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Abstract

To estimate how a model output is influenced by the variations of inputs has become an im-

portant problematic in reliability and sensitivity analyses. This paper is interested in estimating

sensitivity indices useful to quantify the contribution of inputs to the variance of model output. A

multivariate mixed kernel estimator is investigated since, until now, discrete and continuous inputs

have been separately considered in kernel estimation of sensitivity indices. To illustrate the dif-

ferences between the influence of mixed, discrete and continuous inputs, analytical expressions of

Sobol sensitivity indices are expressed in these three cases for the Ishigami test function. Besides,

the performance of mixed kernel estimator is illustrated through simulations in which the Bayesian

procedure is applied for bandwidth parameter choice. An application is also realized on a real ex-

ample. Finally, to use an appropriate kernel estimator according to the type of inputs is found to

be influential on the accuracy of sensitivity indice estimates.

∗Corresponding author
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1 Introduction

Global Sensitivity Analysis (GSA) methods are useful to identify sources of variability/uncertainty

in a model and to quantify the influence of inputs on model output [20]. GSA has found many

applications in various domains such as civil engineering [1], renewable energy industry [13] and

maritime industry [22]. In different applications, the quantitative approaches based on the ANOVA

(analysis of variance) decomposition of model output are among the more popular GSA methods.

On the basis of ANOVA decomposition, sensitivity indices quantifying the influence of inputs

Xi,i=1,2,...,d ∈ T on the output Y ∈ R can be calculated as

Si =
Var{E(Y|Xi)}

Var(Y)
, Si j =

Var{E(Y|Xi,X j)}
Var(Y)

− Si − S j, · · · , (1)

where the index Si measures the main effect of input parameter Xi on output Y and, the index

Si j measures the interaction effect between Xi and X j by excluding their individual effect [20].

Besides, the total sensitivity index (or total effect) introduced by Homma and Saltelli [6] measures

the individual effect of one input by including its interactions with all other inputs such that

STi = Si +
∑
j,i

Si j +
∑

j,i,k,i, j<k

Si jk + · · · = 1 −
Var{E(Y|X−i)}

Var(Y)
, (2)

with Var{E(Y|X−i)} being the variance of the expectation of Y conditionally to all variables except

Xi.

One of the main objectives of current studies on GSA remains to quickly and efficiently esti-

mate sensitivity indices. To obtain accurate estimations of Sobol sensitivity indices requires a large

number of model evaluations [18]. Thus, various statistical tools were investigated in the litera-

ture to accurately estimate conditional expectation E(Y|·) and, consequently, sensitivity indices in

Equation (1) (refer to [8] for a review on GSA methods). Among other approaches, non-parametric

smoothing methods as the continuous kernel-based estimation [17] and the State-Dependent Pa-
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rameter estimation [15] are good choices for estimating E(Y|·). The former estimation method has

been shown to be competing with the latter in term of performance [12]. Then, continuous [12]

and discrete [19] kernel approaches have been investigated for estimating the sensitivity indices of

continuous and discrete inputs, respectively.

While practically many data sets are mixed, i.e. contain both continuous and discrete inputs,

to our knowledge estimating sensitivity indices by a mixed kernel approach has not been yet con-

sidered in the literature. Table 1 illustrates the difference that may induce the nature of inputs

when quantifying their effect, for the Ishigami test function Y = f (X) = sin(X1) + a sin2(X2) +

bX4
3 sin(X1) with X = (X1,X2,X3) ∈ T3 [10]. The sensitivity indices values calculated analyti-

cally vary depending on the nature (continuous, discrete or mixed) of the random vector X, even

if the ranking of the influence of parameters remains the same. Thus, it is worth studying mixed

kernel estimation of sensitivity indices in a situation like this one in which discrete and continuous

estimators abound. An appropriate mixed kernel estimation must provide an accurate estimation

of the sensitivity indices for mixed inputs.

Table 1 about here

This work considers simultaneously continuous and discrete input variables Xi, contrary to pre-

vious ones [12, 19]. Two important issues of both discrete and continuous kernel estimations are

the kernel and bandwidth choices. About the kernel choice, two associated kernels are considered:

a continuous Gaussian kernel and a discrete symmetric triangular kernel [7]. About the bandwidth

selection, Bayesian techniques are considered which enable to choose the variance of the Gaussian

error in the non-parametric multivariate count regression. The Bayesian formalism is character-

ized by treating the bandwidth and the variance error as parameters with prior distributions. For

the multivariate continuous kernel regression estimation, the Bayesian bandwidth selector is com-

parable to the cross-validation method and more accurate than bootstrapping method and normal

rule reference bandwidth selector [26]. One of the advantage of the proposed Bayesian approach

over the cross-validation is its ability to estimate the error density.

An illustration is proposed by calculating analytical expressions of Sobol sensitivity indices of

first, second and total order of mixed inputs for the Ishigami function, in comparison with cases
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of discrete and continuous inputs. Then, simulations are conducted by using a multivariate non-

parametric mixed kernel estimator of the conditional expectation E(Y|·) for estimating sensitivity

indices. Such Nadaraya-Watson (NW) type estimator with different mixed kernel functions is also

investigated in Zhang et al. [24]. An application is also proposed on a real example with a model

having mixed inputs.

2 Multivariate non-parametric estimator of ANOVA decompo-

sition

This part presents the kernel estimator of ANOVA decomposition of a model Y = f (X1,X2, . . . ,Xd)

with some asymptotic properties.

Let us consider the realizations (xi j, yi)i=1,2,...,n
j=1,2,...,d of independent and identically distributed (iid)

random variables defined on Td
× R such that we have the regression model m(·) = E(Yk

|Xk =

·). Based on an original idea of Luo et al. [12], the ANOVA decomposition of the model Y =

f (X1,X2, . . . ,Xd) is given by

f (x1, x2, ..., xd) = f0 +

d∑
i=1

fi(xi) +

d∑
i< j

fi j(xi, x j) + ... + f12...d(x1, x2, ..., xd), (3)

where each term is defined by

f0 = E(Y), fi = E(Y|Xi) − f0, fi j = E(Y|Xi,X j) − fi − f j − f0, . . .

The kernel estimators of elementary terms f0, fi, ..., are defined by

f̂0 = 1
n

∑n
l=1 yl

f̂i(xi, hii) = 1
n

∑n
l=1Kxi,hii(xil)yl

f̂i j(xi, x j, hii, h j j) = 1
n

∑n
l=1Kx;H(xil, x jl)yl

f̂i jk(xi, x j, xk; hii, h j j, hkk) = 1
n

∑n
l=1Kx;H(xil, x jl, xkl)yl
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where the functionsKx;H are given by

Kxi,hii(xil) = Kxi,hii(xil) − 1

Kx;H(xil, x jl) = Kx;H(xil, x jl) − K[i]
xi,hii

(xil) − K[i]
x j,h j j

(x jl) − 1,

Kx;H(xil, x jl, xkl) = Kx;H(xil, x jl, xkl)− K[i]
xi,hii

(xil) − K[ j]
x j,h j j

(x jl) − K[k]
xk,hkk

(xkl) − 1,

with

• x = (x1, x2, . . . , xd)> ∈ Td being a target vector;

• H = Diag(h11, . . . , hdd) being a bandwidth matrix with h j j > 0 such as H ≡ Hn tend to the

null matrix 0d as n→∞;

• Kx,H(·) being a multivariate associated kernel defined as a product of univariate associated

kernel K[ j]
x j,h j j

with its corresponding random variable K [ j]
x j,h j j

, i.e K[ j]
x j,h j j

(y) = Pr(K [ j]
x j,h j j

= y),

on support Sx j,h j j such that

x j ∈ Sx j,h j j (A1), lim
h j j→0
E(K [ j]

x j,h j j
) = x j (A2), lim

h j j→0
Var(K [ j]

x j,h j j
) = 0 (A3).

Then, the multivariate kernel Kx,H associated with the random variable Kx,H of support Sx,H =

×
d
j=1Sx j;h j j is a probability mass function (pmf) [21] satisfying

x ∈ Sx,H, E(Kx,H) = x + U(x,H), Cov(Kx,H) = B(x,H),

where U(x,H) = (u1(x,H), . . . ,ud(x,H))> and B(x,H) = (bi j(x,H))i, j=1,...,d tend to null vector 0

and null matrix 0d as H→ 0d, respectively.

Basic asymptotic properties of estimator f̂I of fI are established. For instance, the bias of f̂I={i}

is obtained as

Bias{ f̂i(xi; hii)} = ui(xi, hii)(mg)(1)(xi) +
1
2

Var(Kxi,hii)(mg)(2)(xi) + o(h2
ii),

with (mg)(k) being the finite difference of k-order of product function mg and g(x1, x2, · · · , xd) the

joint probability distribution of inputs Xi. Moreover, the variance of f̂i is given by

Var{ f̂i(xi; hii)} =
1
n

m2(xi)g(xi){g(xi) − 1} +
1
n

Var{m(Xi)} + o(hii).

5



Thus, under assumptions (A2)-(A3), the pointwise consistency of f̂i is deduced by showing that

the mean squared error (MSE) tends to 0 as hii → 0 and n→∞ since

MSE(xi) = Bias2
{ f̂i(xi; hii)} + Var{ f̂i(xi; hii)}.

Hereafter, a mathematical result on the almost sure (a.s.) consistency of estimator f̂i is formulated.

We assume the continuity of the function fi : T 7→ R at xi in the sense that

∀ ε, ∃ η > 0 : ∀ ti ∈ (xi − η; xi + η) ∩ T⇒ | f (ti) − f (xi)| < ε.

Note that, considering a discrete support T, the discrete neighborhood (xi−η; xi +η)∩T of xi may

be reduced to the point {xi}, for η > 0.

Proposition 1 For any fixed xi ∈ T and hii > 0, under assumptions (A2) and (A3), the non-

parametric kernel estimator f̂i of fi satisfies:

f̂i(xi; hii)
a.s.
−−→ fi(xi) as n→∞ and hii → 0.

The details of calculations are postponed to the Appendix.

We then get the estimated terms

V̂(Y) =
1
n

n∑
l=1

y2
l − f̂0

2
, V̂i = EXk{ f̂i(xi; hii)}2, V̂i j = EXk{ f̂i j(xi, x j; hii, h j j)}2, . . .

coming from the decomposition of the total variance of Y given by

V(Y) =

k∑
i=1

Vi +
∑
i< j

Vi j + . . . +V12...k, (4)

where each variance term is defined such as

Vi = Var{E(Y|Xi)}, Vi j = Var{E(Y|Xi,X j)} −Vi −V j, . . .

That leads to the estimated sensitivity indices

Ŝi =
V̂i

V̂(Y)
, Si j =

V̂i j

V̂(Y)
, · · · , ŜTi = 1 −

V̂−i

V̂(Y)
,

such that ŜI goes to SI as n tends to ∞ (see [12] for the continuous case and [19] for the discrete

case).
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3 Bandwidth choice

In this section, we consider the multivariate estimator m̂d
n of the regression function m such that

m̂d
n(x,H) =

n∑
i=1

yiKx,H(xi)∑n
l=1 Kx,H(xl)

, (5)

with Kx,H being a multivariate associated kernel, x = (x1, x2, . . . , xd)> ∈ Td a fixed target and

H = Diag(h11, . . . , hdd) a bandwidth matrix with h j j > 0. The Bayesian approach for deriving

the selectors of bandwidth matrices is presented in the context of multivariate kernel regression

estimation.

3.1 Bayesian bandwidth selection

We propose a bayesian sampling approach for the bandwidth estimation for the NW estimator

involving mixed types of regressors. For such an approach in the non-parametric regression, one

can refer to [25] with continuous regressors and [24] with mixed types continuous and categorical

data.

We consider the multivariate non-parametric regression model given by yi = m(xi)+εi, with εi,

for i = 1, 2, . . . ,n assumed to be iid such that E(εi) = 0 and Var(εi) = σ2
m. The previous regression

model can be expressed as

yi −m(xi) ∼ N(0, σ2
m),

since εi follows the Gaussian distribution N(0, σ2
m) with σ2

m an unknown parameter. Let us estimate

(H, σ2
m) the unknown parameters in this model. The estimator of the likelihood of the data (yi)n

i=1

knowing the parameters H and σ2
m is given by

LCV(y1, . . . , yn; H, σ2
m) = (2πσ2

m)−n/2 exp
[
−

1
2σ2

m

n∑
i=1

{
yi − m̂d

n,−k(x; H)
}2]
,

where m̂d
n,−k(x; H) is the estimator of the regression function calculated from all observations ex-

cept xk.
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Priors. For the dispersion parameter σ2
m, the prior generally adopted in the Bayesian framework

is the inverse gamma distribution, denoted by IG(α, β), whose distribution is given by

π(σ2
m) ∝

βα

Γ(α)

( 1
σ2

m

)α+1
exp

(
−
β

σ2
m

)
, σ2

m ∈ [0,∞[,

with α and β being the hyper parameters. The prior of H is also a inverted Gamma with scale

parameters α1 and β1 denoted by IG(α1, β1).

An approximate posterior. The posterior distribution of the parameters (H, σ2
m) given the data

is

π(H, σ2
m|y) ∝

d∏
i=1

π(h j j)
( 1
σ2

m

) n+2α
2 +1

exp
[
−

1
2σ2

m

{ n∑
i=1

(yi − m̂−i(xi))2 + 2β
}]
.

Note that π(H, σ2
m|y) = π(h|y)π(σ2

m|H, y), where π(σ2
m|H, y) is an inverted Gamma density

σ2
m ∼ IG

n + 2α
2

,
1
2

n∑
i=1

{
yi − m̂d

n,−k(x; H)
}2

+ β

 .
The law of H given the data is as follows:

π(H|y1, ..., yn) ∝
d∏

j=1

π(h j j)
[1
2

n∑
i=1

{
yi − m̂d

n,−k(x; H)
}2

+ β
]− n+2α

2
.

3.1.1 MCMC method

We use the Metropolis-Hastings algorithm proposed by [14] and generalized by [4]. This algorithm

generates a Markov chain H(i), i ∈ {1, ...,T}, using the proposal distribution q(.|HT) and an arbitrary

initial value H(0). After a number of iterations T, sufficiently large, the Markov chain converges

to the interest density π(H|y1, ..., yn). A random-walk Metropolis-Hastings algorithm and Gibbs

sampling procedure are given as follows:

• Step 1. For t=0, initialize the first vector H(0);

• Step 2. For t ∈ {1...T}

(a) generate H̃ following q(.|H(t−1))
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(b) calculate ρ(H(t), H̃) = min
{
1, π(H̃)

π(H(t))
q(H(t)

|H̃)
q(H̃|H(t))

}
(c) take

H(t+1) =


H̃, with the probability ρ(H(t), H̃) i f u < ρ(H(t), H̃)

H(t), with the probability 1 − ρ(H(t), H̃) else

(d) generate {σ2
}
(t) from IG

(
n+2α

2 , 1
2

∑n
i=1{yi − m̂−i(xi)}2 + β

)
• Step 3. t=t+1 and returns to step 2;

• Step 4. calculate the Bayes estimator ÎH = 1
T

∑T
t=1 H(t).

4 Ishigami test function analysis

In this section, analytical expressions of Sobol sensitivity indices of first, second and total order

are expressed for a test function with mixed input variables, and compared to discrete and contin-

uous cases. Moreover, we propose to evaluate the application of multivariate mixed (discrete and

continuous) kernel estimation procedures through simulations.

Consider a mixed random vector with one discrete random variable x1 ∈ T and two continuous

random variables x2, x3 ∈ T, the terms of ANOVA decomposition in Equation (3) are calculated as

follows:

f0 =
∑

x1∈T

∫
x2∈T

∫
x3∈T

f (x1, x2, x3)
∏3

i=1 Pr(Xi = xi)dx2dx3

f1(x1) =
∫

x2∈T

∫
x3∈T

f (x1, x2, x3)
∏3

i=2 Pr(Xi = xi)dx2dx3 − f0

f2(x2) =
∑

x1∈T

∫
x3∈T

f (x1, x2, x3) Pr(X1 = x1) Pr(X3 = x3)dx3 − f0

f12(x1, x2) =
∫

x3∈T
f (x1, x2, x3) Pr(X3 = x3)dx3 − f0 − f1 − f2

f13(x1, x3) =
∫

x2∈T
f (x1, x2, x3) Pr(X2 = x2)dx2 − f0 − f1 − f3

f123(x1, x2, x3) = f (x1, x2, x3) − f0 − f1 − f2 − f3 − f12 − f13 − f23,

(6)

where Pr(Xi = xi) is the (discrete or continuous) uniform distribution. We omit the terms f3(x3) and

f23(x2, x3) which can easily be deduced from the expressions of f2(x2) and f13(x1, x3), respectively.
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Then, variance terms in the decomposition give

V(Y) = Var{ f (X)} =
∑

x1∈T

∫
x2∈T

∫
x3∈T
{ f (x1, x2, x3)}2

∏3
i=1 Pr(Xi = xi)dx2dx3 − f 2

0

V1 = Var{ f1(X1)} =
∑

x1∈T
{ f1(x1)}2 Pr(X1 = x1)

V2 = Var{ f2(X2)} =
∫

x2∈T
{ f2(x2)}2 Pr(X2 = x2)dx2

V12 = Var{ f12(X1,X2)} =
∑

x1∈T

∫
x2∈T
{ f12(x1, x2)}2 Pr(X1 = x1) Pr(X2 = x2)dx2

...

(7)

Herein the Ishigami test function is used: the parameter x1 is assumed to be discrete on support

T = {−3,−2,−1, 0, 1, 2, 3} while the two other parameters x2 and x3 are assumed to be continuous

on a compact support T = [−π, π]. The values of the constants a and b are 5 and 0.1, respectively.

4.1 Analytical expression of Sobol indices

4.1.1 First and second order Sobol indices

The ANOVA decomposition of y is

y = f0 + f1(x1) + f2(x2) + f3(x3) + f12(x1, x2) + f13(x1, x3) + f23(x2, x3) + f123(x1, x2, x3).

According to the expressions in Equation (6), we get the terms in the decompostion of f as

f0 = 2.5, f1(x1) = sin(x1)
(
1+
π4

50

)
, f2(x2) = 5 sin2(x2)−2.5, f13(x1, x3) = 0.1 x4

3 sin(x1)−
π4

50
sin(x1)

and f3(x3) = f12(x1, x2) = f23(x2, x3) = f123(x1, x2, x3) = 0.

Then, expressions in Equation (7) result in the terms of the variance decomposition given by

V =
25
8

+
2
7


(
1 +

π4

50

)2

+
4π8

5625

 3∑
x1=1

sin2(x1)

V1 =
2
7

(
1 +

π4

50

)2 3∑
x1=1

sin2(x1)

V2 =
25
8

V13 =
2
7

(
4π8

5625

) 3∑
x1=1

sin2(x1)
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and V3 = V12 = V23 = V123 = 0. Ultimately, analytical values of sensitivity indices expressed in

Equation (1) are given by

S1 = 0.3867516, S2 = 0.3130144, S13 = 0.3002341, S3 = S12 = S23 = S123 = 0.

Table 2 summarizes the terms of the decomposition of the model f and its total variance for con-

tinuous, discrete and mixed input variables in the Ishigima test function. Looking at the analytical

values of sensitivity indices, the important individual effect of X1 on Y is pointed out in discrete,

mixed and continuous cases, with the greatest value of S1 in the discrete case. The effect of the

interaction between X1 and X3 is also pointed with the most important value in the discrete case,

while the value of S1 is greater in continuous and mixed cases than in the discrete case.

Table 2 about here

4.1.2 Total order Sobol indices

This paragraph is concerned with the total sensitivity index in Equation (2). For the input variable

X1, we get

ST1 = S1 + S12 + S13 + S123 = 1 −
Var{E(Y|X−1)}

Var(Y)
= 0.686,

where the variance of the conditional expectation at the numerator is given by

Var{E(Y|X−1)} =
∫ ∫

f 2(x2, x3)
3∏

i=2

Pr(Xi = xi)dx2dx3 =
3a2

8
− a f0 + f 2

0 =
25
8
,

with

f (x2, x3) =
∑
x1∈T

f (x1, x2, x3) Pr(X1 = x1) − f0 = a sin2(x2) − f0.

Similarly, for the input variable X2, we get

ST2 = S2 + S23 = 1 −
Var{E(Y|X−2)}

Var(Y)
= 0.313,

with

Var{E(Y|X−2)} =
∑
x1∈T

∫
f 2(x1, x3) Pr(X1 = x1) Pr(X3 = x3)dx1dx3

=
2
7

(
1 +

π4

25
+
π8

900

) ∑
x1∈T

sin2(x1).
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And, for the input variable X3, we get ST3 = 0.300 with

Var{E(Y|X−3)} =
2
7

(
1 +

bπ4

5

)2 3∑
x1=1

sin2(x1) +
4
7

(5
2
− f0

) (
1 +

bπ4

5

) 3∑
x1=1

sin(x1)

+
3a2

8
− a f0 + f 2

0

=
2
7

(
1 +

π4

50

)2 3∑
x1=1

sin2(x1) +
25
8
.

Table 3 compares the total sensitivity index and the variance of the conditional expectations

for continuous, discrete and mixed input variables in the Ishigima test function. As a logical

consequence of the results in Table 2, the input parameter X1 is found to be the most influential

(including interaction with other parameters) on Y. Besides, the value ST1 is greatest for the

discrete case in comparison with the two other cases. In addition, total influences of X2 and X3,

measured by ST2 and ST3, correspond to the main effect of X2 and to the interaction effect between

X1 and X3 on Y, respectively.

Table 3 about here

4.2 Simulation results

In this section we investigate the performance of the mixed kernel regression estimator for Sobol

indices. The average of first order indice estimates are calculated as

Ŝi =

N∑
l=1

(1/N)Ŝ(l)
i , i = 1, 2, 3.

The mixed regression estimator applied used two kernels: a continuous gaussian kernel and a

discrete symmetric triangular kernel having its pmf given by

Tp;x,h(y) =
(p + 1)h

− |y − x|h

(2p + 1)(p + 1)h − 2
∑p

k=0 kh
,∀y ∈ Sp;x = {x, x ± 1, ..., x ± p}, p ∈N,

with x ∈ T being a fixed point and h > 0 the bandwidth parameter [7]. The fixed value p = 1 is

considered since the global squarred error of estimator using discrete symmetric triangular kernels
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was shown to increase with respect to p ∈ N for a fixed bandwidth h > 0. A comparison is

realized with the continuous Gaussian kernel estimator of sensitivity indices for mixed inputs. For

the bandwidth selection, the Bayesian approach is considered. Note that the boundary bias effect

is not treated in this study but has been treated in [19].

The simulation study is carried out for sample sizes n = {100, 250, 500, 1000} and the model

error N(0, 0.2). We use the MCMC technique for the Bayes estimation. The number of total

iterations N = 1000 are run and the first N0 = 500 iterations are set as the burn-in period, with

the hyper-parameters of the priors dispersion of σ2 and H being chosen as α = α1 = 1 and β =

β1 = 0.05 [3]. All computations were done by using the R software. We employ the batch-mean

standard error and the simulation inefficiency factor (SIF) to check the convergence performance of

the sampling algorithm [23][27]. Both the batch-mean standard error and SIF indicate that all the

simulated chains converge very well. Table 4 presents the estimated σ2 and bandwidth parameters.

Table 4 about here

In order to evaluate the performance of studied estimators, the mean absolute error (MAE) is

calculated over Nsim replications such that

MAE(Si) = (1/Nsim)
Nsim∑
l=1

|Si − S(l)
i |.

Results in Tables 5 and 7 give the estimated Sobol indices for numbers of simulations Nsim = 100

and 200. Estimations of sensitivity indices by mixed and continuous kernel approaches adequately

reflect influences of mixed inputs, according to analytical values. The parameter X1 is the most

influential by taking into account the interaction with other variables. For the parameter X2, we

get ST2 ≈ S2, since X2 has a quasi null interaction with other parameter. And, for parameter X3,

we get ST3 ≈ S13. However, the main effect of X2 and the interaction between X1 and X3 are

underestimated.

Looking now at MAE values calculated over Nsim = 100 and 200 simulations (Table 6), the

mixed kernel estimator globally outperformed the continuous kernel estimator as the sample size

n is increased from 100 to 1000, except for estimating the interaction between X2 and X3. We also

13



note that increasing the number of simulations from 100 to 200 confirms and stabilizes the results.

The same tendency is observed in Table 7 which presents the average values of the total sensitivity

indices calculated by using estimators with mixed and continuous kernels. We omit to present the

MAE values for the estimated total sensitivity indices in Table 7, but the performance of estimators

with mixed and continuous kernels are generally the same that for the sensitivity indices of first

and second orders.

We have also used the cross-validation procedure to select the optimal bandwidth matrix [26].

Simulations have pointed out that the kernel estimation of sensitivity indices is better, in the

sense of average MAE, by using the Bayesian approach rather than the cross-validation proce-

dure which does not always converge in many situations. However the computational time of the

cross-validation procedure is smaller.

Tables 5, 6 and 7 about here

5 Application on a real case study

This real example serves just here to illustrate the sensitivity of the model output to the nature of

input parameters. We apply the multivariate kernel estimator for simulating the height of flood-

ing of a river, compared to the height of a dyke that protects a dwelling or an industrial site. We

consider an academic model used for learning purposes to simulate the occurrence of the flooding

when the river height exceeded the one of the dyke [2, 9]. The model is based on a crude simplifi-

cation of the 1D hydro-dynamical equations of Saint Venant under the assumptions of uniform and

constant flow rate and large rectangular sections. Input parameters of this model were originally

assumed to be continuous [8], we propose here discretised input parameters in order to study how

the influence of inputs on model output will be affected. The model consists of an equation that

involves the characteristics of the river section upstream of the industrial site:

S = Zv + H −Hd − Cb, (8)

14



with S being the maximal annual overflow (in meters), H being the maximal annual height of the

river (in meters) expressed by

H =

 Q

BKs

√
Zm−Zv

L


0.6

;

the other input parameters of the flood model are presented in Table 8 with their probability distri-

bution.

Table 8 about here

Another model output was also considered in [8]: the associated cost (in million euros) of the

dyke,

Cp = 1{S>0} + [0.2 + 0.8(1 − exp
−1000

S4 )1{S≤0}] +
1

20
(Hd1{Hd>8} + 8 1{Hd≤8})

with 1A(x) the indicator function which is equal to 1 for x ∈ A and 0 otherwise. In this equation,

the first term represents the cost due to a flooding (S > 0) which is 1 million euros, the second term

corresponds to the cost of the dyke maintenance (S ≤ 0) and the third term is the investment cost

related to the construction of the dyke. The latter cost is constant for a height of dyke less than 8 m

and is growing proportionally with respect to the dyke height otherwise.

Table 9 about here

Let us illustrate the estimation of Sobol indices of d = 5 random inputs Zv, Ks, Q, Hd, Cb as-

sumed to be independent and involved in the model output Cp. For a sample size n = 1000, we use

the multivariate mixed kernel regression with the Bayesian bandwidth selector. Table 9 presents

the results of the mixed case treated in this study and the continuous case in [8]. The influence of

discrete parameters Zv, Hd and continuous parameters Cb, Q and Ks on the variance of Cp changes

in comparison with the case where all inputs are assumed to be continuous. Nevertheless, the rank-

ing of influential parameters globally remains the same as in the continuous case. The requirement

of an adapted estimation method is thus pointed out to evaluate sensitivity indices. But, a more

deeper investigation would be realized to better understand and evaluate the practical signification

and consequences of the parameters discretization, in particular for physical parameters.
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6 Concluding remarks

In this work, the non-parametric mixed kernel method is applied to estimate sensitivity indices cal-

culated from the ANOVA decomposition. For discrete, continuous and mixed cases, the analytical

calculation of Sobol index for the Ishigami test function leads logically to the same conclusion

regarding the effect of input parameters and their interaction. The difference between the three

cases considered in this study essentially comes from the approximation of sensitivity index val-

ues. Thus, an appropriate kernel estimator depending on the type (discrete, continuous or mixed) of

data is useful for an accurate estimation of sensitivity indices. We have investigated the Bayesian

MCMC for bandwidth matrix selection as a competing alternative to the cross-validation method

in the sense of the MAE. Some interesting perspectives would consist of investigating more deeply

the effects of kernel choice since nowadays a large choice of (symmetric and asymmetric) discrete

and continuous kernels is available in the literature according to the type of support T (compact,

semi-compact,...). Finally, multivariate theoretical properties of the kernel estimator would be

more properly studied with the curse of dimensionality.
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Appendix

For the bias of f̂i we have successively:

Bias{ f̂i(xi; hii)} = E{ f̂i(xi; hii)} − fi(xi)

= E{Kxi;hii(Xi1)Y1} − fi(xi)

=
∑
zi∈T

m(zi)g(zi)Kxi;hii(zi) −
∑
zi∈T

m(zi)g(zi) − fi(xi)

= E{(mg)(Kxi,hii)} − E{m(Xi)} − {E(Yi
|Xi = xi) − E(Y)}. (9)

Then, using in Equation (9) the following Taylor expansion

E{(mg)(Kxi,hii)} = E
[
(mg){E(Kxi,hii)} + {Kxi,hii − E(Kxi,hii)}(mg)(1)

{E(Kxi,hii)}

+o{Kxi,hii − E(Kxi,hii)}
2
]

= (mg){E(Kxi,hii)} + o(hii)

= (mg)(xi) + ui(xi, hii)(mg)(1)(xi) +
1
2

Var(Kxi,hii)(mg)(2)(xi) + o(hii)

results in Bias{ f̂i(xi; hii)} → 0 as hii → 0, under the condition (A2) and (A3) of discrete associated

kernel. For the variance of f̂i, we get

Var{ f̂i(xi; hii)} =
1
n2

n∑
l=1

Var{Kxi,hii(Xil)Yl}

=
1
n

[
E
{
K2

xi,hii
(Xil)Y2

l

}
− E2

{
Kxi,hii(Xil)Yl

}]
=

1
n

[∑
zi∈T

K2
xi,hii

(zi)m2(zi)g(zi) −
{∑

zi∈T

Kxi,hii(z)m(zi)g(zi)
}2]
. (10)

The first term of the previous equation can be expressed as∑
zi∈T

K2
xi,hii

(zi)m2(zi)g(zi) = K2
xi,hii

(xi)m2(xi)g(xi) +
∑

zi,xi∈T

K2
xi,hii

(zi)m2(zi)g(zi)

=
∑

zi,xi∈T

m2(zi)g(zi) + o(hii)

= −m2(xi)g(xi) +
∑
zi∈T

m2(zi)g(zi) + o(hii)

= −m2(xi)g(xi) + E{m2(Xi)} + o(hii);
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indeed, as hii → 0, Kxi,hii(xi) → 1 and Kxi,hii(zi) → 0 for zi , xi. Then, for the second term of the

equation in (10), we get{∑
zi∈T

Kxi,hii(z)m(zi)g(zi)
}2

=
∑
zi∈T

∑
ti∈T

Kxi,hii(zi)Kxi,hii(ti)m(zi)m(ti)g(zi)g(ti)

= K2
xi,hii

(xi)m2(xi)g2(xi) +
∑

zi,xi∈T

∑
ti,xi∈T

Kxi,hii(zi)Kxi,hii(ti)m(zi)m(ti)g(zi)g(ti)

=
∑

zi,xi∈T

∑
ti,xi∈T

m(zi)m(ti)g(zi)g(ti) + o(hii)

= −m2(xi)g2(xi) + E2
{m(Xi)} + o(hii)

Thus, the variance of f̂i results finally in

Var{ f̂i(xi; hii)} = −
1
n

m2(xi)g(xi) +
1
n

m2(xi)g2(xi) +
1
n

[E{m2(Xi)} − E2
{m(Xi)}] + o(hii)

=
1
n

m2(xi)g(xi){−1 + g(xi)} +
1
n

Var{m(Xi)} + o(hii).

The proof of Proposition 1 requires to use the Hoeffeding lemma on a probability inequality

for sums of bounded random variables [5].

Lemma 1 Let Z1,Z2, ...,Zn be i.i.d. random variables with finite second moments. If there exist

constants a and b such that Pr(Zi ∈ [a, b]) = 1, then given ε > 0 we have

Pr

| 1
n

n∑
i=1

Zi |≥ ε

 ≤ 2 exp
{

−nε2

2ε(b − a) + 2Var(Zi)

}
To prove the Proposition 1 we first observe that we have the following decomposition:

f̂i(xi; hii) − fi(xi) = [ f̂i(xi; hii) − E{ f̂i(xi; hii)}] + Bias{ f̂i(xi; hii)}.

We already shown that Bias{ f̂i(xi; hii)} → 0 as hii →∞. Now, our main concern is the term

f̂i(xi; hii) − E{ f̂i(xi; hii)} =
1
n

n∑
l=1

Zl with Zl = Kxi,hii(zil)Yi − E{Kxi,hii(zil)Yi}.
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For any x ∈ T, there exists 0 < M1 < ∞ and 0 < M2 < ∞ such that we have | Zl |≤ M1 and

Var(Zl) ≤ E{(Kxi;hii(Xil) − 1)Yl}
2 < M2 since Kxi;hii(·) is a probability mass function and Yl is a

bounded random variable. Therefore, according to the Hoeffding lemma, one has

Pr
(
| f̂i(xi) − E{ f̂i(xi)} ≥ ε |

)
= Pr

| 1
n

n∑
l=1

Zl |≥ ε

 ≤ 2 exp
(

−nε2

2εM1 + 2M2

)
,

for any ε > 0. Consequently, the Borel-Cantelli lemma leads to get f̂i(xi; hii) − E{ f̂i(xi; hii)}
a.s.
−−→ 0

since
∑
≥n Pr

(
| f̂i(xi; hii) − E{ f̂i(xi; hii)} ≥ ε |

)
< ∞.
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Sobol indices

Continuous case Discrete case Mixed case

Xi ∈ [−π, π] Xi ∈ {−3,−2, . . . , 2, 3} X1 ∈ {−3,−2, . . . , 2, 3}

Xi=2,3 ∈ [−π, π]

S1 0.40 0.42 0.39

S2 0.29 0.19 0.31

S13 0.31 0.39 0.30

Table 1: Sobol sensitivity indices for continuous [12], discrete [19] and mixed inputs (this study)

of the Ishigima test function

Continuous case Discrete case Mixed case

Xi ∈ [−π, π] Xi ∈ {−3,−2, . . . , 2, 3} X1 ∈ {−3,−2, . . . , 2, 3}

Xi=2,3 ∈ [−π, π]

Decomposition of model

f0 2.5 2.2 2.5

f1 (1 + π4

50 ) sin(x1)
(
1 + 14

5

)
sin(x1)

(
1 + π4

50

)
sin(x1)

f2 5 sin2(x2) − f0 5 sin2(x2) − f0 5 sin2(x2) − f0

f13 0.1(x4
3 −

π4

5 ) sin(x1) 0.1
(
x4

3 − 14
)

sin(x1) 0.1(x4
3 −

π4

5 ) sin(x1)

Decomposition of variance

V 29
8 + π4

50 + π8

1800
2
7

(
252
25

∑3
x1=1 sin2(x1) + 25

∑3
x2=1 sin4(x2)

)
− f 2

0
25
8 + 2

7

(
1 + π4

25 + π8

900

)∑3
x1=1 sin2(x1)

V1
(50+π4)2

5000
722
175

∑3
x1=1 sin2(x1) 2

7

(
1 + π4

50

)2 ∑3
x1=1 sin2(x1)

V2
25
8

2
7
∑3

x2=1{5 sin2(x2) − f0}2 25
8

V13
2π8

5625
56

1225
∑3

x1=1 sin2(x1) 2
7

(
4π8

5625

)∑3
x1=1 sin2(x1)

Table 2: Elementary terms of the model and variance decompositions for continuous [12], discrete

[19] and mixed inputs (this study) of the Ishigima test function

22



Continuous case Discrete case Mixed case

Xi ∈ [−π, π] Xi ∈ {−3,−2, . . . , 2, 3} X1 ∈ {−3,−2, . . . , 2, 3}

Xi=2,3 ∈ [−π, π]

Variance of conditional expectation

Var{E(Y|X−1)} 25
8

2
7
∑3

x2=1{5 sin2(x2) − 2.2}2 25
8

Var{E(Y|X−2)} 1
2

(
1 + π8

900 + π4

25

)
7744
1225

∑3
x2=1 sin2(x2) 2

7

(
1 + π4

25 + π8

900

)∑3
x1=1 sin2(x1)

Var{E(Y|X−3)} 1
2

(
1 + π4

50

)2
+ 25

8
722
175

∑3
x1=1 sin2(x1) + 2

7
∑3

x2=1{5 sin2(x2) − 2.2}2 2
7

(
1 + π4

50

)2 ∑3
x1=1 sin2(x1) + 25

8

Total sensitivity index

ST1 0.71 0.81 0.69

ST2 0.29 0.19 0.31

ST3 0.31 0.39 0.30

Table 3: Variance of conditional expectations and total sensitivity indices for the Ishigima test

function in continuous case [12], discrete case [19] and mixed case (this study)

n Error model parameter Estimate BMSE SIF

h11 0.038 0.001 23.35

100 N(0,0.22) h22 0.045 0.003 24.55

h33 0.690 0.005 26.42

σ2
m 0.4982 0.054 2.756

h11 0.041 0.002 29.27

100 N(0,0.52) h22 0.196 0.005 26.77

h33 0.526 0.015 29.50

σ2
m 0.6862 0.051 9.857

Table 4: The BMSE and SIF indicators for the convergence of MCMC.
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Nsim n ¯̂S1
¯̂S2

¯̂S3
¯̂S12

¯̂S13
¯̂S23

¯̂S123

Analytical values

for mixed inputs 0.39 0.31 0 0 0.30 0 0

100 0.364 0.219 0.024 0.049 0.128 0.109 -0.039

Mixed 100 250 0.363 0.230 0.016 0.026 0.236 0.078 0.006

kernel estimator 500 0.423 0.206 0.002 0.014 0.269 0.072 0.015

1000 0.394 0.235 0.009 0.012 0.238 0.051 0.006

100 0.366 0.186 0.029 0.038 0.091 0.076 -0.003

Continuous 100 250 0.359 0.201 0.019 0.024 0.168 0.083 0.006

kernel estimator 500 0.386 0.197 0.011 0.017 0.215 0.057 0.006

1000 0.391 0.226 0.008 0.012 0.248 0.042 -0.007

100 0.357 0.216 0.028 0.045 0.101 0.098 -0.029

Mixed 200 250 0.370 0.195 0.016 0.025 0.171 0.080 0.008

kernel estimator 500 0.365 0.182 0.018 0.014 0.227 0.079 0.009

1000 0.389 0.224 0.008 0.011 0.235 0.049 0.004

100 0.388 0.311 0.055 0.058 0.355 0.156 -0.325

Continuous 200 250 0.367 0.188 0.016 0.029 0.176 0.080 0.007

kernel estimator 500 0.383 0.209 0.011 0.015 0.214 0.059 0.004

1000 0.395 0.228 0.008 0.009 0.246 0.045 -0.007

Table 5: Average values of estimated sensitivity indices for mixed input parameters of the Ishigami

function.
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Nsim n MAE1 MAE2 MAE3 MAE12 MAE13 MAE23 MAE123

100 0.036 0.100 0.024 0.059 0.171 0.109 0.097

Mixed 100 250 0.070 0.112 0.016 0.029 0.063 0.078 0.036

kernel estimator 500 0.031 0.106 0.008 0.014 0.058 0.072 0.015

1000 0.007 0.077 0.002 0.012 0.030 0.051 0.006

100 0.063 0.144 0.029 0.047 0.208 0.076 0.064

Continuous 100 250 0.035 0.112 0.019 0.026 0.131 0.083 0.037

kernel estimator 500 0.019 0.115 0.011 0.020 0.084 0.057 0.021

1000 0.015 0.086 0.009 0.015 0.051 0.042 0.016

100 0.062 0.117 0.028 0.052 0.204 0.102 0.086

Mixed 200 250 0.037 0.116 0.016 0.031 0.128 0.080 0.041

kernel estimator 500 0.020 0.103 0.009 0.014 0.072 0.079 0.014

1000 0.009 0.072 0.002 0.011 0.035 0.049 0.004

100 0.064 0.129 0.030 0.052 0.194 0.104 0.072

Continuous 200 250 0.037 0.124 0.016 0.031 0.124 0.080 0.039

kernel estimator 500 0.021 0.103 0.011 0.020 0.086 0.059 0.020

1000 0.016 0.085 0.008 0.015 0.053 0.045 0.015

Table 6: Average values of the MAE criterion for estimated sensitivity indices for mixed input

parameters of the Ishigami function.
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n ŜT1 ŜT2 ŜT3

Analytical values

for mixed inputs 0.69 0.31 0.30

100 0.635 0.462 0.461

Mixed 100 250 0.608 0.382 0.411

kernel estimator 500 0.697 0.369 0358

1000 0.692 0.345 0.352

100 0.607 0.520 0.410

Continuous 100 250 0.702 0.467 0.414

kernel estimator 500 0.702 0.386 0.392

1000 0.706 0.353 0.371

100 0.635 0.462 0.461

Mixed 200 250 0.652 0.422 0.317

kernel estimator 500 0.697 0.369 0358

1000 0.685 0.339 0.345

100 0.657 0.420 0.410

Continuous 200 250 0.602 0.401 0.414

kernel estimator 500 0.702 0.366 0.342

1000 0.696 0.353 0.371

Table 7: Average values of estimated total sensitivity indices for mixed input parameters of the

Ishigami function.

Input Description Unit Probability distribution

Continuous

Q Maximal annual flowrate m3/s truncated Gumbel distribution G(1013; 558) on [500, 3000]

Ks Strickler coefficient - truncated normal distributionN(30; 8) on [15,∞[

Discrete

Zv River downstream level m Triangular T (49; 50; 51)

Zm River upstream levels m Triangular T (54; 55; 56)

Hd Dyke height m UniformU(7; 9)

Cb Bank level m Triangular T (55; 55 : 5; 56)

L Length of the river stretch m Triangular T (4990; 5000; 5010)

B River width m Triangular T (295; 300; 305)

Table 8: Input parameters of the flood model and their probability distributions
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Indices (%) Zv Ks Q Hd Cb

Mixed inputs

Si 19.4 10.1 48.3 14.7 0.8

STi 17.1 14.3 59.2 14.0 3.7

Continuous inputs

Si 18.3 15.9 35.5 12.5 3.8

STi 22.9 25.3 45.5 18.1 3.8

Table 9: Estimated Sobol indices for mixed inputs (this study) and continuous inputs [8] for the

flood model. Results of discrete inputs are in bold style.
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