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Introduction

The choice of suitable models in regression problems has been largely investigated in the literature. Among various methods, the nonparametric approaches have been shown to be useful to estimate regression models. There is particularly a vast literature on continuous kernel based estimators for regression models, including the popular nonparametric estimator proposed by ? and ?. Furthermore, combinations of parametric and nonparametric regression approaches through a parametrically guided nonparametric estimation procedure were investigated, to improve nonparametric Nadaraya-Watson (N-W) estimator (?). The semiparametric kernel estimators resulting from the previous combinations enable (i) to incorporate prior knowledge of the conditional distribution of model response; (ii) to reduce the bias of traditional N-W estimator using continuous kernel while keeping the same variance; see, for example, ? and ?, in the case of continuous regression functions. In furtherance of the previous works, an extension of the multiplicative combination of parametric and nonparametric regression approaches was proposed by ? with univariate discrete kernel estimators, focused on the case of count regression function (crf). The parametrically guided nonparametric regression estimators originated from works on the semiparametric estimation of probability density functions (?; ?) and probability mass functions (pmf) (?).

Let us consider independent and identically distributed (iid) pairs of random variables (Y i , X i ) i=1,2,...,n on R × T d , with R being the set of real numbers and T d denoted the product set ∏ d j=1 T. Following ? and ? works, the two-step semiparametric estimation procedure assumes that the conditional mean E(Y i |X i ) = m(X i ) can be expressed either as an additive regression function

m add (X i ) = r(X i , β) + δ(X i ), (1) 
where r(•, β) is a parametric function that depends on β = (β 1 , β 2 , . . . , β d ) ⊤ and δ(•) is a nonparametric correction function. For the additive regression function in (1), the previous two step estimation approach results in an estimator m add n (X i ) = r(X i , β) + δ n (X i ) of m add (X i ) with δ n (X i ) being a nonparametric estimation of E{Y ir(X i , β)} = δ(X i ) and β an estimator of β. This procedure supposes the parametric start model r to be sufficiently close from the regression function m. Thus, the asymptotic bias of m add n should be improved by splitting the estimation problem of the conditional mean function E(Y i |X i ) up into a parametric procedure for r and a kernel-based technique for δ. In the literature, similar approaches were developed to achieve bias reduction without affecting the variance of estimators. For instance, ? proposed a two-step nonparametric estimation procedure for estimating conditional quantiles based on local linear quantile regression "where, in both steps, nonparametric modeling and estimation are done".

The main contribution of this work is twofold: to present discrete multivariate versions of two-step semiparametric estimators of crf and the corresponding models diagnostics, something that was not done until now to our knowledge. In particular, model diagnostics have been presented for the semiparametric density estimation (?) but not yet for the semiparametric regression. Section 2 first briefly present basic notions about discrete multivariate associated kernels. Section 3 presents multivariate additive and multiplicative semiparametric regression estimators. Asymptotic bias and variance of the two semiparametric estimators studied are given. Then, information on model diagnostics are derived by studying the estimated additive and multiplicative correction functions. Model diagnostics are useful to reveal if the parametric start regression model r coincides with the true regression model m at each point x ∈ T d . Section 4 and 5 illustrate the performance of the parametric, non-parametric and semi-parametric approaches presented on simulated and real data respectively. Section 6 contains concluding remarks and research prospects.

Discrete multiple associated kernel

Let us consider the target vector x = (x 1 , x 2 , . . . , x d ) ⊤ ∈ T d ⊆ N d and the bandwidth matrix H = Diag(h 11 , . . . , h dd ) with h jj > 0 such that H ≡ H n goes to the null matrix 0 d when the sample size n goes to ∞. The univariate associated kernel K [j] x j ,h jj is a pmf associated with a random variable (rv) K

[j]

x j ,h j j on support S x j ,h j j that contains x j , meaning that we have:

0 ≤ K [j]
x j ,h j j (y) = Pr(K [ j] x j ,h jj = y) ≤ 1 and

∑ y∈S x j ,h jj K [j] x j ,h jj (y) = 1.
The underlying idea behind the development of discrete associated kernel is that it must attribute the probability mass closest to one at target x j , while have a smoothing parameter h jj > 0 to take into account the probability mass at points y x j in the neighbourhood V x j of x j . This idea is traduced through the following behaviour of the K

[j]
x j ,h jj 's modal probability:

K [j] x j ,h jj (x j ) → D x j (x j ) = 1, with ∑ y∈S x j ,h j j \{x j } K [ j] x j ,h j j (y) = 1 -K [j]
x j ,h jj (x j ) → 0, as h jj goes to → 0, where D x j is the pmf of the univariate Dirac type kernel on support S x j = {x j }. Without loss of generality, we assume throughout this work that

∀y ∈ S x j ,h j j ⊆ N, ∃y 0 ∈ N : ∀|y| > y 0 , K [j] x j ,h jj (y) = 0.
Then, the univariate K

[j]
x j ,h j j 's expectation and variance are such that:

x j ∈ S x j ,h j j (A1), lim

h j j →0 E(K [j]
x j ,h jj ) = x j (A2) and lim

h j j →0 Var(K [j]
x j ,h j j ) = 0 (A3).

It ensues that the multiple associated kernel

K x,H (•) = ∏ d j=1 K [j] x j ,h j j (•) of rv K x,H on support S x,H = × d j=1 S x j ,h j j is a pmf such that x ∈ S x,H , E(K x,H ) = x + U(x, H), Cov(K x,H ) = B(x, H), where U(x, H) = (u 1 (x, H), . . . , u d (x, H)) ⊤ and B(x, H) = (b ij (x, H)) i, j=1,.
..,d tend, respectively, to null vector 0 and null matrix 0 d as H → 0 d . The previous expression of K x,H 's expectation results from the following development:

E(K x,H ) = (x 1 , x 2 , . . . , x d ) d ∏ j=1 K [j] x j ,h jj (x i j ) + ∑ y∈S x j ,h jj \{x j } (y 1 , y 2 , . . . , y d ) d ∏ j=1 K [j] x j ,h jj (y j ) = (x 1 , x 2 , . . . , x d ) + (x 1 , x 2 , . . . , x d )        d ∏ j=1 K [j] x j ,h jj (x i j ) -1        + J H = x + U(x, H),
with

J H = ∑ y∈S x,H \{x} (y 1 , y 2 , . . . , y d ) d ∏ j=1 K [ j]
x j ,h j j (y j ) → 0 then U(x, H) → 0 as H → 0 d , where 1 denotes the unit vector. Then, we successively express the K x,H 's covariance as follows:

Cov(K x,H ) = Cov ( d ∏ j=1 K [ j] x j ,h j j ) = Diag d { Var(K [j]
x j ,h j j )

} = Diag d { ∑ y j ∈S x j ,h j j y 2 j K [ j]
x j ,h j j (y j ) -{ ∑

y j ∈S x j ,h jj \{x j } y j K [j]
x j ,h j j (y j )

} 2 } = Diag d { x 2 j K [j]
x j ,h j j (x j ){1 -K

[j]

x j ,h j j (x j )} + G x j ,h j j } → 0 d as H → 0 d , with G x j ,h jj = ∑ y j ∈S x j ,h j j \{x j } y 2 j K [j]
x j ,h j j (y j ) + x 2 j K

[j]

x j ,h j j (x j ) -{ ∑

y j ∈S x j ,h jj \{x j } y j K [j]
x j ,h jj (y j )

} 2 → 0 as h j j → 0.

Let us now present two examples of discrete associated kernels.

Example 1

The discrete multiple kernel was proposed for categorical or finite discrete distribution such that

K x,H (y) = d ∏ j=1 (1 -h j ) I y j =x j ( h j c j -1 ) 1-I y j x j , ∀y ∈ S x,c , (2) 
with the support S x,c being the product × d j=1 {0, 1, . . . , c j -1}, c j ∈ {2, 3, . . .}, ∀j = 1, 2, . . . , d, the bandwidth matrix H = Diag(h 11 , . . . , h dd ) and I A being the indicator function of an event A (?). The expectation and covariance of the associated random variable K x,H are such that

E(K x,H ) = x + H ( 1 - x 1 c 1 -1 + h 1 c 1 2 , . . . , 1 - x d c d -1 + h d c d 2 ) ⊤ = x + U(x, H)
and

Cov(K x,H ) = HDiag d ( x 2 j c 2 j (1 -h j ) -c j (c j -1) 2 -x j c 2 j (1 -h j ) -c j c j -1 + c j 2 ( 2c j -1 3 - h j c j 2 )) j = B(x, H),
where U(x, H) and B(x, H) tend, respectively, to null vector 0 and null matrix 0 d as H → 0 d .

Example 2

We also present the multiple discrete symmetric associated triangular kernels T a;x,H (•) = ∏ d j=1 T

[j]

a j ;x j ,h jj (•) on S x,a = × d j=1 {x j , x j ± 1, ..., x j ± a j } = × d j=1 S x j ,a j such that T [j]
a j ;x j ,h jj (y j ) = (a j + 1) h j j -|y jx j | h j j P(a j , h j j ) , y j ∈ S x j ,a j , with P(a j , h jj ) = (2a j +1)(a j +1) h jj -2 ∑ a j k=0 k h jj , for (a j , x j ) ∈ N×T and h jj > 0 (?). The expectation and covariance of the random variable T a;x,H assoctiated to kernel T a;x,H are such that

E(T a;x,H ) = x and Cov(T a;x,H ) ≃ HDiag d        a j (2a 2 j + 3a j + 1) 3 log(a j + 1) -2 a j ∑ k=1 k 2 log(k)        j +O ( d ∑ j=1 h 2 j j
) .

3 Discrete semiparametric multiple kernel regression

Additive estimator

Let us first recall the definition of discrete nonparametric multivariate kernel estimator of crf on support T d included in N d , the product of set of non-negative integers N (?). Given (y i , x i ) i=1,2,...,n ∈ R × T d a sequence of iid pairs, the discrete multivariate non-parametric estimator m n of m is defined as follows:

m n (x; K, H) = n ∑ i=1 y i ∏ d j=1 K [j] x j ,h j j (x ij ) ∑ n l=1 ∏ d j=1 K [j]
x j ,h jj (x l j )

= m n (x), (3) 
where K x,H is the multiple discrete associated kernel with a target vector x ∈ T d and a bandwidth matrix, with h jj > 0, such that H ≡ H n → 0 d when n → ∞.

Then, the semiparametric multivariate kernel additive estimator of crf in (1) is such that (?)

m add n (x; K, H) = r(x, β) + δ n (x; K, H) = r(x, β) + n ∑ i=1 {y i -r(X i , β)} ∏ d j=1 K [j] x j ,h j j (x ij ) ∑ n l=1 ∏ d j=1 K [j] x j ,h jj (x l j ) = m add n (x). ( 4 
)
Discrete semiparametric and nonparametric regression estimators of N-W type can be viewed as the minimizer of a general loss function (?). Thus, the semiparametric additive estimator in equation ( 4) can be defined by

m add n = arg min M 1 n n ∑ i=1 ( [ y i -r(x i , β) M -r(x, β) ] [ 1 -1 ]) 2 d ∏ j=1 K [j]
x j ,h j j (x i ) (5)

and the nonparametric estimator of N-W type in equation ( 3) is such that

m n = arg min M 1 n ∑ n i=1 ( [ y i M ] [ 1 -1 ]) 2 ∏ d j=1 K [j]
x j ,h j j (x i ) (similar to the approach of ?, for semiparametric density estimation).

Hereafter, we fix the parametric start and put r 0 (•) = r(•, β 0 ) on the basis of a goodness-offit test or any a priori knowledge about m. The m add n 's bias and variance can be presented as follows.

Theorem 1

Consider the target vector x=(x 1 , x 2 , • • • , x d ) ⊤ ∈ T d ⊆ Z d and the bandwidth H=Diag (h 11 , h 22 , • • • , h dd ) → 0 d as n → ∞ with h jj > 0.
Furthermore, consider f j the univariate pmf of rv X j such that f j (x j ) = Pr(X j = x j ) > 0 for j = 1, 2, . . . , d. Then, the semiparametric estimator m add n (x) of m add (x) = r 0 (x) + δ(x) with a discrete multiple associated kernel has bias and variance given by

Bias{ m add n (x)} ≈ 1 2 d ∑ j=1        δ (2) j j (x) + 2δ (1) j (x)         f (1) j f         (x)        Var(K [j]
x j ,h j j ),

and

Var{ m add n (x)} ≈ E(Y 2 1 |x 1 = x) -f (x)E 2 (Y 1 |x 1 = x) n f (x) { d ∏ j=1 Pr(K [j] x j ,h jj = x j ) } 2
where f (1) j , δ (1) j and δ (2) jj are j-partial finite differences for j = 1, 2, . . . , d, defined in the sense of any univariate count component g : N → R by

g (1) (x) = { {g(x + 1) -g(x -1)}/2, i f x ∈ N \ {0} g(1) -g(0), i f x = 0 (6)
and

g (2) (x) =          {g(x + 2) -2g(x) + g(x -2)}/4, i f x ∈ N \ {0, 1} {g(3) -3g(1) + g(0)}/4, i f x = 1 {g(2) -2g(1) + g(0)}/2, i f x = 0. (7)
Proof. The proof is postponed to Appendix. From m add n (x) = r 0 (x) + δ n (x), δ n 's bias and variance are given by

E { δ n (x) } = δ(x) + Bias{ m add n (x)} and Var { δ n (x) } = Var{ m add n (x)}, x ∈ T d . ( 8 
)

Remark 1

Consider (y i , x i ) i=1,2,...,n a sequence of iid pairs on R × T d . Applying the parametrically guided nonparametric estimation procedure for the crf m mult (X i ) = r(X i , β)×ω(X i ) results in the multiplicative estimator such that

m mult n (x; K, H) = r(x, β) × ω n (x; K, H) = r(x, β) × n ∑ i=1 y i ∏ d j=1 K [j] x j ,h jj (x i ) r(x i , β) ∑ n l=1 ∏ d j=1 K [ j]
x j ,h j j (x j )

=: m mult n (x), ( 9)

where K x,H is the multiple discrete associated kernel with x ∈ T d being a target vector and H a bandwidth matrix. The parametric function r(•, β) depends on β = (β 1 , β 2 , . . . , β d ) ⊤ and the nonparametric function ω(•) is the multiplicative correction factor. Similar to equation ( 5), it can be shown that the semiparametric multiplicative estimator in equation ( 9) is defined by

m mult n = arg min M 1 n n ∑ i=1        [ y i -r(x i , β) M -r(x, β) ]        r(x, β) r(x i , β) -1               2 d ∏ j=1 K [j]
x j ,h jj (x i ).

Furthermore, the m mult n 's bias and variance can be presented as follows with a fixed parametric start r 0

(•) = r(•, β 0 ). Bias{ m mult n (x)} ≈ 1 2 d ∑ j=1        r 0 (x)ω (2) jj (x) + 2r 0 (x)ω (1) j (x)         f (1) j f         (x)        Var(K [j]
x j ,h jj ), ( 10)

and Var { m mult n (x) } ≈ E(Y 2 1 |x 1 = x) -f (x)E 2 (Y 1 |x 1 = x) n f (x) { d ∏ j=1 Pr(K [j] x j ,h j j = x j ) } 2 , ( 11 
)
where f (1) , ω (1) and ω (2) are finite differences as defined in ( 6) and ( 7) (see Appendix for the proof). From m mult n (x) = r 0 (x) × ω n (x), one can directly derive ω n 's expectation and variance by using m mult n 's bias and variance as follows:

E{ ω n (x)} = ω(x) + 1 r 0 (x) Bias{ m mult n (x)} and Var{ ω n (x)} = 1 r 2 0 (x) Var{ m mult n (x)}, x ∈ T d . (12) 
Finally, note that the discrete nonparametric multivariate kernel estimator of m in equation (3) has the same variance that the two discrete semiparametric multivariate kernel estimators studied and a bias expression such that (?):

Bias{ m n (x)} ≈ 1 2 d ∑ j=1        m (2) (x) + 2m (1) (x)         f (1) j f         (x)        Var(K [j]
x j ,h j j ).

Thus, the difference between the performance of the three discrete multivariate kernel estimators comes by comparing their respective bias. For instance, by using the discrete semiparametric multivariate multiplicative kernel estimator provides a smaller bias than by using the discrete nonparametric multivariate kernel estimator if the parametric start function r 0 is such that

r 0 (x)ω (2) jj (x) + 2r 0 (x)ω (1) j (x)         f (1) j f         (x) < m (2) (x) + 2m (1) (x)         f (1) j f         (x) .
Choices of start functions r 0 that influence the performance of the three discrete multivariate kernel estimators are illustrated through simulations (Section 3).

Model diagnostics

Studying the estimated additive (respectively, multiplicative) correction function is useful to provide information for model diagnostics. The additive (resp., multiplicative) correction function should equal zero (resp., one), if the parametric start regression model coincides with the true regression model. The model adequacy can be checked by looking at a plot of the correction function to see if δ(x) = 0 (resp., ω(x) = 1) is reasonable or not, with a confidence interval at each point x. This plot should allow to spot easily where misspecification is locally the largest.

For x ∈ T d , a graphical goodness-of-fit emerges from the results on expectation and variance of δ n (resp. ω n ) by plotting the following function Z(x) against x:

Z add (x) = δ n (x) -E{ δ n (x)} [Var{ δ n (x)}] 1/2
. The model Z(x) follows a standardized normal distribution N(0; 1), when the parametric start coincides with the true regression model, i.e. m(•) ≡ r 0 (•). In this situation, we get Z(x) ∈ [-1.96; 1.96] about 95% of the time. Assuming that the parametric regression model is such that δ(•) = 0, δ n 's bias and variance in equations ( 8) result in

Z add (x) = {n f (x)} 1/2 δ n (x) { E(Y 2 1 |x 1 = x) -f (x)E 2 (Y 1 |x 1 = x) } 1/2 ∏ d j=1 Pr(K [ j]
x j ,h jj = x j )

.

In addition, we formulate the following result on asymptotical normality of δ n . Without loss of generality, the asymptotic normality is established for the discrete associated kernels with a modal probability satisfying, as h j j → 0:

Pr(K x,H = x) ≃ 1 -Pr(K x = x) d ∏ j=1 h jj + o ( d ∑ j=1 h 2 jj ) → 1. (A4)
For instance, as h jj → 0, that concerns the multiple discrete associated kernel in Example 1 such that

Pr(K x,H = x) = d ∏ j=1 (1 -h j ) ≃ 1 - d ∏ j=1 (-1) d+1 h j j + o ( d ∑ j=1 h 2 jj )
and the multiple discrete symmetric associated triangular kernels in Example 2 such that

Pr(T a;x,H = x) = d ∏ j=1 (a j + 1) h j j P(a j , h jj ) ≃ d ∏ j=1 [ 1 -h jj A(a j ) + O(h 2 j j ) ] ≃ 1 - d ∏ j=1 (-1) d+1 h j j A(a j ) + o ( d ∑ j=1 h 2 jj ) ,
with A(a j ) = 2a j log(a j + 1) -2 ∑ a j k=1 log(k).

Theorem 2

For any fixed x ∈ N, under assumptions (A1)-(A4) on discrete associated kernel, the estimator δ n (x) converges in distribution to the normal law as follows, as n → ∞:

n d ∏ j=1 h -2 jj { δ n (x) -δ(x) } d - → N ( 0, σ 2 {Pr(K x = x)} 2 f (x)
) .

Proof. See Appendix

For estimator ω n of multiplicative correction factor, assuming that the parametric regression model r 0 (•) is true i.e. ω(•) = 1, ω n 's bias and variance in equations ( 12) result in the following expression of Z:

Z mult (x) = r 0 (x){n f (x)} 1/2 [ ω n (x) -1] { E(Y 2 1 |x 1 = x) -f (x)E 2 (Y 1 |x 1 = x) } 1/2 ∏ d j=1 Pr(K [j]
x j ,h j j = x j )

.

Similar to the semiparametric additive estimator, we formulate the following theorem on the normality of ω n .

Theorem 3

For any fixed x ∈ N, under assumptions (A1)-(A4) on discrete associated kernel, the estimator ω n (x) converges in distribution to the normal law as follows, as n → ∞:

n d ∏ j=1 h -2 jj { ω n (x) -ω(x) } d - → N ( 0, σ 2 {Pr(K x = x)} 2 r 2 0 (x) f (x)
) .

Proof. See Appendix

Simulations

This section illustrates the performances of discrete nonparametric and semiparametric multivariate kernel estimators through simulations. Two main issues of the discrete kernel method are the choices of kernel and bandwidth. For the kernel choice, we consider the multiple discrete symmetric associated triangular kernels given in Example 2. We assume a constant value for the parameter a j = a = 1, j = 1, 2, . . . , d since it was shown to generally give the better estimation.

For x ∈ T d , when considering this multiple associated kernel the functions Z for model diagnostics were given by

Z mult (x) = r 0 (x){n f (x)} 1/2 [ ω n (x) -1] ∏ d i=1 { (a+1) h jj P(a,h j j ) } [ E(Y 2 1 |x 1 = x) -f (x)E 2 (Y 1 |x 1 = x) ] 1/2 and Z add (x) = {n f (x)} 1/2 δ n (x) ∏ d i=1 { (a+1) h jj P(a,h j j ) } [ E(Y 2 1 |x 1 = x) -f (x)E 2 (Y 1 |x 1 = x) ] 1/2 .
For the bandwidth matrix choice, the least squared cross-validation criterion (LSCV) was applied such that H cv = arg min H>0 LSCV(H) with

LSCV(H) = 1 n n ∑ k=1 {y k -m n,-k (x k , H)} 2 ,
where m n,-k is the multivariate estimator of the regression function calculated from all observations except the observation x k . The LSCV is an extension of univariate cross-validation criterion to multivariate case.

The following target regression function is proposed with dimension d = 2:

m(x 1 , x 2 ) = 0.31 -0.04(x 1 + x 2 ) + 0.32 log(x 1 x 2 ) (13)
Simulations were carried out for N = 400 replications of sizes n=20, 50, 100, 200 and 500. For the semiparametric approach, three parametric models were used as the start function and the nonparametric approach consisted of the estimator in equation ( 3). The parametric start models are given by 1. r (1) 0 (x 1 , x 2 ) = 0.28 -0.035(x 1 + x 2 ) + 0.28 log(

x 1 × x 2 ), 2. r (2) 0 (x 1 , x 2 ) = 0.76 -0.01(x 1 + x 2 ), 3. r (3) 0 (x 1 , x 2 ) = 0.76 -0.1 log(x 1 × x 2 ).
The first start model r (1) 0 is expressly chosen to be closest to the target regression function m in equation ( 13), while the third start model r (3) 0 is expressly chosen to be furthest from m. Figure 1 graphically illustrates the models r (k) 0 , k = 1, 2, 3, for an exemplary run with sample size n = 250 simulated from the target regression function.

For each replication j = 1, . . . , N, the performance of the three discrete multivariate kernel estimators studied was evaluated using the average squared error (ASE) given by

ASE j (H) = 1 n n ∑ i=1 [ m (j) (x i ) -m(x i )] 2 ,
where m (j) is the j-th estimation of the simulated count regression model m in (13). 

First parametric model

Performance of discrete multivariate estimators in term of ASE and bias. Table 1 presents the mean ASE (ASE = (1/N) ∑ N j=1 ASE j ) of nonparametric, semiparametric and first parametric models, as well as the bias of kernel estimators. The purely parametric estimation using the parametric model r 1 0 outperformed the purely nonparametric kernel estimation and the semiparametric kernel estimation using first parametric start r (1) 0 to estimate count data simulated from the target regression model m in equation ( 13). This is due to the fact that the first parametric model is fairly close to the true model (see Figure 1.a). That also results in close performances of the semiparametric and nonparametric approaches, even if semiparametric estimators had a bias that was slightly smaller than the nonparametric estimator. The parametric start model added a valuable prior information of the true model. Model diagnostics. We present the mean and variance of nonparametric estimated additive and multiplicative correction factors (respectively, δ n and ω n ) to check model adequacy (Table 2). We observed that δ n 's expectation was close to zero and ω n 's expectation was around one as n increased. However, the multiplicative correction factor estimator ω n had a larger variance around the mean, in particular for large sample sizes n = {250, 500}. Hence, for discrete semiparametric multivariate additive kernel estimator, model diagnostics Z were illustrated in Figure 2 for an exemplary run with simulated sample size n = 250. Resulting Z(x)-values lied within the interval [-1.96, 1.96] about 95.6% of the time, meaning that Z(x) is approximately distributed as standard normal for each target x. That was confirmed by the Shapiro-Wilk nomality test (W-statistic= 0.995 and p-value= 0.539). This suggests that it would be of interest to consider the first parametric model start for modeling these data. 

Second parametric model

Performance of discrete multivariate estimators in term of ASE and bias. When using the second parametric model, the discrete semiparametric multivariate kernel estimators provided the better results to estimate count regression data simulated from model (13) (Table 3). To introduce the additive and multiplicative correction factors in the semiparametric procedure improved the results provided by the nonparametric procedure. The bias of both semiparametric estimators was generally slightly smaller than the bias of the nonparametric estimator, as the sample size increased. This is due to the fact that the second parametric start model is not so far from the target regression model (see Figure 1.b). Model diagnostics. Table 4 presents mean and variance of estimated additive and multiplicative correction factors (respectively, δ n and ω n ) for data simulated from model (13) to check model adequacy. Similar to the results of the previous case, the δ n 's expectation went to zero and ω n 's expectation varied around one as the sample size n increased. The additive correction factor estimation δ n had less variability around its mean than the multiplicative correction factor estimation ω n . Then, for semiparametric additive kernel estimator, the graphic of Z(x)-values for one simulated sample size n = 250 shown that Z(x)-values lied within the interval [-1.96, 1.96] about 94% of the time (Figure 3). The hypothesis of normality was not rejected by the Shapiro-Wilk test but with a smaller p-value than when using the first parametric model (W-statistic= 0.994 and p-value= 0.491). Finally, the second parametric model could be accepted as an appropriate start function for modeling data simulated from model (13). 

Third parametric model

Performance of discrete multivariate estimators in term of ASE and bias. Contrary to the previous case, the nonparametric estimator using discrete triangular kernel outperformed the parametric and semiparametric models to estimate count data simulated from regression model (13) (Table 5). The semiparametric estimates obtained when introducing the additive and multiplicative correction factors did not improve the purely nonparametric estimates. The performance of the nonparametric approaches in comparison with the semiparametric approach could be attributed to the inadequacy of the third parametric start to estimate the model (13) (see Figure 1.c). In this case, the bias of the nonparametric estimator was slightly smaller better than the bias of multiplicative and additive semiparametric estimators, as the sample size n increased. The parametric start model did not add a valuable prior information of the true model. Model diagnostics.Table 6 presents mean and variance of estimated additive and multiplicative correction factors (respectively, δ n and ω n ) for data simulated from model (13) to 4). The normality was not rejected by the Shapiro-Wilk nomality test but the p-value obviously decreased, with regards to the results obtained when using the two first parametric model (W-statistic= 0.993 and p-value= 0.339). In this case, the third parametric start model would not be of interest for modeling these data. Finally, the nonparametric estimator was found to be more appropriate for the data simulated from model (13).
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Real data

The real count data set concerns the study of households' joint choice of the number of leisure trips and number of total nights spent on these trips (?). The independent monthly samples, 1990-1996, for Swedish leisure travel are used to estimate models for trips to one of the largest city regions in Sweden: Stockholm. The numbers of the trips to the specific location is denoted by x 1 and the total number of nights on these trips by x 2 . The response variable y is the probabilities of each couple. A feature of the data is that an individual making one (two) trips has, at least, one (two) overnight stays in total, and so on. It was considered that trip destinations are observed for at most two trips. Area I = {(1, 1), (1, 2), . . . , (1, 30), (2, 2), (2, 3), . . . , (2, 30)} contains all possible outcomes that can be observed (Table 7). The area is bounded to the right at 30 nights. We applied nonparametric and semiparametric regression estimators using discrete multivariate symmetric triangular kernel with a = 1 to approximate empirical frequencies for the considered samples, in comparison with the parametric logarithmic model

y i = θ 1 + θ 2 x i + θ 2 log(x i ) + ϵ i , x i ∈ N \ {0}.
In addition, the LSCV was used for bandwidth matrix choice.The pointwise and global evaluations of the performance of the models applied were conducted by using two criteria. We calculated the pointwise absolute difference between observed and estimated values and the root mean squared error (RMSE) defined as

RMSE = √ ∑ n i=1 (y i -ŷi ) 2 n ,
where ŷi is the adjustment of the i the observation y i with n = 15. Performance of estimators in terms of pointwise absolute difference and RMSE. About the absolute pointwise differences in Table 7, the large probability mass at zero was well estimated by kernel regression estimators while parametric model failed to estimate the excess amount of zeros. In particular, the semiparametric additive kernel estimator provided the best estimation at points (1, 1) and (1, 2) having highest observed frequencies. Concerning RMSE-values, nonparametric (RMSE= 0.179842) and semiparametric estimators (RMSE mult =0.1797684 and RMSE add = 0.179767) outperformed the parametric logarithmic model (RMSE=0.194891) to estimate count real data for Stockholm city region. However, the three kernel regression estimators had similar performances. H cv values are also presented in Table 7. Results of parametric and nonparametric models are illustrated in Figure 5. Model diagnostics. Mean and variance of estimated additive (respectively, multiplicative) correction factor δ n (resp. ω n ) were E( δ n ) = 0.042246 and Var( δ n ) = 0.000955 (resp. E( ω n ) = 3.289427 and Var( ω n ) = 6.230134) for Stockholm sample. To check model adequacy, the graphic of Z(x)-values shown that Z(x) lied within the interval [-1.96, 1.96] about 93% of the time (Figure 6). Despite of the point (1, 1) with the largest probability mass which was out of interval [-1.96, 1.96], the logarithmic model could be used as start function for semiparametric modeling of Stockholm city region data. More appropriate parametric models could be investigated to take into account special features of the counting phenomena such as zero-inflation (e.g. zero-inflated Poisson models). 

Concluding remarks

This study aimed to present discrete semiparametric multivariate kernel estimators for count regression functions. The semiparametric estimation approach was investigated in two ways: additive and multiplicative combinations of discrete nonparametric kernel and parametric estimations. For each discrete semiparametric multivariate kernel estimator, model diagnostics were used to check the adequacy of parametric start. Simulations shown that the discrete semiparametric multivariate kernel studied outperform the nonparametric kernel estimator when the parametric model used as start function belongs to a neighbourhood of the true regression model. For instance, the application case shown that discrete semiparametric multivariate kernel estimators improved the parametric logarithmic model considered to estimate the excess amount of zeros. Future works would consist of conducting deeper studies to test several start functions and distinguish the performance of additive and multiplicative kernel estimators, something that was not done in this study. In addition, another procedure for bandwidth matrix choice would be also investigated such as Bayesian approach. The bias term was calculated using discrete Taylor expansion around target x = (x 1 , . . . , x d ) such that we obtained

E{D add n (x 1 , . . . , x d )} -f (x 1 , . . . , x d ) = ∑ z∈S x,H f (z) Pr(K x;H = z) -f (x 1 , . . . , x d ) = E { f (K [1] x 1 ,h 11 , . . . , K [d] x d ,h dd ) } -f (x 1 , . . . , x d ) = 1 2 d ∑ j=1 Var(K [j] x j ,h jj ) f (2) j (x 1 , . . . , x d ) + o ( d ∑ j=1 h 2 jj ) .
Hence, the D add n 's bias was consistent since Var(K

[j]

x j ,h jj ) → 0 as n → ∞ and h j j → 0. The The variance term was decomposed as the sum of a main term depending on target x ∈ S d

x,H and a remaining term depending on points z ∈ S d

x,H \ {x}. Then, we expressed

Var{D add n (x)} = Var { 1 n n ∑ i=1 d ∏ j=1 K [j] x j ,h j j (x ij ) } = 1 n [ f (x) { d ∏ j=1 K [j] x j ,h j j (x j ) } 2 -f 2 (x) { d ∏ j=1 K [j]
x j ,h jj (x j )

} 2 ] + R n = 1 n f (x){1 -f (x)} { d ∏ j=1 K [j]
x j ,h jj (x j )

} 2 + R n ,
where the term

R n = 1 n [ ∑ y∈S d x,H \{x} f (y) { d ∏ j=1 K [ j]
x j ,h j j (y j )

} 2 - { ∑ y∈S d x,H \{x} f (y) d ∏ j=1 K [j]
x j ,h j j (y j )

} 2 ] (15) 
went to 0 as H → 0 d . Indeed, let y ∈ S d x,H \ {x} we can find a constant η > 0 such that

K [1]
x 1 ,h 11 (y 1 ) . . . K [d] x d ,h dd

(y d ) ≤ Pr(|K [1] x 1 ,h 11 -x 1 | > η, . . . , |K [d] x d ,h dd -x d | > η) ≤ E(K [d] x 1 ,h 11 -x 1 ) 2 η 2 . . . E(K [d] x d ,h dd -x d ) 2 η 2 = 1 η 2d d ∏ j=1 [ Var(K [j] x j ,h j j ) -{E(K j x,h jj ) -x j } 2 ] → 0 
under the two following hypotheses: lim

h j j →0 E(K x 1 ,h 11 , . . . , K x d ,h dd ) = x and lim h jj →0 Var(K x 1 ,h 11 , . . . , K x d ,h dd ) = 0 d .
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For y = x we deduced the asymptotic modal probability

∏ d j=1 K [j]
x j ,h jj (x 1 ) → 1 when h j j → 0. Thus, the variance term went to 0 as n → ∞ and h jj → 0. We omitted to present the consistency of N add n since it was obtained in a similar way. Now we are able to present the expectation and variance of m add . Expectation of m add . To express the expectation of m add (x), we calculate the expectation of N add n in a way similar to that of D add n using discrete Taylor expansion such that

E{N add n (x)} = ∑ z∈S x [ r 0 (x) + {m(z) -r 0 (z)} ] f (z) Pr(K x;H = z) = r 0 (x 1 , . . . , x d )E { f (K [1] x 1 ,h 11 , . . . , K [d] x d ,h dd ) } + E { (δ f )(K [1] x 1 ,h 11 , . . . , K [d] x d ,h dd ) } = r 0 (x 1 , . . . , x d ) { f (x 1 , . . . , x d ) + 1 2 d ∑ j=1 Var(K [j] x j ,h j j ) f (2) j (x 1 , . . . , x d ) } +(δ f )(x 1 , . . . , x d ) 1 2 d ∑ j=1 Var(K [j] x j ,h j j )(δ f ) (2) j (x 1 , . . . , x d ) + o ( d ∑ j=1 h 2 j j
) .

Then, m add n 's expectation is obtained by using the following approximation from ?, pp.119-121:

m(x) ≃ m(x) + N add n (x) -(m f )(x) f (x) - (m f )(x){D add n (x) -f (x)} f 2 (x) , (16) 
such that

E{ m add n (x)} ≃ m(x) + 1 f (x) E{N add n (x) -(m f )(x)} - (m f )(x) f 2 (x) E{D add n (x) -f (x)} ≃ m(x) + 1 2 d ∑ j=1 r 0 (x) f (2) j (x) + (δ f ) (2) j (x) -(r 0 + δ j )(x) f (2) j (x) f j (x) Var(K [j] x j ,h jj ) ≃ m(x) + 1 2 d ∑ j=1 { δ (2) j (x) + 2δ (1) j f (1) (x) f (x) } Var(K [j] x j ,h jj ),
where f j is the univariate pmf of rv X j and δ j (x) is a nonparametric correction function. The functions f (1) j , δ (1) j and δ (2) jj are j-partial finite differences for j = 1, 2, . . . , d, defined in 6 and 7 respectively. The finite difference of second order (δ f ) (2) is equal to δ (2) f + 2δ (1) f (1) + δ f (2) . Finally, we get the m add n 's bias expressed by

Bias{ m add n (x)} ≈ 1 2 d ∑ j=1 [ δ (2) jj + 2δ (1) j { f (1) j f (x) } ] Var(K [j]
x j ,h j j ).

Variance of m add . The expression of m add 's variance required to calculate N add n 's variance in a way similar to that of D add n such that

Var{N add n (x)} = 1 n Var [{ r 0 (x) + δ(X 1j ) + ϵ 1 } d ∏ j=1 K [j]
x j ,h j j (X 1 j )

] = 1 n ∑ z∈S d x,H { r 0 (x) + δ(z) + ϵ 1 } 2 f (z) { d ∏ j=1 K [j]
x j ,h jj (z)

} 2 - 1 n [ ∑ z∈S d x,H { r 0 (x) + δ(z) + ϵ 1 } f (z) d ∏ j=1 K [ j]
x j ,h j j (z)

] 2 = 1 n { E(Y 2 1 |X 1 = x) -E 2 (Y 1 |X 1 = x) f (x) } f (x) { d ∏ j=1 K [j]
x j ,h jj (x j )

} 2 + Q n
where Q n contained the remaining terms depending on z ∈ S d x,H \ {x}. The same arguments similar to those used for R n in (15) might be used to shown that Q n went to 0 as H → 0 d . From ( 16) the m add n 's variance resulted in

Var{ m add n (x)} ≈ Var{N add n (x)} f 2 (x) + (m f ) 2 (x) f 4 (x) Var(D add n (x)) -2 (m f )(x) f 3 (x) Cov{D add n (x), N add n (x)} ≈ Var{N add n (x)} f 2 (x) + O ( 1 n ) -O ( 1 n ) ≈ {E(Y 2 1 |x 1 = x) -f (x)E 2 (Y 1 |x 1 = x)} n f (x) { d ∏ j=1 K [j]
x j ,h jj (x j )

} 2 with Cov(D add n (x), N add n (x)) = 1 n [ E(Y 1 { d ∏ j=1 K [j] x j ,h j (x 1 j )} 2 ) -E(Y 1 d ∏ j=1 K [j] x j ,h j (x 1j ))E( d ∏ j=1 K [j]
x j ,h j (x 2 j ))

] = O ( 1 n ) , and Var{D add n (x, H)} = O ( 1 n ) .

Bias (10) and variance (11) of multiplicative setimator

Similar to the additive case, assume that the multiplicative estimator in equation ( 9) can be given by

m mult (x) = N mult n (x) D mult n (x) , x ∈ N d ,
The main difference with the proof of additive case comes from the expressions of the N add n 's expectation and variance since D mult n = D add n . Thus, let us consider

N mult n (x) = 1 n n ∑ i=1 { r 0 (x) × y i r 0 (x i ) } d ∏ j=1 K [j]
x j ,h jj (x i ).

We expressed the expectation of N mult n by

E{N mult n (x)} = ∑ z∈S x { r 0 (x) × m(z) r 0 (z) } f (z) Pr(K x;H = z) = r 0 (x)E { (ω f )(K [1]
x 1 ,h 11 , . . . , K [d] x d ,h dd

) } = r 0 (x) { (ω f )(x) + 1 2 d ∑ j=1 Var(K [j] x j ,h jj )(ω f ) (2) j (x) + o ( d ∑ j=1 h 2 j j )} = (m f )(x) + 1 2 d ∑ j=1 Var(K [j] x j ,h jj )r 0 (x)(ω f ) (2) j (x) + o ( d ∑ j=1 h 2 jj ) .
In addition, for the variance we obtained

Var{N mult n (x)} = 1 n Var [{ r 0 (x)ω(X 1j ) + ϵ 1 } d ∏ j=1 K [j]
x j ,h j j (X 1j )

] = 1 n ∑ z∈S d x,H { r 0 (x)ω(z) + ϵ 1 } 2 f (z) { d ∏ j=1 K [j]
x j ,h j j (z)

} 2 - 1 n [ ∑ z∈S d x,H { r 0 (x)ω(z) + ϵ 1 } f (z) d ∏ j=1 K [j] x j ,h jj (z) ] 2 ≈ 1 n { E(Y 2 1 |X 1 = x) -E 2 (Y 1 |X 1 = x) f (x) } f (x) { d ∏ j=1 K [j]
x j ,h j j (x j )

} 2 ,

where we omitted to present the remaining term that converges to 0 as n → ∞ and h jj → 0.

In what follows, to prove the asymptotic normality for semiparametric multivariate additive and semiparametric estimators, we need to recall the Lyapounov central limit theorem for triangular arrays (?).

Theorem (Lyapounov) Assume that {X n, j , j = 1, . . . , k n } are zero-mean independent random variables, n = 1, 2, 

• • • . If lim n→∞ k n ∑ j=1 E(X 2 n, j ) = Σ 2 > 0, lim n→∞ k n ∑ j=1 E(|X n, j | 3 ) = 0, then S n = X n,1 + • • • + X n,

Proof of Theorem 2

We consider the expression of m add n in ( 14) with

D add n (x) = (1/n) ∑ n i=1 ∏ d j=1 K [j] x j ,h jj (x i ) = f n (x).
Proof 2

{ δ n (x) -δ(x)} × D add n (x) = 1 n n ∑ i=1 d ∏ j=1 K [j] x j ,h jj (x i ){(y i ) -r(x i )} -δ(x) × D add n (x) = 1 n n ∑ i=1 d ∏ j=1 K [j] x j ,h jj (x i ){δ(x i ) + ϵ i } -δ(x) × D add n (x) = 1 n n ∑ i=1 K x,H (x i ){δ(x i ) -δ(x)} + 1 n n ∑ i=1 K x,H (x i )ϵ i (17) E [{ δ n (x) -δ(x) } × D add n (x) ] = 1 n E       n ∑ i=1 K x,H (x i ){δ(x i ) -δ(x)}       + 1 n E        n ∑ i=1 K x,H (x i )ϵ i        (18) = ∑ y∈S d x,H (δ f )(y 1 , y 2 , . . . , y d ) d ∏ j=1 Pr(K [j] x j ,h jj = y j ) -δ(x 1 , x 2 , . . . , x d ) ∑ y∈S d x,H f (y 1 , y 2 , . . . , y d ) d ∏ j=1 Pr(K [j] x j ,h jj = y j ) = (δ f ){E(K [j] x 1 ,h 11 , K [2] x 2 ,h 22 , . . . , K [d] x d ,h dd )} -δ(x 1 , x 2 , . . . , x d ) f {E(K [j] x 1 ,h 11 , K [2] x 2 ,h 22 , . . . , K [d] x d ,h dd )} + o ( d ∑ j=1 h 2 jj ) = 1 2 d ∑ j=1 Var(K x j ,h j j ){δ (2) j j (x) f (x) + 2δ (1) j (x) f (1) j (x)} + o ( d ∑ j=1 h 2 jj ) .
Then, for the variance of (17) we have Var

[{ δ n (x) -δ(x) } × D add n (x) ] = 1 n 2 Var       n ∑ i=1 K x,H (x i ){δ(x i ) -δ(x)}       + 1 n 2 Var        n ∑ i=1 K x,H (x i )ϵ i        - 2 n 2 Cov       n ∑ i=1 K x,H (x i ){δ(x i ) -δ(x)}, n ∑ i=1 K x,H (x i )ϵ i       = f (x)σ 2 n {Pr(K x,H = x)} 2 + o         ∑ d j=1 h 2 j j n + 1 n         + O ( 1 n ) = f (x)σ 2 n { 1 -Pr(K x = x) d ∏ j=1 h j j } 2 + o         ∑ d j=1 h 2 jj n + 1 n         + O ( 1 n ) , with σ 2 = Var(ϵ i ) < ∞.
This result is essentially due to the second term in (18) given by (1/n) ∑ n i=1 K x,H (x i )ϵ i , which is a sum of i.i.d. random variables. Indeed, under assumptions (A1)-(A3), we have

1 n 2 Var       n ∑ i=1 K x,H (x i ){δ(x i ) -δ(x)}       = 1 n [ ∑ z∈S d x,H \{x} {δ(z) -δ(x)} 2 { d ∏ j=1 Pr(K [j] x j ,h j j = z j ) } 2 f (z) - { ∑ z∈S d x,H \{x} {δ(z) -δ(x)} d ∏ j=1 Pr(K [j] x j ,h j j = z j ) f (z) } 2 ] = o         ∑ d j=1 h 2 j j n         and 1 n 2 Cov       n ∑ i=1 K x,H (x i ){δ(x i ) -δ(x)}, n ∑ i=1 K x,H (x i )ϵ i       = O ( 1 n ) .
Then, we mainly have

1 n 2 Var        n ∑ i=1 K x,H (x i )ϵ i        = 1 n [ E { K x,H (x i )ϵ i } 2 -E 2 { K x,H (x i )ϵ i } ] = 1 n ∑ z∈S d x,H ϵ 2 1 f (z) { d ∏ j=1 K [j] x j ,h jj (z) } 2 - 1 n [ ∑ z∈S d x,H ϵ 1 f (z) d ∏ j=1 K [ j] x j ,h j j (z) ] 2 = E(ϵ 2 1 ) f (x) n { d ∏ j=1 K [j] x j ,h jj (x j ) } 2 + S n
where

S n = 1 n ∑ z∈S d x,H ϵ 2 1 f (z) { d ∏ j=1 K [j]
x j ,h j j (z)

} 2 - 1 n E(ϵ 2 1 ) f (x) { d ∏ j=1 K [j] x j ,h j j (x j ) } 2 - 1 n { ∑ z∈S d x,H ϵ 1 f (z) d ∏ j=1 K [j]
x j ,h jj (z)

} 2 tends to 0 as n → ∞ and H → 0 d , similar to the term R in equation ( 15). Rather, by applying the Lyapounov's central limit theorem on

1 n ∑ n i=1 K x,H (x i )ϵ i , we have √ n [{ δ n (x) -δ(x) } × D add n (x) ] d - → N(0, f (x)σ 2 {Pr(K x,H = x)} 2 ).
Finally, by considering the convergence of f n to f states by ?, it results that

√ n{ δ n (x) -δ(x)}D add n (x) = √ n{ δ n (x) -δ(x)} f (x) + o p (1) such that E{ δ n (x) -δ(x)} = 1 2 d ∑ j=1 Var(K x j ,h j j ) { δ (2) jj (x) + 2δ (1) j (x) ( f (1) j f ) (x) } + o ( d ∑ j=1 h 2 jj ) → 0, as h jj → 0, and 
Var{ δ n (x) -δ(x)} = 1 n f (x) σ 2 {Pr(K x = x)} 2 d ∏ j=1 h 2 jj + o ( 1 n + ∑ d j=1 h 2 jj n
) .

Proof of Theorem 3

Proof 3 For x ∈ N d and H = Diag(h 11 , . . . , h dd ) with h jj > 0, let us consider the semiparametric estimator ω n in (9) and the sequence D mult n (x) = (1/n)

∑ n j=1 K x,H (x j ). By using a similar approximation as in equation ( 16), we have

1 r(x i ) = r(x) r(x) r(x i ) = r 0 (x) r 0 (x)r 0 (x i ) + r(x) -r 0 (x) r 0 (x)r 0 (x i ) - r 0 (x){ r(x) -r 0 (x)r 0 (x i )} r 2 0 (x)r 2 0 (x i ) = 1 r 0 (x i ) + r(x) -r 0 (x) r 0 (x)r 0 (x i ) - r(x) -r 0 (x)r 0 (x i ) r 0 (x)r 2 0 (x i )
.

Then, we have

ω n (x) × D mult n (x) = 1 n n ∑ i=1 d ∏ j=1 K [j] x j ,h jj (x i )y i 1 r 0 (x i ) + 1 n n ∑ i=1 d ∏ j=1 K [j]
x j ,h jj (x i )

y i r 0 (x)r 0 (x i ) { r(x j ) -r 0 (x j )} - 1 n n ∑ i=1 d ∏ j=1 K [j]
x j ,h j j (x i )y i 1 r 2 0 (x i )r 0 (x i )

{ r(x i )r 0 (x j )r 0 (x i )} By using the equation y i = r 0 (x i )ω(x i ) + ϵ i where x i and ϵ i are independent variables, the terms

1 n n ∑ i=1 d ∏ j=1 K [j]
x j ,h jj (x i ) ϵ i r 0 (x j )r 0 (x i )

{ r(x j )-r 0 (x j )} and 1

n n ∑ i=1 d ∏ j=1 K [j]
x j ,h j j (x i )ϵ i x j ,h jj (x i ){r 0 (x i )ω(x i ) + ϵ i } 1 r 0 (x i )

ω(x) × D mult n (x)

+ 1 n n ∑ i=1 d ∏ j=1 K [j]
x j ,h j j (x i ) {r 0 (x i )ω(x i ) + ϵ i } r 0 (x j )r 0 (x i ) { r(x j )r 0 (x j )}

- 1 n n ∑ i=1 d ∏ j=1 K [j]
x j ,h j j (x i ){r 0 (x i )ω(x i ) + ϵ i } 1 r 2 0 (x i )r 0 (x j )

{ r(x i )r 0 (x j )r 0 (x i )}

= 1 n n ∑ i=1 d ∏ j=1 K [j]
x j ,h jj (x i )

{ ω(x i ) + ϵ i r 0 (x i ) } -ω(x) × D mult n (x) + 1 nr 0 (x) n ∑ i=1 d ∏ j=1 K [j] x j ,h jj (x i )ω(x i ) { r(x j ) -r 0 (x j ) } - 1 n n ∑ i=1 d ∏ j=1 K [j]
x j ,h j j (x i ) ω(x i ) r 0 (x i )r 0 (x j )

{ r(x i )r 0 (x j )r 0 (

x i )} + o p ( d ∑ j=1 h 2 j j ) = A n (x, H) + B n (x, H) -C n (x, H) + o p ( d ∑ j=1 h 2 jj ) . (19) 
For calculating the expectation of (19), we begin by the first term A n . Under assumptions (A1)-(A3) and using the discrete Taylor expansion, we have successively x j ,h jj = y j )

E{A n (x, H)} = 1 n E       n ∑ i=1 K x,H (x i ){ω(x i ) -ω(x)}       + 1 n E        n ∑ i=1 K x,H (x i ) ϵ i r 0 (x i )        ( 
= (ω f ){E(K [j]
x 1 ,h 11 , K [2] x 2 ,h 22 , . . . , K [d] x d ,h dd )}

-ω(x 1 , x 2 , . . . , x d ) f {E(K

[j]
x 1 ,h 11 , K [2] x 2 ,h 22 , . . . , K [d] x d ,h dd

)} + o ( d ∑ j=1 h 2 jj ) = 1 2 d ∑ j=1
Var(K x j ,h j j ){ω ( 2) jj (x) f (x) + 2ω (1) j (x) f (1) j (x)} + o

( d ∑ j=1 h 2 j j
) .

The expectations of the second and third terms B n and C n in ( 19) are given by Var(K x j ,h j j )

{ ω (2) j j (x) + 2ω (1) j (x)

( f (1) j f ) (x) } + o ( d ∑ j=1 h 2 j j
) → 0, as h j j → 0, and Var{ ω n (x)ω(x)} = 1 nr 2 0 (x) f (x)

σ 2 {Pr(K x = x)} 2 d ∏ j=1 h 2 jj + o ( 1 n + ∑ d j=1 h 2 j j n ) .

Figure 1 :

 1 Figure 1: First, second and third parametric estimates (black points) for data simulated from target regression function m in (13) with n = 250 (gray points).

Figure 2 :

 2 Figure 2: Z(x)-values associated with results of the semiparametric multivariate additive kernel estimator using first parametric start model with n = 250. The histogram of ω n .

Figure 3 :

 3 Figure 3: The Z(x)-values associated with results of semiparametric additive kernel estimator using the second parametric model with n = 250. The histogram of ω n .

Figure 4 :

 4 Figure 4: The Z(x)-values associated with results of semiparametric additive kernel estimator of data simulated from model (13) with n = 250. The histogram of ω n .

Figure 6 :

 6 Figure 6: The Z(x)-values associated with the results of semiparametric additive kernel estimator of count data of Stockholm city region with n = 15.

  k n converges in distribution to the normal law with the mean zero and the variance Σ 2 for convergence in distribution.

  i )r 0 (x j ) { r(x i )-r 0 (x j )r 0 (x i )} are of order o p

  )(y 1 , y 2 , . . . , y d )x j ,h jj = y j ) -ω(x 1 , x 2 , . . . , x d )

  E{B n (x, H)} = {1/r 0 (x)}E { K x;H (x 1 )ω(x 1 )} E x i { r(x)r 0 f (y) Pr(K x;H = y)E X i { r(x)r 0 (x)} = {1/r 0 (x)}ω(x) f (x)E X i { r(x)r 0 (x)} + o ( { r(x i )r 0 (x)r 0 (x i )} = {1/r 2 0 (x)}ω(x) f (x)E x i { r(x i )r 0 (x)r 0 (x i )} + o It results E[{ ω n (x)ω(x)} × D mult n (x)] = E{A n (x, H)} + o ( ∑ d j=1 h 2 jj ). Then, for the variance of (19) we haveVar{A n (x, H) + B n (x, H) -C n (x, with σ 2 = Var(ϵ i ) < ∞.This result is essentially due to the second term in (20) given byA 1n (x, H) = n -1 n ∑ i=1 ϵ i r -1 0 (x i )K x,H (x i ),which is a sum of i.i.d. random variables; thus we have E{A 1n (x, H)} = 0 and, under assumptions (f (y){Pr(K x,H = y)} 2 tends to 0 as n → ∞ and H → 0 d , similar to the term R in equation (15). The other terms in the variance of (19) provide the order o to detail here all these calculations. Rather, by applying the Lyapounov's central limit theorem on A 1n , we have√ nA 1n (x, H) d -→ N(0, f (x)σ 2 /r 2 0 (x){Pr(K x,H = x)} 2 ).Finally, by considering the convergence of f n to f states by ?, it results that √ n{ ω n (x)ω(x)}D mult n (x) = √ n{ ω n (x)ω(x)} f (x) + o p (1) = µ f (x) + √ nA 1n (x, H) + o p (1

Table 1 :

 1 ASE and bias calculated for model in (13) by using nonparametric and semiparametric regression estimators and the first parametric model.

		Sample size n	ASE × 10 3	Bias
		20	4.931	
		50	4.997	
	Param. estimator	100	5.130	
		250	5.059	
		500	5.001	
		20	25.894	0.346
		50	37.040	4.084
	Semip.mult. estimator	100	40.182	7.556
		250	37.325	16.363
		500	32.515	34.230
		20	25.894	0.356
		50	37.018	4.089
	Semip. add. estimator	100	40.217	7.296
		250	37.366	16.424
		500	32.515	34.522
		20	25.894	0.394
		50	37.016	4.119
	Nonp. estimator	100	40.223	7.408
		250	37.362	17.220
		500	32.515	35.220

Table 2 :

 2 Mean and variance of estimated additive and multiplicative correction factors (respectively, δ n and ω n ) calculated using the first parametric model with n = 250.

	n	E( δ n )	Var( δ n )	E( ω n )	Var( ω n )
	20	0.002483 0.001004	0.554477	0.116559
	50	0.001240 0.000582	0.548013	0.151298
	100	0.001921 0.000891	0.582551	0.894777
	250	0.001607 0.000726	0.6306623 0.939676
	500	0.002508 0.001281	0.683597	0.989539

Table 3 :

 3 ASE and bias calculated for model in (13) by using nonparametric and semiparametric regression estimators and the second parametric model.

			Sample size n	ASE × 10 3	Bias
			20		54.677
			50		56.652
	Param. estimator	100		55.398
			250		56.003
			500		55.668
			20		40.338	1.996
			50		37.721	7.551
	Semip.mult. estimator	100		39.840	16.425
			250		33.844	43.352
			500		29.807	85.620
			20		40.339	1.996
			50		37.675	7.550
	Semip. add. estimator	100		39.781	16.426
			250		33.863	43.385
			500		29.802	85.620
			20		40.338	1.998
			50		37.653	7.557
	Nonp. estimator	100		39.760	16.412
			250		33.901	43.997
			500		30.006	86.281
	n	E( δ n )	Var( δ n )	E( ω n )	Var( ω n )
	20	0.004145 0.002226	0.557540 0.479085
	50	0.004630 0.001250	0.742093 0.178449
	100	0.002855 0.001181	0.752624 0.293568
	250	0.002956 0.001347	0.691361 0.244442
	500	0.003241 0.001167	0.684382 0.229597

Table 4 :

 4 Mean and variance of estimated additive and multiplicative correction factors (respectively, δ n and ω n ) calculated using the second parametric model with n = 250.

Table 5 :

 5 The histogram of ω n . ASE and bias calculated for model in (13) by using nonparametric and semiparametric regression estimators and the third parametric model.

		Sample size n ASE × 10 3	Bias
		20	164.100	
		50	164.196	
	Param. estimator	100	165.761	
		250	165.397	
		500	158.393	
		20	40.014	5.517
		50	39.091	15.712
	Semip.mult. estimator	100	38.036	34.026
		250	33.076	86.504
		500	28.378	119.693
		20	40.015	5.517
		50	39.091	15.723
	Semip. add. estimator	100	38.048	34.002
		250	33.070	86.531
		500	28.294	119.517
		20	40.013	5.495
		50	39.089	15.602
	Nonp. estimator	100	38.077	34.098
		250	33.023	87.033
		500	28.255	118.127

check model adequacy. Similar to the results of the two previous cases, for semiparametric additive kernel estimator, the graphic of Z(x)-values for one simulated sample size n = 250 shown that Z(x)-values lied within the interval

[-1.96, 1.96] 

about 93% of the time (Figure

Table 6 :

 6 Mean and variance of estimated additive and multiplicative correction factors (respectively, δ n and ω n ) calculated using the third parametric model with n = 250.

		001807	0.002897	0.500510 0.309216
	50	-0.000611	0.001797	0.856860 0.142295
	100	-0.003355	0.001900	0.776986 0.148346
	250	-0.003118	0.002138	0.816575 0.196068
	500	-0.002805	0.001853	0.841161 0.179138

Table 7 :

 7 Absolute differences between empirical and estimated frequencies calculated for Stockholm sample and RMSE obtained by using nonparametric and semiparametric regression estimators and the parametric logarithmic model. Results are multiplied by 10 3 and smallest error criterion values are in bold face.

	(1, 1)	0.255	1.770		0.311		0.099		241.200
	(1, 2)	0.299	29.046		27.235		26.690		289.604
	(1, 3)	0.177	1.085		1.151		1.694		109.980
	(1, 4)	0.066	0.943		0.942		0.507		60.525
	(1, 5)	0.043	1.514		1.514		1.161		38.615
	(1, 6)	0.030	0.565		0.565		0.275		26.417
	(1, 7)	0.032	0.539		0.539		0.297		29.021
	(1, 8 -30)	0.056	3.946		3.946		3.740		53.479
	(2, 2)	0.021	17.408		16.482		15.611		24.174
	(2, 3)	0.018	7.419		7.490		6.924		20.371
	(2, 4)	0.028	0.883		0.883		0.430		29.849
	(2, 5)	0.009	3.167		3.167		2.803		10.481
	(2, 6)	0.008	1.215		1.215		0.917		9.210
	(2, 7)	0.003	2.842		2.842		2.594		4.006
	(2, 8 -30)	0.015	1.820		1.820		1.610		15.851
					RMSE			
			Nonp.		Semip. mult.	Semip. add.		Param.
			estimator		estimator		estimator		estimator
	H cv		179.842 0 0.10 0.09 ( 0	)	179.768 0 0.03 0.09 ( 0	)	179.767 0 0.105 0.104 ( 0	)	194.891

|Difference| Counts (x 1 , x 2 ) Observed |Obs. -Nonp.| |Obs. -Semip. mult.| |Obs. -Semip. add.| |Obs. -Param.|
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Appendix Proof of Theorem 1 Proof 1

We present the additive corrected estimator m add (x) as the following ratio

with

x j ,h j j (x i ). Let us consider the pmf f of rv X. To establish the proof of Theorem 1 we assumed the continuity of the pmf f in the sense that

In addition, the convergences of D add n to f and N add n to m f were required.

Consistency of D add

n . We shown that the pointwise squared error of D add n was such that MSE(x) = E[{D add n (x)f (x)} 2 ] = Bias 2 {D add n (x)} + Var{D add n (x)} → 0 as n → ∞.