

i← 0
while i ≤ N do

Update F at fixed G according to Equation (61)
Update G at fixed F according to Equation (62)
i← i + 1

end while

5.3.2. Informed NMF with Normalization and Bound Constraints

The same procedure as above should be applied in the reverse order so that bound projection is
applied as the last step of an iteration. When applied to Equation (58), the second normalization provides

F̃k+1 = ΩE ◦ ΦE + (1pm − ΦE · 1mm) ◦

 Ω
E ◦ΩI ◦ Fk ◦ Rα,β

F[
Ω

E ◦ Fk ◦ Rα,β
F

]
1mm

+
Ω

E ◦ΩI ◦ Fk ◦ Rα,β
F[

Ω
E ◦ Fk ◦ Rα,β

F

]
1mm

 . (63)

The projection stage then leads to the unnormalized profile

Fk+1 = ΩE ◦ΦE +
Fk ◦ΩE ◦ΩI ◦ Rα,β

F

(Fk ◦ΩE ◦ Rα,β
F ) · 1mm

◦ (1pm −ΦE · 1mm)+P
ΩI

(
Fk ◦ΩE ◦ Rα,β

F

(Fk ◦ΩE ◦ Rα,β
F ) · 1mm

◦ (1pm − ΦE · 1mm)

)
. (64)

Equations (62) and (64) account for the update rules in this last method, denoted as αβ-N2B-CWNMF.
The pseudo code for αβ N2B-CWNMF method is shown in Algorithm 3.

Algorithm 3 αβ-N2B-CWNMF method

i← 0
while i ≤ N do

Update F at fixed G according to Equation (64)
Update G at fixed F according to Equation (62)
i← i + 1

end while

Please notice that only set and bound constraints are checked within iterations. Convergence towards
a limit point ensures that limit matrices keep all the desired properties. As explained above, the same
procedure with our first considered normalization may be applied, thus yielding an approach named
αβ-N1B-CWNMF.

6. Experimental Results

In this section, the enhancement provided by our methods are investigated in both simulations and a
real data campaign. In these tests, we aim to identify the sources (by their chemical profile) contributing
to the total atmospheric suspended PM as well as to quantify their contribution. In both the simulations
and the real dataset, we consider atmospheric particles with diameter equal to or below 10 µm (PM10).
In practice, these particles are trapped in a filter which is changed every 24 h. Each filter is then analyzed
by chemists who derive the masses of several chemical species of interest for the considered application,
i.e., for evaluating the impact of marine traffic on air pollution in a port city. Species under study are
divided into 16 metal tracers—i.e., Al, Cr, Fe, Mn, P, Sr, Ti, Zn, V, Ni, Co, Cu, Cd, Sb, La, and Pb—8 water
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soluble ionic species—i.e., Na+, NH+
4 , K+, Mg2+, Ca2+, Cl−, NO−

3 , and SO2−
4 —carbon compounds—either

organic (OC) or elementary (EC)—levoglucosan, and polyols.
In all these experiments, except when we tested the influence of these parameters, we set the values

of α and β to 0.6 and 0.9, respectively. Indeed, such a couple of value lies in the recommended area 2
defined in Figure 3. Moreover, we found in preliminary tests that these values of α and β provided a better
performance. As a consequence, we do not make them vary in the remainder of this section.

Moreover, the signal-to-noise ratio (SNR) enabled us to evaluate the data set and is defined as:

SNR(X) =
1
m

m

∑
j=1

SNRj(xj) =
1
m

m

∑
j=1

10 log10

∑n
i=1 x2

ij

∑n
i=1 e2

ij
, (65)

where xij and eij stand for the (i, j)-th non-noisy data and the individual noise. This index is widely used
in the literature [46].

6.1. Realistic Simulations

From the validated profile and contribution matrices obtained during the real campaign [47],
simulation data were built by taking into account the individual uncertainty provided by the real campaign.
In these simulations, the data matrix X thus consisted of a 278× 28 matrix—which correspond to the
chemical composition (28 species) of 278 PM samples—associated with individual uncertainties, which are
those provided by the chemical analysis.

In addition, we also considered several cases with outliers. It is assumed that outliers come from an
additional positive individual contamination.

The mathematical model of the outliers was driven by a random vector idx_outliers including the
locations of the outliers in the data matrix. For these locations, a multiplicative model was used depending
of the trial number i (between 1 and 400).

X1(idx_outliers) = (1 +
i

ratio
) ∗ X(idx_outliers), (66)

where X1 (resp. X) accounts for the with outliers noiseless data (resp. the without outliers noiseless data).
The variable ratio is a parameter which may be tuned in order to get a SNR after outliers ranging from
15 dB to 70 dB. In our tests, the outlier deviation increased with the trial number i. In other words, for low
trial number, the multiplicative factor remained close to 1 in order to keep large. The effect of such outliers
essentially depends on the location of the outliers. Indeed, if an outlier acts on a large entry of the data
matrix, its impact on the SNR will be greater.

Then, a noise has to mimic the chemical measurement process. The chemical measurement process
only gives a concentration value together with an uncertainty. So, every value within this interval is
equally possible. A uniform noise which is designed on a limited support was proposed. This support
may be truncated on the left side if the uncertainty is greater than the corresponding data.

Among the 278 samples, 10 and 20 outliers were considered. Practically, we noticed that the
signal-to-noise ratio (SNR) index then dropped in the worst case by 4 dB if the set of 20 outliers is
taken into consideration with respect to the no outlier case.

6.1.1. Source Profiles

In this study, 10 sources are highlighted. Among them, some of them are purely natural or purely
anthropogenic but some of them became anthropised. Table 4 describes major species present in each
source profile. Other species than those listed in the corresponding source profile may be considered as
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negligible. Please note that—as we here consider simulations—the real profile matrix is perfectly known
and is provided in Table A1. Also, one should notice that each source profile is presented under a per mil
notation, i.e., it sums to a thousand instead of 1 and the only difference is a scale factor equal to 1000.

Table 4. Features of the different source profiles.

Profiles Type Major Species References

Sea salts Natural Cl−,Na+,SO2−
4 ,Mg2+ ,K+ ,Ca2+ ,Sr [48]

Crustal dust Natural Al, Ca2+, Fe, K+, OC, Ti, NO−
3 , Na+ [49]

Primary biogenic emission Natural OC, EC, Polyols, P [50]
Aged sea salts Anthropised NO−

3 ,Na+, SO2−
4 , Mg2+ ,K+, OC,Ca2+ ,Sr,Cl− [50]

Secondary nitrates Anthropised NO−
3 , OC, NH+

4 , EC, Ca2+,Fe, Zn, Cu [50]
Secondary sulfates Anthropised SO2−

4 , NH+
4 , OC, Ca2+, K+, Fe, Pb, Zn [49]

Biomass combustion Anthropogenic OC, EC, Levoglucosan, NO−
3 , K+, Zn [50]

Road traffic Anthropogenic EC, OC, NO−
3 , Cu, Sb, Zn, Fe [50]

Sea traffic Anthropogenic OC, EC,V, Ni, Co, SO2−
4 , NH+

4 , NO−
3 [50,51]

Rich metal source Anthropogenic Fe, Al, Cr, Pb, Zn, Mn [50]

6.1.2. Equality Constraints

Equality constraints or set values enable to inform the algorithm about some entries of the profile
matrix. This knowledge is taken into account by specifying matrices ΩE and ΦE. These matrices are
available in Appendix B. It is to be stressed that the only used knowledge here is the absence of some
compounds in some source profiles. As a result, matrix ΦE reduced to 010×28. Then, it follows that our
informed methods with residuals were identical to those without residual. As a consequence, we do not
test the latter in the simulations below.

6.1.3. Initialization

An approximate prior knowledge of F was used as a starting point for each informed NMF algorithm.
Table A3 gathers the different entries used. Then, a weighted quadratic estimation of the initial contribution
matrix G [31] was performed so that each method has the same initial factors.

6.1.4. Performance Evaluation

Several performance indexes are available in the literature. However in this work, only the
mixing-error ratio (MER) index [52] is considered (please note that while specifically designed for
measuring the estimation accuracy of a mixing matrix, the MER may also be used as a signal-to-inteference
ratio (SIR) when applied to the profile matrix, and more specifically to FT). It was computed over each
column of G. For each source, a scalar quantity MERj for source j expressed in dB may be obtained.

For one exact vector g
j

and its estimate ĝ
j
, it is possible to write ĝ

j
under the form

ĝ
j

= ĝcoll
j

+ ĝorth
j

, (67)

where ĝcoll and ĝorth are respectively colinear and orthogonal to the exact vector g. This decomposition
allows to express the MER of source j, denoted as MERj, defined as,

MERj = 10 log10

‖ ĝcoll
j
‖2

‖ ĝorth
j
‖2

. (68)
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Infinite values mean exact separation while 0 dB correspond to an angle equal to 45◦. These values
may be summed up into a vector which gathers the performance of each source. Generally, a global
indicator is obtained by averaging each index over all sources, i.e.,

MER =
1
p

p

∑
j=1

MERj. (69)

In all the cases under study, the MER (the results and the Matlab interpretation codes are already
available at http://www-lisic.univ-littoral.fr/~delmaire/recherche.html) index [52] was represented as
a function of the input SNR. In this study, intensive computations were performed with ten thousand
iterations for each method over 400 tests. In our comparison, we dropped the PMF method as it is only
available as a user interface (see https://www.epa.gov/air-research/positive-matrix-factorization-model-
environmental-data-analyses) which prevents to compute several tests in a single command. Moreover,
even for a single test, our expertise shows that PMF requires the uncertainties to be increased in order
to perform a computation, but it did not make sense in this case. As a consequence, nine methods were
selected and tested: among them, three are uninformed, two account for our informed methods with set
values while the four remaining ones are our informed methods with bounds.

In order to get an idea, we chose to display the road traffic profile estimation in the case when input
SNR is equal to 24 dB (Figure 4). Species were represented in descending order of the real profile. We could
notice that for this source, αβ N1CWNMF appears better than other methods.

Figure 4. Estimation of the road traffic profile.

In our tests, the input SNR ranges from 15 to 70 dB. We decided to display only the performance of
the methods for 20 outliers as shown in Figure 5 since the other tests provide similar results. The statistical
performance is provided in Figure 5 by specifying the standard deviation in each slice of SNR and for
each method.

Let us first analyze the enhancement provided by the non-informed NMF methods. One notice that
the robust αβ-WNMF [23] performs very poorly in all cases. Its standard deviation appears very large for

http://www-lisic.univ-littoral.fr/~delmaire/recherche.html
https://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-analyses
https://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-analyses
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a wide range of SNRs. Besides, RNMF—which stands for a robust NMF method [18]—behaves correctly
for low SNRs while its performance decreases surprisingly for large SNRs. Moreover, we experimented a
sparse NMF (SNMF) method [53] including a β-divergence cost function together with L1 sparsity of one
factor. We select one trial and test the performance for the parameter β ranging from 0 to 2. The optimal
value β = 0.5 has been selected over 400 trials for the case of 20 outliers. SNMF provides inconsistent
solutions in every slice of SNR.

Figure 5. MER vs. input signal-to-noise ratio (SNR). The case with 20 outliers.

We analyzed the performance of our proposed informed methods. Let us firstly focus on both
informed methods with set values which were experimented, i.e., the αβ-N1CWNMF and αβ-N2CWNMF
methods. Their performance appeared to be very similar in all the simulations. In practice, their MER was
approximately equal to the SNR in every input SNR slice, which was expected according to our experience
in preliminary tests.

The four informed NMF methods with bound constraints behaved similarly, except in a few slices
where the SNR is large. Indeed, in low SNR, they are slightly better than αβ-N1CWNMF (the gap is not
visible due to the scale), but they outperform all the other tested methods as soon as the SNR becomes
greater than 40 dB. The low gap in low SNR is essentially due to the fact that we inform F while the
performance index is measured on G. In noisy tests—i.e., for a low SNR—the estimated matrix G does not
benefit from the additional information on F, because of the important noise in X. However, we noticed an
improvement on F for these tests, even if we cannot safely measure it, as the profiles might be correlated.

On the contrary, for medium and large SNR, the MER enhancement was significant for every
bound-constrained informed NMF method. More precisely, αβ-N1BCWNMF and αβ-N2BCWNMF
outperformed all the other methods with a significant gap as soon as the SNR increased.

We also explored in the synthetic example the use of a large range of α and β parameters within area 2
such that 0.5 � α � 1 and 0.5 � β � 1. We noticed that the MER index for αβ WNMF method was very
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sensitive to the choice of the α β parameters and also to the trial number. A successful tuning of these
parameters was somehow difficult.

On the other hand, we experiment the same operating conditions for N1CWNMF. We observe in
Figure 6 that results are more stable than for the uninformed one. In this case, the choice of α β appears
quite insensitive but the method remains satisfactory.

Figure 6. Mixing-error ratio (MER) index for N1 constrained and weighted NMF mixing-error ratio
(CWNMF) vs. α and β.
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Figure 7. MER versus constraint number. The case with 20 outliers.
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In addition, we could wonder how constraints affect the results. First, we potentially may use 117 set
values and roughly 60 bound constraints. We decided to inspect the influence of dropping set values only.
For that purpose, we progressively turned on one set value at a time for each column and according to the
increasing order of the row index, until the 117 constraints were reached. We plot the MER performance
according to the number of constraints in Figure 7.

Contrary to what should be expected, adding constraints may sometimes degrade the performance
suddenly or conversely. There seems to be set of constraints which fit better to the situation. This conclusion
is quite surprising and the design of appropriate constraints seems an open question.

To conclude, these methods provide a good performance in every situation and are thus better-suited
for the considered application.

6.2. Real Data Case

The real data campaign was conducted by Dr C. Roche during her Ph.D. thesis [54], within the UCEIV
laboratory (Université du Littoral Côte d’Opale). The first goal of this thesis was to study how much
the shipping traffic in the English Channel, one of the most important in the world, can contribute to
the atmospheric PM10 concentration in coastal area, such as the Hauts–de–France region. In her work,
some characteristic species of maritime traffic emissions have been evidenced. Then, some flexible bound
profiles and set profile entries were proposed. Using this knowledge, the challenge was to implement an
informed NMF method—as those developed in [32]—in order to reconstruct the PM origin.

Contrary to [54], we here would like to drop some of the bound information and to test whether or
not the new methods that we propose in this paper are still competitive.

6.2.1. Context

A sampling campaign has been conducted using a Digitel DA80 sampler over a long period—i.e.,
16 months—in Cape Gris–Nez and over a shorter period—i.e., three months—in the port of Calais,
which enabled us to get 278 sample measurements. Cape Gris–Nez and Calais are two coastal sites in the
eastern part of the English channel. The first one is a rural site whereas the port of Calais is the second
busiest in passenger traffic in Europe with 10.8 million of passengers and over 80 arrivals and departures
of ferries per day in average in 2014 [55].

Figure 8. Digitel DA80 high volume sampler used for data acquisition (source of the right plot: Digitel).
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The DA80 device (see Figure 8) is an equipment which is able to trap PM on filters, which are
stored and a posteriori analyzed for chemical composition. A special sieve enabled us to select only PM10,
i.e., PM whose diameter was lower than 10 µm. The machine is also able to save wind conditions and time.
The sampling period was chosen equal to 24 h. Along this period, meteorological conditions concentration
levels were highly varying. Thus, after analyzing the filters, several data files were available to address the
pollution source apportionment problem.

6.2.2. Input Data

Appendix C provides operating conditions for the run which are performed. Based on the expert
knowledge provided by chemists and on the information described in Table 4, a matrix ΩE—which
defines 55 set value locations (among 278 profile entries)—is provided in Table A5. In the same way as in
Section 6.1, the matrix ΦE is equal to 0p×m. In addition, the initial profile matrix is chosen by an expert
and is provided in Appendix C.

6.2.3. Results Evaluation

The results were obtained in the case of 10 identified sources and 104 iterations for each method.
The profiles under study are specified in Table 4. However, their estimation remains a difficult task for
several reasons which listed hereafter:

• Data are corrupted by an unknown number of outliers. Their origin may be of various kinds,
e.g., the presence of a new source which affects the data at some sparse moments.

• Data are very noisy. In particular, an additional overall pollution—whose level highly varies over
time—can not be assigned to a particular source and can significantly decrease the overall SNR.

• Some source profiles may be geometrically close, only a few tracer species are able to distinguish them.

Even if a database with source profiles is available at http://source-apportionment.jrc.ec.europa.eu/
Specieurope/sources.aspx, a universal profile for a given source does not exist. When comparing our
result, they all appear highly consistent with the published one in the Specieurope database. We display
the source profiles in a descending order of expected species (MPMPthis task was designed by the chemist
co-authors of the paper). A correct source profile was then displayed as decreasing proportions from the
left to the right of each figure. On the contrary, a large proportion on the right part of a profile plot implies
that the estimation has partly failed.

Among the 10 source profiles, some of them are well recovered. We only show in Figure 9 the
estimated sea traffic source profile as it is difficult to recover. As mentioned above, it is expected that
proportions are decreasing from the left to the right side of the figure. The order has been built based
on ship profiles from the European database and from the literature [50,51,54]. To process these data,
we compare the enhancement provided by two non-informed methods, i.e., the αβ-WNMF and the
β-RNMF [18] and three informed methods, i.e., the method used in [54] and our methods αβ-N1CWNMF,
and its bound-constrained extension αβ-N1BCWNMF. Other bound methods were dropped since they
turn out in Section 6.1 to behave roughly similar to αβ-N1BCWNMF. Note that Roche [54] used 67
constraints while we only use 63 and 65 bound constraints in the tested bound-constrained informed
αβ-NMF method, respectively.

It may be noticed that blind NMF methods, i.e., the αβ-WNMF and the β-RNMF, and our
αβ-N1CWNMF method are overestimating SO2−

4 and NO−
3 species while underestimating OC and EC

compounds. The estimated sea traffic profile thus appears not to be very realistic with these methods.
Besides, bound-constrained WNMF methods behave similarly and report good estimations for major
species. However, these estimations reach the proposed bounds for Fe, NO−

3 , and SO2−
4 species among the

http://source-apportionment.jrc.ec.europa.eu/Specieurope/sources.aspx
http://source-apportionment.jrc.ec.europa.eu/Specieurope/sources.aspx
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28 species under study. For example, SO2−
4 is limited by the maximum value provided in Table A4. Finally,

these bound-constrained NMF methods outperform all the other methods for the sea traffic re-construction.

OC EC SO42- NO3- V Ca2+ Al Fe Pb NH4+ Zn Ni Co La Cr Mn P Sr Ti Cu Cd Sb Na+ K+ Mg2+ Cl- Levo Polyols
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Figure 9. Estimation of the sea traffic source profile.
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Figure 10. V species reconstruction over Cape Gris–Nez.

Using the estimation provided by each method, it is possible to reconstruct each species’ concentration,
and especially the V and Ni compounds since they are tracers of the sea traffic activity [54]. In other
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words, the Vand Nispecies can only be found in the sea traffic source. Moreover, the ratio V over Ni

is often assimilated to a value between 2 and 3 [51], and is found to be between 1.2 to 1.5 for the three
bound-constrained WNMF methods, which is close to the expected ratio.

To confirm this fact, we plot the reconstruction of the V species in Figure 10. This shows that this
compounds is mainly due to Sea Traffic. More than 98 per cent of the V species originates from the sea
traffic source which is consistent with the chemist’s expectations.

7. Conclusions

In this paper, we tackled an informed non-negative matrix factorization problem where the profile
matrix lives in a specific subspace. We proposed several informed NMF methods combining αβ-divergence
and a specific structure of one matrix factor provided by the considered problem. This work extends
our previous informed NMF [32]—assuming some values of one of the factor matrices to be known—by
considering generalized divergences, and by leading to alternative update rules and normalization.
The update rules may be viewed as projective multiplicative updates applied to a special structure of
the profile matrix. The relevance of these extensions were shown on realistic simulations of natural
and industrial PM source apportionment—with various input SNR conditions and various numbers of
outliers—and on a real data case. In practice, these informed methods are more robust than blind NMF,
and provide results which are consistent with the chemical expert, even in the presence several outliers. In
future work, we will investigate new soft constraints to inform NMF and alternatives to multiplicative
updates.
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Appendix A. Update Rules for Problem (29)

In this appendix, we aim to develop update rules for problem (29), for which we drop the sum-to-one
constraint. The structure of the proof follows the same steps as in Section 5.1 within a MM strategy.

Proposition A1. Update rules for the free part of the profile matrix are

4Fk+1 ← 4Fk ◦ΩE ◦Mα,β
F (Gk , Fk), (A1)

where

Mα,β
F (G, F) ,

GT
(

W ◦
(
X− GΦE)α ◦

(
G(Fk ◦ΩE)

)β−1
)

GT
(

W ◦
(

G(Fk ◦ΩE)
)λ
)


( 1

α )

. (A2)

Proof. We focus on a column of the data and drop hereafter the index i for the vectors4 f
i
, ϕE

i
, θi, and for

the matrix Γi. Let us define the residual vector r as

r , x− GϕE. (A3)

Combining Equations (21) and (32) leads to

Dα,β
w (r ‖ G∆ f ) = Dα,β

w (r ‖ Uθ) = ∑
i

wi rα+β
i · hα,β

(
∑j uijθj

ri

)
, (A4)

where U is defined in Equation (32), and where hα,β(z) has been defined in Equation (35).
Using the convexity of hα,β(z) for z ≥ 0 and β ∈ [min(1, 1− α); max(1, 1− α)] [23], Jensen inequality

may be applied once, resulting in:

hα,β
(

∑j uijθj

ri

)
≤∑

j

uijθ
k
j

∑l uilθ
k
l

hα,β

(
θj ∑l uilθ

k
l

riθ
k
j

)
, (A5)

where the superscript k is the current iteration number and θj is the j-th element of the free parameters
vector θ introduced in (20). Equation (A4) together with Equation (A5) yield the majoring function

Hα,β
1,w(θj, θk

j ) = ∑
i

wi rα+β
i ∑

j

uij θk
j

∑l uil θk
l
· hα,β

(
θj ∑l uil θk

l

ri θk
j

)
. (A6)

Cancelling its gradient
∂Hα,β

1,w(θj ,θk
j )

∂θj
leads to

(
θj

θk
j

)α

=
∑
i

wi uij rα
i (∑l uilθ

k
l )β−1

∑
i

wiuij · (∑l uilθ
k
l )λ

, (A7)

which reads in vector form: (
θ

θk

)α

=
UT
[
w ◦ rα ◦ (Uθk)β−1

]
UT
[
w ◦ (Uθk)λ

] . (A8)
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By combining the definition (21) with the above relationship, we derive the expression of one column
of the matrix4F.

4 f k+1

4 f k =

[
ΓUT [w ◦ rα ◦ (Uθk)β−1]

ΓUT [w ◦ (Uθk)λ]

] 1
α

. (A9)

By replacing U according to Equation (32), and by noticing that ΓΓT = diag(ωE), it results in the new
update rule:

4 f k+1 ← 4 f k ◦ωE ◦Mα,β
f k , (A10)

where Mα,β
f k accounts for

Mα,β
f k ,

GT
[
w ◦ rα ◦ (G4 f k)β−1

]
GT
[
w ◦ ◦(G4 f k)λ

]


1
α

. (A11)

Combining Equations (18) and (22) enables to express

∆Fk = ∆Fk ◦ΩE = Fk ◦ΩE. (A12)

It yields the update rule by combining the matrix form of Equations (A11) and (A12), i.e.,

Fk+1 ← ΦE + Fk ◦ΩE ◦Mα,β
F (Gk , Fk), (A13)

where Mα,β
F (G, F) is defined in Equation (A2). This relation completes the proof.

As explained in Section 5.1, it should be noticed the update rules for both variants of the weighted
αβ-divergence cost function provide almost similar update rules. In fact, Nα,β

F (G, F) in Equation (31) and

Mα,β
F (G, F) in Equation (A2) are the same if we replace W in the latter expression by

W , W ′ ◦ Xλ ◦ (X− GΦE)−λ. (A14)

As G is updated at each NMF iteration, the value of W in Equation (A14) varies at each iteration,
which means that the update rules proposed in the main part of this paper extend the one proposed in
Appendix A by iteratively updating the weights.

Appendix B. Operating Conditions for the Simulations

Table A1 specifies the different entries of the true profile matrix for simulations.
Prior information is provided through the specification of both ΩE and ΦE. We choose to select only

set values which specify the absence of some species in the profile matrix. As a consequence, ΦE is equal
to ΦE = 0p×m. The position of these known zero entries are provided in Table A2.

The chemists are able to provide an initial profile matrix which is given in Table A3. It is to be noted
that the same initial matrix is applied for both the informed and non informed methods. It should be
noticed that the known zeros in F are initialized as 1.00 × 10−11.
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Table A1. Theoretical source profile used in the simulations.

Profiles Al Cr Fe Mn P Sr Ti Zn V Ni Co Cu Cd Sb

Sea 0.0019 0 0 0 2.5 × 10−4 0.2034 0 0 0 0 0 0 0 0
Aged sea 0 7.2351 × 10−5 0 0 0.5 0.4 1.877 × 10−4 0 0 0 1.785 × 10−4 1.7941 × 10−5 0 0
Crustal 119.13 8.589 × 10−5 77.35 1.782 3.0680 0.7846 8.9121 1.868 0.3503 0 0.0276 0.0081 0 0
nitrates 4.00 × 10−3 2 × 10−5 3.5 0.11 0.0749 0 0 0.7742 0 0 7.0408 × 10−4 0.1 6.486 × 10−3 0.01975
sulfate 0 5 × 10−5 0 0.02825 0.05313 0 0 0.1334 0 0 0.003287 8.00 × 10−6 0 0
Biomass 0.001 0 2.554 0.05527 0 1.016 × 10−5 0 0.1415 0 0 0 0 0 0.0385
Road traffic 0 0 39.0414 0.1404 2.659 0 0 10.908 0 0 1.00 × 10−8 2.7712 0 0.8964
Sea traffic 0.001147 1.2012 × 10−4 0.1002 0 0 0.0217 9.42 × 10−5 0 7.4920 5.5348 0.1829 1.752 × 10−4 1.315 × 10−6 0
Biogenic 0 0 0 0 14.528 0.04308 8.941 × 10−4 0 0 0 0 0 0 5.2 × 10−4

Metal 64.430 33.332 780.16 33 0.7 2 0 0 0 10 0.15 1.5 1.55 0
Bis La Pb Na+ NH+

4 K+ Mg2+ Ca2+ Cl− NO−
3 SO2−

4 OC EC Levo. Polyols
Sea 0 0 297.03 0 10.71 32.75 9.183 581.02 0 69.08 0 0 0 0
Aged sea 0 0.1 280 0 4 30 10 1.00 × 102 395 150 30 0 0 0
Crustal 0.0594 0 1.8333 × 10−4 4.36 × 10−5 5 5 301.81 0 49.95 39.96 384.92 0 0 0
nitrates 7.178 × 10−4 0.2075 0 216.26 3.2 0 0 1.21 × 10−5 730.73 0 45 0 0 9.027 × 10−11

sulfate 0 0.0729 0 260.83 4.43 0 0 8.66 × 10−8 0 680.59 53.84 0 0 0
Biomass 0 0.1007 2.650 2.85 × 10−12 12.26 0.001 11.67 25.48 35.16 56.84 692.10 91.14 69.78 1.477 × 10−7

Road traffic 0.0121 3.353 0 5.14 × 10−10 39.84 0 3.00 × 10−8 3.40 × 10−8 50.19 60.22 301.13 488.81 0 0
Sea traffic 0.0941 0 0 0.0626 0 0 0 0 75.17 300.69 500.76 109.87 0 0
Biogenic 0 0 5.023 0.0968 29.056 0 0 0.2975 0 20.094 854.02 0 0 76.83
Metal 0.2215 22.95 0 0 0 0 0 0 0 50.00 0 0 0 0
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Table A2. Matrix ΩE used in the simulations.

ΩE Al Cr Fe Mn P Sr Ti Zn V Ni Co Cu Cd Sb

Sea 0 1 1 1 0 0 1 1 1 1 1 1 1 1
Aged sea 1 0 1 1 0 0 0 1 1 1 0 0 1 1
Crustal 0 0 0 0 0 0 0 0 0 1 0 0 1 1
nitrates 0 0 0 0 0 1 1 0 1 1 0 0 0 0
sulfate 1 0 1 0 0 1 1 0 1 1 0 0 1 1
Biomass 0 1 0 0 1 0 1 0 1 1 1 1 1 0
Road traffic 1 1 0 0 0 1 1 0 1 1 0 0 1 0
Sea traffic 0 0 0 1 1 0 0 1 0 0 0 0 0 1
Biogenic 1 1 1 1 0 0 0 1 1 1 1 1 1 0
Metal 0 0 0 0 0 0 1 1 1 0 0 0 0 1

La Pb Na+ NH+
4 K+ Mg2+ Ca2+ Cl− NO−

3 SO2−
4 OC EC Levo. Polyols

Sea 1 1 0 1 0 0 0 0 1 0 1 0 1 1
Aged sea 1 0 0 1 0 0 0 0 0 0 0 1 1 1
Crustal 0 0 0 0 0 0 0 1 0 0 0 1 1 1
nitrates 0 0 1 0 0 0 1 0 0 1 0 0 1 0
sulfate 1 0 1 0 0 0 1 0 1 0 0 0 1 1
Biomass 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Road traffic 0 0 1 0 0 1 0 0 0 0 0 0 1 1
Sea traffic 0 0 1 0 1 0 1 0 0 0 0 0 1 1
Biogenic 1 1 0 0 0 0 1 0 0 0 0 1 1 0
Metal 0 0 1 0 1 0 1 1 1 0 1 1 1 1
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Table A3. Matrix Finit used in the simulations.

Finit Al Cr Fe Mn P Sr Ti Zn V Ni Co Cu Cd Sb

Sea 0.2 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 0.01 0.8 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11

Aged sea 1.00 × 10−11 0.001 1.00 × 10−11 1.00 × 10−11 1 1 0.01 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 0.01 0.01 1.00 × 10−11 1.00 × 10−11

Crustal 200 0.001 150 2 2 2 20 2 2 1.00 × 10−11 0.001 0.0001 1.00 × 10−11 1.00 × 10−11

nitrates 1.00 × 10−5 2.00 × 10−6 8 1 0.4 1.00 × 10−11 1.00 × 10−11 4 1.00 × 10−11 1.00 × 10−11 0.001 0.5 0.01 0.2
sulfate 1.00 × 10−11 1.00 × 10−4 1.00 × 10−11 1.00 × 10−4 0.5 1.00 × 10−11 1.00 × 10−11 0.4 1.00 × 10−11 1.00 × 10−11 0.01 1.00 × 10−4 1.00 × 10−11 1.00 × 10−11

Biomass 5 1.00 × 10−11 10 2 9.43 × 10−11 0.001 1.00 × 10−11 1 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 1.006 × 10−10

Road traffic 1.00 × 10−11 1.00 × 10−11 50 1 1.00 × 10+0 1.00 × 10−11 1.00 × 10−11 24 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 4 1.00 × 10−11 2
Sea traffic 0.01 1.00 × 10−4 0.4 1.00 × 10−11 1.00 × 10−11 0.1 1.00 × 10−4 1.00 × 10−11 18 10 1 1.00 × 10−3 1.00 × 10−4 1.00 × 10−11

Biogenic 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 5 7.96 × 10−10 7.96 × 10−10 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 7.96 × 10−10

Metal 73 70 650 50 3 5 1.00 × 10−11 1.00 × 10−11 1.00 × 10−11 30 1 3 4 1.00 × 10−11

La Pb Na+ NH+
4 K+ Mg2+ Ca2+ Cl− NO−

3 SO2−
4 OC EC Levo. Polyols

Sea 1.00 × 10−11 1 × 10−9 320 5 × 10−5 10 38 11 550 1 × 10−5 70 1 × 10−5 1 × 10−5 9.98 × 10−11 9.98 × 10−11

Aged sea 1.00 × 10−11 0.01 250 1 × 10−8 1 40 15 150 320DA80.eps 210 12 1.00 × 10−11 9.99 × 10−11 9.99 × 10−11

Crustal 0.0001 1 × 10−7 0.0001 0.0001 10 10 250 1.00 × 10−11 30 30 290 1.00 × 10−11 1.00 × 10−10 1.00 × 10−10

nitrates 0.2 0.5 1 × 10−10 300 5 1.00 × 10−11 1.00 × 10−11 0.2 600 1.00 × 10−11 80 1.00 × 10−11 1.00 × 10−10 1.00 × 10−10

sulfate 1.00 × 10−11 0.1 1.00 × 10−8 305 10 1.00 × 10−11 1.00 × 10−11 1.00 × 10−3 1.00 × 10−11 584 100 1.00 × 10−11 1.00 × 10−10 1 × 10−11

Biomass 1.00 × 10−11 1 3 28 72 5 38 66 66 66 510 70 57 9.43 × 10−11

Road traffic 1 9.99 1.00 × 10−10 1.00 × 10−8 57 0.00049 1.00 × 10−6 1.00 × 10−11 79.99 80 260 430 9.99 × 10−11 9.99 × 10−11

Sea traffic 0.5 1.00 × 10−8 1 × 10−11 1.00 × 10−2 1 × 10−11 1 × 10−11 1.00 × 10−11 1 × 10−11 110 250 450 160 8.37 × 10−11 8.37 × 10−11

Biogenic 1.00 × 10−11 7.96 × 10−10 1 1 9 4 1.00 × 10−11 7.96 × 10−10 5 5 800 1 × 10−11 7.96 × 10−10 170
Metal 1 40 1.00 × 10−11 1.00 × 10−2 1.00 × 10−11 1.00 × 10−2 1.00 × 10−11 0.005 0.001 70 0.00164 1.64 × 10−10 1.64 × 10−10 1.64 × 10−10



Entropy 2019, 21, 253 31 of 35

Appendix C. Real Data Operating Conditions

When considering the real dataset, let us emphasize that we do not know in advance the profile
matrix. The chemists are able to provide an initial profile matrix which is given in Table A4. As in the
previous appendix, the same initial matrix is applied to both the informed and non-informed methods. ε

is a very small quantity to make the initialization very close to the case of informed methods where set
values are zeros.

Table A4. Matrix Finit used in the real data case.

Finit Al Cr Fe Mn P Sr Ti Zn V Ni Co Cu Cd Sb

Sea 0.19 ε ε ε 1.00 8.00 ε ε ε ε ε ε ε ε
Aged sea 0.10 0.01 0.50 0.01 1.00 8.00 0.02 0.02 ε ε 1.00 0.01 0.01 0.01
Crustal 266.67 0.14 150 2.00 ε 2.00 20 0.50 0.50 0.07 0.07 0.07 ε 0.01
nitrates 0.98 0.98 30 0.98 ε 0.98 0.98 20 ε 0.98 0.98 10 0.98 0.98
sulfate 1.00 1.00 30 1.00 ε 1.00 15.00 20 ε 1.00 1.00 1.00 1.00 1.00
Biomass 4.00 ε 9.00 1.00 ε 1.00 1.00 10 ε ε ε 1.00 ε ε
Road traffic 20 1.00 50 5.00 ε 1.00 ε 50 5.00 10 5.00 50 5.00 50
Sea traffic 10 ε 10 ε ε ε ε 5.00 55.00 55.00 30 ε ε ε
Biogenic 0.01 ε 0.01 ε 20 ε ε ε ε ε ε 1.00 ε ε
Metal 80 80 358 40 8 18.00 40 40 30 30 1.00 40 50 30

La Pb Na+ NH+
4 K+ Mg2+ Ca2+ Cl− NO−

3 SO2−
4 OC EC Levo. Polyols

Sea ε ε 320.00 ε 10.00 40.00 10.00 540.08 ε 70.00 0.64 0.09 ε ε
Aged Sea ε 0.01 250.00 ε 10.00 25.00 10.00 200.00 275.30 210.00 8.00 1.00 ε ε
Crustal ε 0.14 10.00 3.00 100.00 70.14 210.00 7.00 20.00 35.07 90.00 12.62 ε ε
nitrates ε 0.98 ε 200.00 0.98 0.98 40.00 0.98 547.30 ε 100.00 40.00 ε ε
sulfate ε 20.00 ε 200.00 34.00 1.00 40.00 1.00 ε 554.00 60.00 16.00 ε ε
Biomass 0.00 0.94 2.83 28.31 70.00 4.72 37.74 66.05 70.00 66.05 500.61 69.29 56.46 ε
Road traffic ε 10.00 ε 10.00 10.00 ε 21.00 2.00 80.00 40.00 271.73 303.27 ε ε
Sea traffic 15.00 10.00 ε 10.00 ε ε 20.00 ε 10.00 30.00 580.00 160.00 ε ε
Biogenic ε ε 1.00 1.00 5.00 4.00 1.00 ε 5.00 5.00 760.00 50.00 ε 146.98
Metal 1.00 80.00 ε 1.00 48.00 10.00 5.00 ε ε 10.00 ε ε ε ε

Prior set value information is provided through the specification of both ΩE and ΦE. The set value
configuration is the same as those presented in [54]. As a consequence, ΦE is equal to ΦE = 0p×m.
The position of the set entries is provided in Table A5.

Table A5. Matrix ΩE used in the real data case.

ΩE Al Cr Fe Mn P Sr Ti Zn V Ni Co Cu Cd Sb

Sea 0 1 0 1 0 0 1 1 1 1 1 1 1 1
Aged sea 0 0 0 0 0 0 0 0 1 1 0 0 0 0
Crustal 0 0 0 0 0 0 0 0 0 0 0 0 0 0
nitrates 0 0 0 0 0 0 0 0 1 0 0 0 0 0
sulfate 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Biomass 0 1 0 0 0 0 0 0 1 1 0 0 0 0
Road traffic 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sea traffic 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Biogenic 0 0 0 1 0 0 0 0 1 1 0 0 1 0
Metal 0 0 0 0 0 0 0 0 0 0 0 0 0 0

La Pb Na+ NH+
4 K+ Mg2+ Ca2+ Cl− NO−

3 SO2−
4 OC EC Levo. Polyols

Sea 1 1 0 1 0 0 0 0 1 0 0 0 1 1
Aged sea 0 0 0 1 0 0 0 0 0 0 0 0 1 1
Crustal 0 0 0 0 0 0 0 0 0 0 0 0 1 1
nitrates 0 0 1 0 0 0 0 0 0 1 0 0 1 0
sulfate 0 0 1 0 0 0 0 0 1 0 0 0 1 0
Biomass 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Road traffic 0 0 1 0 0 1 0 0 0 0 0 0 1 1
Sea Traffic 0 0 1 0 0 0 0 0 0 0 0 0 1 1
Biogenic 1 1 0 0 0 0 0 0 0 0 0 0 1 0
Metal 0 0 1 0 0 0 0 1 1 0 1 1 1 1
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Prior bound information is provided through the specification of both ΩI and ΦI+, ΦI−. For sake of
concision, Table A6 only gathers the bound information.

Table A6. Matrices ΦI+/ΦI− used in the real data case.

ΦI+/ΦI− Al Cr Fe Mn P Sr Ti Zn V Ni Co Cu Cd Sb

Sea 0 0 0 0 0 20/0 0 0 0 0 0 0 0 0
Aged sea 0 0 0 0 0 20/0 0 0 0 0 0 0 0 0
Crustal 400/50 0 200/1 0 0 0 40/0.001 0 0 0 0 0 0 0
nitrates 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sulfates 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Biomass 100/0.001 0 100/0.001 0 0 0 0 0 0 0 0 0 0 0
Road traffic 0 0 75/1 0 0 0 0 50/0.1 0 0 0 15/0.000001 0 15/0.000001
Sea traffic 0 0 70/0.1 0 0 0 0 0 70/5 70/5 50/0.00001 0 0 0
Biogenic 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Metal 0 0 0 0 0 0 0 0 0 0 0 0 0 0

La Pb Na+ NH+
4 K+ Mg2+ Ca2+ Cl− NO−

3 SO2−
4 OC EC Levo. Polyols

Sea 0 0 400/200 0 50/5 50/15 50/5 720/360 0 100/30 0 0 0 0
Aged sea 0 0 0 0 0 0 0 250/0 500/50 500/50 0 0 0 0
Crustal 0 0 0 0 150/5 150/5 500/50 0 50/0 40/0 0 0 0 0
nitrates 0 0 0 800/50 0 0 0 0 950/200 0 0 0 0 0
sulfates 0 0 0 800/50 0 0 0 0 0 950/200 0 0 0 0
Biomass 0 0 10/0 40/0 100/1 5/0 100/0.001 100/0.001 150/1 150/0 750/100 200/5 0 0
Road traffic 0 0 0 20/0 0 0 0 10/0 60/10 80/20 300/150 800/250 0 0
Sea Traffic 30/0 0 0 20/0 0 0 0 20/0 75/0 300/10 700/100 200/50 0 0
Biogenic 0 0 5/0 5/0 0 0 0 5/0 5/0 20/0 850/500 0 0 0
Metal 0 0 0 0 0 0 0 0 0 60/10 0 0 0 0
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