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Abstract 
This work gives tools to overcome the difficulty to determine experimentally 
physical properties for vegetable oils within the range of temperature typically 
observed during the injection phase in a diesel engine. Knowing vegetable 
oils’ physical properties to these ranges of temperature is of fundamental im-
portance when modeling their combustion in diesel engine. However, vegetable 
oils’ experimental physical properties data are rare in the literature for temper-
ature above 523 K. This paper describes experimental measurements and esti-
mation methods for density, dynamic viscosity, thermal conductivity and 
heat capacity of vegetable oils for this particular range of temperature. The 
methodology uses several correlative methods using group contribution ap-
proach for each property and compares experimental data with predicted one 
to select the more accurate model. This work has shown the rapeseed and ja-
tropha oils’ physical properties can be satisfactorily predicted as a function of 
temperature using group contribution approach. 
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1. Introduction 

In the last three decades, several studies have shown the potential of pure vege-
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table oils as fuel in diesel engines and burners [1] [2] [3] [4] [5]. Their applica-
tions are numerous for developing countries: agriculture, irrigation, power and 
heat generation as well as drinking water supply. However, there are still prob-
lems related to their chemical and physical properties such as fatty acid compo-
sition, viscosity and volatility [6] [7] [8] [9] [10]. Their use may lead to the for-
mation of carbon deposits under certain temperature conditions. These deposits 
can lead rapidly to engine mechanical failure. Studies have been conducted to 
determine the causes and possible solutions to the problems encountered in us-
ing vegetable oils as fuel in diesel engines [6] [11]. 

Many studies, mostly experimental, have described the mechanisms of evapo-
ration and combustion of vegetable oils under different conditions of tempera-
ture and pressure [12] [13] and have determined their characteristics of evapora-
tion. Attempts of models to calculate these characteristics are facing difficulties 
to correctly describe the transient phase. This phase of heating and dilatation 
takes place before the vaporization of vegetable oils droplets when they are in-
troduced in diesel engines combustion chamber which minimum working tem-
perature is above 450 K. Taking account of this transient phase requires the 
knowledge of the physical properties such as density, viscosity, thermal conduc-
tivity and specific heat capacity, which data are rare in literature for temperature 
above 450 K. Density, thermal conductivity, dynamic viscosity and heat capacity 
are useful for selecting fuels for internal combustion engines and have normative 
values in quality standards for commercial fuels used in compression ignition 
engines. Recent researches on the determination of the physical properties of al-
ternative fuels have focused on biodiesel [14] [15] [16] [17] [18] or blends be-
tween diesel and other substances or mixtures [19] [20] [21] [22] [23]. Only a 
few studies have been interested in pure vegetable oils [24] [25] [26]. Indeed, 
determining vegetable oils physical properties is difficult because their composi-
tion varies from one oil to another. Furthermore, experimental measurements of 
these properties are difficult or impossible to perform over a certain level of 
temperature because of their decomposition [27]. Methods such Static Method 
and a Flow Method [28], Low Residence Time Flow Method [29] and the 
Pulse-Heating Method [30] are much more used to determine critical properties 
of pure compounds or unstable substances and mixtures. 

Vegetable oils are mainly used for food purposes and therefore there are few 
data in literature on their physical properties up to 450 K. This lack of data had 
to be overcome by experimental measurements and predictions for industrial 
use of vegetable oils. The main objective of this work is to determine experi-
mentally vegetable oils density, viscosity, thermal conductivity and heat capacity 
up to 523 K and hence to predict the same physical properties for temperature 
above 523 K by means of predictive methods based on group contribution ap-
proach. At least two group contribution methods were tested for rapeseed and 
Jatropha oil density, viscosity, thermal conductivity and heat capacity which can 
be obtained experimentally or available in the literature. The physical properties 
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above mentioned are evaluated as a function of temperature and the models 
which give very good agreement with literature or experimental data obtained in 
this work will be retained. The contribution of this work is to provide rapeseed 
and Jatropha experimental physical properties and predictive one by group con-
tribution methodology that can be applied to others vegetable oils. Group con-
tribution method has been used in recently works to estimate vegetable oils den-
sity [25] and viscosity [31], lower heating value [32], cetane number of biodiesel 
fuel [33], and fatty acid compounds viscosities [15], but few of them has deter-
mined properties above 450 K. Jatropha curcas and rapeseed oils were chosen 
because they are respectively representative of southern and northern hemis-
phere first generation biofuels and also because of the availability of their physi-
cal properties data in the literature.  

The critical properties such as critical temperature, critical pressure or critical 
volume are very important because they are involved in determining the physical 
properties mentioned above. Then, the critical properties and normal boiling 
point will be firstly determined by correlative method.  

2. Materials and Methods  

Experimental tests were carried out at CIRAD Biomass Energy Laboratory (UR 
BioWooEB) in Montpellier (France), with the collaboration of the ‘‘Laboratoire 
de Physique et de Chimie de l’Environnement’’ (Burkina Faso), and the 
PROMES-CNRS laboratory of Perpignan (France).  

2.1. Vegetable Oils 

Jatropha curcas oil was obtained from agricultural producers in Burkina Faso. 
Rapeseed oil is commercially available and was purchased in a refined standard 
state from a food reseller in France. 

The physical and chemical characteristics in standard conditions of jatropha 
curcas and rapeseed oils used in this study were determined at BioWooEB. They 
are listed in Table 1. The density values were obtained using a pycnometer fol-
lowing the NF EN ISO 12185 procedure. The dynamic viscosities were measured 
according to the NF EN ISO 3104. The flashpoints were obtained with a 
Pensky-Martens apparatus and using the NF EN ISO 2719 normative. We ob-
tained the surface tension values by using the NF ISO 6295. Whereas lower 
heating values were measured in an Anton Paar Calorimeter type 6200 according 
to the NF EN 14918 method for solid biofuels, adapted and applied to liquids. The  
 
Table 1. Physical characteristics of rapeseed oil and jatropha curcas oil. 

 
Density 

(kg/m3 at  
288 K) 

Kinematic  
viscosity  

(mm2/s at 313 K) 

Flash  
point (K) 

Surface  
tension (N/m) 

Low heating 
value (MJ/kg) 

Carbon 
residue (%) 

Rapeseed oil 925 34.9 483 32.9 37.1 0.39 

Jatropha oil 940 34 498 - 36.3 - 
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carbon residue was measured by performing the NF EN ISO 10370 operation in 
a furnace of 773 K. Some of these physical properties were determined at the 
IESPM on the request of the unit BioWooEB. 

The fatty acid composition was determined by gas chromatography, using a 
Agilent 6890 GC type with a FID detector and a CP-WAX 58CB column (25 m × 
0.32 mm × 0.2 µm). The fatty acid composition of the oils is reported in Table 2.  

2.2. Methods 
2.2.1. Experimental  
In this section the experimental methods used to characterize the considered oils 
in the 298 - 523 K temperature range are described. The different methods or 
devices used in this work for the determination of density, dynamic viscosity, 
thermal conductivity and heat capacity of rapeseed and jatropha oils are listed in 
Table 3. These physical properties were carried out at the PROMES-CNRS la-
boratory in Perpignan. 

The details of method 3 ω can be obtained in the following literature [34].  

2.2.2. Correlative Methods 
A model that could predict pure vegetable oils physical properties based on the 
knowledge of their fatty acid composition would be useful in their direct use as 
fuel or in the optimization of biodiesel production processes or for the blending 
with others suitable products. On the basis of the fatty acid composition of the 
vegetable oils, the group contribution methods are known to be a powerful tool 
for predicting physical properties when experimental data are not available [15] 
[35]. Indeed, more than 95% of vegetable oil composition includes fatty acids. 
Furthermore, group contribution method is very effective to take into account of 
the contribution of glycerol that cannot be neglected for a more accurate esti-
mate. 
 
Table 2. Measured Fatty acids composition (peak area, %) of rapeseed and jatropha oils.  

Fatty acids Formula Rapeseed oil Jatropha oil 

Oleic (C18:1) C18H34O2 60.78 41.64 

Linoleic (C18:2) C18H32O2 19.22 32.53 

Linolenic (C18:3) C18H30O2 8.92 0.00 

Palmitic (C16:0) C16H32O2 4.78 16.00 

Stearic (C18:0) C18H38O2 1.35 6.05 

Other minor fatty acids - 4.95 3.77 

 
Table 3. Experimental devices or methods for rapeseed and jatropha oils physical proper-
ties determination. 

Physical  
Properties 

Density 
Dynamic  
viscosity 

Thermal  
conductivity 

Heat  
capacity 

Device/Method Pycnometer 
Rheometer 
ARES-G2 

3 ω Method DSC Setaram C80 
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In this study, rapeseed and jatropha oils critical properties were estimated by 
using correlative methods that are based on group-contribution approach. Mar-
rero and Gani (MG) method was used [36]. In fact, several studies [26] [36] [37] 
[38] show that this method performs better in terms of greater accuracy and 
wide applicability. Marrero and Gani method performs estimations at different 
levels: the primary level describes a wide variety of simple, monofunctional 
groups; the higher levels treat multifunctional structures and take into account 
the interactions among isomers functionalities.  

For this method, each critical property is estimated by a function f which de-
pends, on the one hand on the different contributions of the functional groups at 
different levels as shown in the Equation (1) and on the other hand on the pri-
mary properties. The functions used for this work are listed in Table 4.  

( ) i i j j k ki j kf X N C w M D z O E= + +∑ ∑ ∑               (1) 

f(X) is a function of the property X to be estimated, and i, j and, k refer to the 
first, second and third order groups defined in the group contribution method. 
Ni and Mj are the number of the i-th first order group, and the j-th second order 
group, respectively, present in the molecule, and C and D are the fitted contribu-
tions to the first and second order groups, respectively.  

The approach used is based on the rapeseed and jatropha oils fatty acid com-
position: each fatty acid has been fragmented into several chemical groups and 
the contribution of each group is taken into account to get the contribution of 
the corresponding fatty acid. Then, the rapeseed or Jatropha oils critical proper-
ties can be estimated satisfactorily by taking into account their composition in 
fatty acids. For these different physical properties, at least two methods most 
suited for vegetable oils were considered and the best of them was retained. 

Density estimation  
There are several methods that can be used to estimate liquid density of pure 

or mixture compound [39]. However, the most important and accurate among 
them, and that is applicable to vegetable oils is Gunn Yamada’s and Method of 
Ihmels et al. [38]. 

According to Gunn Yamada’s estimation method, the pure compound liquid 
density is evaluated as follows Equations (2) to (6). The temperature range of 
this correlation extends from a reduced temperature of 0.20 to just below the 
critical temperature.  
 
Table 4. Functions and constants for Marrero and Gani’s group estimation method. 

Properties Function f Constants 

Boiling Point ( ) ( )exp b bof X T T=  222.543 KboT =  

Critical Temperature ( ) ( )exp c cof X T T=  231.239 KcoT =  

Critical Pressure ( ) ( )0.5

2c cl cf X P P P= − −  0.5
1 25.9827 bar, 0.108998 barc cP P −= =  

Critical volume ( ) c cof X V V= −  
37.95 cm molcoV =  
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( ) ( )1 1o
sc RV V ω

ρ
= − Γ                          (2) 

where 

( ) ( ) ( )

1

1
ref

sc o
R ref ref

V
V T T

ρ

ω
=

 − Γ 
                     (3) 

and 20.29607 0.09045 0.04843R RT TΓ = − −                  (4) 

and ω is the acentric factor and is calculated using Equation (5) 

0.291 0.080c c

C

PV
RT

ω= −                         (5) 

where Pc, Tc and Vc are the critical pressure, temperature and volume, respec-
tively. Tref is a reference temperature, generally ambient temperature, ρref is the 
density at the reference temperature.  

( ) 2 3 40.33593 0.33593 1.51941 2.02512 1.11422O
R R R R RV T T T T= − + − +   (6) 

for temperature ranges corresponding to 0.2 0.8RT≤ ≤  where TR is the reduced 

temperature with R
C

TT
T

= . In this study, reference data are these obtained expe-

rimentally at 298 K from this study.  
Ihmels and Gmehling [38] extended and revised the group contribution me-

thod GCVOL developed by Elbro et al. for the prediction of liquid density. Ac-
cording to this method, the density of vegetable oils can be estimated by the Eq-
uation (7) below: 

w w

i i

M M
V n v

ρ = =
∆∑

                         (7) 

where MW is the molecular weight and V the molar volume. The molar volume 
is obtained by summing up all the group volume contributions Δνi with ni the 
number of group i appearing in the compound, while Δνi is expressed as a poly-
nomial function of absolute temperature: 

2
i i i iv A B T C T∆ = + +                         (8) 

where the units are K for temperature and cm3·mol−1 for Δνi. Group functional 
and there parameters Ai, Bi and Ci can be seen in this literature [39].  

The molecular weight of vegetable oils can be estimated using Equation (9):  

3 38.0488w i wiM x M= +∑  [40]                 (9) 

Dynamic viscosity estimation 
The most important methods used for dynamic viscosity estimation of pure 

compounds are based on group contribution models proposed by  
Jöback-Lydersen’s [39] and by Morris [41].  

Jöback-Lydersen’s method used a simple correlation given by Equation (10):  

597.82
exp 4.294a

w bM
T

µ
µ µ

∆ − 
= + ∆ − ⋅ 

 

∑ ∑  [42]      (10) 
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where Δμa and Δμb are Jöback groups’ contributions which are given and T is the 
temperature. No temperature limitations are specified for this method except for 
the fact that the temperature must be less than the critical. 

For Morris’s Method, the dynamic viscosity μL can be estimated using Equa-
tion (11) to Equation (12).  

10
1log 1L

R

J
T

µ
µ+

 
= − 

 
                      (11) 

where ( )1 2  0.577 MJ µ+ ∆= ∑                      (12) 

ΔμM represents the group contributions factors which are given and μ+ is 
compound class group contribution. This method is limited to temperatures less 
than 0.8 times the critical temperature. 

Thermal conductivity estimation 
For thermal conductivity estimation of rapeseed and jatropha oils respectively, 

two methods based on group contribution method proposed by Sastri, and Sa-
to-Riedel [39] were selected. Sastri method gives the thermal conductivity λL by 
Equation (13) below:  

m
L baλ λ=                             (13) 

where m is given by Equation (14)  

1
1

1

n
R

br

Tm
T

 −
= −  − 

                         (14) 

and λb is calculated using the group contribution method Equation (15):  

b b corrλ λ λ= +∆ ∆∑ ∑                        (15) 

Δλb is the group contribution value of the different groups and Δλcorr is a cor-
rection factor which may be required for some compounds. “a” and “n” are con-
stants. Excepted for alcohols and phenols (where a = 0.856 and n = 1.23) the 
values for these constants are respectively 0.160 and 0.20 for most compounds 
[6], Tbr is the ratio of the boiling temperature and the critical temperature.  

Sato-Riedel method is based on the equation of Sato-Riedel Equation (16) as 
follow:  

( )( )
( )( )

2 3

2 3 1 2

1.1053 3 20 1

3 20 1

R

br w

T

T M
λ

∗ + −
=

+ − ∗
                   (16) 

The upper temperature limit for Sato-Riedel method is the critical point and 
thermal conductivity will not be calculated at temperatures above this.    

Heat capacity at constant pressure (Cp) estimation 
Two methods were selected to estimate the heat capacity at constant pressure. 

The most accurate method was chose by comparing the values of the estimated 
properties with experimental values of this study. Zong et al. [43] developed an 
approach based on chemical constituent fragments to estimate the thermo phys-
ical properties. The heat capacity l

pC  can be estimated by Equation (17) ac-
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cording to this approach. 

( ), ,
l l
P frag A P AAC N C T= ∑                       (17) 

where , 1, 2,
l
P A A AC A A T= +  (18), A1,A and A2,A are parameters of temperature 

dependent correlation for fragment A and T is the temperature (K), and Nfrag,A 
is the number of fragments A in the component. The detail of Zong et al. me-
thod and the others parameters can be found in the following references [38] 
[43]. 

Ceriani et al. [44] applied group contribution method to predict heat capacity 
for fatty compounds and oils. The equation used is given by Equation (18) 

( )l
Pi k k kkC N A B T+⋅= ∑                     (18) 

where Nk is the number of group k in the molecule and Ak, Bk are parameters 
obtained from the regression. The detail of Ceriani et al. [38] [44] method and 
the others parameters can be found in the following literature [39].  

No temperature limit was found for Ceriani et al. and Zong et al. methods. 

3. Results and Discussion 

For all the physical properties, the Average Relative Deviation (ARD) which 
formula given by Equation (19) is used to evaluate the accuracy of the different 
studied methods and for the validation of the estimated values.  

( ) 1

1ARD % 100N
V V VExp Est Exp

N
= ∗ −∑           (19) 

where N is the number of data points, ExpV is experimental value, EstV is esti-
mated value.  

3.1. Results for Critical Properties and Normal Boiling Point  

Table 5 shows the results of critical properties and normal boiling point pre-
dicted by the MG method for rapeseed and Jatropha oils.  

To test the reliability of MG method, the estimated values of this study have 
been compared with literature data. However, there are literature data for only 
canola oil which is another variety of rapeseed oil and then is used for comparison. 
 
Table 5. Rapeseed and Jatropha oil estimated critical properties and normal boiling point 
by MG method.  

Physical Properties TB (K) TC (K) PC (bar) VC (cm3/mol) 

Rapeseed oil 

This study* 638.01 811.02 14.17 1.05 

Literature [36] [45] 626.10 818.95 12.85 1.04 

ARD (%) 1.90 0.96 10.27 1.25 

Jatropha oil 

This study* 634.51 838.39 14.35 1.03 

Literature [36] 623.60 837.47 13.02 1.03 

ARD (%) 1.75 0.10 10.21 0.68 

*values of parameters calculated by the authors using the Marrero-Gani’s method. 
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As shown in Table 5, the relative deviation between literature data and esti-
mated values for rapeseed and jatropha oils are low for TB, TC and VC confirming 
the reliability of MG method. Large deviations were only observed for critical 
pressure in both cases. Poling et al. [39] have already noted that for the estima-
tion of the critical pressure, the largest errors are found for the heavier mole-
cules, consequently the estimations may be too high or too low with no obvious 
pattern for errors under these conditions. This could therefore explain the high 
ARD for vegetable oils, since they are formed of triglycerides which are large 
molecules.  

3.2. Experimental Results of Rapeseed and Jatropha Oils Physical  
Properties  

The experimental data of this work for physical properties of rapeseed and Ja-
tropha oils, for the temperature range 298 to 523 K, using the different methods 
and devices above mentioned are given in Table 6. 

Figure 1 and Figure 2 show curves evolution of experimental density, heat 
capacity, thermal conductivity and dynamic viscosity. Figures indicate that all 
physical properties of the two oils above mentioned decrease as the temperature 
increases except the heat capacity which increases along with temperature. For 
the viscosity, the effect of temperature is related to the decrease of intermolecu-
lar forces, making easier the flow and therefore the reduction of viscosity [46]. In  
 
Table 6. Experimental values for secondary physical properties of rapeseed and jatropha 
oils obtained in this work.  

Physical  
property 

Density 
(kg/m3) 

Dynamic viscosity 
(mPa∙s) 

Thermal  
conductivity (W/m.K) 

Heat capacity 
(J/g.K) 

Mesasurement 
error 

0.051 0.10 0.012 0.037 

Temperature 
(K) 

rapeseed 
oil 

Jatropha 
oil 

rapeseed 
oil 

Jatropha 
oil 

rapeseed oil Jatropha oil 
rapeseed 

oil 
Jatropha 

oil 

298 911.462 914.99 134.868 88.839 0.1654 0.1681 2.0294 2.0373 

303 908.117 911.294 97.7675 63.5536 0.1648 0.1670 2.0313 2.0642 

323 894.735 896.51 39.6956 24.8646 0.1617 0.1630 2.0739 2.1903 

343 881.353 881.726 21.9229 13.4007 0.1587 0.1591 2.1512 2.3228 

363 867.971 866.942 14.0706 8.4454 0.1559 0.1555 2.2398 2.4377 

383 854.589 852.158 9.8750 5.8414 0.1533 0.1521 2.3227 2.5197 

403 841.207 837.374 7.3539 4.2976 0.1508 0.1489 2.3891 2.5622 

423 827.825 822.59 5.7129 3.3041 0.1485 0.1460 2.4345 2.5674 

443 814.443 807.806 4.5808 2.6254 0.1464 0.1433 2.4605 2.5458 

463 801.061 793.022 3.7645 2.1402 0.1444 0.1408 2.4750 2.5171 

483 787.679 778.238 3.1551 1.7807 0.1426 0.1385 2.4920 2.5094 

503 774.297 763.454 2.6872 1.5067 0.1409 0.1364 2.5319 2.5595 

523 760.915 748.67 2.3195 1.2927 0.1394 0.1346 2.6212 2.7129 

https://doi.org/10.4236/aces.2019.91004


A. S. Zongo et al. 
 

 

DOI: 10.4236/aces.2019.91004 53 Advances in Chemical Engineering and Science 
 

 
Figure 1. Experimental density and dynamic viscosity curves evolution of rapeseed and 
Jatropha versus temperature. 
 

 
Figure 2. Experimental thermal conductivity and heat capacity curves evolution of rape-
seed and Jatropha versus temperature. 
 
the case of density, when the temperature increases, the molecules disperse and 
the fluid expands in occupying a larger space. As the mass of the fluid remains 
identical, this expansion causes a decrease in the density. However, the specific 
heat of the two oils increases along with increasing temperature. This trend con-
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3.3. Estimated Physical Properties for Rapeseed and Jatropha Oils  
3.3.1. Density  
Figure 3 and Figure 4 show respectively the estimated and experimental density 
values for rapeseed and Jatropha oils as a function of temperature. In both cases, 
the estimated and experimental data show the same trend with temperature: 
density decreases when temperature increases. In particular when temperature 
increases the Gunn Yamada density curve gets closer to the experimental one 
while the Ihmels et al.’s density curve is closer to the experimental one at low 
temperatures and deviates more and more as the temperature increases. In ad-
dition, low deviations between experimental values and predicted one    
were found with the two methods as shown in Table 7 showing the goodness  
 

 
Figure 3. Experimental and estimated density of rapeseed oil.  
 

 
Figure 4. Experimental and estimated density of jatropha oil.  
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Table 7. ARD values for the different methods used.  

Property Estimation method 
ARD (%) data points 

Rapeseed oil Jatropha oil  

Density 
Gunn Yamada 2.05 3.73 16 

Ihmels et al. Gmehling 2.30 2.45 16 

Dynamic Viscosity 
Jöback-Lydersen 28.39 20.42 14 

Morris 32.42 58.93 14 

Thermal conductivity 
Sastri 5.05 1.29 14 

Sato-Riedel 34.30 39.32 14 

Heat Capacity 
Zong et al. 6.18 7.75 14 

Ceriani et al. 19.03 12.18 14 

 
of the two correlatives methods. However, in view of the purpose of this work, 
Gunn Yamada correlative method is recommended for extrapolation of density 
at high temperatures typically observed during the injection phase in diesel en-
gine. Ihmels et al.’s method is then recommended for determined edible vegeta-
ble oils properties for food purposes.  

3.3.2. Dynamic Viscosity  
The accuracy of the experimental measurements by considering the imperfec-
tions of the geometry and the precision of the rheometer was estimated to be in 
the order of 10%. Two estimation methods have been discussed. In Figure 5 and 
Figure 6, calculated dynamic viscosities are compared with experimental values 
for rapeseed and jatropha oils. 

For temperatures lower than 350 K, large errors result, as illustrated on both 
figures for the two methods. This is due to the fact that Jöback-Lyderson and 
Morris viscosity correlations [39] [41] don’t assume that ln is a linear function of 
reciprocal temperature. Because generally for a temperature range from the 
freezing point to the normal boiling temperature, when the natural logarithm of 
dynamic viscosity is assume to be a linear reciprocal absolute temperature, good 
approximation is found.  

Therefore, for low temperatures, deviations can be observed. In the same 
range of temperature, experimental values of viscosity are higher than estimated 
ones obtained by Jöback-Lyderson and Morris. The two methods give similar 
accuracies and tend to underestimate vegetable oil dynamic viscosity but the 
method of Jöback-Lyderson yields the smallest errors.  

When the temperature increases from 350 K, relative deviations become 
smaller and the experimental and estimated curves tend to overlap, especially 
with the method of Jöback-Lyderson. For higher accuracy, the Jöback-Lyderson 
method can be selected. In the literature [39] there are generally distinct me-
thods of correlations or viscosities at low temperatures and for high tempera-
ture. However, the problem lies in the impossibility of combining the two esti-
mated viscosities. 
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Figure 5. Experimental and estimated dynamic viscosity of rapeseed oil. 
 

 
Figure 6. Experimental and estimated dynamic viscosity of jatropha oil. 
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Table 8. Reproducibility errors for measuring the thermal conductivity of vegetable oils. 

Method Error (%) Oil Reference 

Photoacoustic 
2 Sunflower 

[47] 
3 Soybean 

 
Thermal analyser 

1 Sunflower (21˚C) 

[48] 1,8 Sunflower (68.7˚C) 

1.2 Soybean (21˚C) 

 

 
Figure 7. Experimental and estimated thermal conductivity of rapeseed oil.  
 

 
Figure 8. Experimental and estimated thermal conductivity of jatropha oil.  
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dicted thermal conductivity and experimental thermal conductivity data in the 
studied temperature range. The higher agreement of Sastri method with experi-
mental values is probably due to the fact that this correlative method involves 
the contribution of functional groups as well as correction factors, whereas the 
Riedel method involves only a reference value and a reduced temperature. 

3.3.4. Heat Capacity at Constant Pressure (Cp) 
Two methods for estimating liquid heat capacities were considered. Figure 9 
and Figure 10 show comparison of estimated values and experimental data of 
heat capacity for rapeseed and jatropha oils. For all the considered cases, the heat 
capacity increases along with the temperature. The figures show that Zong et al.  
 

 
Figure 9. Experimental and estimated thermal heat capacity of rapeseed oil. 
 

 
Figure 10. Experimental and estimated thermal heat capacity of jatropha oil.  
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[43] method give large negative deviation, while Ceriani et al. method has small 
positive deviation [44]. Ceriani’s method gives very low errors especially for rel-
atively low temperatures (<400 K). But in the considered temperature range, 
Zong et al. method shows satisfactory agreement with experimental data for 
both vegetable oils. This can be seen in Table 7 for ARD values. Zong’s method 
is based on a fragmentation approach of the molecule which is likely to occur at 
higher temperature whereas Cerani’s method is based on the functional groups. 
This shows that for low temperatures, the functional group approach is better 
than that of the fragmentation approach. But both of these methods yield better 
results which show that although the vegetable oils are formed of triglycerides 
which are themselves formed of fatty acids, their physical properties can be de-
termined successfully by fragmentation or group contribution approach.  

In addition, while the curve of the three methods evolves linearly, the experi-
mental one varies first linearly and then changes the slope from 450 K. This 
clearly shows that from a certain temperature the nature of the oil evolves. This 
confirms the results of our previous studies which showed that, starting from a 
certain temperature depending on the oil, the nature of the latter evolved fol-
lowing the thermal decomposition of the triglycerides it contains.  

For each recommended estimation model, the curves of the physical proper-
ties as well as the ARDs of the two oils can differ depending on the physical 
property under consideration. The rapeseed and jatropha oils are substantially 
different in their fatty acid composition. Indeed, according to the Table 2, al-
though both oils are mono-unsaturated, rapeseed oil contains more than 8% of 
linolenic acid while jatropha oil does not contain any. This difference in terms of 
fatty acid composition certainly affects the physical properties of vegetable oils 
as well as their evolution with temperature. This is in accordance with literature 
results [49].  

4. Conclusions 

This work gives tools to overcome the difficulty to determine experimentally 
physical properties for vegetable oils within the range of temperature typically 
observed during the injection phase in diesel engine. Based on experimental 
physical properties of pure vegetable oils determined in this study and existing 
theoretical models, this work has shown that, within the range 298 to 523 K, ra-
peseed and jatropha oils’ physical properties can be satisfactorily predicted as a 
function of temperature using group-contribution approach. In this temperature 
range, it was found that for the prediction of oil density, the Gunn Yamada me-
thod was the most accurate, and in line with our experimental data, with an 
ARD of 1.34 for Rapeseed oil and 0.04 for Jatropha oil. Dynamic viscosity was 
found to be well-predicted by the Jöback-Lyderson method above 350 K. The 
calculated ARD of 28.39 for Rapeseed oil and 20.42 for Jatropha oil is much 
higher because of the large deviation observed at lower temperatures. Thermal 
conductivity and Heat Capacity were respectively found to be well predicted by 
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Sastri and Zong et al. methods with ARD lower than 7.75 for both Rapeseed and 
Jatropha oils. 

Further studies to be conducted on vegetable oils having extreme fatty acid 
composition will allow correlating more specifically the evolution up to 523 K of 
a given physical property to the composition of oils.  
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Nomenclature 
ARD : Average relative deviation,% Tref : Reference temperature, K 

Clp : Liquid phase specific heat Vc : Critic volume, cm3/mol 

Cp : Heat capacity W : Acentric factor 

pC °  : Ideal gas heat capacity, kj/kmol K xi : Mole fraction of component i 

Ev : Estimated value ZRAi : Rackett parameter of component i 

Fc : Correction factor Δλb : Thermal conductivity group contribution 

Lv : Litterature value Δλcor : Thermal conductivity correction factor 

MW : Molecular weight Δμa : Jöback groups’ contributions a 

MWi : Molecular weight of component i Δμb : Jöback groups’ contributions b 

N : Number of data points ΔμM : Group contributions factors 

Tbr : Quotient of the boiling temperature, K λ0 : Reference thermal conductivity 

Nfrag : Fragment number λL : Liquid thermal conductivity 

Nk : Number of group k μ+ : Compound class group contribution 

Pci: : Critical pression of component i μL : Liquid dynamic viscosity 

R : Universal gas constant ρoil : Density of vegetable oil 

TR : Reduced temperature, K ρref : Density at reference temperature 
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