
HAL Id: hal-02059135
https://hal.science/hal-02059135v1

Submitted on 6 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-parallel iterative solvers for parabolic evolution
equations

Martin Neumüller, Iain Smears

To cite this version:
Martin Neumüller, Iain Smears. Time-parallel iterative solvers for parabolic evolution equations.
SIAM Journal on Scientific Computing, 2019, 41 (1), pp.C28-C51. �10.1137/18M1172466�. �hal-
02059135�

https://hal.science/hal-02059135v1
https://hal.archives-ouvertes.fr


Time-parallel iterative solvers for parabolic evolution

equations∗

Martin Neumüller† and Iain Smears‡

March 6, 2019

Abstract

We present original time-parallel algorithms for the solution of the implicit Euler dis-
cretization of general linear parabolic evolution equations with time-dependent self-adjoint
spatial operators. Motivated by the inf-sup theory of parabolic problems, we show that the
standard nonsymmetric time-global system can be equivalently reformulated as an original
symmetric saddle-point system that remains inf-sup stable with respect to the same natu-
ral parabolic norms. We then propose and analyse an efficient and readily implementable
parallel-in-time preconditioner to be used with an inexact Uzawa method. The proposed
preconditioner is non-intrusive and easy to implement in practice, and also features the key
theoretical advantages of robust spectral bounds, leading to convergence rates that are inde-
pendent of the number of time-steps, final time, or spatial mesh sizes, and also a theoretical
parallel complexity that grows only logarithmically with respect to the number of time-steps.
Numerical experiments with large-scale parallel computations show the effectiveness of the
method, along with its good weak and strong scaling properties.

Key words: Parabolic partial differential equations, parallel algorithms, preconditioners, con-
vergence, parallel complexity.

Contents

1 Introduction 2

2 Discrete parabolic problem 4
2.1 Inf-sup stability of the discrete problem . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Equivalent reformulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Inexact Uzawa method 6

4 Schur complement preconditioner 10
4.1 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Spectral bounds for the Schur complement preconditioners . . . . . . . . . . . . . 11

†Institute of Computational Mathematics, Johannes Kepler University Linz, 4040 Linz, Austria
(neumueller@numa.uni-linz.ac.at)
‡Department of Mathematics, University College London, 25 Gordon Street, London WC1E 6BT, United

Kingdom (i.smears@ucl.ac.uk)
∗This project has received funding from the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation program (grant agreement No 647134 GATIPOR).

1



5 Parallel complexity 12

6 Inf-sup stability of the implicit Euler method 13
6.1 Time-global variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Inf-sup stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Spectral equivalence of the Schur complement preconditioner 16
7.1 Discrete Sine Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8 Numerical experiments 18
8.1 Condition numbers of Schur complement preconditioner . . . . . . . . . . . . . . 19
8.2 Robustness with respect to time-steps, mesh-sizes, and approximate spatial solvers 19
8.3 Optimization of the damping parameter . . . . . . . . . . . . . . . . . . . . . . . 20
8.4 Time-parallel computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.5 Time-parallel computations with variable coefficient . . . . . . . . . . . . . . . . 21
8.6 Space-time parallel computations . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1 Introduction

The usual approach to the numerical solution of parabolic partial differential equations (PDE)
involves the sequential solution of discrete systems obtained by a time-stepping scheme. In
many cases, a large number of time-steps might be required, which can lead to long computation
times. The large number of cores in present-day high-performance computers enables the use of
time-parallel algorithms as an alternative to the sequential approach. By treating many time-
steps simultaneously and in parallel, these specialized algorithms aim to compute the numerical
solution to a desired accuracy in a shorter computational time than can be achieved by the
sequential approach.

Starting with Nievergelt [33] in 1964, a wide variety of time-parallel algorithms have been
proposed [5, 8, 9, 13, 17, 20, 23, 26, 31, 43], see also the review [16]. One of the central questions
that any time-parallel algorithm must address is how to efficiently propagate information about
the solution across the whole time interval. In the parareal method [3, 19, 27, 29], this is done
by iterating between the sequential solution of problems on a coarse temporal grid with parallel
solves on the fine temporal grid. Instead of a single coarse temporal grid, time and space-
time multigrid methods [13, 18, 22, 24, 25] use a hierarchy of coarser grids in both space and
time. For linear problems, many of these algorithms can be seen as convergent iterative solvers
for a large time-global nonsymmetric linear system. Recall that the available theory for the
design and analysis of iterative methods for general nonsymmetric systems is currently rather
more limited than for their symmetric counterparts [30, 42]. Therefore, the study of iterative
methods for parabolic problems appears significant within the wider context of the solution of
large nonsymmetric linear systems.

Recently, two independent works [1, 39] proposed to treat the nonsymmetry of linear systems
coming from parabolic problems using approaches based on the inf-sup condition. In particular,
the first step in the approach from [39], which is developed further here, is to build a left-
preconditioner that is based on the mapping from trial functions to their optimal test functions in
the analysis of the inf-sup condition. The left-preconditioner then leads to equivalent symmetric
reformulations that are stable in the same norms and spaces (or their discrete analogues) as
those that appear naturally in the analysis of well-posedness of the problem. Note that the
stability of these reformulations distinguishes this approach from classical ones such as forming

2



the normal equations. Convergent iterative solvers can then be built out of preconditioners for
the symmetric positive definite systems associated to the norms and spaces appearing in the
inf-sup condition.

This approach to preconditioning and solving the system is conceptually distinct from those
in many previous works in several ways, one of which is that it explicitly features preconditioners
that handle the appropriate spatial dual-norm on the time derivative. For illustration, consider
momentarily the heat equation ∂tu−∆u = f in Ω×(0, T ), where f ∈ L2(0, T ;H−1(Ω)), with, for
simplicity, homogeneous Cauchy–Dirichlet conditions at the boundary and initial time. Then,
following [28, Chap. 3], the solution space S is the space of functions in L2(0, T ;H1

0 (Ω)) ∩
H1(0, T ;H−1(Ω)) that vanish at t = 0. Furthermore, we have the following identity

‖u‖S = sup
v∈L2(0,T ;H1

0 (Ω))\{0}

B(u, v)

‖v‖A
∀u ∈ S, (1.1)

where B(u, v) :=
∫ T

0
〈∂tu, v〉 + (∇u,∇v)Ω dt is the bilinear form for a weak formulation of the

problem, where ‖u‖2S :=
∫ T

0
‖∂tu‖2H−1(Ω) + ‖∇u‖2Ω dt + ‖u(T )‖2Ω is the norm on S, and where

‖v‖2A :=
∫ T

0
‖∇v‖2Ω dt, with ‖·‖Ω denoting the L2-norm over Ω (for proof, see for instance [11]).

For each trial function u ∈ S, there is an optimal choice of test function v ∈ L2(0, T ;H1
0 (Ω)) that

achieves the supremum in (1.1); in the discrete setting, this mapping between trial and optimal
test functions leads to a left-preconditioner that symmetrizes the system in a stable way. The
complete solution algorithm combines this with additional preconditioners tied to the discrete
versions of the norms ‖·‖S and ‖·‖A, i.e. that handle explicitly the norm on the time derivative
(see Sections 2 and 4 below for details).

The formulation of the inf-sup theorem for general abstract linear problems in Hilbert spaces
was first stated by Nec̃as [32], and was later applied in the error analysis of finite element methods
by Babuška in [2]. See also [7] for saddle-point problems. More recently, for parabolic problems,
we note that inf-sup stability has previously found application in several contexts, such as a
priori error analysis [40], a posteriori analysis [11, 12], and reduced-basis methods [41]. We also
refer the reader to the textbooks [10, 38] for the inf-sup theorem for general linear equations in
Banach spaces, and its application to parabolic problems.

In this work, we present some original time-parallel algorithms for the solution of the implicit
Euler discretization of general parabolic evolution equations with self-adjoint spatial operators.
The first contribution is to show that the discrete systems admit a similar inf-sup analysis
to (1.1), which allows us to find equivalent symmetric systems that are stable with respect
to the discrete counterparts of the norms ‖·‖S and ‖·‖A above. In particular, we obtain an
equivalent symmetric saddle-point formulation that is well-suited for preconditioned iterative
solvers, such as the inexact Uzawa method [6, 45] or the preconditioned MINRES method [34].
The second contribution is to propose robust and efficient time-parallel preconditioners for these
linear systems, resulting fast convergence of the iterative solvers. Specifically, the preconditioner
for the first variable of the saddle-point system is block-diagonal with respect to the time-steps,
and the Schur complement preconditioner for the second variable is also block-diagonalized under
the Discrete Sine Transform (DST) in time. Thus, after application of the DST, the time-
parallelism is essentially trivial, and significantly simplifies the treatment of the dual norm of
the time derivatives. The DST can be implemented through parallel Fast Fourier Transforms
(FFT), which have a low parallel complexity and are often relatively cheap in practice compared
to the spatial solvers. The transformations of the temporal basis via the DST constitutes the
main mechanism for exchange of information over time.

The main features of the algorithm can be summarized as follows.

3



Convergence theory. Applying the proposed time-parallel preconditioners to standard solvers,
such as the inexact Uzawa method, leads to robust convergence rates that depend only on the
efficiency of the spatial preconditioners and on the quasi-uniformity of the problem. As a result,
the convergence of the algorithm is independent of the number of time-steps, the spatial mesh
size, and the final time. The main step in the analysis is a proof of the robust spectral equivalence
of the Schur complement and its preconditioner through the DST.

Parallel complexity. Since we are primarily interested here in time-parallelism, we study
the dependence of the parallel complexity on N the number of time-steps. We show that each
iteration of the method has a parallel complexity of O(logN) when sufficiently many processors
are available. To put this result in context, note that the standard parareal method using the
implicit Euler method in the coarse and fine solvers achieves at best a parallel complexity of
order O(

√
N), as shown in [4]. This result should be considered in light of the logarithmic-order

lower bounds on the optimal achievable parallel complexity, see [26, 44].
Treatment of time-dependent spatial operators and non-uniform time-steps. The spatial op-

erators can be time-dependent and the time-step lengths may vary, under the quasi-uniformity
condition (2.2) below. It is worth noting that the time-dependence of the operators precludes
an analysis based on reducing the problem to the scalar ODE case through spatial eigenvector
decompositions, which is a common approach in the literature on time-parallel algorithms.

Simplicity of implementation. On the practical side, the parallel implementation of the pro-
posed method has the advantage of being non-intrusive with respect to the spatial solvers and
preconditioners, so black-box existing spatial solvers can be re-used. This means that significant
spatial parallelism can be straightforwardly included, see for instance the numerical experiments
below. The parallelization in time requires only parallel implementations of the one-dimensional
FFT, which are available in libraries such as FFTW3 [15].

This article is organized as follows. The discrete parabolic problem is presented in Section 2,
where we propose an equivalent stable symmetric saddle-point formulation that is the starting
point for our approach. We then consider an inexact Uzawa method as a representative iterative
solver in Section 3, along with a convergence theorem that motivates the need for a spectrally
equivalent Schur complement preconditioner. Section 4 then details the construction of paral-
lelisable preconditioner along with the key spectral bounds. This is followed by the bounds on
parallel complexity in Section 5. The analysis of the spectral bounds is taken up in Sections 6 and
7. Finally, we present numerical experiments with large scale parallel computations in Section 8,
before presenting our conclusions.

2 Discrete parabolic problem

For T > 0, consider a partition of the time interval (0, T ) into disjoint time-step intervals In =
(tn−1, tn), with 0 = t0 ≤ tn−1 < tn ≤ tN = T for each 1 ≤ n ≤ N . Let τn := tn − tn−1 denote
the time-step lengths for each n = 1, . . . , N . For a given finite dimensional space V, let M and
An, n = 1, . . . , N , be symmetric positive definite matrices on V.

Consider the discretization of an abstract parabolic evolution equation by the implicit Euler
method

M(un − un−1) + τnAnun = τnfn, (2.1)

where un ∈ V for each n = 1, . . . , N . At the first time-step n = 1, the term u0 is replaced by some
given initial datum uI ∈ V. In applications to second-order parabolic PDEs, the matrices M and
An typically represent the mass and stiffness matrices obtained by some spatial discretization
method.

4



The matrices M and An, n = 1, . . . , N , induce the inner-products (·, ·)M and (·, ·)An and the
norms ‖·‖M and ‖·‖An on V. To simplify the notation, we shall identify functions in V with their
vector representations, so for instance we shall write ‖v‖2M = v>M v for all v ∈ V. We assume
that there exists a symmetric positive definite matrix A along with positive constants τ > 0 and
α ≥ 1, such that

1

α
τA ≤ τnAn ≤ α τA ∀n = 1, . . . , N, (2.2)

where the inequalities are in the sense of the partial ordering of positive semi-definite symmetric
matrices (i.e. A ≤ B if and only if B − A is positive semi-definite). In other words, we assume
that the matrices τnAn, n = 1, . . . , N , are uniformly spectrally equivalent to the matrix τA; this
amounts to a non-degeneracy and quasi-uniformity assumption. For instance, this assumption
is guaranteed if the temporal grid is quasi-uniform and all matrices An are spectrally equivalent
to A; however (2.2) is a somewhat weaker assumption in general. We stress that (2.2) is not
a CFL-type restriction on the time-step sizes. The constant τ and matrix A will be needed in
the algorithm below, and, ideally, they should be chosen to make the constant α as close to 1 as
possible. In practice, some simple choices would be to select τ and A among the time-steps {τn}
and operators An given by the problem, or to consider an average.

2.1 Inf-sup stability of the discrete problem

First, we express (2.1) in time-global form by gathering the solution values into the vector
u = [u1, . . . , uN ] ∈ VN , with VN = V× · · · × V, which leads to the nonsymmetric system

Bu = f , B := K + A, (2.3)

where A := diag{τnAn}Nn=1 is the block-diagonal matrix with entries τnAn along the diagonal,
and where

K := K ⊗M, K :=

 1
−1 1
−1 1

. . .

 , (2.4)

with ⊗ denoting is the Kronecker product of matrices. Furthermore, the right-hand side in (2.3)
is given by f = [τ1f1 +MuI , τ2f2, . . . , τNfN ].

We now introduce the matrix S defined by

S := B>A−1B = K>A−1K + K + K> + A. (2.5)

The matrix S is symmetric positive definite, since B is known to be nonsingular. Furthermore,
it is easy to see that, for any u ∈ VN ,

‖u‖S = sup
v∈VN\{0}

v>Bu

‖v‖A
, (2.6)

where the supremum is achieved by taking v = Pu, where P := A−1B, and where ‖·‖A and
‖·‖S are the norms associated with A and S defined above. The identity in (2.6) represents
the discrete analogue of (1.1). In particular, we will see later in Section 6 how the variational
formulation of the implicit Euler scheme offers a deeper conceptual understanding of (2.6) and
its relation to the continuous setting.

5



2.2 Equivalent reformulations

The starting point for the derivation of the algorithm is to consider two equivalent reformulations
of (2.3). First, observe that the matrix P, which maps trial functions to optimal test functions
in (2.6), can be rewritten as P = A−1K+I, with I = IdN×dimV the identity matrix of dimension
N × dimV. Moreover, we have S = P>B, so the matrix S can be seen as the product of B with
the left-preconditioner P>. Therefore, (2.3) is equivalent to the left-preconditioned system

Su = g, g := P>f . (2.7)

Thus (2.7) amounts to left-preconditioning (2.3) with the mapping between trial functions to the
optimal test-functions.

It is possible, in theory, to apply standard iterative solvers, such as a preconditioned conjugate
gradient (CG) method, to (2.7) since S is symmetric positive definite. However, this would
explicitly require the action of A−1 at each iteration, which can be expensive to compute. To
overcome this issue, we introduce the auxiliary variable p ∈ VN defined by the equation Ap =
Ku− f . Then, a simple calculation shows that the matrix S in (2.7) is the Schur complement of
the symmetric indefinite system

Au = g, A :=

[
A −K

−K> −
(
K + K> + A

)] , u :=

[
p

u

]
, g :=

[
−f

−f

]
. (2.8)

The solution u ∈ VN of (2.3) is the second component of the solution u ∈ VN × VN of (2.8),
and we see that p = −u from (2.3). The matrix A is of saddle-point type, with dimension
2 × dimV × N and is block-sparse, since A is block-diagonal, K is block lower-triangular and
bidiagonal, and K + K> is block-tridiagonal.

We propose to compute the solution of the problem by applying preconditioned iterative
solvers to the system (2.8), such as the inexact Uzawa method. The advantage of (2.8) over
(2.7) is that it allows for iterative solvers that merely approximate the action of A−1 with
preconditioners. The advantage of (2.8) over the original formulation (2.3) is that it is symmetric,
whilst remaining inf-sup stable with respect to the same norms as (2.3). Indeed, it is possible to
show, using for instance the bounds in [37], that, for any u ∈ VN × VN ,

1

2

(√
5− 1

)
‖u‖∗ ≤ sup

v∈VN×VN\{0}

v>Au

‖v‖∗
≤ 1

2

(√
5 + 1

)
‖u‖∗. (2.9)

where the norm ‖·‖∗ on VN × VN is defined by

‖v‖2∗ := ‖q‖2A + ‖v‖2S ∀v = [q,v] ∈ VN × VN . (2.10)

We then see that the norm on the second variable in (2.10) is the same as in the left-hand side
of (2.6).

3 Inexact Uzawa method

There is a range of iterative methods for solving saddle-point systems such as (2.8). We consider
here the inexact Uzawa method

pj+1 = pj + Ã−1 (Kuj −Apj − f) ,

uj+1 = uj + ωH̃−1
(
f −K>pj+1 −

[
K + K> + A

]
uj
)
,

(3.1)

6



where Ã and H̃ are respectively preconditioners for A and S, where ω > 0 is a damping param-
eter, and where u0 = [p0,u0] is an initial guess. In practice, it is most natural to choose Ã to
be of block-diagonal form

Ã := diag{τnÃn}Nn=1, (3.2)

where, for each n = 1, . . . , N , the matrix Ãn is symmetric positive definite. The application of
Ã−1 is then trivially parallel with respect to the time-steps. In practice, the approximation Ãn
is usually defined implicitly in terms of its inverse Ã−1

n that represents the action of a standard
solver for spatial problems, such as a small number of multigrid V-cycles for example. For the
analysis, we assume that there exists ρA with 0 ≤ ρA < 1, such that each Ãn is a convergent
approximation of An, i.e.

‖I − Ã−1
n An‖Ãn ≤ ρA ∀n = 1, . . . , N. (3.3)

The following theorem gives sufficient conditions for convergence of the inexact Uzawa method.
Let the norm ‖·‖D be defined on VN × VN by

‖v‖2D := ωρA‖q‖2Ã + ‖v‖2
H̃
. (3.4)

Theorem 3.1 (Convergence). Suppose that (3.3) holds and that H̃ is symmetric positive definite.

Let 0 < λmin ≤ λmax be constants such that λminH̃ ≤ S ≤ λmaxH̃. Let the sequence of iterates
{uj}∞j=0 be defined by (3.1), and let the quantities σ− and σ+ be defined by

σ− :=
1

2

[
(1− ρA)(1− ωλmin) +

√
4ρA + (1− ρA)2(1− ωλmin)2

]
, (3.5a)

σ+ :=
1

2

[
(1 + ρA)(1 + ωλmax)− 2 +

√
4ρA + [(1 + ρA)(1 + ωλmax)− 2]

2

]
. (3.5b)

Let ρU := max{σ−, σ+}. Then we have

‖u− uj+1‖D ≤ ρU‖u− uj‖D ∀ j ≥ 0. (3.6)

If the damping parameter ω > 0 is chosen such that

ω λmax < 2
1− ρA
1 + ρA

, (3.7)

then ρU < 1 and the inexact Uzawa method is convergent.

The proof of Theorem 3.1 is given in Section ?? below. Thus, it is seen that the convergence
rate of the inexact Uzawa method can be bounded by ρU which depends only on ρA, ω and on
the spectral equivalence between H̃ and S. If H̃ is spectrally equivalent to S, i.e. with uniform
bounds on λmin and λmax independent of the discretization parameters, e.g. the number of time-
steps, then the convergence will be robust with respect to these parameters. We will construct
in Section 4 below a spectrally equivalent preconditioner H̃ that verifies the assumptions in
Theorem 3.1, provided only that (2.2) and (3.3) hold, and that suitable preconditioners for
certain associated spatial matrices are available.

Remark 3.1 (Condition on the damping parameter). The condition (3.7) is essentially equivalent
to the condition given in [45, Thm 4.3], although written in a different form. This assumption
is also rather natural, since if ρA approaches zero, then the inexact Uzawa method approaches
a preconditioned Richardson iteration for S and (3.7) approaches the standard condition that

ω < 2/λmax for guaranteeing the contraction of the iteration matrix I− ωH̃−1S.

7



Remark 3.2 (Norm of the principal variable). Since we are primarily interested in the second

variable in the system (2.8), and since the preconditioners H̃ considered here will be shown to
be spectrally equivalent to S, we see that the associated norm for the second variable in ‖·‖D
is equivalent to ‖·‖S, which is natural for the problem, owing to (2.6). In the literature, various
other norms have been used in the analysis of parallel algorithms for parabolic equations; a
popular choice appears to be the max-norm max1≤n≤N‖vn‖M , see for instance [19]. It turns out
that the norm ‖·‖S considered here is stronger than the max-norm; indeed, Corollary 6.2 below
shows that, for every v ∈ VN , with v = [v1, . . . , vN ], we have the bound max1≤n≤N‖vn‖M ≤
1√
2
‖v‖S, without any additional unknown constant. However, in general, this bound has no

robust converse, i.e. the norm ‖·‖S is strictly stronger than the max-norm.

Remark 3.3 (Norm of the auxiliary variable). We see in (3.4) that the parameters ρA and ω
appear in association with the norm for the auxiliary variable q in the definition of the norm ‖·‖D.
This can be explained as follows: if one of ρA or ω is very small, then it is clear that the error
u − uj+1 for the principal variable is not significantly influenced by the previous error p − pj
in the auxiliary variable; this is reflected in the bound (3.6). In the case where ρA approaches
zero, then the inexact Uzawa method approaches the preconditioned Richardson iteration for S,
and the error u− uj+1 becomes in the limit independent of p− pj . For this reason, we see that
the presence of the parameters ρA and ω in norm ‖·‖D is rather natural for the analysis of the
inexact Uzawa method.

Remark 3.4 (Other iterative methods). Although we consider here the inexact Uzawa method
for solving the system (2.8), this is by no means the only possible choice. For instance, one
alternative is the MINRES algorithm [34]. Given a symmetric positive definite preconditioner,
MINRES minimizes a preconditioned residual norm over a Krylov subspace. For example, a
suitable yet simple choice of preconditioner for MINRES here would be the block diagonal matrix[
Ã

H̃

]
. Then, provided that H̃ is spectrally equivalent to S, we may use the spectral bounds

in [37] and convergence theory in [21] to show the robust convergence of MINRES. Notice that
unlike the inexact Uzawa method above, MINRES does not require a suitably chosen damping
parameter ω to have guaranteed convergence. Moreover, the condition (3.3) can be relaxed to
the weaker assumption of spectral equivalence.

Proof of Theorem 3.1. The proof essentially follows the approach of [45], which gives suffi-
cient conditions for convergence of inexact Uzawa methods in the context of general saddle-point
problems with zero lower diagonal block. However, the saddle-point matrix A defined in (2.8)
has nonzero lower diagonal block, so, strictly speaking, we must check that the approach in [45]
can be extended to cover the present situation. Therefore, in this subsection, we adapt the main
steps from [45] for the sake of completeness. To remain brief, we do not attempt to give as
general a treatment as the one in [45].

Let M denote the iteration matrix of the inexact Uzawa method, i.e. ej+1 = Mej for each
j ≥ 0, where ej := u− uj . A simple calculation shows that

M =

[
I− Ã−1A Ã−1K

−ωH̃−1K>
(
I− Ã−1A

)
I− ωH̃−1S̃

]
, (3.8)

where S̃ := K>Ã−1K + K + K>+ A. Therefore, we can obtain (3.6) by showing that ‖M‖D ≤
ρU , where ‖M‖D denotes the operator norm of M with respect to the norm D from (3.4).

Lemma 3.2. Assume that (3.3) holds, that ω > 0, and that H̃ is symmetric positive definite.
Then we have the bound ‖M‖D ≤ maxµ∈Σ|µ| where Σ ⊂ R denotes the set of eigenvalues of the

8



generalized symmetric eigenvalue problem:

Nv = µEv, N :=

[
Ã −K

−K> S̃− 1
ω H̃

]
, E :=

[
1
ρA

Ã
1
ω H̃

]
. (3.9)

Proof. Let D :=
[
ωρAÃ

H̃

]
denote the matrix inducing the norm ‖·‖D in (3.4). A simple

calculation shows that the matrix M can be factorized as M = −RNQ, where N is as in (3.9),

and R :=
[
Ã−1

ωH̃−1

]
, Q :=

[
Ã−1A−I

I

]
. It is furthermore easy to check that ωE−1 = R>DR,

and that Q>EQ ≤ 1
ωD as a consequence of (3.3). Therefore, we find that

‖M‖2D = sup
v∈VN×VN\{0}

v>Q>NE−1NQv

v>( 1
ωD)v

≤ sup
w∈VN×VN\{0}

w>NE−1Nw

w>Ew = ‖E−1N ‖2E ,

where we obtain the inequality in second line above by substituting w = Qv and using the
bound Q>E Q ≤ 1

ωD given above. Since the matrix E−1N is symmetric with respect to the

E-inner product, we see that ‖E−1N ‖E = maxµ∈Σ|µ| where Σ denotes the set of eigenvalues in
(3.9). This implies that ‖M‖D ≤ maxµ∈Σ|µ|.

The next step in the proof of Theorem 3.1 is to bound the eigenvalues µ ∈ Σ defined by (3.9).

Lemma 3.3. Assume that (3.3) holds, that ω > 0, and that H̃ is symmetric positive definite.

Let 0 < λmin ≤ λmax be constants such that λminH̃ ≤ S ≤ λmaxH̃. If µ ∈ Σ is a negative
eigenvalue of (3.9), then |µ| ≤ σ− where σ− is defined (3.5a). If µ ∈ Σ is a positive eigenvalue,
then |µ| ≤ σ+ with σ+ defined in (3.5b).

Proof. We start by showing the bound |µ| ≤ σ− for any negative eigenvalue µ < 0. First, let

λ = −µ = |µ|; then, since (1+ λ
ρA

)Ã is positive definite, we may use the eigenvalue problem (3.9)
to find that there exists a nonzero v ∈ V such that

λ

ω
H̃v =

1

ω
H̃v − S̃v +

ρA
ρA + λ

K>Ã−1Kv.

By taking the inner product with v and applying the inequalities (3.3) and S̃ ≥ (1− ρA)λminH̃,
we eventually find that λ satisfies the inequality

λ2 − λ(1− ρA)(1− ωλmin) ≤ ρA, (3.10)

from which we deduce that |µ| = λ ≤ σ− as claimed.
Next we consider the case of positive eigenvalues µ > 0. First note that ρA < σ+; therefore

we need only consider the case of µ > ρA, otherwise if µ ≤ ρA then µ < σ+ and there is nothing

left to show. If µ > ρA, then (1 − µ/ρA)H̃ is nonsingular, and we find that there is a nonzero
v ∈ V such that

(1 + µ)

ω
H̃v = S̃v +

ρA
µ− ρA

K>Ã−1Kv.

We then apply the inequality S̃ ≤ (1 + ρA)λmaxH̃ to find eventually that

µ2 − µ [(1 + ρA)(1 + ωλmax)− 2] ≤ ρA, (3.11)

which implies the inequality µ ≤ σ+ as claimed.

9



Proof of Theorem 3.1 The combination of Lemmas 3.2 and 3.3 implies that ‖M‖ ≤ ρU
where ρU := max{σ−, σ+}; this implies the bound (3.6) on the sequence of iterates. We next
show that ρU < 1 if (3.7) holds. Indeed, it is easy to check that σ− < 1 for all ωλmin > 0, and
σ+ < 1 if and only if ρA + (1 + ρA)(1 + ωλmax) − 2 < 1, which is equivalent to the condition
in (3.7).

4 Schur complement preconditioner

We have seen in the previous section that a convergent iterative solver for (2.8) can be obtained
provided that we have at our disposal a spectrally equivalent preconditioner for the Schur com-
plement S. In this section, we propose such a preconditioner that is well-suited for parallel
computations. We shall denote this preconditioner by H in the case of exact spatial solvers,
and by H̃ in the practical case of approximate spatial solvers. To motivate our construction, we
consider the following example.

Example 4.1 (Uniform time-steps with constant coefficients). Consider momentarily the case
where τn = τ and An = A for all n = 1, . . . , N , i.e. where the time-steps and spatial operators
are constant in time. Then the Schur complement matrix S is

S =
1

τ
K>K ⊗MA−1M + (K +K>)⊗M + τ IdN ⊗A,

where K is from (2.4), where IdN is the N×N identity matrix and where ⊗ denotes the Kronecker
product. It is then easy to see that the matrices K>K and K+K> are both symmetric positive
definite, since

K>K =

 2 −1
−1 2 −1

. . . −1
−1 1

 , K +K> =

 2 −1
−1 2 −1

. . . −1
−1 2

 . (4.1)

As a special case of the results of Section 6, we will see that S is spectrally equivalent to a
simpler matrix where the middle term (K + K>) ⊗M is dropped. Since this simpler matrix
involves only a sum of two Kronecker products of matrices, it can be block-diagonalized with
respect to time. The key observation is that the matrix K>K has explicitly known (generalized)
eigenvalues and eigenvectors, which are related to discrete Sine transforms (DST), which are
well-suited for time-parallelism. This suggests using the DST in time to obtain a block-diagonal
and thus time-parallel preconditioner.

To define the preconditioners, we use the type-III DST, represented by the matrix Φ that
maps u ∈ VN to û = Φ u ∈ VN , where û = [û1, . . . , ûN ] is defined by

ûk :=
2

N

N∑
n=1

βnun sin

(
(2k − 1)nπ

2N

)
, k = 1, . . . , N, (4.2)

where

βn :=

{
1 if 1 ≤ n < N,
1
2 if n = N.

(4.3)

The inverse map Φ−1 that satisfies u = Φ−1û is simply given by the type-II DST

un =

N∑
k=1

ûk sin

(
(2k − 1)nπ

2N

)
, n = 1, . . . , N. (4.4)

10



We stress that the actions of the transformations are with respect to the temporal components
of the vectors u and û, since each term in the sums of (4.2) and (4.4) is a vector in V. Thus
the DST used here represents a change of the temporal basis. Furthermore, the actions of the
matrices Φ and Φ−1 (and their transposes) can all be implemented efficiently through recursive
splittings of the summations, leading to fast implementations akin to the FFT.

The ideal preconditioner H is defined by

H := Φ>Ĥ Φ, Ĥ :=
N

2τ
diag

{
HkA

−1Hk

}N
k=1

, (4.5)

where τ and A are as in (2.2), and where the matrices Hk are defined by

Hk := µkM + τA, µk := 2 sin

(
(2k − 1)π

4N

)
∀ k = 1, . . . , N. (4.6)

Notice that µk > 0 for each 1 ≤ k ≤ N . The inversion of H can be performed by composition of
Φ−T , Ĥ−1 and Φ−1. As mentioned above, the actions of Φ−T and Φ−1 can be computed by fast
DST algorithms akin to the FFT, and the application of Ĥ−1 simply requires the solution of linear
systems for weighted implicit Euler steps and can be parallelized over the blocks k = 1, . . . , N .

4.1 Approximations

The analysis of iterative solvers given below will allow for approximations to be made in the
application of the inverse of H. More precisely, we consider approximations H̃ of H given by

H̃ := Φ>ĤapproxΦ, Ĥapprox :=
N

2τ
diag

{
H̃kA

−1H̃k

}N
k=1

, (4.7)

where, for each k = 1, . . . , N , the symmetric positive definite matrix H̃k represents an approxi-
mation of Hk. We have in mind cases where each matrix H̃k is obtained from a standard solver for
the matrices Hk, for example by multigrid or domain decomposition methods. For the analysis,
we shall assume that there exist positive constants γ and Γ such that, for all k = 1, . . . , N ,

γ H̃kA
−1H̃k ≤ HkA

−1Hk ≤ Γ H̃kA
−1H̃k. (4.8)

By comparing (4.7) with (4.5), it is then clear that the matrices H and H̃ are spectrally equiva-

lent, with γH̃ ≤ H ≤ ΓH̃.

4.2 Spectral bounds for the Schur complement preconditioners

Our main result is that the preconditioner H defined in (4.5), and its approximation H̃ defined
in (4.7), are spectrally equivalent to S with bounds showing the explicit dependence of the
constants on α, γ and Γ.

Theorem 4.1 (Spectral equivalence). Assume (2.2). Then, for any number of time-steps N and
any symmetric positive definite matrices M and {An}Nn=1, the matrices H and S are spectrally
equivalent with the following bounds

1

2α
H ≤ S ≤ 3αH. (4.9)

Furthermore, if (4.8) also holds, then H̃ defined in (4.7) is spectrally equivalent to S with the
following bounds

γ

2α
H̃ ≤ S ≤ 3αΓ H̃. (4.10)

11



The proof of Theorem 4.1 is the subject of Sections 6 and 7. Theorem 4.1 implies that we
can take λmin = γ

2α and λmax = 3αΓ in Theorem 3.1.

Remark 4.1 (Robust convergence). The combination of Theorems 3.1 and 4.1 leads to bounds
on the convergence rate of the method that depend only on the the constants in the assump-
tions (2.2), (3.3), (4.8), and on ω. In many practical applications, these assumptions are satisfied
with uniformly bounded constants independent of parameters that determine the spatial matrices
M and An, such as the spatial mesh size, in which case the convergence will be robust.

Remark 4.2 (Extension to locally refined time-steps). The quasi-uniformity assumption (2.2) is
required in the analysis of the preconditioner H owing to the DST. The inf-sup stability (2.2)
and the stable symmetric reformulation (2.8) do not depend on (2.2), and therefore it appears
that various extensions may be possible in future work, provided suitable modifications are made
in the construction of H. The inclusion of spatial adaptivity, where the space V may change
between time-steps, represents also a further challenge for future work.

5 Parallel complexity

Following [25, 26], the notion of parallel complexity is understood here as the theoretical computa-
tional cost assuming the availability of sufficiently many processors, and ignoring communication
costs. It is therefore of interest as an intrinsic property of the given algorithm. Since we are
primarily interested in the time-parallelism of the algorithm, we shall focus on the dependence
on the number of time-steps N .

In order to treat the costs related to spatial operations related to V in a general way, we
introduce the following elementary constants.

• Let Cadd
V denote the cost of additions and subtractions of vectors in V; more precisely, Cadd

V
is the maximal cost of the operation (v, w, c) 7→ v + cw, where v, w ∈ V and c ∈ R.

• Let Cmult
V denote the maximal cost of performing a matrix vector product (L, v) 7→ Lv,

where v ∈ V and the matrix L is one of M , A or An, n = 1, . . . , N .

• Let Cprec
V denote the maximal cost of performing the action of the spatial preconditioners,

i.e. the cost of the matrix-vector product (L, v) 7→ Lv where L is one of the Ãn
−1 or H̃k

−1,
for n, k = 1, . . . , N .

Given that the proposed algorithm allows the re-use of existing spatial solvers, it is clear that
in many applications there can be significant spatial parallelism as well; see the experiments in
Section 8.6. We distinguish the costs of these different operations since in practice they may be
rather different; for instance, we expect that Cadd

V will be smaller than Cmult
V or Cprec

V .

We can now analyse the parallel complexity of the inexact Uzawa method using H̃ as defined
in (4.7). For fixed constants ρA, ω, α, γ and Γ, the convergence rate of the algorithm is robust
with respect to the number of time-steps. Therefore, for any ε > 0, at most O(log ε−1) iterations
are required to achieve a relative reduction of the residual by a tolerance ε. The total cost is then
based on the number of iterations required multiplied by the cost per iteration. Each iteration
of the inexact Uzawa method (3.1) requires

• A fixed number of matrix vector products with K, A and K>, each of which has parallel
complexity O(Cmult

V + Cadd
V ), independently of N , since each of these matrices is block-

sparse.

• A fixed number of vector additions/subtractions on VN × VN , with parallel complexity
O(Cadd

V ), independently of N .

12



• The application of Ã−1, which has parallel complexity O(Cprec
V ), independently of N , since

Ã is block diagonal.

• The application of H̃−1, which we discuss further below.

The matrix-vector product with H̃−1 involves the application of the DST transformations
related to Φ−1 and Φ−>, and the application of the block diagonal matrix Ĥ−1

approx from (4.7).

It is clear that the application of Ĥ−1
approx has parallel complexity O(Cmult

V + Cprec
V ), and is

independent ofN . It remains only to consider the parallel complexity of the DST. It is clear that if
N is, for example, an integer power of 2, then the DST has parallel complexity of O(Cadd

V (logN+
1)), as shown by recursive splitting of the summation in (4.4). From a theoretical perspective,
the same parallel complexity bound can also be achieved for general N , since a DST of general
length N can be obtained by Bluestein’s method, which involves two zero-padded discrete Fourier
transforms with length equal to a power of two of same order as N ; see [36] for further details.

In summary, the parallel complexity of each inexact Uzawa iteration is then bounded by

O
(
Cadd

V (logN + 1) + Cmult
V + Cprec

V
)
. (5.1)

It is thus seen that each iteration has a parallel complexity that grows at most logarithmically
with N . The strong decoupling of the method between time and space can also be seen through
the fact that the terms involving Cmult

V and Cprec
V are independent of N . Note that the terms of

order logN are not necessarily dominant in actual computations, since Cprec
V and Cmult

V are often
significantly larger than Cadd

V ; indeed, in our experiments, the cost of the DST is significantly
lower than the cost of solving the associated spatial problems, see Section 8.4 below for further
details.

Remark 5.1 (Comparison with the parareal method). As mentioned above, it is known that the
best parallel complexity of the parareal algorithm using the implicit Euler scheme grows as

√
N ,

see [4]. More precisely, in the current notation, it can shown to be of order O((Cprec
V + Cadd

V +

Cmult
V )

√
N). It is then seen that the difference with (5.1) is not only in the order of dependence

on N , but also in the associated constants due to the spatial problems.

6 Inf-sup stability of the implicit Euler method

As mentioned in the introduction and in Section 2.1, the analysis of the proposed algorithm will
make use of the variational formulation the implicit Euler method.

6.1 Time-global variational formulation

We now present the variational formulation of (2.3). Define the space

Vτ := ⊕Nn=1P0(In;V), (6.1)

where P0(In;V) denotes the set of V-valued functions that are constant-in-time over each time-
step interval In, for n = 1, . . . , N . In other words, a function v ∈ Vτ if and only if v is a piecewise
constant function on each time-step In, with v|In ∈ V. A basis can be constructed for Vτ by
considering the tensor product between a basis of V and a basis for ⊕Nn=1P0(In,R) the space of
real-valued piecewise-constant functions. Thus, a standard choice for the temporal basis of Vτ
is given as follows: for any v ∈ Vτ , we have v =

∑N
n=1 vnχn, where the coefficients vn ∈ V, and

where χn is the indicator function of In, for each n = 1, . . . , N ; thus, vn = v|In the restriction of
v to In.

13



Define the reconstruction operator I : Vτ → H1(0, T ;V) ∩ ⊕Nn=1P1(In;V) by

(Iv)(t) := vn −
tn − t
τn

LvMn−1, t ∈ (tn−1, tn], (6.2)

where P1(In;V) denotes the set of piecewise affine functions on each time-step In, and where
L·M denotes the jump operator defined by LvMn−1 := vn − vn−1, with the convention that v0 = 0
for all v ∈ Vτ to simplify the notation. It follows that I defines a linear operator on Vτ , and
that, for any v ∈ Vτ , the function Iv is a piecewise-affine continuous function in time, with
Iv(tn) = vn for each n = 1, . . . , N . Thus the function Iv ∈ H1(0, T ;V), and Iv has a weak
temporal derivative ∂tIv ∈ Vτ with (∂tIv)|In = 1

τn
(vn−vn−1) for all n = 1, . . . , N . Additionally,

the function Iv also satisfies the initial condition Iv(0) = 0.
It is easy to see that the discrete problem (2.3) can then be equivalently rewritten as: find

u ∈ Vτ such that
b(u, v) = `(v) ∀ v ∈ Vτ , (6.3)

where the bilinear form b(·, ·) and linear functional `(·) are defined by

b(u, v) :=

N∑
n=1

∫
In

(∂tIu, v)M + (u, v)An dt, `(v) := (uI , v1)M +

N∑
n=1

∫
In

(fn, v)M dt, (6.4)

where we recall that uI is the given initial datum.

6.2 Inf-sup stability

As explained above, for many parabolic equations, the natural norm for the temporal derivative is
a dual norm induced by the spatial differential operator of the problem. In the discrete setting,
these dual norms admit the following characterizations. First, we introduce the dual norms
‖·‖MA−1

n M , for each n = 1, . . . , N , and ‖·‖MA−1M on V, defined by

‖w‖MA−1
n M := sup

v∈V\{0}

(w, v)M
‖v‖An

, ‖w‖MA−1M := sup
v∈V\{0}

(w, v)M
‖v‖A

∀w ∈ V. (6.5)

Since M is positive definite, and since V is finite dimensional, it is clear that ‖·‖MA−1M and
‖·‖MA−1

n M define norms on V. The notation ‖·‖MA−1
n M , is justified by the fact that this norm

is induced by the inner product of the matrix MA−1
n M , since it is straightforward to show that

‖w‖2
MA−1

n M
= w>MA−1

n Mw and ‖w‖2MA−1M = w>MA−1Mw for all w ∈ V, where we again

identify w ∈ V with its vector representation. It is easy to show that the spectral equivalence (2.2)
implies that 1

τn
MA−1

n M and 1
τMA−1M are also spectrally equivalent:

1

α
M(τA)−1M ≤M(τnAn)−1M ≤ αM(τA)−1M. (6.6)

We introduce the following norms on the space Vτ

‖v‖2A :=

N∑
n=1

∫
In

‖v‖2An dt, (6.7a)

‖u‖2S :=

N∑
n=1

∫
In

‖∂tIu‖2MA−1
n M

+ ‖u‖2An dt+ ‖uN‖2M +

N∑
n=1

‖LuMn−1‖2M , (6.7b)

14



for all functions u and v in Vτ , where the jump operators L·M were defined in Section 6.1. It is
easy to see that A is the inner-product matrix (Gram matrix) of the inner product that induces
the norm ‖·‖A. In other words, ‖v‖A = ‖v‖A for any v ∈ Vτ with vector representation v with
respect to the standard basis of Vτ . The norm ‖·‖S is induced by the coercive bilinear form
s(·, ·) : Vτ × Vτ → R defined by

s(u, v) :=

N∑
n=1

∫
In

(∂tIu, ∂tIv)MA−1
n M + (u, v)An dt+ j(u, v), (6.8)

where the symmetric bilinear form j(·, ·) is defined by

j(u, v) := (uN , vN )M +

N∑
n=1

(LuMn−1, LvMn−1)M . (6.9)

The following theorem shows that S is the matrix representation of s(·, ·), thereby establishing
the equivalence between the discrete inf-sup identity in (2.6) and its variational representation
given below, and thus showing the connection to the continuous one in (1.1).

Theorem 6.1. The matrix S is the matrix representation of the bilinear form s(·, ·) in the
standard basis of Vτ . Therefore, (2.6) is equivalent to

‖u‖S = sup
v∈Vτ\{0}

b(u, v)

‖v‖A
. (6.10)

Proof. First, note that it is clear that s(·, ·) defines an inner-product that induces the norm ‖·‖S,
since it is clear that s(v, v) = ‖v‖2S for any v ∈ Vτ . The equivalence of (6.10) and (2.6) will
follow immediately after it is shown that S is the matrix for s(·, ·) under the standard basis of
Vτ . Hence, we need only show that v>Su = s(u, v) for any u, v ∈ Vτ with respective vector
representations u and v ∈ VN .

To begin, define the operator P : Vτ → Vτ that maps a function v to its optimal test function,
namely

Pv|In := A−1
n M(∂tIv)|In + v|In ∀ v ∈ Vτ . (6.11)

As explained above, the time derivative ∂tIv is indeed in Vτ owing to the facts that Ivh ∈
H1(0, T ;V) and Iv is piecewise affine. Therefore, we indeed have Pv ∈ Vτ for all v ∈ Vτ . It
is easy to check that the matrix representation of the operator P is the matrix P defined in
Section 2.1. Furthermore, recall that S = P>B. Therefore, if u, v ∈ Vτ have respective vector
representations u and v ∈ VN , then v>Su = b(u, Pv). We now simply show that b(u, Pv) =

s(u, v) by calculation: for arbitrary u, v ∈ Vτ , b(u, Pv) =
∑N
n=1

∫
In

(∂tIu, Pv)M + (u, Pv)An dt.
By expanding the terms and simplifying, we obtain

b(u, Pv) =

N∑
n=1

∫
In

(∂tIu, ∂tIv)MA−1
n M + (u, v)An + (∂tIu, v)M + (u, ∂tIv)M dt, (6.12)

where we have made use of the identities
(
∂tIu,A−1

n M∂tIv
)
M

= (∂tIu, ∂tIv)MA−1
n M and(

u,A−1
n M∂tIv

)
An

= (u, ∂tIv)M for any u, v ∈ Vτ . To complete the proof that s(u, v) =

b(u, Pv), it remains only to show that

N∑
n=1

∫
In

(∂tIu, v)M + (u, ∂tIv)M dt = j(u, v), (6.13)

15



where j(·, ·) is defined as in (6.9). Recall that ∂tIu|In = 1
τn

(un − un−1) for each 1 ≤ n ≤ N ,

so we obtain
∫
In

(∂tIu, v)M + (u, ∂tIv)M dt = (LuMn−1, LvMn−1)M + (un, vn)M − (un−1, vn−1)M ,

where we obtained the identity by adding and subtracting (un − un−1, vn−1)M . Simplifying the
telescoping sum then leads to (6.13). This completes the proof that s(u, v) = b(u, Pv) and that
S is the matrix representing s(·, ·) in the standard basis of Vτ .

A consequence of Theorem 6.1 is that the norm ‖·‖S for functions in Vτ coincides with the
norm ‖·‖S for VN , i.e. we have ‖v‖S = ‖v‖S for all v ∈ Vτ , where v ∈ VN is the vector
representation of v.

Remark 6.1 (High-order time-stepping methods). Theorem 6.1 extends straightforwardly to the
family of discontinuous Galerkin time-stepping methods, provided that I is appropriately defined,
as shown in [39].

We now prove the max-norm bound mentioned previously in Remark 3.2.

Corollary 6.2 (Max-norm bound). For any u ∈ Vτ , with vector representation u ∈ VN , we
have

max
1≤n≤N

‖un‖M ≤
1√
2
‖u‖S =

1√
2
‖u‖S. (6.14)

Proof. Let 1 ≤ n ≤ N be arbitrary. Define the test function v ∈ Vτ by vm = um for all
m ≤ n, and vm = 0 for all m > n. Then, it is straightforward to show that b(u, v) = 1

2‖un‖
2
M +

1
2

∑n
m=1‖LuMm−1‖2M + ‖v‖2A. We then use the inf-sup identity (6.10) and Young’s inequality to

find that |b(u, v)| ≤ 1
4‖u‖

2
S + ‖v‖2A, which yields the bound ‖un‖M ≤ 1√

2
‖u‖S; this completes the

proof since n was arbitrary.

7 Spectral equivalence of the Schur complement precondi-
tioner

We now analyse the spectral equivalence between the preconditioner H, defined in (4.5), and
the Schur complement matrix S, leading to the proof of Theorem 4.1. We will use below the
auxiliary bilinear form sD : Vτ × Vτ → R defined by

sD(u, v) :=

N∑
n=1

{∫
In

(∂tIu, ∂tIv)MA−1
n M dt+ βn

∫
In

(u, v)An dt

}
, (7.1)

where the weights {βn}Nn=1 are defined in (4.3). Thus it is seen that sD(·, ·) is closely related to
s(·, ·), where the jump bilinear form j(·, ·) has been removed, and a weight is included in one of
the terms. This weight is needed later for the analysis of the DST below, see Remark 7.1. Next,
we show that sD(·, ·) and s(·, ·) are spectrally equivalent with fully robust constants; thus sD(·, ·)
represents the dominant terms in s(·, ·).

Lemma 7.1 (Spectral equivalence). Let sD be defined in (7.1). Then, we have

sD(v, v) ≤ s(v, v) ≤ 3 sD(v, v) ∀ v ∈ Vτ . (7.2)

Proof. The lower bound sD(v, v) ≤ s(v, v) for all v ∈ Vτ follows directly from the fact that
j(v, v) ≥ 0 as shown by (6.9). Now, it follows from the Cauchy–Schwarz inequality that j(v, v) ≤

16



2
∑N
n=1

∫
In
‖∂tIv‖MA−1

n M‖v‖An dt as a result of the definition of ‖·‖MA−1
n M in (6.13). Then,

Young’s inequality implies that

s(v, v) ≤
N∑
n=1

{(
1 +

1

βn

)∫
In

‖∂tIv‖2MA−1
n M

dt+ (1 + βn)

∫
In

‖v‖2An dt

}

=

N∑
n=1

(
1 +

1

βn

){∫
In

‖∂tIv‖2MA−1
n M

dt+ βn

∫
In

‖v‖2An dt

}
,

which implies s(v, v) ≤ 3 sD(v, v) for all v ∈ Vτ , since 1 + β−1
n ≤ 3 for all n ≤ N .

7.1 Discrete Sine Transform

Let the piecewise constant real-valued functions {ϕk}Nk=1 ⊂ ⊕Nn=1P0(In;R) be defined by

ϕk|In = ϕnk := sin

(
(2k − 1)nπ

2N

)
, n = 1, . . . , N. (7.3)

It is important to note that the functions ϕk are globally supported in time. Moreover, we also
define ϕ0

k := 0 for all 1 ≤ k ≤ N . These functions are linearly independent and form a basis

of ⊕Nn=1P0(In;R), so any function v ∈ Vτ can be written in the form v =
∑N
k=1 v̂k ϕk with

coefficients v̂k ∈ V for each k = 1, . . . , N . The following result shows several basic properties of
the basis induced by {ϕk}Nk=1.

Lemma 7.2 (Discrete orthogonality). The functions {ϕk}Nk=1 defined by (7.3) form an orthog-
onal basis of ⊕Nn=1P0(In;R) in the following discrete inner-products: for any 1 ≤ k, j ≤ N , we
have

N∑
n=1

βnϕ
n
k ϕ

n
j =

N

2
δkj ,

N∑
n=1

(ϕnk − ϕn−1
k ) (ϕnj − ϕn−1

j ) =
N

2
µ2
kδkj , (7.4)

where δkj is the Kronecker delta, where the {βn}Nn=1 are defined in (4.3), and where the positive
real numbers µk are defined in (4.6). For any function v ∈ Vτ , we have the change of basis
formulas given in (4.2) and (4.4).

We will make use of the following result from [35, Theorem 4].

Lemma 7.3 (Pearson & Wathen). Let M and A be arbitrary symmetric positive definite matrices
and let λ ≥ 0 be an arbitrary nonnegative real number. Then, we have

1

2
≤ v>(MA−1M + λA) v

v>(M +
√
λA)A−1(M +

√
λA) v

≤ 1 ∀ v ∈ V \ {0}.

7.2 Proof of Theorem 4.1

Let τ and let A be as in (2.2). As an intermediary step, we will use the bilinear form s†(·, ·) ≈
sD(·, ·) defined on Vτ by

s†(u, v) :=

N∑
n=1

{∫
In

τn
τ

(∂tIu, ∂tIv)MA−1M dt+ βn

∫
In

τ

τn
(u, v)A dt

}
. (7.5)

The bilinear forms sD(·, ·) and s†(·, ·) are spectrally equivalent, since (2.2) and (6.6) imply that
1
αs†(v, v) ≤ sD(v, v) ≤ α s†(v, v) for all v ∈ Vτ . Therefore, these inequalities and Lemma 7.1

17



imply that 1
αs†(v, v) ≤ s(v, v) ≤ 3α s†(v, v) for all v ∈ Vτ . Using Theorem 6.1, it is then seen

that the matrix S† that represents s†(·, ·) in the standard basis of Vτ satisfies

1

α
S† ≤ S ≤ 3αS†. (7.6)

Next we establish the connection between S† and H as follows. Let u and v ∈ Vτ be arbitrary;
since v and ∂tIv are piecewise constant on each time-step, and since ∂tIv|In = 1

τn
(vn − vn−1)

for each n, we can simplify (7.5) to obtain

s†(u, v) =

N∑
n=1

{
1

τ
(un − un−1, vn − vn−1)MA−1M + βnτ(un, vn)A

}
.

Therefore, Lemma 7.2 implies that the change of basis to {ϕk}Nk=1 gives

s†(u, v) =
N

2

N∑
k=1

{
µ2
k

τ
(ûk, v̂k)MA−1M + τ(ûk, v̂k)A

}
∀u, v ∈ Vτ , (7.7)

where {ûk}Nk=1 and {v̂k}Nk=1 denote the coefficients of the basis expansion of u and v with respect
to {ϕk}Nk=1, as in (4.4). In matrix notation, the identity (7.7) shows that

S† = Φ>D̂ Φ, D̂ :=
N

2
diag

{
µ2
k

τ
MA−1M + τA

}N
k=1

, (7.8)

where we recall that Φ is the matrix representation of the change of basis to {ϕk}Nk=1. In other
words, the change of basis to {ϕk}Nk=1 block-diagonalizes S†.

To complete the proof, recall that H is defined by H = Φ>Ĥ Φ, where Ĥ is defined in (4.5).
We therefore have the change of basis identities v>S†v = v̂>D̂v̂ and v>Hv = v̂>Ĥv̂ for any

v ∈ VN . Hence, we can apply Lemma 7.3 block-by-block to the matrices D̂ and Ĥ, and we
deduce that

1

2
H ≤ S† ≤ H. (7.9)

Therefore, we obtain (4.9) from (7.6) and (7.9). Using the assumption (4.8), it is straightforward

to show from the definition of H in (4.5) and H̃ in (4.7) that γH̃ ≤ H ≤ ΓH̃. Using these

inequalities, we obtain the spectral equivalence (4.10) of S and H̃ from the equivalence (4.9)
between S and H.

Remark 7.1 (Weight terms). It might appear desirable to avoid the weights βn in the bilinear
forms sD(·, ·) and s†(·, ·), which would have the advantage of tightening the constant in the upper
bound (4.9) from 3α to 2α. Moreover, the basis that block-diagonalizes the un-weighted version

of s†(·, ·) is known explicitly through the functions {ψk}Nk=1 where ψk|In := sin
(

(2k−1)nπ
2N+1

)
for

each n = 1, . . . , N . However, the appearance of the term 2N+1 in the denominators seems to be
inconvenient for the implementation of the fast DST, which is why it is not considered further.

8 Numerical experiments

We now study the efficiency, robustness and parallel scaling of the proposed method using a
range of example problems in one, two, and three space dimensions.

18



8.1 Condition numbers of Schur complement preconditioner

First, we assess the sharpness of the bounds in Theorem 4.1, by computing numerically the
extremal eigenvalues of the matrix H−1S. For simplicity, we consider the one-dimensional heat
equation on the spatial domain Ω = (0, 1), with T = 1, discretized by P1 FEM in space on
a uniform mesh, and by the implicit Euler method with a uniform time-step size τ = T/N .
In this case, the matrices M and An = A represent respectively one dimensional mass and
stiffness matrices. Note that the reason for choosing in this experiment some low dimensional
spatial problems is to guarantee the high accuracy of the eigenvalue solver. For this problem,
the assumption (2.2) holds with α = 1. Therefore, the bound (4.9) shows that 1/2 ≤ λmin and
λmax ≤ 3, where λmin and λmax denote respectively the minimal and maximal eigenvalues of
H−1S. This is in agreement with the results in Table 1, which suggest that the lower bound
on the eigenvalues is indeed sharp, although the optimal upper bound appears rather to be
λmax ≤ 2, leading to condition numbers κ(H−1S) ≤ 4 in these experiments. Table 1 leads to
some further predictions. For instance, the results for λmax suggest that the damping parameter
condition (3.7) simplifies here to ω < (1− ρA)/(1 + ρA) ≤ 1.

h = 1/64 N = 4 N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
λmin 0.8099 0.7080 0.6270 0.5728 0.5402 0.5223 0.5129 0.5081 0.5056
λmax 1.9999 1.9998 1.9996 1.9993 1.9986 1.9972 1.9944 1.9888 1.9780
κ(H−1S) 2.4693 2.8248 3.1893 3.4906 3.6994 3.8237 3.8885 3.9145 3.9122

h = 1/128 N = 4 N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
λmin 0.8099 0.7079 0.6270 0.5728 0.5402 0.5223 0.5129 0.5081 0.5056
λmax 2.0000 2.0000 1.9999 1.9998 1.9996 1.9993 1.9986 1.9972 1.9944
κ(H−1S) 2.4694 2.8250 3.1897 3.4916 3.7014 3.8278 3.8967 3.9310 3.9445

Table 1: Extremal eigenvalues and condition numbers of the matrix H−1S for the tests of
Section 8.1.

8.2 Robustness with respect to time-steps, mesh-sizes, and approxi-
mate spatial solvers

We now study the robustness of the preconditioners with respect to variations in the time-steps,
mesh-size, and also with respect to approximations in the spatial solvers that defined Ã and
H̃. In this experiment, we consider the two dimensional heat equation on the spatial domain
Ω = (0, 1)2, with T = 1, and initial condition u(0) = sin(πx) sin(πy). The problem is discretized
in space by P1 FEM on a uniform mesh of sizes h = 2−k, k = 3, . . . , 6, and in time by the
implicit Euler method with uniform time-steps. Again, for this problem, we also have α = 1.
The preconditioners Ã and H̃ employ a fixed number of geometric multigrid (MG) V-cycles for

the spatial solvers; i.e. the matrices Ã−1
n and H̃−1

k are defined as the application of either one or
two MG V-cycles with Jacobi smoothers. We then apply the inexact Uzawa method for these
various choices of preconditioners, where we fix ω = 0.9 for the damping parameter. In order to
give a fair comparison of these different preconditioners, we compute at each iteration ‖u−uj‖S
for the exact error in the principal variable. Figure 1 shows the convergence histories of the
inexact Uzawa method for these choices of spatial solvers, as well as for direct solvers. Here we
fix N = 512 and h = 1/64. It is seen that the convergence rate does not depend significantly on
the approximation of the spatial inverses.

Given the results in Figure 1, we now concentrate on the case of one V-cycle, and we now vary
the mesh sizes and time-steps to verify the robustness with respect to the problem parameters.

19



0 10 20 30 40

1

10−2

10−4

10−6

10−8

10−10

Iteration

‖u
−

u
j
‖ S

/
‖u
‖ S

Direct solvers

1 V-cycle

2 V-cycles

Figure 1: Convergence histories of the inexact Uzawa method for different choices of spatial
solvers in Section 8.2: direct solvers, one V-cycle and two V-cycles.

h = 1/8 h = 1/16 h = 1/32 h = 1/64
N = 128 20 21 21 21
N = 256 21 22 22 22
N = 512 22 22 22 22
N = 1024 22 22 22 22

Table 2: Number of inexact Uzawa iterations required to satisfy ‖u − uj‖S < 10−6‖u‖S in the
experiments of Section 8.2 (one MG V-cycle in space).

The results are given in Table 2, which presents the number of iterations required to achieve a
relative error of 10−6 in the S-norm of the error for the principal variable. It is thus seen that
the resulting method is robust with respect to the mesh size and number of time-steps. It is also
robust with respect to the ratio of mesh and time-step sizes, as expected.

8.3 Optimization of the damping parameter

We now consider the effect of the damping parameter on the contraction rate ω. With the same
experiment as in Section 8.2, we compute the approximate contraction factors for a range of
values of ω ∈ [1/2, 1]. Here, we fix we now fix N = 512 and h = 1/32, and one multigrid V-cycle
is used to for the spatial solvers. Since the norm ‖·‖D depends on ω in (3.6), we compute here
the approximate contraction factors as the maximum value of ‖u − uj+1‖S/‖u − uj‖S over a
sufficient number of iterations required to reduce the error by a factor of 10−10. The results are
presented in Figure 2.

8.4 Time-parallel computations

We now present our main set of numerical experiments, involving weak and strong scaling studies
with large-scale parallel computations. All the parallel computations in this work were performed
on the Vulcan BlueGene/Q Supercomputer in Livermore, California. We start with weak and
strong scaling tests of the time-parallelism. We solve the three dimensional heat equation on
the spatial domain Ω = (0, 1)3, with T = 0.1. The right hand side and the initial condition are

chosen such that the exact solution is u(t, x, y, z) = e−3π2t sin(πx) sin(πy) sin(πz). The spatial

20



0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

ω

C
o
n
tr
a
ct
io
n
fa
ct
o
r

Figure 2: Approximate contraction factors for varying values of the damping parameter ω. The
optimal value in this experiment is ω ≈ 0.97.

discretization uses lowest-order hexahedral finite elements on a fixed uniform mesh with 4096
elements. Uniform time-steps are used in time. For the weak scaling test, we assign 16 time
steps to each core; each core then has a fixed problem size of 157 216 unknowns. For the strong
scaling test we fix the number of time steps N = 65 536, which results overall in a global linear
system of dimension 643 956 736. For the spatial solvers, we use an algebraic multigrid method
(AMG) provided by the library hypre [14], and the parallel DST (based on the FFT) is provided
by the library FFTW3 [15]. We further use GMRES as an acceleration method for the inexact
Uzawa method.

Tables 3 and 4 report the results of the weak and strong scaling tests, including the total
number of iterations to reach a residual tolerance of 10−8, the time spent per iteration and the
total time of the computation. The last two columns in each table show the percentages of the
total time that are spent inside calls to the parallel FFT and the spatial solvers. In the weak
scaling test, we see that for small values of N , the number of iterations initially increases up
to a maximum of 22, after which it remains constant; this is explained by the pre-asymptotic
behaviour of the condition numbers reported in Table 1 above. Most importantly, the time per
iteration remains essentially constant, so the small increase in total time is due to the iteration
count. In this sense the test shows very good weak scaling of the method. Table 4 shows the
good strong scaling of the method, where a doubling of the number of processors reduces the
computational time by a factor often close to two. The last two columns of both Tables 3 and
4 show that the use of the FFT amounts to only a small part of the total computational time,
whereas the AMG calls are dominant, with some additional time being spent outside of both FFT
and AMG calls, for instance to handle some of the vector operations outside the preconditioners.

8.5 Time-parallel computations with variable coefficient

In this example we consider the same setup as in Section 8.4, but now we consider the equation
∂tu = µ(t)∆u with a discontinuous time-dependent diffusion coefficient

µ(t) :=

{
2 t ∈ [ 2k∆t, (2k + 1)∆t )
1
2 t ∈ [ (2k + 1)∆t, 2(k + 1)∆t )

, k ∈ N0, ∆t =
T

1024
.

21



procs N dofs iter time/iter total time time FFT (%) time AMG (%)
1 16 157 216 15 1.87 28.00 0.9% 84.5%
2 32 314 432 15 1.85 27.75 1.5% 83.4%
4 64 628 864 15 1.81 27.16 1.7% 82.8%
8 128 1 257 728 15 1.77 26.60 1.9% 82.4%

16 256 2 515 456 15 1.78 26.72 2.1% 82.1%
32 512 5 030 912 15 1.79 26.78 2.3% 82.0%
64 1 024 10 061 824 16 1.79 28.66 3.0% 81.3%

128 2 048 20 123 648 19 1.81 34.35 4.1% 79.8%
256 4 096 40 247 296 20 1.81 36.11 4.2% 79.5%
512 8 192 80 494 592 21 1.80 37.88 4.2% 79.3%

1 024 16 384 160 989 184 22 1.81 39.77 4.4% 79.0%
2 048 32 768 321 978 368 22 1.82 40.10 5.3% 78.3%
4 096 65 536 643 956 736 22 1.87 41.09 7.4% 76.4%

Table 3: Weak scaling test of Section 8.4. Computational times in seconds.
procs N dofs iter time/iter total time time FFT (%) time AMG (%)

16 65 536 643 956 736 22 310.18 6823.88 3.9% 72.9%
32 65 536 643 956 736 22 155.68 3425.04 4.1% 72.9%
64 65 536 643 956 736 22 78.66 1730.53 4.8% 72.4%

128 65 536 643 956 736 22 39.98 879.52 5.5% 72.0%
256 65 536 643 956 736 22 20.89 459.60 7.1% 70.5%
512 65 536 643 956 736 22 10.76 236.82 7.3% 70.9%

1024 65 536 643 956 736 22 5.65 124.22 6.8% 72.3%
2048 65 536 643 956 736 22 3.13 68.79 7.0% 74.1%
4096 65 536 643 956 736 22 1.87 41.09 7.4% 76.4%

Table 4: Strong scaling test of Section 8.4. Computational times in seconds.

Thus the matrices An = µ(tn)A, n = 1, . . . , N are not constant anymore and the assumption (2.2)
is satisfied with α = 2. We repeat the weak scaling tests as in the previous subsection. This
leads to similar results, with only a slight increase in the number of iterations due to the larger
value of α in the spectral bound (4.10).

8.6 Space-time parallel computations

We now consider space-time parallelism, where additional cores are used to apply the spatial
solvers in parallel over space. The spatial parallelism here is provided by the library hypre. We
consider the same right hand side, initial condition and space-time domain as in the previous
example. For the approximations in space we again use lowest order hexahedral elements, where
we decompose the spatial domain Ω = (0, 1)3 into 262 144 elements, and we use 4096 time steps
for the time discretization. This results in a global linear system for 2 249 728 000 unknowns.
With the same solver settings as in Section 8.4, we use varying numbers of processors in space
and time, denoted respectively by px and pt, thereby resulting in a total of pxpt processors.

Table 6 presents the total computational times in seconds for these different processor config-
urations. We observe almost perfect scaling with respect to the time-parallelization, whereas the
space-parallelization stagnates beyond 128 processors. The best result was obtained for px = 64
and pt = 2048, i.e. with 131 072 processors overall, resulting in a time to solution of 15.96 seconds.
Concerning the spatial parallelism, we used the default library settings in hypre without further
tuning. A possible reason for the observed behaviour in terms of the spatial parallelism is that
the spatial solvers adapt the smoothers inside AMG to the number of cores, with more effective

22



procs N dofs iter time/iter total time time FFT (%) time AMG (%)
1 16 157 216 17 1.90 32.33 0.9% 84.7%
2 32 314 432 18 1.88 33.79 1.4% 83.5%
4 64 628 864 25 1.80 45.03 1.6% 82.1%
8 128 1 257 728 23 1.78 40.86 1.9% 81.8%

16 256 2 515 456 19 1.82 34.60 2.2% 81.7%
32 512 5 030 912 19 1.84 35.03 3.3% 80.8%
64 1 024 10 061 824 21 1.84 38.69 3.9% 80.0%

128 2 048 20 123 648 27 1.81 49.00 3.8% 79.4%
256 4 096 40 247 296 31 1.82 56.28 4.0% 78.6%
512 8 192 80 494 592 33 1.81 59.71 4.1% 78.4%

1 024 16 384 160 989 184 34 1.81 61.68 4.3% 78.2%
2 048 32 768 321 978 368 34 1.83 62.25 5.2% 77.5%
4 096 65 536 643 956 736 33 1.87 61.76 7.1% 76.0%

Table 5: Weak scaling test of Section 8.5. Computational times in seconds.

procs w.r.t. space px
16 32 64 128 256 512

p
ro

cs
w

.r
.t

.
ti

m
e
p
t

4 12 158.70 7 000.47 4 381.72 2 925.62 2 132.41 2 107.73
8 6 721.02 3 911.30 2 437.63 1 654.01 1 219.39 1 170.38

16 4 016.91 3 522.05 1 459.71 1 007.60 728.52 703.79
32 2 203.77 1 946.12 822.15 565.93 421.31 418.68
64 1 212.84 9 04.27 429.03 304.47 238.31 245.17

128 667.20 468.11 220.43 162.00 130.97 135.74
256 341.14 232.08 117.75 85.76 70.97 74.36
512 172.21 119.18 59.54 44.76 37.58

1 024 84.94 60.44 30.12 23.07
2 048 44.92 31.73 15.96
4 096 27.94 21.29

Table 6: Space-time parallel test of Section 8.6. Computational times in seconds. The total
number of processors is ptpx, with up to 131 072 processors in total. The linear system involves
2 249 728 000 unknowns.

sequential smoothers available on lower core counts. This leads to an additional reduction of the
total number of iterations for small px.

Conclusion

We have presented an original method for the time-parallel solution of parabolic problems. The
inf-sup stability of the discrete problem lead to the derivation of an original symmetric saddle-
point reformulation of the problem that remains stable with respect to the natural norms of the
problem. The saddle-point system can then be solved efficiently by iterative methods, such as
the inexact Uzawa method considered here. We proposed an easily implementable non-intrusive
time-parallel preconditioner for the Schur complement of the system, and proved robust spectral
bounds with respect to key discretization parameters. The robustness, efficiency and parallel
performance of the proposed method were shown both theoretically and experimentally in large
scale parallel computations.

More broadly, the approach for preconditioning nonsymmetric systems as pursued in this

23



work, namely the construction of preconditioners based on the inf-sup stability of the problem,
should not be strictly limited to the parabolic PDEs considered here, since inf-sup stability is
equivalent to well-posedness for general linear operators. However, it is natural to expect that
the practical details for developing efficient solvers will be specific to each problem and their
discretizations.

References

[1] R. Andreev, Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution
equations, SIAM J. Sci. Comput., 38 (2016), pp. A216–A242.

[2] I. Babuška, Error-bounds for finite element method, Numer. Math., 16 (1971), pp. 322–333.

[3] G. Bal, On the convergence and the stability of the parareal algorithm to solve partial
differential equations, in Domain decomposition methods in science and engineering, vol. 40
of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2005, pp. 425–432.

[4] G. Bal and Y. Maday, A “parareal” time discretization for non-linear PDE’s with appli-
cation to the pricing of an American put, in Recent developments in domain decomposition
methods (Zürich, 2001), vol. 23 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2002,
pp. 189–202.

[5] M. A. Botchev and H. A. van der Vorst, A parallel nearly implicit time-stepping
scheme, J. Comput. Appl. Math., 137 (2001), pp. 229–243.

[6] J. H. Bramble, J. E. Pasciak, and A. T. Vassilev, Analysis of the inexact Uzawa
algorithm for saddle point problems, SIAM J. Numer. Anal., 34 (1997), pp. 1072–1092.

[7] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising
from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle
Sér. Rouge, 8 (1974), pp. 129–151.

[8] A. J. Christlieb, R. D. Haynes, and B. W. Ong, A parallel space-time algorithm,
SIAM J. Sci. Comput., 34 (2012), pp. C233–C248.

[9] M. Emmett and M. L. Minion, Toward an efficient parallel in time method for partial
differential equations, Commun. Appl. Math. Comput. Sci., 7 (2012), pp. 105–132.

[10] A. Ern and J.-L. Guermond, Theory and practice of finite elements, vol. 159 of Applied
Mathematical Sciences, Springer-Verlag, New York, 2004.

[11] A. Ern, I. Smears, and M. Vohraĺık, Guaranteed, locally space-time efficient, and
polynomial-degree robust a posteriori error estimates for high-order discretizations of
parabolic problems, SIAM J. Numer. Anal., 55 (2017), pp. 2811–2834.

[12] A. Ern, I. Smears, and M. Vohraĺık, Equilibrated flux a posteriori error estimates in
L2(H1)-norms for high-order discretizations of parabolic problems, IMA Journal of Numer-
ical Analysis, (2018). Available online at http://dx.doi.org/10.1093/imanum/dry035.

[13] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B.
Schroder, Parallel time integration with multigrid, SIAM Journal on Scientific Computing,
36 (2014), pp. C635–C661.

24

http://dx.doi.org/10.1093/imanum/dry035


[14] R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners,
in Computational Science — ICCS 2002, P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, and
J. J. Dongarra, eds., Berlin, Heidelberg, 2002, Springer Berlin Heidelberg, pp. 632–641.

[15] M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proceedings
of the IEEE, 93 (2005), pp. 216–231. Special issue on “Program Generation, Optimization,
and Platform Adaptation”.

[16] M. J. Gander, 50 Years of Time Parallel Time Integration, Springer International Pub-
lishing, Cham, 2015, pp. 69–113.

[17] M. J. Gander and S. Güttel, PARAEXP: a parallel integrator for linear initial-value
problems, SIAM J. Sci. Comput., 35 (2013), pp. C123–C142.

[18] M. J. Gander and M. Neumüller, Analysis of a new space-time parallel multigrid algo-
rithm for parabolic problems, SIAM J. Sci. Comput., 38 (2016), pp. A2173–A2208.

[19] M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration
method, SIAM J. Sci. Comput., 29 (2007), pp. 556–578.

[20] E. Giladi and H. B. Keller, Space-time domain decomposition for parabolic problems,
Numer. Math., 93 (2002), pp. 279–313.

[21] A. Greenbaum, Iterative methods for solving linear systems, vol. 17 of Frontiers in Applied
Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1997.

[22] W. Hackbusch, Parabolic multigrid methods, in Computing methods in applied sciences
and engineering, VI (Versailles, 1983), North-Holland, Amsterdam, 1984, pp. 189–197.

[23] T.-T.-P. Hoang, J. Jaffré, C. Japhet, M. Kern, and J. E. Roberts, Space-time do-
main decomposition methods for diffusion problems in mixed formulations, SIAM J. Numer.
Anal., 51 (2013), pp. 3532–3559.

[24] G. Horton, The time-parallel multigrid method, Comm. Appl. Numer. Methods, 8 (1992),
pp. 585–595.

[25] G. Horton and S. Vandewalle, A space-time multigrid method for parabolic partial
differential equations, SIAM J. Sci. Comput., 16 (1995), pp. 848–864.

[26] G. Horton, S. Vandewalle, and P. Worley, An algorithm with polylog parallel com-
plexity for solving parabolic partial differential equations, SIAM J. Sci. Comput., 16 (1995),
pp. 531–541.

[27] J.-L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un schéma en temps
“pararéel”, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), pp. 661–668.

[28] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applica-
tions. Vol. I, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathema-
tischen Wissenschaften, Band 181.

[29] Y. Maday and G. Turinici, The parareal in time iterative solver: a further direction
to parallel implementation, in Domain decomposition methods in science and engineering,
vol. 40 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2005, pp. 441–448.

25



[30] J. Málek and Z. Strakoš, Preconditioning and the conjugate gradient method in the
context of solving PDEs, vol. 1 of SIAM Spotlights, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2015.

[31] E. McDonald, J. Pestana, and A. Wathen, Preconditioning and iterative solution of
all-at-once systems for evolutionary partial differential equations, SIAM J. Sci. Comput., 40
(2018), pp. A1012–A1033.

[32] J. Nečas, Sur une méthode pour résoudre les équations aux dérivées partielles du type
elliptique, voisine de la variationnelle, Ann. Scuola Norm. Sup. Pisa (3), 16 (1962), pp. 305–
326.

[33] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm.
ACM, 7 (1964), pp. 731–733.

[34] C. C. Paige and M. A. Saunders, Solutions of sparse indefinite systems of linear equa-
tions, SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

[35] J. W. Pearson and A. J. Wathen, A new approximation of the Schur complement in
preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl., 19 (2012),
pp. 816–829.

[36] R. B. Pelz, Parallel FFTs, in Parallel numerical algorithms (Hampton, VA, 1994), vol. 4 of
ICASE/LaRC Interdiscip. Ser. Sci. Eng., Kluwer Acad. Publ., Dordrecht, 1997, pp. 245–266.

[37] J. Pestana and A. J. Wathen, Natural preconditioning and iterative methods for saddle
point systems, SIAM Rev., 57 (2015), pp. 71–91.

[38] C. Schwab, p- and hp-finite element methods, Numerical Mathematics and Scientific Com-
putation, The Clarendon Press Oxford University Press, New York, 1998. Theory and
applications in solid and fluid mechanics.

[39] I. Smears, Robust and efficient preconditioners for the discontinuous Galerkin time-stepping
method, IMA J. Numer. Anal., 37 (2017), pp. 1961–1985.

[40] F. Tantardini and A. Veeser, The L2-projection and quasi-optimality of Galerkin meth-
ods for parabolic equations, SIAM J. Numer. Anal., 54 (2016), pp. 317–340.

[41] K. Urban and A. T. Patera, An improved error bound for reduced basis approximation
of linear parabolic problems, Math. Comp., 83 (2014), pp. 1599–1615.

[42] A. J. Wathen, Preconditioning, Acta Numer., 24 (2015), pp. 329–376.

[43] D. E. Womble, A time-stepping algorithm for parallel computers, SIAM J. Sci. Statist.
Comput., 11 (1990), pp. 824–837.

[44] P. H. Worley, Limits on parallelism in the numerical solution of linear partial differential
equations, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1–35.

[45] W. Zulehner, Analysis of iterative methods for saddle point problems: a unified approach,
Math. Comp., 71 (2002), pp. 479–505.

26


	Introduction
	Discrete parabolic problem
	Inf-sup stability of the discrete problem
	Equivalent reformulations

	Inexact Uzawa method
	Schur complement preconditioner
	Approximations
	Spectral bounds for the Schur complement preconditioners

	Parallel complexity
	Inf-sup stability of the implicit Euler method
	Time-global variational formulation
	Inf-sup stability

	Spectral equivalence of the Schur complement preconditioner
	Discrete Sine Transform
	Proof of Theorem 9

	Numerical experiments
	Condition numbers of Schur complement preconditioner
	Robustness with respect to time-steps, mesh-sizes, and approximate spatial solvers
	Optimization of the damping parameter
	Time-parallel computations
	Time-parallel computations with variable coefficient
	Space-time parallel computations


