N
N

N

HAL

open science

Estimating the Center of Mass and the Angular
Momentum Derivative for Legged Locomotion - A
recursive approach

Francois Bailly, Justin Carpentier, Mehdi Benallegue, Bruno Watier, Philippe

Soueres

» To cite this version:

Frangois Bailly, Justin Carpentier, Mehdi Benallegue, Bruno Watier, Philippe Soueres. Estimating the
Center of Mass and the Angular Momentum Derivative for Legged Locomotion - A recursive approach.

2019. hal-02058890v1

HAL Id: hal-02058890
https://hal.science/hal-02058890v1

Preprint submitted on 6 Mar 2019 (v1), last revised 12 Jul 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02058890v1
https://hal.archives-ouvertes.fr

Estimating the Center of Mass and the Angular Momentum Derivative
for Legged Locomotion — A recursive approach

Francois Bailly®*, Justin Carpentier™®, Mehdi Benallegue?, Bruno Watier®® and Philippe Souéres?

OA

Abstract— Estimating the center of mass position and the
angular momentum derivative of legged systems is essential for
both controlling legged robots and analyzing human motion. In
this paper, we introduce a new recursive approach to accurately
estimate these two quantities together, by fusing the kinetic and
kinematic measurements coming from classic sensors available
in robotics and biomechanics, and by exploiting the accuracy of
each measurement in the spectral domain. The soundness of the
proposed approach is first validated on a simulated humanoid
robot, where access to ground truth data is granted. The results
show that our method reduces the estimation error on the center
of mass position with regard to kinematic estimation alone, while
also providing an accurate estimation of the derivative of angular
momentum. We finally illustrate the effectiveness of our method
on real measurements coming from walking experiments on the
HRP-2 humanoid robot.

I. INTRODUCTION

The precise estimation of both the center of mass (CoM)
position and the angular momentum derivative is an important
issue for legged robots control [1], [2]. It also has various
applications in humans for motion analysis in biomechanics or
for disorders diagnosis in medicine. The main challenge of this
estimation problem lies in the fact that these two quantities are
not directly measurable, and depend at the same time on fixed
parameters (e.g. mass distribution of the system, dimensions
of the limbs, etc.) as well as on varying quantities (e.g. joints
configurations, external contact forces, etc.).

A. State of the art

In order to estimate the CoM position, several methods
exploiting different sources of information are commonly
applied [3]. They can be grouped into two broad categories,
namely the kinematic methods which only exploit kinematic
measurements and the kinetic methods which estimate the
CoM position from kinetic signals. In the following, estimation
methods from both robotics and biomechanics are reviewed,
showing that the goals and means of the two disciplines are
very similar on this topic.

Kinematic methods are certainly the most popular ones.
They assume that the system is composed of rigid links and
articulations, which is reasonable for non-soft robots, but
more questionable in the context of humans [4]. The masses
and joint angles required for the kinematic estimation of the
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Fig. 1: Illustration of the measurement apparatus. The several
physical quantities involved in the estimation framework are
displayed, as well as a simplified sketch of the estimation
algorithm.

CoM can be either obtained from CAD (Computer-Aided
Design) data and encoders measurements in robotics, whereas
they can be obtained from anthropometric tables coupled
with motion capture (MoCap) systems in biomechanics [5],
[6]. Then, computing the CoM position boils down to a
weighted sum accounting for both the mass distribution and
the position of each segment’s CoM. It is worth noticing that
kinematic methods are subject to noises of various types,
mostly due to uncertainties about the mass distribution of
the system (discrepancy between the CAD model and the
real robot, statistical anthropometric tables in humans), and
in biomechanics, soft tissue artifacts [4], [7].

As for kinetic methods, the estimation of the CoM position
is achieved by only measuring either the so-called Zero
Moment Point (ZMP) [8] or directly from the contact forces
measurements [3], [9]. For instance, in humanoid robotics, the
robot is often modeled as a linear inverted pendulum. Under
this assumption, the CoM position can be directly estimated
from the mathematical relationship linking the ZMP to the
CoM [10], [11], [12]. These approaches then assume that the
CoM trajectory can be assimilated to the oscillations of a linear
inverted pendulum, and the acceptable range of motion of such
methods is mostly limited to balance assessments. In [13], it
was proposed to filter the ZMP trajectory with a low-pass filter
to estimate the horizontal components of the CoM. Here, the
accuracy of this approach was limited to slow movements.
Finally, by assuming a constant-height CoM, performing
a double integration of external forces together with an
estimation of the angular momentum derivative expressed
at the CoM, [14] and [15] have provided another way to
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estimate the horizontal components of the CoM. Another
important difficulty when estimating the CoM position from
forces/moments data, comes from the fact that this quantity is
only partially observable [16]. This means that at each time
instant not all the components of the CoM can be observed,
and the full observability can only be recovered by exploiting
the correlation between the past sensor measurements, which
requires to save these data in memory.

Concerning the estimation of the derivative of angular
momentum, to the best of our knowledge, only kinematic
estimation has been proposed in the literature [17], [18],
affected by the same limitations regarding mass distribution
errors, with additional uncertainties coming from the
numerical derivation of segments poses. Kinetic data can
also be used as suggested in [19], by exploiting the relation
between the angular momentum and the external torques
applied to the system. It should be noticed, however, that in
most cases, the derivative of angular momentum is neglected
for the sake of simplicity. For instance, this hypothesis was
made in a previous work [16], where authors relied on a
complementary filter in the spectral domain, to merge both the
kinematic and kinetic data in order to exclusively estimate the
CoM position, assuming that the angular momentum derivative
is negligible. And as it has been highlighted in [20], these time
variations of the angular momentum are present and necessary
in biped locomotion, making this assumption very limiting.

B. Contributions

In this paper, we introduce a generic framework to
simultaneously and accurately estimate both the CoM position
and the derivative of angular momentum by exploiting the
mathematical properties that link these two quantities (see
Fig. [1] for a schematic overview of the proposed method).
Compared to the previous approaches of the state of the art,
the contributions of this paper are threefold:

(i) We introduce a recursive algorithm in order to improve,
over the iterations, the estimation of the CoM from the
estimation of the angular momentum derivative and vice-
versa;

(i) Kinematic and kinetic data are complementary fused
together for estimating the CoM (as in [16]) and the
derivative of angular momentum (for the first time to
our best knowledge);

(iii) We do not rely on any simplifying assumptions such
as neglecting the derivative of angular momentum (we
provide an estimation for this quantity), or assuming that
the center of mass lies on a horizontal plane, therefore,
our formulation is generic and allows one to work with
any number of contacts, in any multi-contact scenario
which are now common in robotics.

The consistency of the proposed approach is first validated
on a simulated humanoid, by demonstrating the accuracy of
our estimated quantities against ground truth data. Then, in
order to illustrate its efficiency in experimental conditions, our
approach is applied on a real dataset by analyzing a walking
motion performed by the HRP-2 robot.

Accuracy

Frequency

Fig. 2: Schematic representation of the spectral accuracy of
the different input signals for the estimation of ¢ and L.

II. ESTIMATION ALGORITHM

In this section, we first recall how the position of the
CoM (denoted by c) and the angular momentum derivative
expressed at the CoM (denoted by £) are linked together
through the so-called Euler’s equation of motion. Then, we
identify the different sources of information which contribute
to the estimation of £ and ¢, and we explain how to fuse them
by exploiting their level of accuracy in the spectral domain.

A. Link between the CoM and the angular momentum

Let m be the mass of the system, and c, ¢ and & the
CoM position, velocity and acceleration respectively. Let f
and 70 be the resulting forces and moment exerted on the
system by the environment and expressed at the origin O of the
world. They constitute the external contact wrench that can be
translated at any other point of the space using the Varignon
formula. According to the Euler’s equations of motion, the
angular momentum derivative at the CoM is equal to the
moment of the external forces expressed at the CoM, yielding:

Le=7%4+fxc 1)

Eq. (I) reveals the physical coupling between the two
quantities we want to estimate, namely the CoM position ¢
and the angular momentum time derivative £°.

B. Input measurements

Our estimation framework assumes that both the total mass
m of the system and the gravitational acceleration g =
(0,0, —g) are known, with g the standard gravity value. These
are rather reasonable assumptions since the mass is easily
measurable from force sensors in stationary position and the
gravity is precisely known. Using joints encoders or a MoCap
system and 6-D force measurement units, one can measure the
kinematic and kinetic data related to the physical quantities of
interest:

o the resulting wrench of contact (f, 7°) expressed at the
origin, via the force sensors (embedded sensors, force
plates in biomechanics, etc.);

« the position of the CoM, denoted by Ckinematic, directly
deduced from the kinematics or the MoCap system
associated with the mass distribution of the system;

o the angular momentum at the CoM, denoted by

. which can be obtained from the angular

kinematic’
velocities and the inertias of the different links.
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of £¢ and ¢ respectively.

C. Multi-source fusion for estimating the CoM position

This section explains how to compute and process the three
different input signals that carry information about the position
of the CoM. The spectral accuracy of each signal is illustrated
in Fig.

1) From kinetic data: The second Newton law states that:

f
E=—+g )
m

By integrating twice the right hand side of this equation, one
can obtain Cgoree, the estimation of the center of mass from
the contact forces, thanks to the information provided by the
force sensors. However without the knowledge of integration
constants (initial position and initial velocity), this method
leads to a quadratic drift visible in the low and medium
frequencies [16].

2) From kinematic data: Kinematic computations using
either a model of the robot or reflective markers combined
with anthropometric tables are usually used to estimate the
CoM position. This source of data (Cxinematic) suffers mainly
from low-frequency biases due to modeling errors of the mass
distribution. It can also be altered by the high frequency sensor
noise due to the MoCap technology [21]. Then, the error
between this signal and the real position of the CoM mostly
lies in the low and high frequency domains.

3) From the central axis of the contact wrench: Considering
the contact moment field, there exists one unique axis called
the central axis of the contact wrench and denoted by A [22],
where the moment of contact forces is collinear to f. The
projection ca of the CoM c onto A is given by:

fx 719+ (c-O)Ff
cA_f|§>, 3)

where - and x denote the dot and cross products, respectively.
This projection can be computed from the force and moment
signals provided by the force/torque sensors and the current

estimate of the CoM, denoted by cest as follows:

fx 70
caA = W + (Cest - m)n, “)
where n = H%H is the normalized direction of f. Knowing

an estimate of £¢, denoted by LS, and f, and using the

properties of the vector triple product, the difference between
c and ca can be computed as:

Le, x f
_ = — . 5
N HE ®)

This leads to a third estimate of the CoM position that will
be denoted by caxis and expressed as:

L£e, xf
Caxis = CA + La (63)
£
f x 70 oo X f
Caxis = L + (Cest . Il)Il + £~ (6b)

€112 £}

4) Complementary filter of the CoM: The theory of
complementary filtering provides a simple and effective way
to fuse different sources of information in the presence of
noise. The idea is to filter each signal in the spectral domain
in order to preserve it in the frequency bandwidth where the
signal has the best accuracy. To this end, complementary filters
have to be designed, requiring that the sum of their transfer
functions is equal to one, maintaining the energy of the signal
with zero phase modification [23]. In theoretical conditions,
where the spectral distribution of the noise is perfectly known,
this simple strategy is the optimal way to combine the signals
without loss of information.

Similarly to [16], we rely on a complementary filtering
approach to fuse the three signals, Cforces Ckinematic and
Caxis) 1n order to retrieve an accurate estimate of the CoM
position. Thus, we design three complementary filters (high-
pass, band-pass and low-pass, see Fig. [3]and Tab.[l| for details).
First, we design the low-pass and high-pass transfer functions,
with w;, and wy,, their cutoff frequencies. The band-pass



Filters Low-Pass High-Pass Band-Pass
wi: 52 2¢wp, 8% + [wfbc — “lec +4¢%wp w182 + QCwZwaLCs

CoM

s2 + 2¢wy, s + wfc s2 + 2¢wp, s + w,ZLC
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wll; S +2Cwl£s
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TABLE I: Transfer functions of the complementary filters associated to the center of mass (first row) or the time derivative of
the angular momentum (second row). s is the Laplace variable, w;, and wy,, denote the low-cut and high-cut frequencies of
the CoM filter, w;, denotes the cutoff frequency of the L filter. ¢ is the damping ratio of the filters.
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Fig. 4: Simulation. Evolution of the error 2-norm integrated
over the whole trajectory for Ckinematic, Caxis and Cest. This
plot is the result of the algorithm in Fig. [5] The integrated
errors are normalized with regard to the error of Ckinematics
which is the initialization of the algorithm and is not updated
throughout the iterations (and therefore constantly 1.)

transfer function is then analytically deduced so that three
transfer functions sum to 1.

D. Multi-source estimation of the angular momentum
derivative

In this section, we explain how to compute and process the
two input signals for estimating £ from kinematic and kinetic
signals.

1) From kinematic data: Knowing the angular and linear
velocities of the segments and their inertia matrices, one can
compute the angular momentum of the system by exploiting
the following relation:

c —
kinematic = E Liw; + cci x m;vy, @)
7

where I;, w;, c;, m; and v; denote the inertia matrix,
angular velocity, CoM position, mass and relative velocity
of the ith segment respectively. The time derivative of this
quantity provides an estimation of £ from this first source
of information at the price of amplifying high frequency
noise (see Fig. [2). Indeed, the gain of the derivative operator
increases linearly with frequency, and consequently, high
frequencies (where the signal to noise ratio is usually bad, due
to sensor noise) are greatly amplified. Therefore, the output
of the derivative operator needs to be low-pass filtered as
sketched in Fig.

k<0

Cest [k‘] — Ckinematic
C

est [k] <~ l:i:(inematic
while (||Acess|| > € and [|ALS,]| > €) do
{[:gme[k 1 1], Caxis[k + 1]} < update(Cest [k], Lo [K])

Cest [k + 1] <—comFilter(Csorce, Caxis|[k + 1], Ckinematic)
.gst [k +1] <_amFilter(ﬁ.ﬁimematic7 .(f?orce [k +1]

A Cest  Cest[k + 1] — Cest[K]

AL + Loslk + 1] = LEw K]

k+—k+1

Fig. 5: Recursive estimation algorithm. The update()
function implements the computation of Egs. and (8).
The comFilter() and amFilter() functions computes the
complementary filtering of cest and Egst respectively. € is
a tolerance threshold to be chosen according to the desired
convergence accuracy.

2) From the moment field properties: The second source of
information for the estimation of L€, lies in Eq. (E]):

force = T +f X c, (8)

and is provided by force sensors measurements with an
estimation of c.

3) Complementary filter for the angular momentum
variation quantity: In the same way as before, complementary
filtering is used to add both contributions to the estimation
of £°. In the Laplace domain, two complementary filters are
designed (high-pass and low-pass, see Fig. [3] and Tab. [I] for
details) such that their transfer functions sum to 1. To our
knowledge, it is the first time that the estimation of L€ is
performed using both kinematic and kinetic data.

E. Recursive estimation of the CoM position and of the
angular momentum derivative

Our recursive approach is motivated by the fact that the
estimation of £ .. depends on an estimation of c (see
Eq. (8)) and that the estimation of cCaxis depends on an
estimation of £¢ (see Eq. (6b)). Hence, the estimation of ¢ can
be refined by refining the estimation of £, and vice versa. In
Fig. B| a pseudo code depicts the recursive algorithm that is
at the core of our method. Finally, Fig. 3] displays a detailed
diagram of the proposed estimation framework.



0.10

0.05

0.00

0.05 Cest - Residuals = 0.18, Mean = -6.92E-05
) ----Caxis - Residuals = 0.28, Mean = 1.15E-02

Ckinematic- Residuals = 0.31, Mean = -4.74E-03 X jxijs
-0.10

E 0.04
-
B 0.02
E o000 o=
w
-0.02 Cest - Residuals = 0.19, Mean = -5.46E-05
----Caxis - Residuals = 0.29, M = -6.07E-05 f
004 axis - Resi ua.s ean Y axis
. Ckinematic- Residuals = 1.04, Mean = 2.12E-02
0.04 Cest - Residuals = 0.55, Mean = -1.07E-02
~----Caxis - Residuals = 0.55, Mean = -1.06E-02 .
e Z axis

0.02 Ckinematic- Residuals = 1.76, Mean = -3.60E-02
0.00
-0.02

-0.04

10

12
Time (s)

Fig. 6: Simulation. Time residuals of Cykinematic, Caxis and Cest after convergence of the recursive algorithm, for a horizontal
walking motion of the HRP-2 robot in simulation. The 1-norm and the mean of the residuals are displayed.

X axis

True c

Ckinematic

Y axis
Center of mass estimation

Z axis

0.9

— Caxis filtered - | _. 0.05 _
E2 L Cest E E
c = 0.00 « p
g 1 g \A\‘ I’ \ L S 08
a // a —0.05 DV \ 2
a / a a
[P -0.10 0.7
0 2 4 6 8 10 12 10 12 0 2 4 6 8 10 12
Time (s) Tlme (s) Time (s)
Derivative of angular momentum estimation
- - ~ 20
£ 10 £ £
£ = =
v 9 o 0 0o O
3 3 3
g g g
2 -10 e S -20 !
-100 '
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time (s) Time (s) Time (s)

Fig. 7: Simulation. Estimation of ¢ and L€ for a horizontal walking motion of the HRP-2 robot in simulation. First row :
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III. EXPERIMENTAL VALIDATION OF THE ESTIMATION
FRAMEWORK

In this section, the efficiency of the estimation framework is
first demonstrated on simulated data. Then experimental data
are processed to illustrate the performance of the proposed
method on a real application scenario. In both cases, the
estimation is performed recursively as sketched in Fig. [3]

A. Generation of ground truth and noisy measurements in
simulation

In this section, a dynamically consistent walking motion
has been simulated for a humanoid robot. Then, by adding
artificial noise to the several quantities involved in the
estimation framework (with noise values representative of
classic robotics setups), we compare our center of mass and
angular momentum derivative estimation to ground truth data
(available in simulation).

The simulated avatar consisted of humanoid model endowed
with 36 degrees of freedom. The simulated motion corresponds

true

to a walking motion on horizontal ground at 0.5 m/s using the
dynamically consistent approach introduced in [24]. Ground
truth kinetic and kinematics data were computed at 200 Hz
using the modeling software Pinocchio, which includes rigid
body dynamics algorithms for poly-articulated systems in
contact [25]. Band-limited centered white noise was added
to each signal, in accordance with our analysis of the noise
spectral density. The low, medium and high frequency domains
were delimited from 0O to 4 Hz, 16 to 24 Hz and 92 to 100 Hz
respectively, in order to be able to discriminate the effect of
each noise and to limit the slopes and the order of the filters.
If needed, the final user would only need to adjust the cutting
frequencies inside the complementary filters, which depend on
the sampling frequency as well as on the nature of the recorded
motion. The standard deviations of the noise were 1 N and
1 Nm in the low and medium frequency domains for the force
and moment measurements respectively, 0.1 m and 0.1 Nm
in the high frequency domain for Ciinematic and £§;cmatic
respectively, in order to model the noise of the 6-axis sensors.



Inertial data (mass, CoM position and inertia matrix) of each
segment were randomly biased in order to simulate the error
due to mass distribution uncertainties (multiplicative random
value following a 1-centered normal distribution with standard
deviation of 1). The cut-off frequencies were 1 Hz and
25 Hz for the low-pass and high-pass second order filters
of cest respectively. The band-pass filter was deduced by
complementarity (see Tab. [I| for detailed transfer functions).
The cut-off frequency for the low pass filter of £S,, was 2 Hz,
the high-pass filter was similarly deduced by complementarity.
For both estimates, the damping ratio of the transfer functions
was set to its critically damped value (( = 1).

The estimation procedure was initialized with the value of
Ckinematic before filtering, because it is the best guess one can
make before adding further data. The recursion was stopped
when the last estimates of £¢ and ¢ were close (1073) to
the current ones (see Fig. [5] for a detailed presentation of the
recursive algorithm). Fig. EI depicts the error of Ckinematic,
Caxis and ceg¢ integrated over the whole trajectory and
normalized with regard to the error of Ckinematic- This result
shows how the complementary filter improves the initial guess
Ckinematic DY reducing the norm of the error with regard to the
ground-truth values (which are exactly known in simulation).
In Fig. @ the time residuals of the error of Cyxinematic, Caxis
and cest are displayed. Both the 1-norm and the mean of
these residuals are displayed in order to demonstrate how our
estimation method improves the kinematic estimation of the
CoM.

In more details, Fig. |Z] shows the X, Y and Z components
of ¢ and £¢ for the different estimates. Ground truth
data computed without noise during the simulation are also
displayed. On the first row of Fig. |Z|, Ckinematic 1S displayed,
to exhibit the improvement provided by our method. A low
frequency bias between Cpocap unfiltered and the ground truth
value is noticeable, in particular on the Y and Z components
because of the scale of the plots. This bias comes from the
error on the inertial parameters that we purposely introduced in
the simulated data. Fig. [7] also shows that the final estimation
Cest 1S better than the initial guess, as corroborated by the
error analysis in Fig. E[ For instance, on the Z axis, the
average absolute error of the kinematic estimate is of 3.6 cm,
whereas it is reduced to 1.1 cm for the final estimate. On the
Y axis the average absolute error is reduced from 2.1 cm to
2.9 mm by the presented framework. On the X axis, which is
the main direction of locomotion, no significant improvement
is measured: the average absolute error remains close to
6 mm. On the fourth raw of Fig. |7} the estimation of L€ is
displayed, and the result follows the dynamics of the ground
truth trajectory. Some overshooting can be noticed however, on
the X and Z axes notably. As a preliminary conclusion, these
simulated results demonstrate the efficiency of the proposed
method on purposefully noised data. Indeed, they show that
recursively taking L€ into account not only improves the
estimation of c but also provides a good estimation for this
quantity which is usually neglected for the sake of simplicity.
However, one should notice that neglecting £ in the context
of robot locomotion seems to be a rather harsh assumption,

Fig. 8: Experimentation. Snapshots of the HRP-2 robot,
walking on horizontal ground in the experimental conditions.

given the values that it takes, emphasizing the study made
in [20].

B. Application to real robot experimental data

The purpose of this section is to demonstrate the
effectiveness of our approach on a real dataset, in order to
complement the simulation work presented above. To this end,
the estimation framework was applied on real kinematic and
kinetic data obtained during robot walking experiments, in
order to retrieve the estimates of ¢ and £°.

Data from the HRP-2 robot were used for this application
(see Fig. EI) The dataset was taken from [26]. In this
experience, the robot was programmed to walk on a flat terrain
without feedback on its pose in the room. The values of
the encoders and of the 6-axis forces and torques sensors
located in the ankles of the robot were collected at 200 Hz.
The kinematic estimation of the CoM was performed by
implementing an odometry algorithm which assumed that,
when a foot is in contact, it can not slip. The contact detection
of each foot was performed using the collected force data,
and by setting a threshold of 20 N on the vertical component
of the force. Classic rigid body algorithms implemented in
Pinocchio [25] were used to compute the position of the CoM
and the value of £°.

Fig. [0] displays a variety of curves related to the estimation
of ¢ and £¢ for this experimental walking on horizontal
ground. As there are no ground truth values available to assess
the quality of the recursive estimation with regard to kinematic
estimation alone, only a quantitative analysis is relevant.
The order of magnitude of the differences between cest and
Ckinematic are consistent with the improvement towards the
ground-truth values which were observed in simulation. This
result suggests two remarks: the levels of noise introduced
in simulation were realistic and the differences observed on
real data after recursion correspond to an improvement in the
estimate. Interestingly, one can notice that both the kinematic
and the recursive estimates corroborate that the robot tended to
drift towards the left of its heading direction (= 20cm after 3m
of walking), a fact which was observed during the experiments.
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However, the recursive estimate shows wider oscillations in the
frontal plane (Y axis) rather than kinematic estimation. This
can be due to the fact that the non perfectly planar contacts
of the soles with the floor cannot be detected by kinematic
estimation, whereas they can be captured by kinetic data.
Another interesting results lies in the correction brought by
the recursive estimation of the CoM, on the vertical axis. The
kinematic estimation alone leads to an altitude of the CoM
which drifts up to 6 cm, while it is reduced to 2 cm by
the recursive estimation. On the second raw of Fig. [0} the
estimation of £ is consistent with the dynamic of the motion
and the weight of the robot. The values tend to be a bit smaller
than the ones obtained in simulation, this is due to the fact
that the motion was performed slower during the experiments.

C. Portability of the method to human motion analysis

The authors would like to emphasize the fact that the
presented method can be directly applied to human motion
analysis. Indeed, in this context, the kinematic estimates of
¢ and £ are obtained using 3D point clouds of reflective
markers for computing the pose of the segments, along with
anthropometric tables that contain regression equations to
predict segments lengths and mass distributions. For such
cases of application, the kinetic data would typically come
from 6-axis forces sensors such as force plates. For processing
human experimental data, the only parameters that need to be
tuned are the cutoff frequencies of the complementary filters.
Though ground truth on kinematic and inertial parameters can
hardly be provided when it comes to human body, this method
could be used for benchmarking existing anthropometric tables
and other estimation methods. One promising outcome of
using such an estimation framework in biomechanics would
be to correct the error brought by the regression equations
(computed in average over a population) thanks to the
exploitation of the kinetic data (specific to the subject under
study). Preliminary work has been done in this direction on

a horizontal walking motion dataset, and further work will be
achieved on more dynamical motions, involving multi-contact
with the upper limbs.

IV. CONCLUSION

In this paper, a novel recursive filter was introduced, to
simultaneously estimate the CoM position and the derivative of
angular momentum expressed at the CoM by complementary
filtering of kinematic and kinetic data, in order to get the
best of both worlds. Unlike previous works, our estimation
framework does not rely on any simplifying hypothesis,
such as neglecting the angular momentum derivative [16], or
assuming that contact surfaces are parallel [15], [11]. Thus, the
method is generic to any in-contact locomotion scenario, and
the estimation is improved with regard to former approaches,
because the mathematical equations that are used are exact
and exploit the coupling between ¢ and Le.

On a simulated walking robot, the results showed that the
proposed framework enabled us to reduce the error between
the estimation of the CoM position and its real value, when
compared to kinematic estimation alone. This improvement
was a direct consequence of the proposed recursive algorithm
exploiting the spectral properties of each measurement thanks
to our complementary filtering approach. More precisely,
this improvement was mainly due to a low frequency bias
correction brought by a better estimation of the angular
momentum derivative, exploited in the geometrical link
between the CoM position and the central axis of the contact
wrench. Results in simulation showed that the estimation of
the derivative of the angular momentum was not perfect, and
this is one explanation to the small bias that remained on
the estimation of the CoM position after convergence of the
algorithm, in addition to its non-observability on the Z axis.
The overall estimation could be enhanced by improving the
estimation of the angular momentum derivative which is left
as a future work.



In order to demonstrate the applicability of the method in
experimental conditions, the estimation algorithm was also
applied to real data acquired from the HRP-2 robot during a
walking task on horizontal ground. The results suggest that the
kinematic estimation is improved by our method, in addition
to providing a good estimation of the derivative of angular
momentum.

We would like to emphasize that estimating both the center
of mass and derivative of angular momentum is a good step
towards centroidal state feedback for online motion generation
algorithm in legged robotics [24]. Taking into account the
derivative of angular momentum in these motion generation
and control pipelines is a requirement for achieving state-of-
the-art dynamical motion and we thus believe that pushing the
work on estimation in this direction is becoming essential. In
this perspective, as a future work, we plan to integrate this
filter in the motion control pipeline of the Gepetto team [27],
in order to get an online feedback of the centroidal state of
our humanoid robot.
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