
HAL Id: hal-02059019
https://hal.science/hal-02059019

Submitted on 6 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A CutFEM method for Stefan-Signorini problems with
application in pulsed laser ablation
Susanne Claus, Samuel Bigot, Pierre Kerfriden

To cite this version:
Susanne Claus, Samuel Bigot, Pierre Kerfriden. A CutFEM method for Stefan-Signorini problems with
application in pulsed laser ablation. SIAM Journal on Scientific Computing, 2018, 40 (5), pp.B1444-
B1469. �10.1137/18M1185697�. �hal-02059019�

https://hal.science/hal-02059019
https://hal.archives-ouvertes.fr


A CutFEM method for Stefan-Signorini
problems with application in pulsed laser

ablation.

Susanne Claus∗, Samuel Bigot, Pierre Kerfriden†

Cardiff University, School of Engineering,
The Parade, CF243AA Cardiff, United Kingdom.

August 14, 2018

Abstract

In this article, we develop a cut finite element method for one-phase Stefan problems
with applications in laser manufacturing. The geometry of the workpiece is repre-
sented implicitly via a level set function. Material above the melting/vaporisation
temperature is represented by a fictitious gas phase. The moving interface between
the workpiece and the fictitious gas phase may cut arbitrarily through the elements
of the finite element mesh, which remains fixed throughout the simulation, thereby
circumventing the need for cumbersome re-meshing operations. The primal/dual for-
mulation of the linear one-phase Stefan problem is recast into a primal non-linear
formulation using a Nitsche-type approach, which avoids the difficulty of construct-
ing inf-sup stable primal/dual pairs. Through the careful derivation of stabilisation
terms, we show that the proposed Stefan-Signorini-Nitsche CutFEM method remains
stable independently of the cut location. In addition, we obtain optimal convergence
with respect to space and time refinement. Several 2D and 3D examples are pro-
posed, highlighting the robustness and flexibility of the algorithm, together with its
relevance to the field of micro-manufacturing.

CutFEM, Stefan problem, Stefan-Signorini-Nitsche formulation, pulsed laser ablation.

1 Introduction

The simulation of phase changes requires tracking the evolution of solid/liquid and liq-
uid/gas interfaces, which is numerically challenging. In the context of the finite element
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method (FEM), two main approaches for interface tracking can be distinguished. The first
family of approaches smooths the transition between phases, allowing for the existence of
a mushy region in space where both phases coexist (i.e. enthalpy method [62, 25, 3, 24],
phase field method [57, 64]). The width of this region may be thought of as a trade-off
between computational cost, which is lower for fatter transition zones, and modelling ac-
curacy, whereby the“true” model corresponds to an infinitely thin transition zone. The
second approach describes the interface between phases as a sharp surface in 3D or a line in
2D. Although this may seem to be the “natural” approach to interface tracking, the sharp
interface approach is difficult to handle within a finite element context. Indeed, the mesh
either needs to conform to this interface, leading to a class of moving mesh algorithms
such as ALE, or special finite element methods need to be developed so as to allow the
interface to cut through the element. The latter family of methods are the so-called implicit
boundary methods (see for instance [47, 6, 7, 31, 37, 12]), which are of prime interest in
this paper.

The XFEM method was proposed in [47], and relies on a partition-of-unity enrichment
to represent embedded kinks and discontinuities. The XFEM method has been applied
to the simulation of two-phase Stefan problems in e.g. [45, 15, 63, 28, 53, 4, 22, 44, 39].
In this case, the interface between solid and liquid moves through a regular background
mesh, which may be refined around the interface for accuracy purposes, but does not need
to conform to it. XFEM methods offer increased efficiency and robustness as they do not
require the cumbersome re-meshing operations that are used in mesh-moving algorithm
to prevent the development of prohibitively large mesh deformations. As an alternative
to XFEM, the CutFEM approach [36, 37, 12] also enriches elements in order to allow for
the representation of embedded discontinuities. However, the enrichment is obtained by
an overlapping domain-decomposition strategy (i.e. a “fictitious domain” approach). The
strength of CutFEM lies in its stability, which is provided by the so-called “ghost-penalty”
regularisation [9]. As far as we are aware, CutFEM has never been applied to Stefan
problems.

In this paper, we are interested in a particular subclass of phase change problems with
sharp interface representation: the one-phase Stefan problem. In this particular setting,
only one of the phases is represented and the other phase is replaced by a fictitious material
with zero specific heat. Subsequently, the fictitious phase does not contribute to the energy
balance. The interface between the represented phase and the fictitious phase is moved
so that the flux at the boundary of the represented domain is balanced by a latent heat
term. It is possible to include a non-zero energy flux applied locally at the phase change
interface. This is routinely done in laser manufacturing to simulate the irradiation of the
ablated material (see [58]). The boundary conditions of the one-phase Stefan problem
are ambiguous and can be treated mathematically using the same tools that are used to
formulate unilateral contact in solid mechanics. Mathematical considerations relative to
the Stefan-Signorini problem can be found in [30, 40, 60].

Very few implicit boundary methods have been developed for one-phase Stefan prob-
lems. One exception is the elegant Stefan-Signorini formulation proposed in [50] for the
simulation of thermal plasma cutting, associated with an implicit representation of the do-

2



main boundary through the evolution of a level-set function. However, unilateral contact
problems have been extensively studied in XFEM [26, 42, 52, 29, 32, 48] and CutFEM
[19, 11]. Typical embedded interface formulations of contact laws include the penalty
method, the Lagrange multiplier approach, and the Nitsche-contact formulation, which
was recently proposed in [16]. Lagrange multiplier approaches are usually solved by ei-
ther the augmented Lagrangian algorithm [61, 51, 13], the Uzawa algorithm or the LaTIn
approach [41, 1, 19], all of them being some form of proximal algorithms. Alternatively,
the Nitsche-contact formulation reformulates the KKT primal/dual contact problem as a
purely primal nonlinear problem that can be solved by Newton algorithms [14, 16, 17, 18].
The Nitsche-contact algorithm promises consistency, whilst circumventing the cumbersome
choice of an inf-sup-stable pair for the primal and dual finite element spaces.

In this paper, we present the first CutFEM algorithm for phase-change problems with
sharp embedded representation of moving interfaces. The proposed algorithm is highly
flexible owing to the implicit description of the domain geometry by a level-set function.
The most novel part of the algorithm resides in rewriting the primal/dual condition associ-
ated with the interface of the one-phase Stefan-Signorini problem using a dedicated Nitsche
reformulation, inspired by [14, 16] and presented in Section 2 and 3. Noteworthily, we pro-
vide the expression of the tangent operator required to deploy the Newton algorithm. In
addition, our derivation of the Nitsche-Signorini formulation of the Stefan problem departs
from those proposed in [18, 14], which provides new insights into this emerging approach.
Consistently with the CutFEM paradigm, cut elements are regularised using ghost penalties
[9], which are carefully adapted to the context of the one-phase Stefan-Signorini problem.
We pay particular attention to the mathematical scaling of all stabilisation terms so as to
obtain the optimal trade-off between stability and accuracy. This is described in Section 4
of the paper. Our numerical time integration procedure is relatively classical: we use an im-
plicit Euler algorithm to solve the unsteady temperature equation. At every time step, the
interface is moved by advecting the level-set function using the velocity field delivered by
the Nitsche-Signorini algorithm and extended to the entire domain using the fast-marching
method [56]. The advection of the level-set function is stabilised by the SUPG method [8].
This is detailed in Section 5. An alternative approach where the authors use an upwind
finite-difference scheme to update the level-set can be found in [27].

Our formal developments are accompanied by a high-performance computer implemen-
tation. The core of our implementation is the finite element C++/Python library FEniCS
[2, 35], which, in particular, proposes a range of high-level tools to rapidly developed fi-
nite element solvers. The CutFEM C++ library, LibCutFEM, partially described in [12],
defines additional tools that are specific to unfitted finite elements. This library forms the
basis for the CutFEM Stefan-Signorini code used in this article.

Several 2D and 3D examples are presented in Section 6, with particular relevance to
engineers interested in the simulation of laser micro-milling. We first derive a new 2D
manufactured analytical solution for the one-phase Stefan-Signorini problem, which we
use to validate our numerical algorithm and show optimal convergence. In particular, we
show that the convergence of the proposed algorithm is optimal: order two in space and
order one in time. We then move to the 2D simulation of a pulsed laser ablation process,
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Figure 2.1: Schematics of a one-phase Stefan problem with energy flux I heating material
Ω at Γ.

where we compare the effect of different pulse frequencies onto the finishing quality of the
ablated surface. Our first 3D example is the simulation of a laser drilling operation, where
the laser irradiates the material. Finally, we present a 3D example of laser milling, where
material is removed by the laser through a complex path, following a layer-by-layer removal
strategy.

2 The Stefan-Signorini problem

Let us assume that an energy flux I(x, t) (laser beam) heats a piece of material occupying
domain Ω(t) in Rd (d = 2 or 3) in the time interval t ∈ [t0, tf ]. Here, t0 is the initial time and
tf is the final time. The boundary of Ω(t), denoted by ∂Ω(t), is decomposed into a Dirichlet
part ∂ΩD and a Neumann part ∂ΩN as well as a moving boundary Γ(t) (see Figure 2.1).
The boundary Γ(t) can be interpreted as an interface between a heated material and the
fictitious fluid and gas phase, which will not be represented explicitly. Instead we assume
that material above the melting temperature is instantaneously removed, latent heat being
consumed in the process.
The Stefan-Signorini problem describing the heat conduction and removal of material can
then be formulated as: For all t ∈ [t0, tf ], find the temperature T : Ω(t)→ R such that

ρ c
∂T

∂t
− k∆T = f in Ω(t) (2.1)
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with boundary conditions

T = TD on ∂ΩD(t),

k∇T · nΩ = qN on ∂ΩN(t) ,
(2.2)

together with the evolution equation for interface Γ(t) between the fictitious material and
the heated material

I(x, t) · nΓ − k∇T · nΓ = −ρL (v(x, t) · nΓ) on Γ(t) (2.3)

and the associated Signorini conditions

k∇T · nΓ − I · nΓ ≤ 0 on Γ(t),

T − Tm ≤ 0 on Γ(t),

(k∇T · nΓ − I · nΓ) ⊥ (T−Tm) on Γ(t),

(2.4)

and the initial condition
T (x, t0) = T0 in Ω(t0), (2.5)

where T0 is a specified initial temperature with T0 < Tm. Here, ρ is the mass density, c is
the heat capacity, k is the thermal conductivity, f is a volumetric heat source, TD is a given
temperature, qN is a given heat flux, L is the latent heat, v is the velocity of the phase
boundary Γ(t), Tm is the melting temperature, and I is the prescribed heat flux given by
the profile

I(x, t) = A(x, t) eray(x, t), (2.6)

where A is the amplitude of the laser beam and eray is the direction of the beam.

Remark 2.1 The Signorini conditions (2.4) ensure that material is only removed if it
reaches melting temperature and that material is only removed and not added. It can be
interpreted as enforcing either
(a) T = Tm and ρL v(x, t) · nΓ ≤ 0, i.e. the material is heated to melting temperature and
material is removed in the normal direction to the interface with speed v(x, t)
or
(b) T < Tm and ρL v(x, t) · nΓ = 0, i.e. the material does not reach melting temperature
and hence no material is removed.

3 Signorini-Nitsche reformulation of the one-phase Ste-

fan problem

3.1 Primal/dual weak formulation of the Stefan-Signorini prob-
lem

The weak formulation of the Stefan-Signorini problem reads: For all t ∈ [t0, tf ], find
T ∈ H1

D(Ω(t)) such that, for all δT ∈ H1
0 (Ω(t)),

ρ c

(
∂T

∂t
, δT

)
Ω(t)

+ (k∇T, ∇δT )Ω(t) = (f, δT )Ω(t) + (k∇T · nΓ, δT )Γ(t) + (qN , δT )∂ΩN (t) .(3.1)
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Together with (2.3), (2.4) and (2.5). Here,

H1
D(Ω(t)) = {T ∈ H1(Ω(t)) : T = TD on ∂ΩD(t)},

H1
0 (Ω(t)) = {T ∈ H1(Ω(t)) : T = 0 on ∂ΩD(t)}. (3.2)

In order to facilitate the treatment of Signorini conditions (2.4), we introduce a slack
variable

σ := k∇T · nΓ − I · nΓ, (3.3)

which yields the weak form

ρ c

(
∂T

∂t
, δT

)
Ω(t)

+ (k∇T, ∇δT )Ω(t) = (f, δT )Ω(t) + (qN , δT )∂ΩN (t)

+ (σ, δT )Γ(t) + (I · nΓ, δT )Γ(t) (3.4)

with the modified Signorini conditions

σ ≤ 0 on Γ(t),

T − Tm ≤ 0 on Γ(t),

σ ⊥ (T−Tm) on Γ(t).

(3.5)

We define bilinear form

a(T, δT ) := ρ c

(
∂T

∂t
, δT

)
Ω(t)

+ (k∇T, ∇δT )Ω(t) (3.6)

and linear form

l(δT ) := (f, δT )Ω(t) + (qN , δT )∂ΩN (t) + (I · nΓ, δT )Γ(t) . (3.7)

The weak formulation of the Stefan-Signorini problem then reads: For all t ∈ [t0, tf ], find
T ∈ H1

D(Ω(t)) such that, for all δT ∈ H1
0 (Ω(t)),

a(T, δT )− (σ, δT )Γ(t) = l(δT ) (3.8)

with the Signorini law (3.5) and (2.3) and initial conditions (2.5). Existence and uniqueness
of the Stefan-Signorini problem are discussed in [30, 49].

3.2 Nonlinear Nitsche Reformulation

First, following [23, 17, 14], let us reformulate the Signorini law (3.5) as

σ = −1

γ
[(T − Tm)− γσ]+ , (3.9)

where γ is a positive penalty parameter and [·]+ denotes the positive part of a scalar
quantity x ∈ R, i.e.

[x]+ =

{
x if x > 0,

0 otherwise.
(3.10)
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Remark 3.1 The equivalence of (3.9) and (3.5) can be proved by enumeration.

Let us first show that (3.9) implies (3.5). Consider the following two complementary
cases:
Case 1: [(T − Tm)− γσ] ≥ 0 ⇒ σ = − 1

γ
((T − Tm)− γσ) ⇒ T − Tm = 0. Now, returning

to the first statement, [0− γσ] ≥ 0 also indicates that σ ≤ 0. As σ · (T − Tm) = σ · 0 = 0,
the Signorini law (3.5) is satisfied in case 1.
Case 2: [(T − Tm) − γσ] ≤ 0 ⇒ σ = 0. Now, returning to the previous statement,
[(T − Tm) − γ0] ≤ 0 means that quantity T − Tm, which can be non-zero, is necessarily
negative. Finally σ · (T − Tm) = 0 · (T − Tm) = 0, and therefore Signorini law (3.5) is
satisfied in case 2. These two cases are illustrated in Figure 3.1.

Let us now show that (3.5) implies (3.9). Consider the three following cases:
Case 1: σ < 0. Owing to the consistency condition, this can only happen when T −Tm = 0.
Therefore, we can write σ = − 1

γ
(−γσ) = − 1

γ
[0− γσ]+ = − 1

γ
[T − Tm − γσ]+.

Case 2: T − Tm < 0. This can only happen when σ = 0. Therefore, we can write that
σ = 0 = − 1

γ
[T − Tm]+ = − 1

γ
[T − Tm − γσ]+.

Case 3: The last possible scenario is σ = T − Tm = 0. In this case, we can write that
σ = 0 = − 1

γ
[0]+ = − 1

γ
[T − Tm − γσ]+. �

T � Tm

�

1

�

case 1

case 2

Figure 3.1: Illustration of the different formulations of the Signorini law.

A Nitsche formulation of the Stefan-Signorini problem (3.8) is obtained by replacing
slack variable σ by its expression as a function of the primal variable T ,

σ(T ) = −1

γ
[(T − Tm)− γ(k∇T · nΓ − I · nΓ)]+ . (3.11)
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A penalty term enforcing this expression weakly can be formulated as follows

s♥(T, δT ) :=

∫
Γ(t)

((k∇T · nΓ − I · nΓ)− σ(T )) (θ1δT − θ2γk∇δT · nΓ) dΓ , (3.12)

where the choice of θ1 ∈ {0, 1} and θ2 ∈ {−1, 0, 1} leads to a family of different methods
as detailed below. Finally, the proposed Stefan-Signorini-Nitsche formulation reads

a(T, δT )− (k∇T · nΓ − I · nΓ, δT )Γ(t) + s♥(T, δT ) = l(δT ) . (3.13)

To simplify the notations, let us define

Pγ(T ) := (T − Tm)− γ(k∇T · nΓ − I · nΓ) , (3.14)

and the parametrised variation of this quantity, which we define as

P δ
θγ(δT ) := θ1δT − γ θ2 k∇δT · nΓ . (3.15)

Using these notations, the penalty term s♥ reads as

s♥(T, δT ) =

∫
Γ(t)

(
(k∇T · nΓ − I · nΓ) +

1

γ
[Pγ(T )]+

)
P δ
θγ(δT )dΓ . (3.16)

And the proposed Nitsche formulation can be expressed as a sum of linear and nonlinear
terms,

a(T, δT ) +
(
k∇T · nΓ, P

δ
θγ(δT )− δT

)
Γ(t)

+N (T, δT ) = l(δT ) +
(
I · nΓ, P

δ
θγ(δT )− δT

)
Γ(t)

,

(3.17)
where

N (T, δT ) =
1

γ

(
[Pγ(T )]+ , P

δ
θγ(δT )

)
Γ(t)

. (3.18)

We emphasise the fact that N is nonlinear in its first argument.
Three interesting Nitsche formulations are obtained by choosing particular values for

the (θ1, θ2) pair, as follows.

• θ1 = 1 and θ2 = 1, γ > 0: Symmetric Nitsche method.

• θ1 = 1 and θ2 = −1, γ > 0: Non-symmetric Nitsche method. A closely related
formulation was proposed in [17] to solve problems of unilateral contact between de-
formable solids. It was shown that, as opposed to the symmetric Nitsche formulation,
the stability of this non-symmetric variant is preserved irrespectively of the value of
Nitsche parameter γ.

• θ1 = 1 and θ2 = 0, γ > 0: Consistent penalty formulation as described in [23].
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• θ1 = 0 and θ2 = −1: Semi penalty-free Nitsche method. A closely related formulation
was derived in the context of Signorini-Poisson problems in [14]. In this setting, the
method is stable irrespectively of γ. The term “penalty-free” indicates that condition
T = Tm is enforced with the penalty-free Nitsche method (i.e. non-symmetric Nitsche
method without penalty term). However, γ is the scaling of a penalty term that
enforces the Neumann interface condition when T < Tm.

In this article, we focus on the (semi) penalty-free Nitsche method. Our motivation is that,
at least in the context of equality constraints, the penalty-free Nitsche method yields better
interface fluxes than the symmetric and non-symmetric Nitsche method, as was shown in
[5]. Interface fluxes are of particular importance in the Stefan-Signorini problem because
they drive the motion of the interface when T = Tm.

4 Stabilised Cut Finite Element Formulation

In this section, we introduce the spatial and temporal finite element discretisation of prob-
lem (3.17).

4.1 Discretisation in Space

4.1.1 Background Mesh and Fictitious Domain

First, let us introduce important background mesh quantities and the definition of the
evolving fictitious domain. Let Ω(t0) be our domain in Rd (d = 2, 3) at time t = t0 with
Lipschitz boundary ∂Ω and let T̃h be a quasi-uniform tesselation that covers the domain
Ω(t0). We define a background domain

Ωb =
⋃
K∈T̃h

K (4.1)

associated with our fixed tesselation T̃h. The background mesh T̃h will stay fixed in time
while the interface Γ(t) will move through this background mesh. For t ∈ [t0, tf ], we denote
the elements in the background mesh T̃h that have at least a small part in domain Ω(t) as

Th(t) = {K ∈ T̃h : K ∩ Ω(t) 6= ∅}, (4.2)

which we call active mesh (see the blue and green shaded elements in Figure 4.1). In
contrast to the background mesh, the active mesh changes in time. We denote the union
of all elements in Th(t) as

Ω∗(t) =
⋃

K∈Th(t)

K. (4.3)

Ω∗(t) is called the fictitious domain.
In addition to these time-evolving domains and meshes, we have edge stabilisation quan-
tities that change in time. For each active mesh at time t ∈ [t0, tf ], we will distinguish
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Γ(t)

Ω∗(t)

Figure 4.1: Schematics of the domain Ω(t) covered by a fixed and regular background mesh
T̃h and the fictitious domain Ω∗(t) consisting of all elements in T̃h with at least one part
in Ω(t).

between the following different sets of faces, i.e. edges in 2D and faces in 3D. The exterior
faces, Fe(t), which are the faces that belong to one element only in the background mesh
and that have an intersection with the active mesh. The interior faces, Fi(t), which are
faces that are shared by two elements with K ∩ Ω(t) 6= ∅. To prevent ill-conditioning, we
will apply stabilisation terms to the elements which are intersected by the boundary Γ(t),
i.e.

Gh(t) = {K ∈ Th(t) : K ∩ Γ(t) 6= ∅}. (4.4)

These stabilisation terms will be applied to so-called ghost penalty faces defined as

FΓ(t) = {F ∈ Fi(t) : K+
F ∩ Γ(t) 6= ∅ ∨K−F ∩ Γ(t) 6= ∅}. (4.5)

Here, K+
F and K−F are the two elements sharing the interior face F ∈ Fi(t). The set of

faces FΓ(t) is illustrated by the dark green edges shown in Figure 4.1. To ensure that the
boundary Γ(t) is reasonably resolved by Th, we make the following assumptions:

• G1: The intersection between Γ(t) and a face F ∈ Fi(t) is simply connected; that is,
Γ(t) does not cross an interior face multiple times.

• G2: For each element K intersected by Γ(t), there exists a plane SK and a piecewise
smooth parametrization Φ : SK ∩K → Γ(t) ∩K.

• G3: We assume that there is an integer N > 0 such that for each element K ∈ Gh(t)
there exists an element K ′ ∈ Th(t) \Gh(t) and at most N elements {K}Ni=1 such that
K1 = K, KN = K ′ and Ki ∩ Ki+1 ∈ Fi(t), i = 1, . . . N − 1. In other words, the
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number of faces to be crossed in order to “walk” from a cut element K to a non-cut
element K ′ ⊂ Ω(t) is uniformly bounded.

Similar assumptions were made in [36, 10].

4.1.2 Nonconforming spatial discretisation of the Stefan-Signorini problem

Using the sets of mesh elements and faces defined above, we can formulate the discrete
Stefan-Signorini problem. Firstly, we introduce the continuous linear finite element space
on the active mesh

Vh(t) =
{
vh ∈ C0(Ω∗(t)) : vh|K ∈ P1(K)∀K ∈ Th(t)

}
(4.6)

for the temperature.
Secondly, we define a stabilisation operator on the faces FΓ(t) for the temperature T to
prevent ill-conditioning in the case of intersections of Γ(t) near a node or face of elements
as

sT (Th, δTh) =
∑

F∈FΓ(t)

γT k h (J∇ThKn , J∇δThKn)F . (4.7)

Here, J∇xKn denotes the normal jump of the quantity x over the face, F , defined as
J∇xKn = ∇x|T+

F
nF − ∇x|T−

F
nF , where nF denotes a unit normal to the face F with fixed

but arbitrary orientation and γT is a positive penalty parameter to be determined later.
We refer to the term sT (Th, δTh) as ghost penalty stabilisation [9]. Using the definitions
above, we are now in the position to formulate our stabilised cut finite element method for
the one-phase Stefan-Signorini problem. The proposed discretisation scheme reads: For all
t ∈ [t0, tf ], find Th ∈ Vh(t) such that for all δTh ∈ Vh(t)

A(Th, δTh) +N (Th, δTh) = L(δTh) , (4.8)

where

A(Th, δTh) = a(Th, δTh) + abc(Th, δTh) + sT (Th, δTh) +
(
k∇Th · nΓ, P

δ
θγ(δTh)− δTh

)
Γh(t)

,

L(δTh) = l(δTh) + lbc(Th, δTh) +
(
I · nΓ, P

δ
θγ(δTh)− δTh

)
Γh(t)

,

N (Th, δTh) =
1

γ

(
[Pγ(Th)]+ , P

δ
θγ(δTh)

)
Γh(t)

,

(4.9)
with

a(Th, δTh) =ρ c

(
∂Th
∂t

, δTh

)
Ωh(t)

+ (k∇Th, ∇δTh)Ωh(t) , (4.10)

l(δTh) = (f, δTh)Ωh(t) + (qN , δTh)∂ΩN (t) + (I · nΓ, δTh)Γh(t) , (4.11)

abc(Th, δTh) =− (k∇Th · nΩ, δTh)∂ΩD(t) − (k∇δTh · nΩ, Th)∂ΩD(t) +
kγb
h

(Th, δTh)∂ΩD(t) ,

(4.12)

lbc(Th, δTh) =− (k∇δTh · nΩ, TD)∂ΩD(t) +
kγb
h

(TD, δTh)∂ΩD(t) . (4.13)
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Here, the positive penalty constant γb arises from the weak enforcement of Dirichlet bound-
ary conditions through Nitsche’s method and h = maxK∈Th hK is the maximum mesh size,
where hK denotes the diameter of K. The penalty parameter γ is now scaling as γ = γ̂h
with γ̂ > 0 chosen to be sufficiently small.

The discretised Stefan-Signorini problem is completed with initial conditions

Th(x, t0) = Î(T0) in Ωh(t0), (4.14)

and the condition on the normal velocity of the boundary Γ(t)

v · nΓ =
k∇Th · nΓ − I · nΓ

ρL
, (4.15)

whose discretisation will be discussed in detail in Section 5. In equation (4.14), Î is the
standard finite element nodal interpolation operator. Note that it is implicitly assumed
that field T0 is analytically available in the entire fictitious domain.

4.2 Discretisation in Time

We decompose the time interval [t0, tf ] into nt time steps, and we seek a sequence of
solutions {T (tn)}n∈J0 nt−1K =: {T n}n∈J0 nt−1K. The reference time t0 is chosen to be equal
to 0. We assume that times {tn}n∈{0,..., nt−1} are uniformly spaced, which allows us to
define the time step ∆t = t1 − t0(= t2 − t1 = ...). We apply a backward Euler scheme to
the system (4.8) and evaluate integrals over the domain Ωh(tn) and the boundary Γh(tn).
This time discretisation yields the fully discrete system of equations at time step n + 1:
Find T n+1 ∈ Vh(tn), such that for all δT ∈ Vh(tn)

A](T
n+1
h , δT ) +N (T n+1

h , δT ) = L](δT ) , (4.16)

where

A](T
n+1
h , δTh) = a](T

n+1
h , δTh) + abc(T

n+1
h , δTh)

+sT (T n+1
h , δTh) +

(
k∇T n+1

h · nΓ, P
δ
θγ(δTh)− δTh

)
Γh(tn)

,

L](δTh) = L(δT ) + ρ c

(
T nh
∆t

, δTh

)
Ωh(tn)

(4.17)

with

a](T
n+1
h , δTh) =ρ c

(
T n+1
h

∆t
, δTh

)
Ωh(tn)

+ (k∇Th, ∇δTh)Ωh(tn) . (4.18)

4.3 Newton-Raphson algorithm

We solve the previous system (4.16) using a semi-smooth Newton-Raphson algorithm. We
linearise the semi-linear form N around a finite element reference temperature T ?h ∈ Vh(tn).
This is done by writing the Taylor expansion, for any δT ∈ Vh(tn),

N (Th, δT ) = N (T ?h , δT ) +DN (Th − T ?h , δT ;T ?h ) , (4.19)
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where Th ∈ Vh(tn) and DN is the Gâteaux-derivative of N , which is defined, for any finite
element field dTh ∈ Vh(tn), by

DN (dTh, δT ;T ?h ) = lim
z→0

1

z
(N (T ?h + z dTh, δT )−N (T ?h , δT )) . (4.20)

Identifying the temperature increment dTh = Th − T ?h ∈ Vh(tn), we find that

DN (dTh, δT ;T ?h ) =
1

γ

(
DG(dTh;T

?
h ), P δ

θγ(δT )
)

Γ(tn)
, (4.21)

where DG( . ;T ?h ) is the Gâteaux-derivative of G(T ) := [Pγ(T )]+ at T ?h , which is given by

DG(dTh;T
?
h ) = H(Pγ(T

?
h )) (dTh − γk∇dTh · nΓ) , (4.22)

where H is the Heaviside function

H(Pγ(T
?
h )) =

{
1 if Pγ(T

?
h ) > 0,

0 otherwise.
(4.23)

Using these derivations, the Newton predictor for the (k+ 1)th iterate T k+1
h of T n+1

h is, for
any k ∈ N+ and for all δT ∈ Vh(tn), given by

A](dTh, δT ) +DN (dTh, δT ;T kh ) = r(δT ;T kh ) , (4.24)

where the Newton increment is defined as dTh := T k+1
h − T kh and the residual r of iterate

T kh is such that for any δT ∈ Vh(tn)

r(δT ;T kh ) = L](δT )−
(
A](T

k
h , δT ) +N (T kh , δT )

)
. (4.25)

5 Description of the Domain Movement

In this Section, we describe how domain Ω(t) is discretised and evolved in time. For each
time-step, t ∈ [t0, tf ], we first solve (4.16) to obtain the temperature T n+1

h , with which we
determine the normal velocity on Γ(tn), i.e.

vn+1 · nΓ =
k∇T n+1 · nΓ − I · nΓ

ρL
on Γ(tn). (5.1)

Then, this normal velocity on Γ(tn) is used to move a level-set function as detailed below.

5.1 Level-set description of the moving domain and level-set ad-
vection

We track the motion of the boundary Γ(t) using a continuous level-set function φ : Ωb ×
[t0, tf ] → R, whose zero level set describes the location of the boundary Γ(t) = {x ∈ Ωb :

13



φ(x, t) = 0, t ∈ [t0, tf ]}. The material domain Ω(t) is implicitly defined by φ(x, t) < 0, and
the fictitious domain by φ(x, t) > 0.
To satisfy equation (5.1), the zero level-set contour is required to move with vn+1 · nΓ.
Furthermore, as the level-set function is defined over the entire background domain Ωb,
the velocity at the interface (5.1) needs to be extended to the remainder of the domain (or
at least to a band around the zero isoline of the level-set) to evolve the level-set function.
We denote this extension of the velocity with vext.
Then, the level-set function is moved by solving the advection problem

∂φ

∂t
+ vext · ∇φ = 0 (5.2)

with initial condition φ(x, 0) = φ0. Here, φ0 is a given initial level-set description of the
domain Ω(t0). We discretise the level set function using a continuous quadratic finite
element space defined on the entire background mesh T̃h denoted by

Wh :=
{
vh ∈ C0(Ωb) : vh|K ∈ P2(K)∀K ∈ T̃h

}
. (5.3)

To solve the advection equation (5.2), we use a θ-scheme in time and streamline diffusion
(SUPG) in space. The discretised advection problem reads: Find φn+1

h ∈ Wh, such that
for all δφ ∈ Wh

aφ(φn+1
h , δφ) = lφ(δφ) (5.4)

with

aφ(φn+1
h , δφ) =

(
φn+1
h

∆t
+ θvn+1

ext · ∇φn+1
h , δφ+ τSD(vn+1

ext · ∇δφ)

)
Ωb

,

lφ(δφ) =

(
φnh
∆t

+ (1− θ)vnext · ∇φnh, δφ+ τSD(vn+1
ext · ∇δφ)

)
Ωb

(5.5)

with the streamline diffusion parameter (see [38])

τSD = 2

(
1

∆t2
+
vext · vext

h2

)− 1
2

(5.6)

and initial condition φ0
h = φ0. Throughout this contribution, θ is set to 0.5.

5.2 Description of the geometry

The quadratic level-set function is used to define the geometry of our problem including
the discretised material domain Ωh(t), the discretised interface Γh(t) and the normal nΓ(t).
In the rest of this section we choose a fixed time t and suppress the time dependence to
ease the notation.
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Ωh

Γh

Γ

Figure 5.1: Illustration of linear approximation of interface Γ and domain Ω on the refined
mesh T̃h/2 with respect to the mesh T̃h.

Normal Computation The normal pointing from the domain Ω(t) into the fictitious
material at the interface Γ(t) can be obtained from the level-set function using

nΓ(x, t) =
∇φ(x, t)

‖∇φ(x, t)‖ . (5.7)

In this contribution, we determine the normal nΓ from the level set function through a
L2-projection onto the continuous piecewise linear space

X d
h :=

{
vh ∈ [C0(Ωb)]

d : vh|K ∈ P1(K)∀K ∈ T̃h
}
. (5.8)

Here, d = 2, 3 is the geometrical dimension. We determine the normal by finding nΓ ∈ X d
h

such that for all δnΓ ∈ X d
h

(nΓ, δnΓ)Ωb =

( ∇φ
|∇φ| , δnΓ

)
Ωb

. (5.9)

Discrete Geometrical Domains To define our discrete domains Ωh and Γh, we use
a two-grid solution proposed by [34, 33] which is outlined in the following. First, we
interpolate the piecewise quadratic level-set function onto a piecewise linear function, I(φh)
, on a regularly refined mesh T̃h/2, such that

I(φh(v)) = φh(v) for all nodes v in T̃h/2. (5.10)

We then use this piecewise linear interpolation to determine the intersection between I(φh)
with the refined grid to obtain the piecewise linear approximation of Ωh and Γh as illustrated
in Figure 5.1.
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5.3 Interface velocity smoothing and bulk extension

To enable a smooth domain movement, we construct a continuous piecewise linear normal
velocity approximation in the vicinity of the interface in the following way. We first recover
a smoothed gradient of the temperature using the stabilised projection: Find Gh

T ∈ Vdh(t)
such that for all δGT ∈ Vdh(t)(

Gh
T , δGT

)
Ωh

+ sGT (Gh
T , δGT ) = (∇T n+1

h , δGT )Ωh , (5.11)

sGT (Gh
T , δGT ) =

∑
F∈FΓ(t)

γGT h
(q
∇Gh

T

y
n
, J∇δGT Kn

)
F
, (5.12)

where

Vdh(t) =
{
vh ∈ [C0(Ω∗(t))]d : vh|K ∈ P1(K)∀K ∈ Th(t)

}
(5.13)

is the vector-valued space of continuous piecewise linear functions on the fictitious domain
with d = 2, 3. Here, γGT > 0 is a positive penalty parameter to recover a continuous piece-
wise linear temperature gradient over patches of elements in the interface region from the
piecewise constant temperature gradient ∇T n+1

h . The normal velocity is then determined
from the following L2 projection: Find vhn := vn+1

h ·nΓ ∈ Vh(t) such that for all δvn ∈ Vh(t)(
vhn, δvn

)
Ω∗ = H(Pγ(T

n+1
h ))

[(
(kGh

T − I) · nΓ

ρL
, δvn

)
Ω∗
− θ1

γρL
(T n+1

h − Tm, δvn)Γh

]
.

(5.14)
We extend this normal velocity field onto the entire background domain Ωb using a fast
marching scheme as detailed in [46, 43, 33]. The principle of this technique relies on two
steps: a near-field step and a far-field step. In the near-field step, all nodes of elements
which are intersected by the interface obtain the normal velocity value determined by a
closest point projection onto the discretised interface Γh, i.e. vextn (v) = vn(PW (v)), where
v is an element node and PW is the closest point projection onto pΓ(v) ∈ Γh given by the
shortest distance between v and Γh. In the far-field step the information of the intersected
elements is propagated through evaluation of known extended velocity function values. For
a detailed description see [46, 43, 33].
This extended normal velocity field, vextn , is then used to obtain the vectorial extended
velocity field as

vext = vextn · nΓ, (5.15)

which is then used to propagate the level-set function using equation (5.5).

Remark 5.1 This extended velocity field enables the transport of the level-set function in
a way that prevents a large deviation of the level set away from a signed distance function.
Therefore reinitialisation of the level set is rarely required. However, in examples with
strong interface deformation reinitialisation may become necessary. In these rare cases,
we use a fast marching redistancing technique described in [33, 34], which relies on a fast
marching scheme of the linearly interpolated level set function on the regularly refined grid
T̃h/2.
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Algorithm 1 summaries the CutFEM Stefan-Signorini algorithm presented in the previous
sections.

Algorithm 1 CutFEM Stefan-Signorini Algorithm

1: Set t = t0, T 0
h = T0, φ0

h = φ0.
2: while t ≤ tf do . tf is the final time
3: Determine Ωh and Γh through intersection computations of zero level-set with back-

ground mesh.
4: Compute normal nΓ using (5.9).
5: procedure Stefan-Signorini-Nitsche(T nh )
6: Solve (4.16) using Newton-Raphson algorithm.
7: return T n+1

h .
8: end procedure
9: procedure Velocity(T n+1

h )
10: Compute smoothed temperature gradient GT using (5.12).
11: Determine normal velocity on Γh using (5.14).
12: Extend normal velocity to obtain vext.
13: return vext.
14: end procedure
15: procedure Level Set Advection(vext)
16: Solve advection problem (5.4) for level set.
17: return φn+1

h .
18: end procedure
19: t = t+ ∆t, φnh = φn+1

h , T nh = T n+1
h .

20: end while

6 Numerical results

In this Section, we present numerical results for a manufactured solution, and for several
thermal ablation problems in 2D and 3D. The penalty parameters are set to γGT = 10−3,
γT = 10−1, γ̂ = 1, γb = 100 and we choose the penalty-free, non-symmetric Nitsche method,
i.e. θ1 = 0, θ2 = −1 in all the presented results.

6.1 Manufactured solution: convergence analysis

We have constructed a two-dimensional manufactured solution inspired by the manufac-
tured solution of a two-phase Stefan problem in [46]. We consider a rectangular domain
Ω with a circular hole. The circular hole gets heated by a heat flux I(x, t). We choose
Tm = −0.01, ρ = c = k = 1.0, L = 1.0. We consider an analytical temperature distribution
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Th = Tex

I

(a) Schematics. (b) t = 0.

(c) t = 0.1. (d) t = 0.2.

Figure 6.1: Schematics of the manufactured solution and numerical solution at time t =
{0, 0.1, 0.2} for h = 1/40.
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given by

Tex(x, t) = −er(x) + cos

(
πr(x)

2 log (α(t))

)
− Tm + α(t). (6.1)

Here, r(x) =
√

x2 + y2 and

α(t) =
3

2− 3t
. (6.2)

At r(x) = R(t) with

R(t) = log(α(t)) (6.3)

the analytical solution is at melting temperature T = Tm. For t = 0, we obtain the initial
condition with α(0) = 3

2
as

T0 = −er(x) + cos

(
πr(x)

2 log(1.5)

)
+

3

2
− Tm. (6.4)

The volume source term f can now be determined from Tex
1. A level-set describing the

location of the melting temperature is given by

φ(x, t) = R(t)− r(x). (6.5)

This level-set describes the motion of the circular hole and the normal velocity of the hole
is given by

v(x, t) · nΓ = −∂R(t)

∂t
= −α(t). (6.6)

The expression for the beam at Γ(t) can now be determined from (2.3) which yields

Iex(x, t) = Aex(t)eray,ex(x),

Aex(t) = −
[
(ρL+ 1)α(t) +

π

2R(t)

]
,

eray,ex(x) = −nΓ,ex =
1

r(x)

(
x
y

)
.

(6.7)

To test our numerical scheme, we set the temperature T = Tex on ∂Ω and apply the heat
flux expression (6.7) on Γ(t). Figure 6.1 shows the numerical solution at time t = 0, 0.1, 0.2
and shows the removal of material with time. We test convergence with mesh refinement
and with time step refinement. We evaluate the error of our numerical solution with
respect to the analytical solution in the following relative error norms. For each time-step,

1the corresponding symbolic derivation using an IPython notebook can be found in [21].
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tn ∈ t0, ..., tnt , we determine

eL2(Ωh)(u, tn) :=
||uh − uex||L2(Ωh(tn))

||uex||L2(Ωh(tn))

=

√∫
Ωh(tn)

(uh − uex)2 dx√∫
Ωh(tn)

(uex)2 dx
,

eH1(Ωh)(u, tn) :=
||uh − uex||H1(Ωh(tn))

||uex||H1(Ωh(tn))

=

√∫
Ωh(tn)

(uh − uex)2 + (∇(uh − uex))2 dx√∫
Ωh(tn)

(uex)2 +∇u2
ex dx

,

eL2(Γh)(u, tn) :=
||uh − uex||L2(Γh(tn))

||uex||L2(Γh(tn))

=

√∫
Γh(tn)

(uh − uex)2 dx√∫
Γh(tn)

(uex)2 dx
.

(6.8)

Here, uh is the numerical solution and uex is the analytical solution, which in the following
will be the temperature, the radius or the interface velocity. To average the error over
time, we define the l2-error norm over the time interval as

||e(u)||l2[t0,tf ] =

√√√√ 1

nt

nt∑
i=0

e(u, ti)2. (6.9)

Here, e(u) is any of the error measures defined in equation (6.8).
We compute the numerical solution in the time interval t ∈ [0, 0.1] for time step sizes
∆t = {10−4, 10−5}. Figure 6.2 shows the convergence of the temperature to the analytical
solution with mesh refinement and the convergence of the temperature with time step
refinement. As can be seen in Figure 6.2, we obtain optimal convergence orders of second
order for the L2-norm and of first order for the H1-norm in space and first order convergence
in the L2-norm in time for the temperature. For the convergence of velocity and radius
of the circular hole, we obtain a convergence rate of second order. The convergence rates
for the L2-errors in temperature, velocity and radius show a slight improvement for the
time step ∆t = 10−5 in comparison to time step ∆t = 10−4 for finer meshes. This is to be
expected as the discretisation error in time is starting to dominate the total error for finer
meshes and is impacting the convergence rate. Figure 6.3 shows the averaged computed
velocity and the averaged computed radius and their analytical expression. The average is
computed for all tn ∈ t0, ..., tnt as

vavg(tn) =

∫
Γh(tn)

vhn ds∫
Γh(tn)

ds
,

ravg(tn) =

∫
Γh(tn)

√
x2 + y2 ds∫

Γh(tn)
ds

.

(6.10)

It is clear that both the velocity and radius approach the exact solution as the mesh is
refined. The convergence in position seems to be monotonic, at any time of the analysis,
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Figure 6.2: Convergence rates for L2 and H1 errors with mesh refinement and with time
step refinement.
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while the instantaneous convergence in velocity appears to be much more erratic, which is
to be expected, given the fact that the velocity is the time derivative of the position.

6.2 Thermal ablation using a moving laser beam

In this Section, we will set-up several numerical examples describing a laser beam heating
a workpiece alongside a predefined machining path. We define the intensity of the spatially
Gaussian-distributed beam as

I(x, t) = −Ap(θ)f(x, t)eray,

f(x, t) = fx(x, t) ft(t) := Aamp
1√

2πd−1σ2
e

−p(x,t)·p(x,t)
2σ2 ft(t),

p(x, t) = (x− F (t))− ((x− F (t)) · eray) eray,

(6.11)

where σ is the width of the beam, Aamp is the amplitude of the beam, F (t) is the focal
point of the beam that describes the path of the laser beam. In the following, we choose the
direction of the beam, eray, to be constant in time. The beam is scaled with the absorption
coefficient ([54], [59], [55]) given by

Ap(θ) =

{
1− 2 cos(θ)2−2ε cos(θ)+ε2

2 cos(θ)2+2ε cos(θ)+ε2
cos(θ) > 0,

0 otherwise ,
(6.12)

where the angle of incidence θ of the laser beam with respect to the inside surface normal
−nΓ appears in the equation through trigonometric function cos(θ) = −nΓ(x, t)·eray. Here,
ε is a material-dependent quantity, which we choose as ε = 1. We choose to represent
a pulsed laser beam whose periodic on/off behaviour can described by using the pulse
function

ft(t) =

{
1 if t−

⌊
t
P0

⌋
P0 ≤ P0

2
,

0 else,
(6.13)

where b c denotes the floor operation, and P0 is the total period, which is the sum of an
”on” phase of duration tON and an ”off” phase of duration tOFF during which the workpiece
does not receive any energy from the thermal ablation device.
In the following sections, we consider rectangular workpieces for which the top boundary is
the moving boundary Γ (i.e. thermally ablated surface). Homogenous Dirichlet boundary
conditions, i.e. T |∂ΩD = 0, will be applied to the bottom boundary, and homogeneous
Neumann boundary conditions will be applied to the remaining sides (see Figure 2.1).

6.2.1 Pulsed thermal ablation in 2D

Consider a rectangular background domain Ωb = (0, 3) × (0, 1.2) and a time interval t ∈
[0, 1.6]. We consider an initial level-set of φ(x, 0) = y − 1.0 leaving a rectangular block of
material Ωh = (0, 3) × (0, 1). The workpiece Ωh is heated by a laser beam described by
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(a) Velocity. (b) Velocity.

(c) Radius. (d) Radius.

Figure 6.3: Computed average velocity and average radius versus analytical solution for
∆t = 10−5.
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equation (6.11) with width σ = 0.1, amplitude Aamp = 2 and beam direction eray = (0,−1).
The time evolution of the laser beam is described by the path of focal point F (t), which is
defined for all times {tn}n∈J0nt−1K by

F (tn+1) = F (tn) + vF (t)∆t (6.14)

with initial beam focal point F0 = (0.5 1)T and initial velocity vF (t) = (5 0)T . Velocity vF
conserves its magnitude throughout the simulation, but changes direction every tchange =
0.4 units of time. Changing the sign of the velocity vector causes the laser beam to pass over
the block of material four times. We choose the material parameters as Tm = 0.1, L = 1,
ρ = 1, k = 1, c = 1. We choose two different pulse periods P0 ∈ {0.1, 0.01} and compare
the corresponding results. We choose a fixed time step of ∆t = 5 · 10−4 and a fixed mesh
size h = 0.048. Figure 6.4 shows the temperature contour at times t = 0.4, 0.8, 1.2, 1.6.
The short pulsed beam (P0 = 0.01) removes material in an even manner, leaving no visible
crater on the surface of the workpiece, while the long pulsed beam (P0 = 0.1) leaves a
wavy surface with visible craters. For these two simulations, the amplitude and spatial
distribution of the energy is the same, and the ratio between the on and off time are also
equal. As a result, the average power received by the workpiece over one period is the
same in both cases, which explains why the depths of the resulting cavities are similar (see
Figure 6.5). Note however that there is no theoretical reason for a strict equality between
the volumes removed during the process as the amount of energy lost through the Dirichlet
conditions and the quantity of thermal energy remaining in the workpiece at the end of
the simulation may differ (slightly) in the two examples.

6.2.2 Laser beam in 3D

In this Section, we consider two 3D examples. The first example describes the formation
of a single crater, for a spatially fixed laser beam, while the second example describes
a complex ablation process designed to manufacture a rectangular cavity through the
continuous motion of the laser beam.

Single Crater formation We compute the formation of a single crater considering a
rectangular background domain Ωb = (−0.5, 0.5)× (−0.5, 0.5)× (−0.5, 0.01) with an initial
level set φ(x, 0) = y in a time interval t = [0, 0.2]. We fix the time step size to ∆t = 0.005
and the mesh size to h = 0.029. We choose the material parameters as Tm = 0.01, L = 1,
ρ = 1, k = 1, c = 1. The focal point of the laser beam is fixed in time, F (t) = (0, 0, 0) and
we set eray = (0, 0,−1), Aamp = 3 and σ = 0.1. The laser beam is switched on over the
entire time period. Figure 6.6 shows the crater profile, together with several temperature
isolines, at time t = 0.2. The laser beam causes the formation of a single deep crater in a
cone shape.
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(a) t = 0.4, P0 = 0.01. (b) t = 0.4, P0 = 0.1.

(c) t = 0.8, P0 = 0.01. (d) t = 0.8, P0 = 0.1.

(e) t = 1.2, P0 = 0.01. (f) t = 1.2, P0 = 0.1.

(g) t = 1.6, P0 = 0.01. (h) t = 1.6, P0 = 0.1.

Figure 6.4: Pulsed laser beam for periods P0 = 0.01 on the left and P0 = 0.1 on the right
for time t = 0.4, 0.8, 1.2, 1.6.
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Figure 6.5: Background mesh and cut-meshes at final time t = 1.6 for pulsed beam P0 =
{0.01, 0.1}.

Complex 3D machining path We consider a complex machining path specified as
shown in Figure 6.7. We aim to form a rectangular cavity, using a machining strategy
that is typical of what could be generated by a CAM software featuring thermal milling
capabilities. The background domain is set to Ωb = (−1, 1)×(−1.5, 1.5)×(−0.6, 0.01) with
an initial level set of φ(x, 0) = z. We set the time step to ∆t = 0.005 and the mesh size to
h = 0.06. The ablation strategy is described through the motion of the focal point F (t) in
time interval t ∈ [0, 3]. The top layer is machined first, and deeper layers as represented in
Figure 6.7 are applied subsequently. The remaining parameters of the laser beam are set to
eray = (0, 0,−1), Aamp = 3 and σ = 0.1. We choose the material parameters as Tm = 0.01,
L = 1, ρ = 1, k = 1, c = 1. For this particular example, function ft(t) is always equal to
one (i.e. the laser fires continuously). As shown in Figure 6.8, the manufacturing process
creates the expected rectangular cavity. The cylinder displayed in Figure 6.8 represents
the contour line I = 2 of the laser beam. As the workpiece receives energy in a continuous
way, no crater is formed. However, we can clearly see the streaks left by the laser beam,
owing to a rather large hatch distance (i.e. distance between two consecutive straight lines
of the machining path, within one particular layer).

The results of this simulation can be played by paraview, using the .vtk files archived
on zenodo.org by the authors [20].

7 Conclusions

We have presented the first CutFEM algorithm dedicated to the solution of unsteady, one-
phase Stefan-Signorini problems. The geometry of the domain is represented implicitly
through the negative values of a continuous, piecewise linear level-set function defined
using a regular, fixed finite element mesh. The boundary of the thermally ablated material
can move arbitrarily and cut through the bulk of the elements, which circumvents the need
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Figure 6.6: One crater formed by a laser beam at a fixed spatial location, and the distri-
bution of temperature computed at t = 0.2 units of time.

Figure 6.7: Prescribed path of the focal point of a laser beam designed to create a rect-
angular cavity. The depth is not significant here as the laser beam is invariant in the z
direction.
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(a) t = 0. (b) t = 1.

(c) t = 2. (d) t = 3.

Figure 6.8: Laser beam going through the machining path shown in Figure 6.7 to create
the desired rectangular cavity. The results correspond to analysis times t = [0, 1, 2, 3].
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for any remeshing operation during the simulation of phase change. We showed that the
primal/dual formulation of the one-phase thermal ablation problem could be reformulated
as a purely primal, nonlinear problem, using the Nitsche-Signorini idea, which avoids the
need to introduce a Lagrange multiplier field for the interface velocity, and circumvents the
need to design an inf-sup stable primal/dual discretisation strategy. Through the addition
of stabilisation terms associated with the cut region, we proved that the method remains
stable independently of the cut location. In addition, by carefully h-weighting several
terms of the weak form associated with the proposed Stefan-Signorini-Nitsche method,
we obtained optimal convergence with respect to spatial and temporal refinement. As a
further contribution, we developed a 2D benchmark to test the convergence of numerical
methods for one-phase Stefan problems. We hope that the new manufactured solution will
be of use to researchers in the future.

The robustness and versatility of the proposed algorithm was demonstrated through
several representative examples in 2D and 3D. Although the method is general, our ex-
ample section targeted realistic applications in laser micro-manufacturing, including the
simulation of laser drilling and laser milling operations.
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