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Abstract

This study concerns semiparametric approaches to estimate discrete multivariate
count regression functions. The semiparametric approaches investigated consist of com-
bining discrete multivariate nonparametric kernel and parametric estimations such that
(i) a prior knowledge of the conditional distribution of model response may be incor-
porated and (ii) the bias of the traditional nonparametric kernel regression estimator of
Nadaraya-Watson may be reduced. We are precisely interested in combination of the
two estimations approaches with some asymptotic properties of the resulting estima-
tors. Asymptotic normality results were showed for nonparametric correction terms of
parametric start function of the estimators. The performance of discrete semiparametric
multivariate kernel estimators studied is illustrated using simulations and real count
data. In addition, diagnostic checks are performed to test the adequacy of the parametric
start model to the true discrete regression model. Finally, using discrete semiparametric
multivariate kernel estimators provides a bias reduction when the parametric multivari-
ate regression model used as start regression function belongs to a neighbourhood of the
true regression model.

Keywords: Discrete multivariate kernel; Semiparametric count regression; Cross-
validation; Model diagnostics

1 Introduction

The choice of suitable models in regression problems has been largely investigated in the
literature. Among various methods, the nonparametric approaches have been shown to
be useful to estimate regression models. There is particularly a vast literature on contin-
uous kernel based estimators for regression models, including the popular nonparametric
estimator proposed by ? and ?. Furthermore, combinations of parametric and nonpara-
metric regression approaches through a parametrically guided nonparametric estimation
procedure were investigated, to improve nonparametric Nadaraya-Watson (N-W) estimator
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(?). The semiparametric kernel estimators resulting from the previous combinations enable
(i) to incorporate prior knowledge of the conditional distribution of model response; (ii)
to reduce the bias of traditional N-W estimator using continuous kernel while keeping the
same variance; see, for example, ? and ?, in the case of continuous regression functions. In
furtherance of the previous works, an extension of the multiplicative combination of para-
metric and nonparametric regression approaches was proposed by ? with univariate discrete
kernel estimators, focused on the case of count regression function (crf). The parametrically
guided nonparametric regression estimators originated from works on the semiparametric
estimation of probability density functions (?; ?) and probability mass functions (pmf) (?).

Let us consider independent and identically distributed (iid) pairs of random variables
(Yi,Xi)i=1,2,...,n on R × Td, with R being the set of real numbers and Td denoted the product
set

∏d
j=1T. Following ? and ? works, the two-step semiparametric estimation procedure

assumes that the conditional mean E(Yi|Xi) = m(Xi) can be expressed either as an additive
regression function

madd(Xi) = r(Xi, β) + δ(Xi), (1)

where r(·, β) is a parametric function that depends on β = (β1, β2, . . . , βd)⊤ and δ(·) is a non-
parametric correction function. For the additive regression function in (1), the previous two
step estimation approach results in an estimator m̂add

n (Xi) = r(Xi, β̂) + δ̂n(Xi) of madd(Xi) with
δ̂n(Xi) being a nonparametric estimation of E{Yi − r(Xi, β̂)} = δ(Xi) and β̂ an estimator of
β. This procedure supposes the parametric start model r to be sufficiently close from the
regression function m. Thus, the asymptotic bias of m̂add

n should be improved by splitting the
estimation problem of the conditional mean functionE(Yi|Xi) up into a parametric procedure
for r and a kernel-based technique for δ. In the literature, similar approaches were developed
to achieve bias reduction without affecting the variance of estimators. For instance, ? pro-
posed a two-step nonparametric estimation procedure for estimating conditional quantiles
based on local linear quantile regression "where, in both steps, nonparametric modeling and
estimation are done".

The main contribution of this work is twofold: to present discrete multivariate versions
of two-step semiparametric estimators of crf and the corresponding models diagnostics,
something that was not done until now to our knowledge. In particular, model diagnos-
tics have been presented for the semiparametric density estimation (?) but not yet for
the semiparametric regression. Section 2 first briefly present basic notions about discrete
multivariate associated kernels. Section 3 presents multivariate additive and multiplicative
semiparametric regression estimators. Asymptotic bias and variance of the two semipara-
metric estimators studied are given. Then, information on model diagnostics are derived
by studying the estimated additive and multiplicative correction functions. Model diagnos-
tics are useful to reveal if the parametric start regression model r coincides with the true
regression model m at each point x ∈ Td. Section 4 and 5 illustrate the performance of the
parametric, non-parametric and semi-parametric approaches presented on simulated and
real data respectively. Section 6 contains concluding remarks and research prospects.
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2 Discrete multiple associated kernel

Let us consider the target vector x = (x1, x2, . . . , xd)⊤ ∈ Td ⊆ Nd and the bandwidth matrix
H = Diag(h11, . . . , hdd) with h j j > 0 such that H ≡ Hn goes to the null matrix 0d when the
sample size n goes to ∞. The univariate associated kernel K[ j]

x j,h j j
is a pmf associated with a

random variable (rv)K [ j]
x j,h j j

on support Sx j,h j j that contains x j, meaning that we have:

0 ≤ K[ j]
x j,h j j

(y) = Pr(K [ j]
x j,h j j
= y) ≤ 1 and

∑
y∈Sx j ,hjj

K[ j]
x j,h j j

(y) = 1.

The underlying idea behind the development of discrete associated kernel is that it must
attribute the probability mass closest to one at target x j, while have a smoothing parameter
h j j > 0 to take into account the probability mass at points y , x j in the neighbourhoodVx j of
x j. This idea is traduced through the following behaviour of the K[ j]

x j,h j j
’s modal probability:

K[ j]
x j,h j j

(x j)→ Dx j(x j) = 1, with
∑

y∈Sx j ,hjj\{x j}
K[ j]

x j,h j j
(y) = 1 − K[ j]

x j,h j j
(x j)→ 0, as h j j goes to→ 0,

where Dx j is the pmf of the univariate Dirac type kernel on support Sx j = {x j}. Without loss
of generality, we assume throughout this work that

∀y ∈ Sx j,h j j ⊆N,∃y0 ∈N : ∀|y| > y0,K
[ j]
x j,h j j

(y) = 0.

Then, the univariateK [ j]
x j,h j j

’s expectation and variance are such that:

x j ∈ Sx j,h j j (A1), lim
h j j→0
E(K [ j]

x j,h j j
) = x j (A2) and lim

h j j→0
Var(K [ j]

x j,h j j
) = 0 (A3).

It ensues that the multiple associated kernel Kx,H(·) = ∏d
j=1 K[ j]

x j,h j j
(·) of rv Kx,H on support

Sx,H = ×d
j=1Sx j,h j j is a pmf such that

x ∈ Sx,H, E(Kx,H) = x +U(x,H), Cov(Kx,H) = B(x,H),

where U(x,H) = (u1(x,H), . . . ,ud(x,H))⊤ and B(x,H) = (bi j(x,H))i, j=1,...,d tend, respectively, to
null vector 0 and null matrix 0d as H→ 0d.
The previous expression of Kx,H’s expectation results from the following development:

E(Kx,H) = (x1, x2, . . . , xd)
d∏

j=1

K[ j]
x j,h j j

(xi j) +
∑

y∈Sx j ,hjj\{x j}
(y1, y2, . . . , yd)

d∏
j=1

K[ j]
x j,h j j

(y j)

= (x1, x2, . . . , xd) + (x1, x2, . . . , xd)

 d∏
j=1

K[ j]
x j,h j j

(xi j) − 1

 + JH

= x +U(x,H),
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with

JH =
∑

y∈Sx,H\{x}
(y1, y2, . . . , yd)

d∏
j=1

K[ j]
x j,h j j

(y j)→ 0 then U(x,H)→ 0 as H→ 0d,

where 1 denotes the unit vector. Then, we successively express the Kx,H’s covariance as
follows:

Cov(Kx,H) = Cov
( d∏

j=1

K [ j]
x j,h j j

)
= Diagd

{
Var(K [ j]

x j,h j j
)
}

= Diagd

{ ∑
yj∈Sx j ,hjj

y2
j K

[ j]
x j,h j j

(y j) −
{ ∑

yj∈Sx j ,hjj\{x j}
y jK

[ j]
x j,h j j

(y j)
}2}

= Diagd

{
x2

j K
[ j]
x j,h j j

(x j){1 − K[ j]
x j,h j j

(x j)} + Gx j,h j j

}
→ 0d as H→ 0d,

with

Gx j,h j j =
∑

yj∈Sx j ,hjj\{x j}
y2

j K
[ j]
x j,h j j

(y j) + x2
j K

[ j]
x j,h j j

(x j) −
{ ∑

yj∈Sx j ,hjj\{x j}
y jK

[ j]
x j,h j j

(y j)
}2
→ 0 as h j j → 0.

Let us now present two examples of discrete associated kernels.

Example 1
The discrete multiple kernel was proposed for categorical or finite discrete distribution such
that

Kx,H(y) =
d∏

j=1

(1 − h j)
Iyj=xj

( h j

c j − 1

)1−Iyj,xj , ∀y ∈ Sx,c, (2)

with the support Sx,c being the product ×d
j=1{0, 1, . . . , c j − 1}, c j ∈ {2, 3, . . .},∀ j = 1, 2, . . . , d, the

bandwidth matrix H = Diag(h11, . . . , hdd) and IA being the indicator function of an event A
(?). The expectation and covariance of the associated random variableKx,H are such that

E(Kx,H) = x +H
(
1 − x1

c1 − 1
+

h1c1

2
, . . . , 1 − xd

cd − 1
+

hdcd

2

)⊤
= x +U(x,H)

and

Cov(Kx,H) = HDiagd

(
x2

j

c2
j (1 − h j) − c j

(c j − 1)2 − x j

c2
j (1 − h j) − c j

c j − 1
+

c j

2

(2c j − 1
3
−

h jc j

2

))
j
= B(x,H),

where U(x,H) and B(x,H) tend, respectively, to null vector 0 and null matrix 0d as H→ 0d.
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Example 2
We also present the multiple discrete symmetric associated triangular kernels Ta;x,H(·) =∏d

j=1 T[ j]
a j;x j,h j j

(·) on Sx,a = ×d
j=1{x j, x j ± 1, ..., x j ± a j} = ×d

j=1Sx j,a j such that

T[ j]
a j;x j,h j j

(y j) =
(a j + 1)h j j − |y j − x j|h j j

P(a j, h j j)
, y j ∈ Sx j,a j ,

with P(a j, h j j) = (2a j+1)(a j+1)h j j−2
∑a j

k=0 kh j j , for (a j, x j) ∈N×T and h j j > 0 (?). The expectation
and covariance of the random variable Ta;x,H assoctiated to kernel Ta;x,H are such that

E(Ta;x,H) = x and Cov(Ta;x,H) ≃ HDiagd

a j(2a2
j + 3a j + 1)

3
log(a j + 1) − 2

a j∑
k=1

k2 log(k)


j

+O
( d∑

j=1

h2
j j

)
.

3 Discrete semiparametric multiple kernel regression

3.1 Additive estimator

Let us first recall the definition of discrete nonparametric multivariate kernel estimator of
crf on support Td included in Nd, the product of set of non-negative integers N (?). Given
(yi, xi)i=1,2,...,n ∈ R × Td a sequence of iid pairs, the discrete multivariate non-parametric
estimator m̂n of m is defined as follows:

m̂n(x; K,H) =
n∑

i=1

yi
∏d

j=1 K[ j]
x j,h j j

(xi j)∑n
l=1

∏d
j=1 K[ j]

x j,h j j
(xl j)

= m̂n(x), (3)

where Kx,H is the multiple discrete associated kernel with a target vector x ∈ Td and a
bandwidth matrix, with h j j > 0, such that H ≡ Hn → 0d when n→∞.

Then, the semiparametric multivariate kernel additive estimator of crf in (1) is such that
(?)

m̂add
n (x; K,H) = r(x, β̂) + δ̂n(x; K,H)

= r(x, β̂) +
n∑

i=1

{yi − r(Xi, β̂)}
∏d

j=1 K[ j]
x j,h j j

(xi j)∑n
l=1

∏d
j=1 K[ j]

x j,h j j
(xl j)

= m̂add
n (x). (4)

Discrete semiparametric and nonparametric regression estimators of N-W type can be viewed
as the minimizer of a general loss function (?). Thus, the semiparametric additive estimator
in equation (4) can be defined by

m̂add
n = arg min

M

1
n

n∑
i=1

([
yi − r(xi, β̂) M − r(x, β̂)

] [ 1
−1

])2 d∏
j=1

K[ j]
x j,h j j

(xi) (5)
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and the nonparametric estimator of N-W type in equation (3) is such that

m̂n = arg minM
1
n

∑n
i=1

([
yi M

] [ 1
−1

])2 ∏d
j=1 K[ j]

x j,h j j
(xi) (similar to the approach of ?, for semi-

parametric density estimation).
Hereafter, we fix the parametric start and put r0(·) = r(·, β0) on the basis of a goodness-of-

fit test or any a priori knowledge about m. The m̂add
n ’s bias and variance can be presented as

follows.

Theorem 1
Consider the target vector x=(x1, x2, · · · , xd)⊤ ∈ Td ⊆ Zd and the bandwidth
H=Diag (h11, h22, · · · , hdd)→ 0d as n→∞with h j j > 0. Furthermore, consider f j the univariate
pmf of rv X j such that f j(x j) = Pr(X j = x j) > 0 for j = 1, 2, . . . , d. Then, the semiparametric
estimator m̂add

n (x) of madd(x) = r0(x) + δ(x) with a discrete multiple associated kernel has bias
and variance given by

Bias{m̂add
n (x)} ≈ 1

2

d∑
j=1

δ(2)
j j (x) + 2δ(1)

j (x)

 f (1)
j

f

 (x)

 Var(K [ j]
x j,h j j

),

and

Var{m̂add
n (x)} ≈

E(Y2
1|x1 = x) − f (x)E2(Y1|x1 = x)

n f (x)

{ d∏
j=1

Pr(K [ j]
x j,h j j
= x j)

}2

where f (1)
j , δ(1)

j and δ(2)
j j are j-partial finite differences for j = 1, 2, . . . , d, defined in the sense

of any univariate count component g :N 7→ R by

g(1)(x) =
{
{g(x + 1) − g(x − 1)}/2, i f x ∈N \ {0}
g(1) − g(0), i f x = 0 (6)

and

g(2)(x) =


{g(x + 2) − 2g(x) + g(x − 2)}/4, i f x ∈N \ {0, 1}
{g(3) − 3g(1) + g(0)}/4, i f x = 1
{g(2) − 2g(1) + g(0)}/2, i f x = 0.

(7)

Proof. The proof is postponed to Appendix.
From m̂add

n (x) = r0(x) + δ̂n(x), δ̂n’s bias and variance are given by

E
{
δ̂n(x)

}
= δ(x) + Bias{m̂add

n (x)} and Var
{
δ̂n(x)

}
= Var{m̂add

n (x)}, x ∈ Td. (8)

Remark 1
Consider (yi, xi)i=1,2,...,n a sequence of iid pairs on R × Td. Applying the parametrically guided
nonparametric estimation procedure for the crf mmult(Xi) = r(Xi, β)×ω(Xi) results in the multiplicative
estimator such that

m̂mult
n (x; K,H) = r(x, β̂) × ω̂n(x; K,H) = r(x, β̂) ×

n∑
i=1

yi
∏d

j=1 K[ j]
x j,h j j

(xi)

r(xi, β̂)
∑n

l=1
∏d

j=1 K[ j]
x j,h j j

(x j)
=: m̂mult

n (x), (9)
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where Kx,H is the multiple discrete associated kernel with x ∈ Td being a target vector and H a band-
width matrix. The parametric function r(·, β) depends on β = (β1, β2, . . . , βd)⊤ and the nonparametric
function ω(·) is the multiplicative correction factor.

Similar to equation (5), it can be shown that the semiparametric multiplicative estimator in
equation (9) is defined by

m̂mult
n = arg min

M

1
n

n∑
i=1

[yi − r(xi, β̂) M − r(x, β̂)
]  r(x,β̂)

r(xi,β̂)

−1




2 d∏
j=1

K[ j]
x j,h j j

(xi).

Furthermore, the m̂mult
n ’s bias and variance can be presented as follows with a fixed parametric start

r0(·) = r(·, β0).

Bias{m̂mult
n (x)} ≈ 1

2

d∑
j=1

r0(x)ω(2)
j j (x) + 2r0(x)ω(1)

j (x)

 f (1)
j

f

 (x)

 Var(K [ j]
x j,h j j

), (10)

and

Var
{
m̂mult

n (x)
}
≈
E(Y2

1|x1 = x) − f (x)E2(Y1|x1 = x)
n f (x)

{ d∏
j=1

Pr(K [ j]
x j,h j j
= x j)

}2

, (11)

where f (1), ω(1) and ω(2) are finite differences as defined in (6) and (7) (see Appendix for the proof).
From m̂mult

n (x) = r0(x)× ω̂n(x), one can directly derive ω̂n’s expectation and variance by using m̂mult
n ’s

bias and variance as follows:

E{ω̂n(x)} = ω(x) +
1

r0(x)
Bias{m̂mult

n (x)} and Var{ω̂n(x)} = 1
r2

0(x)
Var{m̂mult

n (x)}, x ∈ Td. (12)

Finally, note that the discrete nonparametric multivariate kernel estimator of m in equa-
tion (3) has the same variance that the two discrete semiparametric multivariate kernel
estimators studied and a bias expression such that (?):

Bias{m̂n(x)} ≈ 1
2

d∑
j=1

m(2)(x) + 2m(1)(x)

 f (1)
j

f

 (x)

 Var(K [ j]
x j,h j j

).

Thus, the difference between the performance of the three discrete multivariate kernel es-
timators comes by comparing their respective bias. For instance, by using the discrete
semiparametric multivariate multiplicative kernel estimator provides a smaller bias than
by using the discrete nonparametric multivariate kernel estimator if the parametric start
function r0 is such that∣∣∣∣∣r0(x)ω(2)

j j (x) + 2r0(x)ω(1)
j (x)

 f (1)
j

f

 (x)
∣∣∣∣∣ < ∣∣∣∣∣m(2)(x) + 2m(1)(x)

 f (1)
j

f

 (x)
∣∣∣∣∣.

Choices of start functions r0 that influence the performance of the three discrete multivariate
kernel estimators are illustrated through simulations (Section 3).
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3.2 Model diagnostics

Studying the estimated additive (respectively, multiplicative) correction function is useful
to provide information for model diagnostics. The additive (resp., multiplicative) correction
function should equal zero (resp., one), if the parametric start regression model coincides
with the true regression model. The model adequacy can be checked by looking at a plot of
the correction function to see if δ(x) = 0 (resp.,ω(x) = 1) is reasonable or not, with a confidence
interval at each point x. This plot should allow to spot easily where misspecification is locally
the largest.

For x ∈ Td, a graphical goodness-of-fit emerges from the results on expectation and
variance of δ̂n (resp. ω̂n) by plotting the following function Z(x) against x:

Zadd(x) =
δ̂n(x) − E{δ̂n(x)}
[Var{δ̂n(x)}]1/2

.

The model Z(x) follows a standardized normal distributionN(0; 1), when the parametric
start coincides with the true regression model, i.e. m(·) ≡ r0(·). In this situation, we get
Z(x) ∈ [−1.96; 1.96] about 95% of the time. Assuming that the parametric regression model
is such that δ(·) = 0, δ̂n’s bias and variance in equations (8) result in

Zadd(x) =
{n f (x)}1/2δ̂n(x){

E(Y2
1|x1 = x) − f (x)E2(Y1|x1 = x)

}1/2 ∏d
j=1 Pr(K [ j]

x j,h j j
= x j)

.

In addition, we formulate the following result on asymptotical normality of δ̂n. Without
loss of generality, the asymptotic normality is established for the discrete associated kernels
with a modal probability satisfying, as h j j → 0:

Pr(Kx,H = x) ≃ 1 − Pr(Kx = x)
d∏

j=1

h j j + o
( d∑

j=1

h2
j j

)
→ 1. (A4)

For instance, as h j j → 0, that concerns the multiple discrete associated kernel in Example 1
such that

Pr(Kx,H = x) =
d∏

j=1

(1 − h j) ≃ 1 −
d∏

j=1

(−1)d+1h j j + o
( d∑

j=1

h2
j j

)
and the multiple discrete symmetric associated triangular kernels in Example 2 such that

Pr(Ta;x,H = x) =
d∏

j=1

(a j + 1)h j j

P(a j, h j j)
≃

d∏
j=1

[
1 − h j jA(a j) +O(h2

j j)
]
≃ 1 −

d∏
j=1

(−1)d+1h j jA(a j) + o
( d∑

j=1

h2
j j

)
,

with A(a j) = 2a j log(a j + 1) − 2
∑a j

k=1 log(k).

8



Theorem 2
For any fixed x ∈N, under assumptions (A1)-(A4) on discrete associated kernel, the estimator
δ̂n(x) converges in distribution to the normal law as follows, as n→∞:√√√

n
d∏

j=1

h−2
j j

{
δ̂n(x) − δ(x)

} d−→ N
(
0,
σ2{Pr(Kx = x)}2

f (x)

)
.

Proof. See Appendix
For estimator ω̂n of multiplicative correction factor, assuming that the parametric regres-

sion model r0(·) is true i.e. ω(·) = 1, ω̂n’s bias and variance in equations (12) result in the
following expression of Z:

Zmult(x) =
r0(x){n f (x)}1/2[ω̂n(x) − 1]{

E(Y2
1|x1 = x) − f (x)E2(Y1|x1 = x)

}1/2 ∏d
j=1 Pr(K [ j]

x j,h j j
= x j)

.

Similar to the semiparametric additive estimator, we formulate the following theorem on the
normality of ω̂n.

Theorem 3
For any fixed x ∈N, under assumptions (A1)-(A4) on discrete associated kernel, the estimator
ω̂n(x) converges in distribution to the normal law as follows, as n→∞:√√√

n
d∏

j=1

h−2
j j

{
ω̂n(x) − ω(x)

} d−→ N
(
0,
σ2{Pr(Kx = x)}2

r2
0(x) f (x)

)
.

Proof. See Appendix

4 Simulations

This section illustrates the performances of discrete nonparametric and semiparametric mul-
tivariate kernel estimators through simulations. Two main issues of the discrete kernel
method are the choices of kernel and bandwidth. For the kernel choice, we consider the
multiple discrete symmetric associated triangular kernels given in Example 2. We assume
a constant value for the parameter a j = a = 1, j = 1, 2, . . . , d since it was shown to generally
give the better estimation.

For x ∈ Td, when considering this multiple associated kernel the functions Z for model
diagnostics were given by

Zmult(x) =
r0(x){n f (x)}1/2[ω̂n(x) − 1]∏d

i=1

{
(a+1)hjj

P(a,h j j)

} [
E(Y2

1|x1 = x) − f (x)E2(Y1|x1 = x)
]1/2

9



and

Zadd(x) =
{n f (x)}1/2δ̂n(x)∏d

i=1

{
(a+1)hjj

P(a,h j j)

} [
E(Y2

1|x1 = x) − f (x)E2(Y1|x1 = x)
]1/2
.

For the bandwidth matrix choice, the least squared cross-validation criterion (LSCV) was
applied such that Hcv = arg minH>0 LSCV(H) with

LSCV(H) =
1
n

n∑
k=1

{yk − m̂n,−k(xk,H)}2,

where m̂n,−k is the multivariate estimator of the regression function calculated from all obser-
vations except the observation xk. The LSCV is an extension of univariate cross-validation
criterion to multivariate case.

The following target regression function is proposed with dimension d = 2:

m(x1, x2) = 0.31 − 0.04(x1 + x2) + 0.32 log(x1x2) (13)

Simulations were carried out for N = 400 replications of sizes n=20, 50, 100, 200 and 500. For
the semiparametric approach, three parametric models were used as the start function and
the nonparametric approach consisted of the estimator in equation (3). The parametric start
models are given by

1. r(1)
0 (x1, x2) = 0.28 − 0.035(x1 + x2) + 0.28 log(x1 × x2),

2. r(2)
0 (x1, x2) = 0.76 − 0.01(x1 + x2),

3. r(3)
0 (x1, x2) = 0.76 − 0.1 log(x1 × x2).

The first start model r(1)
0 is expressly chosen to be closest to the target regression function m

in equation (13), while the third start model r(3)
0 is expressly chosen to be furthest from m.

Figure 1 graphically illustrates the models r(k)
0 , k = 1, 2, 3, for an exemplary run with sample

size n = 250 simulated from the target regression function.
For each replication j = 1, . . . ,N, the performance of the three discrete multivariate kernel

estimators studied was evaluated using the average squared error (ASE) given by

ASE j(H) =
1
n

n∑
i=1

[m̂( j)(xi) −m(xi)]2,

where m̂( j) is the j-th estimation of the simulated count regression model m in (13).

10
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(a) First parametric model (b) Second parametric model

y=0.76 − 0.1log(x1*x2)
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(c) Third parametric model

Figure 1: First, second and third parametric estimates (black points) for data simulated from
target regression function m in (13) with n = 250 (gray points).
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4.1 First parametric model

Performance of discrete multivariate estimators in term of ASE and bias. Table 1 presents the
mean ASE (ASE = (1/N)

∑N
j=1 ASE j) of nonparametric, semiparametric and first parametric

models, as well as the bias of kernel estimators. The purely parametric estimation using
the parametric model r1

0 outperformed the purely nonparametric kernel estimation and the
semiparametric kernel estimation using first parametric start r(1)

0 to estimate count data
simulated from the target regression model m in equation (13). This is due to the fact
that the first parametric model is fairly close to the true model (see Figure 1.a). That also
results in close performances of the semiparametric and nonparametric approaches, even
if semiparametric estimators had a bias that was slightly smaller than the nonparametric
estimator. The parametric start model added a valuable prior information of the true model.

Sample size n ASE × 103 Bias

20 4.931
50 4.997

Param. estimator 100 5.130
250 5.059
500 5.001
20 25.894 0.346
50 37.040 4.084

Semip.mult. estimator 100 40.182 7.556
250 37.325 16.363
500 32.515 34.230
20 25.894 0.356
50 37.018 4.089

Semip. add. estimator 100 40.217 7.296
250 37.366 16.424
500 32.515 34.522
20 25.894 0.394
50 37.016 4.119

Nonp. estimator 100 40.223 7.408
250 37.362 17.220
500 32.515 35.220

Table 1: ASE and bias calculated for model in (13) by using nonparametric and semipara-
metric regression estimators and the first parametric model.

Model diagnostics. We present the mean and variance of nonparametric estimated additive
and multiplicative correction factors (respectively, δ̂n and ω̂n) to check model adequacy (Table
2). We observed that δ̂n’s expectation was close to zero and ω̂n’s expectation was around
one as n increased. However, the multiplicative correction factor estimator ω̂n had a larger
variance around the mean, in particular for large sample sizes n = {250, 500}. Hence, for
discrete semiparametric multivariate additive kernel estimator, model diagnostics Z were
illustrated in Figure 2 for an exemplary run with simulated sample size n = 250. Resulting
Z(x)-values lied within the interval [−1.96, 1.96] about 95.6% of the time, meaning that Z(x)
is approximately distributed as standard normal for each target x. That was confirmed by
the Shapiro-Wilk nomality test (W-statistic= 0.995 and p-value= 0.539). This suggests that it
would be of interest to consider the first parametric model start for modeling these data.
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n E(δ̂n) Var(δ̂n) E(ω̂n) Var(ω̂n)
20 0.002483 0.001004 0.554477 0.116559
50 0.001240 0.000582 0.548013 0.151298
100 0.001921 0.000891 0.582551 0.894777
250 0.001607 0.000726 0.6306623 0.939676
500 0.002508 0.001281 0.683597 0.989539

Table 2: Mean and variance of estimated additive and multiplicative correction factors
(respectively, δ̂n and ω̂n) calculated using the first parametric model with n = 250.
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Figure 2: Z(x)-values associated with results of the semiparametric multivariate additive
kernel estimator using first parametric start model with n = 250. The histogram of ω̂n.

4.2 Second parametric model

Performance of discrete multivariate estimators in term of ASE and bias. When using the second
parametric model, the discrete semiparametric multivariate kernel estimators provided the
better results to estimate count regression data simulated from model (13) (Table 3). To
introduce the additive and multiplicative correction factors in the semiparametric procedure
improved the results provided by the nonparametric procedure. The bias of both semipara-
metric estimators was generally slightly smaller than the bias of the nonparametric estimator,
as the sample size increased. This is due to the fact that the second parametric start model
is not so far from the target regression model (see Figure 1.b).

Model diagnostics. Table 4 presents mean and variance of estimated additive and multi-
plicative correction factors (respectively, δ̂n and ω̂n) for data simulated from model (13) to
check model adequacy. Similar to the results of the previous case, the δ̂n’s expectation went
to zero and ω̂n’s expectation varied around one as the sample size n increased. The additive
correction factor estimation δn had less variability around its mean than the multiplicative
correction factor estimation ωn. Then, for semiparametric additive kernel estimator, the
graphic of Z(x)-values for one simulated sample size n = 250 shown that Z(x)-values lied
within the interval [−1.96, 1.96] about 94% of the time (Figure 3). The hypothesis of normality
was not rejected by the Shapiro-Wilk test but with a smaller p-value than when using the first
parametric model (W-statistic= 0.994 and p-value= 0.491). Finally, the second parametric
model could be accepted as an appropriate start function for modeling data simulated from
model (13).
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Sample size n ASE × 103 Bias

20 54.677
50 56.652

Param. estimator 100 55.398
250 56.003
500 55.668
20 40.338 1.996
50 37.721 7.551

Semip.mult. estimator 100 39.840 16.425
250 33.844 43.352
500 29.807 85.620
20 40.339 1.996
50 37.675 7.550

Semip. add. estimator 100 39.781 16.426
250 33.863 43.385
500 29.802 85.620
20 40.338 1.998
50 37.653 7.557

Nonp. estimator 100 39.760 16.412
250 33.901 43.997
500 30.006 86.281

Table 3: ASE and bias calculated for model in (13) by using nonparametric and semipara-
metric regression estimators and the second parametric model.

n E(δ̂n) Var(δ̂n) E(ω̂n) Var(ω̂n)
20 0.004145 0.002226 0.557540 0.479085
50 0.004630 0.001250 0.742093 0.178449
100 0.002855 0.001181 0.752624 0.293568
250 0.002956 0.001347 0.691361 0.244442
500 0.003241 0.001167 0.684382 0.229597

Table 4: Mean and variance of estimated additive and multiplicative correction factors
(respectively, δ̂n and ω̂n) calculated using the second parametric model with n = 250.

4.3 Third parametric model

Performance of discrete multivariate estimators in term of ASE and bias. Contrary to the pre-
vious case, the nonparametric estimator using discrete triangular kernel outperformed the
parametric and semiparametric models to estimate count data simulated from regression
model (13) (Table 5). The semiparametric estimates obtained when introducing the additive
and multiplicative correction factors did not improve the purely nonparametric estimates.
The performance of the nonparametric approaches in comparison with the semiparametric
approach could be attributed to the inadequacy of the third parametric start to estimate the
model (13) (see Figure 1.c). In this case, the bias of the nonparametric estimator was slightly
smaller better than the bias of multiplicative and additive semiparametric estimators, as the
sample size n increased. The parametric start model did not add a valuable prior information
of the true model.

Model diagnostics.Table 6 presents mean and variance of estimated additive and multi-
plicative correction factors (respectively, δ̂n and ω̂n) for data simulated from model (13) to
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Figure 3: The Z(x)-values associated with results of semiparametric additive kernel estimator
using the second parametric model with n = 250. The histogram of ω̂n.

Sample size n ASE × 103 Bias

20 164.100
50 164.196

Param. estimator 100 165.761
250 165.397
500 158.393
20 40.014 5.517
50 39.091 15.712

Semip.mult. estimator 100 38.036 34.026
250 33.076 86.504
500 28.378 119.693
20 40.015 5.517
50 39.091 15.723

Semip. add. estimator 100 38.048 34.002
250 33.070 86.531
500 28.294 119.517
20 40.013 5.495
50 39.089 15.602

Nonp. estimator 100 38.077 34.098
250 33.023 87.033
500 28.255 118.127

Table 5: ASE and bias calculated for model in (13) by using nonparametric and semipara-
metric regression estimators and the third parametric model.

check model adequacy. Similar to the results of the two previous cases, for semiparametric
additive kernel estimator, the graphic of Z(x)-values for one simulated sample size n = 250
shown that Z(x)-values lied within the interval [−1.96, 1.96] about 93% of the time (Figure 4).
The normality was not rejected by the Shapiro-Wilk nomality test but the p-value obviously
decreased, with regards to the results obtained when using the two first parametric model
(W-statistic= 0.993 and p-value= 0.339). In this case, the third parametric start model would
not be of interest for modeling these data. Finally, the nonparametric estimator was found
to be more appropriate for the data simulated from model (13).
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n E(δ̂n) Var(δ̂n) E(ω̂n) Var(ω̂n)
20 -0.001807 0.002897 0.500510 0.309216
50 -0.000611 0.001797 0.856860 0.142295

100 -0.003355 0.001900 0.776986 0.148346
250 -0.003118 0.002138 0.816575 0.196068
500 -0.002805 0.001853 0.841161 0.179138

Table 6: Mean and variance of estimated additive and multiplicative correction factors
(respectively, δ̂n and ω̂n) calculated using the third parametric model with n = 250.
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Figure 4: The Z(x)-values associated with results of semiparametric additive kernel estimator
of data simulated from model (13) with n = 250. The histogram of ω̂n.

5 Real data

The real count data set concerns the study of households’ joint choice of the number of
leisure trips and number of total nights spent on these trips (?). The independent monthly
samples, 1990-1996, for Swedish leisure travel are used to estimate models for trips to one
of the largest city regions in Sweden: Stockholm. The numbers of the trips to the spe-
cific location is denoted by x1 and the total number of nights on these trips by x2. The
response variable y is the probabilities of each couple. A feature of the data is that an
individual making one (two) trips has, at least, one (two) overnight stays in total, and
so on. It was considered that trip destinations are observed for at most two trips. Area
I = {(1, 1), (1, 2), . . . , (1, 30), (2, 2), (2, 3), . . . , (2, 30)} contains all possible outcomes that can be
observed (Table 7). The area is bounded to the right at 30 nights.
We applied nonparametric and semiparametric regression estimators using discrete mul-
tivariate symmetric triangular kernel with a = 1 to approximate empirical frequencies
for the considered samples, in comparison with the parametric logarithmic model yi =
θ1 + θ2xi + θ2log(xi)+ ϵi, xi ∈N \ {0}. In addition, the LSCV was used for bandwidth matrix
choice.The pointwise and global evaluations of the performance of the models applied were
conducted by using two criteria. We calculated the pointwise absolute difference between
observed and estimated values and the root mean squared error (RMSE) defined as

RMSE =

√∑n
i=1(yi − ŷi)2

n
,
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where ŷi is the adjustment of the i the observation yi with n = 15.
Performance of estimators in terms of pointwise absolute difference and RMSE. About the abso-

lute pointwise differences in Table 7, the large probability mass at zero was well estimated
by kernel regression estimators while parametric model failed to estimate the excess amount
of zeros. In particular, the semiparametric additive kernel estimator provided the best esti-
mation at points (1, 1) and (1, 2) having highest observed frequencies.
Concerning RMSE-values, nonparametric (RMSE= 0.179842) and semiparametric estima-
tors (RMSEmult=0.1797684 and RMSEadd= 0.179767) outperformed the parametric logarithmic
model (RMSE=0.194891) to estimate count real data for Stockholm city region. However, the
three kernel regression estimators had similar performances. Hcv values are also presented
in Table 7. Results of parametric and nonparametric models are illustrated in Figure 5.

|Difference|
Counts (x1, x2) Observed |Obs. - Nonp.| |Obs. - Semip. mult.| |Obs. - Semip. add.| |Obs. - Param.|

(1, 1) 0.255 1.770 0.311 0.099 241.200
(1, 2) 0.299 29.046 27.235 26.690 289.604
(1, 3) 0.177 1.085 1.151 1.694 109.980
(1, 4) 0.066 0.943 0.942 0.507 60.525
(1, 5) 0.043 1.514 1.514 1.161 38.615
(1, 6) 0.030 0.565 0.565 0.275 26.417
(1, 7) 0.032 0.539 0.539 0.297 29.021
(1, 8 − 30) 0.056 3.946 3.946 3.740 53.479
(2, 2) 0.021 17.408 16.482 15.611 24.174
(2, 3) 0.018 7.419 7.490 6.924 20.371
(2, 4) 0.028 0.883 0.883 0.430 29.849
(2, 5) 0.009 3.167 3.167 2.803 10.481
(2, 6) 0.008 1.215 1.215 0.917 9.210
(2, 7) 0.003 2.842 2.842 2.594 4.006
(2, 8 − 30) 0.015 1.820 1.820 1.610 15.851

RMSE
Nonp. Semip. mult. Semip. add. Param.

estimator estimator estimator estimator
179.842 179.768 179.767 194.891

Hcv

(
0.09 0

0 0.10

) (
0.09 0

0 0.03

) (
0.104 0

0 0.105

)

Table 7: Absolute differences between empirical and estimated frequencies calculated for
Stockholm sample and RMSE obtained by using nonparametric and semiparametric regres-
sion estimators and the parametric logarithmic model. Results are multiplied by 103 and
smallest error criterion values are in bold face.

Model diagnostics. Mean and variance of estimated additive (respectively, multiplicative)
correction factor δ̂n (resp. ω̂n) were E(δ̂n) = 0.042246 and Var(δ̂n) = 0.000955 (resp. E(ω̂n) =
3.289427 and Var(ω̂n) = 6.230134) for Stockholm sample. To check model adequacy, the
graphic of Z(x)-values shown that Z(x) lied within the interval [−1.96, 1.96] about 93% of
the time (Figure 6). Despite of the point (1, 1) with the largest probability mass which
was out of interval [−1.96, 1.96], the logarithmic model could be used as start function
for semiparametric modeling of Stockholm city region data. More appropriate parametric
models could be investigated to take into account special features of the counting phenomena
such as zero-inflation (e.g. zero-inflated Poisson models).
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Nonparametric regression
 RMSE=0.1798421
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Parametric regression
 RMSE=0.1948915
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Figure 5: Parametric logarithmic and nonparametric regressions of empirical frequencies for
the Stockholm sample with n=15.

6 Concluding remarks

This study aimed to present discrete semiparametric multivariate kernel estimators for count
regression functions. The semiparametric estimation approach was investigated in two ways:
additive and multiplicative combinations of discrete nonparametric kernel and parametric
estimations. For each discrete semiparametric multivariate kernel estimator, model diagnos-
tics were used to check the adequacy of parametric start. Simulations shown that the discrete
semiparametric multivariate kernel studied outperform the nonparametric kernel estimator
when the parametric model used as start function belongs to a neighbourhood of the true
regression model. For instance, the application case shown that discrete semiparametric
multivariate kernel estimators improved the parametric logarithmic model considered to es-
timate the excess amount of zeros. Future works would consist of conducting deeper studies
to test several start functions and distinguish the performance of additive and multiplicative
kernel estimators, something that was not done in this study. In addition, another procedure
for bandwidth matrix choice would be also investigated such as Bayesian approach.
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Appendix

Proof of Theorem 1

Proof 1
We present the additive corrected estimator m̂add(x) as the following ratio

m̂add(x) =
Nadd

n (x)
Dadd

n (x)
, x ∈Nd, (14)

with Dadd
n (x) = (1/n)

∑n
i=1

∏d
j=1 K[ j]

x j,h j j
(xi) = f̃n(x) and

Nadd
n (x) = (1/n)

∑n
i=1[r0(x) + {yi − r0(xi)}]

∏d
j=1 K[ j]

x j,h j j
(xi). Let us consider the pmf f of rv X. To

establish the proof of Theorem 1 we assumed the continuity of the pmf f in the sense that

∀ ϵ,∃ η > 0 : ∀ z ∈ (x − η; x + η) ∩ Td =⇒ || f (z) − f (x)|| < ϵ.

In addition, the convergences of Dadd
n to f and Nadd

n to m f were required.
Consistency of Dadd

n . We shown that the pointwise squared error of Dadd
n was such that

MSE(x) = E[{Dadd
n (x) − f (x)}2] = Bias2{Dadd

n (x)} + Var{Dadd
n (x)} → 0 as n→∞.
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The bias term was calculated using discrete Taylor expansion around target x = (x1, . . . , xd)
such that we obtained

E{Dadd
n (x1, . . . , xd)} − f (x1, . . . , xd) =

∑
z∈Sx,H

f (z) Pr(Kx;H = z) − f (x1, . . . , xd)

= E
{

f (K [1]
x1,h11
, . . . ,K [d]

xd,hdd
)
}
− f (x1, . . . , xd)

=
1
2

d∑
j=1

Var(K [ j]
x j,h j j

) f (2)
j (x1, . . . , xd) + o

( d∑
j=1

h2
j j

)
.

Hence, the Dadd
n ’s bias was consistent since Var(K [ j]

x j,h j j
)→ 0 as n→∞ and h j j → 0. The

The variance term was decomposed as the sum of a main term depending on target x ∈ Sd
x,H

and a remaining term depending on points z ∈ Sd
x,H \ {x}. Then, we expressed

Var{Dadd
n (x)} = Var

{1
n

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi j)
}

=
1
n

[
f (x)

{ d∏
j=1

K[ j]
x j,h j j

(x j)
}2
− f 2(x)

{ d∏
j=1

K[ j]
x j,h j j

(x j)
}2]
+ Rn

=
1
n

f (x){1 − f (x)}
{ d∏

j=1

K[ j]
x j,h j j

(x j)
}2
+ Rn,

where the term

Rn =
1
n

[ ∑
y∈Sd

x,H\{x}

f (y)
{ d∏

j=1

K[ j]
x j,h j j

(y j)
}2
−

{ ∑
y∈Sd

x,H\{x}

f (y)
d∏

j=1

K[ j]
x j,h j j

(y j)
}2]

(15)

went to 0 as H→ 0d. Indeed, let y ∈ Sd
x,H \ {x}we can find a constant η > 0 such that

K[1]
x1,h11

(y1) . . .K[d]
xd,hdd

(yd) ≤ Pr(|K [1]
x1,h11
− x1| > η, . . . , |K [d]

xd,hdd
− xd| > η)

≤
E(K [d]

x1,h11
− x1)2

η2 . . .
E(K [d]

xd,hdd
− xd)2

η2

=
1
η2d

d∏
j=1

[
Var(K [ j]

x j,h j j
) − {E(K j

x,h j j
) − x j}2

]
→ 0

under the two following hypotheses:

lim
h j j→0
E(Kx1,h11 , . . . ,Kxd,hdd) = x and lim

h j j→0
Var(Kx1,h11 , . . . ,Kxd,hdd) = 0d.
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For y = x we deduced the asymptotic modal probability
∏d

j=1 K[ j]
x j,h j j

(x1) → 1 when h j j → 0.
Thus, the variance term went to 0 as n→∞ and h j j → 0.
We omitted to present the consistency of Nadd

n since it was obtained in a similar way. �
Now we are able to present the expectation and variance of m̂add.
Expectation of m̂add. To express the expectation of m̂add(x), we calculate the expectation of

Nadd
n in a way similar to that of Dadd

n using discrete Taylor expansion such that

E{Nadd
n (x)} =

∑
z∈Sx

[
r0(x) + {m(z) − r0(z)}

]
f (z) Pr(Kx;H = z)

= r0(x1, . . . , xd)E
{

f (K [1]
x1,h11
, . . . ,K [d]

xd,hdd
)
}
+ E

{
(δ f )(K [1]

x1,h11
, . . . ,K [d]

xd,hdd
)
}

= r0(x1, . . . , xd)
{

f (x1, . . . , xd) +
1
2

d∑
j=1

Var(K [ j]
x j,h j j

) f (2)
j (x1, . . . , xd)

}
+(δ f )(x1, . . . , xd)

1
2

d∑
j=1

Var(K [ j]
x j,h j j

)(δ f )(2)
j (x1, . . . , xd) + o

( d∑
j=1

h2
j j

)
.

Then, m̂add
n ’s expectation is obtained by using the following approximation from ?, pp.119-121:

m̂(x) ≃ m(x) +
Nadd

n (x) − (m f )(x)
f (x)

− (m f )(x){Dadd
n (x) − f (x)}

f 2(x)
, (16)

such that

E{m̂add
n (x)} ≃ m(x) +

1
f (x)
E{Nadd

n (x) − (m f )(x)} − (m f )(x)
f 2(x)

E{Dadd
n (x) − f (x)}

≃ m(x) +
1
2

d∑
j=1

r0(x) f (2)
j (x) + (δ f )(2)

j (x) − (r0 + δ j)(x) f (2)
j (x)

f j(x)
Var(K [ j]

x j,h j j
)

≃ m(x) +
1
2

d∑
j=1

{
δ(2)

j (x) + 2δ(1)
j

f (1)(x)
f (x)

}
Var(K [ j]

x j,h j j
),

where f j is the univariate pmf of rv X j and δ j(x) is a nonparametric correction function. The
functions f (1)

j , δ(1)
j and δ(2)

j j are j-partial finite differences for j = 1, 2, . . . , d, defined in 6 and
7 respectively. The finite difference of second order (δ f )(2) is equal to δ(2) f + 2δ(1) f (1) + δ f (2).
Finally, we get the m̂add

n ’s bias expressed by

Bias{m̂add
n (x)} ≈ 1

2

d∑
j=1

[
δ(2)

j j + 2δ(1)
j

{ f (1)
j

f
(x)

}]
Var(K [ j]

x j,h j j
).
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Variance of m̂add. The expression of m̂add’s variance required to calculate Nadd
n ’s variance

in a way similar to that of Dadd
n such that

Var{Nadd
n (x)} = 1

n
Var

[{
r0(x) + δ(X1 j) + ϵ1

} d∏
j=1

K[ j]
x j,h j j

(X1 j)
]

=
1
n

∑
z∈Sd

x,H

{
r0(x) + δ(z) + ϵ1

}2

f (z)
{ d∏

j=1

K[ j]
x j,h j j

(z)
}2

−1
n

[ ∑
z∈Sd

x,H

{
r0(x) + δ(z) + ϵ1

}
f (z)

d∏
j=1

K[ j]
x j,h j j

(z)
]2

=
1
n

{
E(Y2

1|X1 = x) − E2(Y1|X1 = x) f (x)
}

f (x)
{ d∏

j=1

K[ j]
x j,h j j

(x j)
}2

+Qn

where Qn contained the remaining terms depending on z ∈ Sd
x,H \ {x}. The same arguments

similar to those used for Rn in (15) might be used to shown that Qn went to 0 as H → 0d.
From (16) the m̂add

n ’s variance resulted in

Var{m̂add
n (x)} ≈ Var{Nadd

n (x)}
f 2(x)

+
(m f )2(x)

f 4(x)
Var(Dadd

n (x)) − 2
(m f )(x)

f 3(x)
Cov{Dadd

n (x),Nadd
n (x)}

≈ Var{Nadd
n (x)}

f 2(x)
+O

(1
n

)
−O

(1
n

)
≈
{E(Y2

1|x1 = x) − f (x)E2(Y1|x1 = x)}
n f (x)

{ d∏
j=1

K[ j]
x j,h j j

(x j)
}2

with

Cov(Dadd
n (x),Nadd

n (x)) =
1
n

[
E(Y1{

d∏
j=1

K[ j]
x j,h j

(x1 j)}2) − E(Y1

d∏
j=1

K[ j]
x j,h j

(x1 j))E(
d∏

j=1

K[ j]
x j,h j

(x2 j))
]
= O

(1
n

)
,

and
Var{Dadd

n (x,H)} = O
(1
n

)
.

�

Bias (10) and variance (11) of multiplicative setimator

Similar to the additive case, assume that the multiplicative estimator in equation (9) can be
given by

m̂mult(x) =
Nmult

n (x)
Dmult

n (x)
, x ∈Nd,
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The main difference with the proof of additive case comes from the expressions of the Nadd
n ’s

expectation and variance since Dmult
n = Dadd

n . Thus, let us consider

Nmult
n (x) =

1
n

n∑
i=1

{
r0(x) × yi

r0(xi)

} d∏
j=1

K[ j]
x j,h j j

(xi).

We expressed the expectation of Nmult
n by

E{Nmult
n (x)} =

∑
z∈Sx

{
r0(x) × m(z)

r0(z)

}
f (z) Pr(Kx;H = z)

= r0(x)E
{
(ω f )(K [1]

x1,h11
, . . . ,K [d]

xd,hdd
)
}

= r0(x)
{
(ω f )(x) +

1
2

d∑
j=1

Var(K [ j]
x j,h j j

)(ω f )(2)
j (x) + o

( d∑
j=1

h2
j j

)}
= (m f )(x) +

1
2

d∑
j=1

Var(K [ j]
x j,h j j

)r0(x)(ω f )(2)
j (x) + o

( d∑
j=1

h2
j j

)
.

In addition, for the variance we obtained

Var{Nmult
n (x)} = 1

n
Var

[{
r0(x)ω(X1 j) + ϵ1

} d∏
j=1

K[ j]
x j,h j j

(X1 j)
]

=
1
n

∑
z∈Sd

x,H

{
r0(x)ω(z) + ϵ1

}2

f (z)
{ d∏

j=1

K[ j]
x j,h j j

(z)
}2

−1
n

[ ∑
z∈Sd

x,H

{
r0(x)ω(z) + ϵ1

}
f (z)

d∏
j=1

K[ j]
x j,h j j

(z)
]2

≈ 1
n

{
E(Y2

1|X1 = x) − E2(Y1|X1 = x) f (x)
}

f (x)
{ d∏

j=1

K[ j]
x j,h j j

(x j)
}2

,

where we omitted to present the remaining term that converges to 0 as n→ ∞ and h j j → 0.
�

In what follows, to prove the asymptotic normality for semiparametric multivariate
additive and semiparametric estimators, we need to recall the Lyapounov central limit
theorem for triangular arrays (?).

Theorem (Lyapounov) Assume that {Xn, j, j = 1, . . . , kn} are zero-mean independent ran-
dom variables, n = 1, 2, · · · . If

lim
n→∞

kn∑
j=1

E(X2
n, j) = Σ

2 > 0,
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lim
n→∞

kn∑
j=1

E(|Xn, j|3) = 0,

then Sn = Xn,1 + · · · + Xn,kn converges in distribution to the normal law with the mean zero
and the variance Σ2

Sn
d−→ N(0,Σ2) as n→∞.

The notation ” d−→” stands for convergence in distribution.

Proof of Theorem 2

We consider the expression of m̂add
n in (14) with Dadd

n (x) = (1/n)
∑n

i=1
∏d

j=1 K[ j]
x j,h j j

(xi) = f̃n(x).

Proof 2

{δ̂n(x) − δ(x)} ×Dadd
n (x) =

1
n

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi){(yi) − r̂(xi)} − δ(x) ×Dadd
n (x)

=
1
n

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi){δ(xi) + ϵi} − δ(x) ×Dadd
n (x)

=
1
n

n∑
i=1

Kx,H(xi){δ(xi) − δ(x)} + 1
n

n∑
i=1

Kx,H(xi)ϵi (17)

E
[{
δ̂n(x) − δ(x)

}
×Dadd

n (x)
]
=

1
n
E

 n∑
i=1

Kx,H(xi){δ(xi) − δ(x)}
 + 1

n
E

 n∑
i=1

Kx,H(xi)ϵi

 (18)

=
∑

y∈Sd
x,H

(δ f )(y1,y2, . . . ,yd)
d∏

j=1

Pr(K [ j]
x j,h j j
= y j)

−δ(x1, x2, . . . , xd)
∑

y∈Sd
x,H

f (y1,y2, . . . , yd)
d∏

j=1

Pr(K [ j]
x j,h j j
= y j)

= (δ f ){E(K [ j]
x1,h11
,K [2]

x2,h22
, . . . ,K [d]

xd,hdd
)}

−δ(x1, x2, . . . , xd) f {E(K [ j]
x1,h11
,K [2]

x2,h22
, . . . ,K [d]

xd,hdd
)} + o

( d∑
j=1

h2
j j

)
=

1
2

d∑
j=1

Var(Kx j,h j j){δ
(2)
j j (x) f (x) + 2δ(1)

j (x) f (1)
j (x)} + o

( d∑
j=1

h2
j j

)
.
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Then, for the variance of (17) we have

Var
[{
δ̂n(x) − δ(x)

}
×Dadd

n (x)
]
=

1
n2 Var

 n∑
i=1

Kx,H(xi){δ(xi) − δ(x)}
 + 1

n2 Var

 n∑
i=1

Kx,H(xi)ϵi


− 2

n2 Cov

 n∑
i=1

Kx,H(xi){δ(xi) − δ(x)},
n∑

i=1

Kx,H(xi)ϵi


=

f (x)σ2

n
{Pr(Kx,H = x)}2 + o


∑d

j=1 h2
j j

n
+

1
n

 +O
(1
n

)

=
f (x)σ2

n

{
1 − Pr(Kx = x)

d∏
j=1

h j j

}2
+ o


∑d

j=1 h2
j j

n
+

1
n

 +O
(1
n

)
,

with σ2 = Var(ϵi) < ∞. This result is essentially due to the second term in (18) given by
(1/n)

∑n
i=1 Kx,H(xi)ϵi, which is a sum of i.i.d. random variables. Indeed, under assumptions

(A1)-(A3), we have

1
n2 Var

 n∑
i=1

Kx,H(xi){δ(xi) − δ(x)}
 = 1

n

[ ∑
z∈Sd

x,H\{x}

{δ(z) − δ(x)}2
{ d∏

j=1

Pr(K [ j]
x j,h j j
= z j)

}2
f (z)

−
{ ∑

z∈Sd
x,H\{x}

{δ(z) − δ(x)}
d∏

j=1

Pr(K [ j]
x j,h j j
= z j) f (z)

}2
]
= o


∑d

j=1 h2
j j

n


and

1
n2 Cov

 n∑
i=1

Kx,H(xi){δ(xi) − δ(x)},
n∑

i=1

Kx,H(xi)ϵi

 = O
(1
n

)
.

Then, we mainly have

1
n2 Var

 n∑
i=1

Kx,H(xi)ϵi

 =
1
n

[
E

{
Kx,H(xi)ϵi

}2 − E2 {Kx,H(xi)ϵi
}]

=
1
n

∑
z∈Sd

x,H

ϵ2
1 f (z)

{ d∏
j=1

K[ j]
x j,h j j

(z)
}2

− 1
n

[ ∑
z∈Sd

x,H

ϵ1 f (z)
d∏

j=1

K[ j]
x j,h j j

(z)
]2

=
E(ϵ2

1) f (x)
n

{ d∏
j=1

K[ j]
x j,h j j

(x j)
}2

+ Sn

where

Sn =
1
n

∑
z∈Sd

x,H

ϵ2
1 f (z)

{ d∏
j=1

K[ j]
x j,h j j

(z)
}2

− 1
n
E(ϵ2

1) f (x)
{ d∏

j=1

K[ j]
x j,h j j

(x j)
}2

− 1
n

{ ∑
z∈Sd

x,H

ϵ1 f (z)
d∏

j=1

K[ j]
x j,h j j

(z)
}2
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tends to 0 as n→∞ and H→ 0d, similar to the term R in equation (15). Rather, by applying
the Lyapounov’s central limit theorem on 1

n

∑n
i=1 Kx,H(xi)ϵi, we have

√
n
[{
δ̂n(x) − δ(x)

}
×Dadd

n (x)
] d−→ N(0, f (x)σ2{Pr(Kx,H = x)}2).

Finally, by considering the convergence of f̃n to f states by ?, it results that
√

n{δ̂n(x) − δ(x)}Dadd
n (x) =

√
n{δ̂n(x) − δ(x)} f (x) + op(1)

such that

E{δ̂n(x) − δ(x)} = 1
2

d∑
j=1

Var(Kx j,h j j)
{
δ(2)

j j (x) + 2δ(1)
j (x)

( f (1)
j

f

)
(x)

}
+ o

( d∑
j=1

h2
j j

)
→ 0, as h j j → 0,

and

Var{δ̂n(x) − δ(x)} = 1
n f (x)

σ2{Pr(Kx = x)}2
d∏

j=1

h2
j j + o

(1
n
+

∑d
j=1 h2

j j

n

)
.

�

Proof of Theorem 3

Proof 3
For x ∈Nd and H = Diag(h11, . . . , hdd) with h j j > 0, let us consider the semiparametric estima-
tor ω̂n in (9) and the sequence Dmult

n (x) = (1/n)
∑n

j=1 Kx,H(x j). By using a similar approximation
as in equation (16), we have

1
r̂(xi)

=
r̂(x)

r̂(x)̂r(xi)
=

r0(x)
r0(x)r0(xi)

+
r̂(x) − r0(x)
r0(x)r0(xi)

− r0(x){̂r(x) − r0(x)r0(xi)}
r2

0(x)r2
0(xi)

=
1

r0(xi)
+

r̂(x) − r0(x)
r0(x)r0(xi)

− r̂(x) − r0(x)r0(xi)
r0(x)r2

0(xi)
.

Then, we have

ω̂n(x) ×Dmult
n (x) =

1
n

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi)yi
1

r0(xi)
+

1
n

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi)
yi

r0(x)r0(xi)
{̂r(x j) − r0(x j)}

−1
n

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi)yi
1

r2
0(xi)r0(xi)

{̂r(xi) − r0(x j)r0(xi)}

By using the equation yi = r0(xi)ω(xi) + ϵi where xi and ϵi are independent variables, the
terms

1
n

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi)
ϵi

r0(x j)r0(xi)
{̂r(x j)−r0(x j)} and

1
n

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi)ϵi
1

r2
0(xi)r0(x j)

{̂r(xi)−r0(x j)r0(xi)}
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are of order op

(∑d
j=1 h2

j j

)
. It ensues the following equalities:

{ω̂n(x) − ω(x)} ×Dmult
n (x) =

1
n

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi){r0(xi)ω(xi) + ϵi}
1

r0(xi)
− ω(x) ×Dmult

n (x)

+
1
n

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi)
{r0(xi)ω(xi) + ϵi}

r0(x j)r0(xi)
{̂r(x j) − r0(x j)}

−1
n

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi){r0(xi)ω(xi) + ϵi}
1

r2
0(xi)r0(x j)

{̂r(xi) − r0(x j)r0(xi)}

=
1
n

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi)
{
ω(xi) +

ϵi

r0(xi)

}
− ω(x) ×Dmult

n (x)

+
1

nr0(x)

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi)ω(xi)
{̂
r(x j) − r0(x j)

}
−1

n

n∑
i=1

d∏
j=1

K[ j]
x j,h j j

(xi)
ω(xi)

r0(xi)r0(x j)
{̂r(xi) − r0(x j)r0(xi)} + op

( d∑
j=1

h2
j j

)
= An(x,H) + Bn(x,H) − Cn(x,H) + op

( d∑
j=1

h2
j j

)
. (19)

For calculating the expectation of (19), we begin by the first term An. Under assumptions
(A1)-(A3) and using the discrete Taylor expansion, we have successively

E{An(x,H)} = 1
n
E

 n∑
i=1

Kx,H(xi){ω(xi) − ω(x)}
 + 1

n
E

 n∑
i=1

Kx,H(xi)
ϵi

r0(xi)

 (20)

=
∑

y∈Sd
x,H

(ω f )(y1,y2, . . . ,yd)
d∏

j=1

Pr(K [ j]
x j,h j j
= y j)

−ω(x1, x2, . . . , xd)
∑

y∈Sd
x,H

f (y1,y2, . . . , yd)
d∏

j=1

Pr(K [ j]
x j,h j j
= y j)

= (ω f ){E(K [ j]
x1,h11
,K [2]

x2,h22
, . . . ,K [d]

xd,hdd
)}

−ω(x1, x2, . . . , xd) f {E(K [ j]
x1,h11
,K [2]

x2,h22
, . . . ,K [d]

xd,hdd
)} + o

( d∑
j=1

h2
j j

)
=

1
2

d∑
j=1

Var(Kx j,h j j){ω
(2)
j j (x) f (x) + 2ω(1)

j (x) f (1)
j (x)} + o

( d∑
j=1

h2
j j

)
.
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The expectations of the second and third terms Bn and Cn in (19) are given by

E{Bn(x,H)} = {1/r0(x)}E {
Kx;H(x1)ω(x1)

}
Exi {̂r(x) − r0(x)}

= {1/r0(x)}
∑

y∈Sd
x,H

ω(y) f (y) Pr(Kx;H = y)EXi {̂r(x) − r0(x)}

= {1/r0(x)}ω(x) f (x)EXi {̂r(x) − r0(x)} + o
( d∑

j=1

h2
j j

)
,

and

E{Cn(x,H)} = E

{
Kx,H(X1)

ω(x1)
r0(x1)r0(x)

}
Exi {̂r(xi) − r0(x)r0(xi)}

= {1/r2
0(x)}ω(x) f (x)Exi {̂r(xi) − r0(x)r0(xi)} + o

( d∑
j=1

h2
j j

)
.

It results E[{ω̂n(x)−ω(x)} ×Dmult
n (x)] = E{An(x,H)}+ o

(∑d
j=1 h2

j j

)
. Then, for the variance of (19)

we have

Var{An(x,H) + Bn(x,H) − Cn(x,H)} = f (x)σ2

nr2
0(x)
{Pr(Kx,H = x)}2 + o


∑d

j=1 h2
j j

n


with σ2 = Var(ϵi) < ∞. This result is essentially due to the second term in (20) given by

A1n(x,H) = n−1
n∑

i=1

ϵir−1
0 (xi)Kx,H(xi),

which is a sum of i.i.d. random variables; thus we have E{A1n(x,H)} = 0 and, under
assumptions (A1)-(A3),

Var{A1n(x,H)} = E
2(ϵ1)
n

∑
y∈Sx,H

f (y)r−2
0 (y){Pr(Kx,H = y)}2 = f (x)σ2

nr2
0(x)
{Pr(Kx,H = x)}2 +W,

where

W =
σ2

n

∑
y∈Sd

x,H\{x}

r−2
0 (y) f (y){Pr(Kx,H = y)}2

tends to 0 as n→∞ and H→ 0d, similar to the term R in equation (15). The other terms in the
variance of (19) provide the order o

(∑d
j=1 h2

j j/n
)
; we omit to detail here all these calculations.

Rather, by applying the Lyapounov’s central limit theorem on A1n, we have
√

nA1n(x,H) d−→ N(0, f (x)σ2/r2
0(x){Pr(Kx,H = x)}2).
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Finally, by considering the convergence of f̃n to f states by ?, it results that
√

n{ω̂n(x) − ω(x)}Dmult
n (x) =

√
n{ω̂n(x) − ω(x)} f (x) + op(1) = µ f (x) +

√
nA1n(x,H) + op(1),

such that

E{ω̂n(x) − ω(x)} = 1
2

d∑
j=1

Var(Kx j,h j j)
{
ω(2)

j j (x) + 2ω(1)
j (x)

( f (1)
j

f

)
(x)

}
+ o

( d∑
j=1

h2
j j

)
→ 0, as h j j → 0,

and

Var{ω̂n(x) − ω(x)} = 1
nr2

0(x) f (x)
σ2{Pr(Kx = x)}2

d∏
j=1

h2
j j + o

(1
n
+

∑d
j=1 h2

j j

n

)
.

�
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