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Finite Horizon Mean Field Games on Networks

Yves Achdou * Manh-Khang Dao | Olivier Ley ¥ Nicoletta Tchou $
March 6, 2019

Abstract

We consider finite horizon stochastic mean field games in which the state space is a
network. They are described by a system coupling a backward in time Hamilton-Jacobi-
Bellman equation and a forward in time Fokker-Planck equation. The value function w is
continuous and satisfies general Kirchhoff conditions at the vertices. The density m of the
distribution of states satisfies dual transmission conditions: in particular, m is generally
discontinuous across the vertices, and the values of m on each side of the vertices satisfy
special compatibility conditions. The stress is put on the case when the Hamiltonian is
Lipschitz continuous. Existence and uniqueness are proven.

1 Introduction and main results

This work is the continuation of [2] which was devoted to mean field games on networks in the
case of an infinite time horizon. The topic of mean field games (MFGs for short) is more and more
investigated since the pioneering works [14, 15, 16] of Lasry and Lions: it aims at studying the
asymptotic behavior of stochastic differential games (Nash equilibria) as the number N of agents
tends to infinity. We refer to [2] for a more extended discussion on MFGs and for additional
references on the analysis of the system of PDEs that stem from the model when there is no
common noise.

A network (or a graph) is a set of items, referred to as vertices (or nodes or crosspoints),
with connections between them referred to as edges. In the recent years, there has been an
increasing interest in the investigation of dynamical systems and differential equations on net-
works, in particular in connection with problems of data transmission and traffic management.
The literature on optimal control in which the state variable takes its values on a network is
recent: deterministic control problems and related Hamilton-Jacobi equations were studied in
[1, 3, 11, 12, 20, 21]. Stochastic processes on networks and related Kirchhoff conditions at the
vertices were studied in [8, 9.

The present work is devoted to finite horizon stochastic mean field games (MFGs) taking
place on networks. The most important difficulty will be to deal with the transition conditions
at the vertices. The latter are obtained from the theory of stochastic control in [9, 8], see
Section 1.3 below. In [6], the first article on MFGs on networks, Camilli and Marchi consider
a particular type of Kirchhoff condition at the vertices for the value function: this condition
comes from an assumption which can be informally stated as follows: consider a vertex v of the
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network and assume that it is the intersection of p edges I'y, ..., I",, ; if, at time 7, the controlled
stochastic process X; associated to a given agent hits v, then the probability that X + belongs
to I'; is proportional to the diffusion coefficient in I';. Under this assumption, it can be seen
that the density of the distribution of states is continuous at the vertices of the network. In the
present work, the above mentioned assumption is not made any longer. Therefore, it will be seen
below that the value function satisfies more general Kirchhoff conditions, and accordingly, that
the density of the distribution of states is no longer continuous at the vertices; the continuity
condition is then replaced by suitable compatibility conditions on the jumps across the vertices.
A complete study of the system of differential equations arising in infinite horizon mean field
games on networks with at most quadratic Hamiltonians and very general coupling costs has
been supplied in a previous work, see [2].

In the present work, we focus on a more basic case, namely finite horizon MFG with globally
Lipschitz Hamiltonian with rather strong assumptions on the coupling cost. This will allow
us to concentrate on the difficulties induced by the Kirchhoff conditions. Therefore, this work
should be seen as a first and necessary step in order to deal with more difficult situations, for
example with quadratic or subquadratic Hamiltonians. We believe that treating such cases will
be possible by combining the results contained in the present work with methods that can be
found in |22, 23], see also [5, 13, 17| for references on Hamilton-Jacobi equations.

After obtaining the transmission conditions at the vertices for both the value function and the
density, we shall prove existence and uniqueness of weak solutions of the uncoupled Hamilton-
Jacobi-Bellman (HJB) and Fokker-Planck (FP) equations (in suitable space-time Sobolev spaces),
and regularity results.

The present work is organized as follows: the remainder of Section 1 is devoted to setting
the problem and obtaining the system of partial differential equations and the transmission
conditions at the vertices. Section 2 contains useful results on a modified heat equation in the
network with general Kirchhoff conditions. Section 3 is devoted to the Fokker-Planck equation.
Weak solutions are defined by using a special pair of Sobolev spaces of functions defined on the
network referred to as V' and W below. Section 4 is devoted to the HJB equation supplemented
with the Kirchhoff conditions: it addresses the main difficulty of the work, consisting of obtaining
regularity results for the weak solution (note that, to the best of our knowledge, such results for
networks and general Kirchhoff conditions do not exist in the literature). Finally, the proofs of
the main results of existence and uniqueness for the MFG system of partial differential equations
are completed in Section 5.

1.1 Networks and function spaces
1.1.1 The geometry

A bounded network I" (or a bounded connected graph) is a connected subset of R™ made of a
finite number of bounded non-intersecting straight segments, referred to as edges, which connect
nodes referred to as vertices. The finite collection of vertices and the finite set of closed edges
are respectively denoted by V := {v;,i € I} and € := {T'y,« € A}, where I and A are finite sets
of indices contained in N. We assume that for «, 3 € A, if a = 3, then I'y, n I'g is either empty
or made of a single vertex. The length of I, is denoted by £,. Given v; € V, the set of indices
of edges that are adjacent to the vertex v; is denoted by A; = {a € A:1v; €T}, A vertex v
is named a boundary vertex if §(A;) = 1, otherwise it is named a transition vertex. The set
containing all the boundary vertices is named the boundary of the network and is denoted by
oI hereafter.

The edges I',, € £ are oriented in an arbitrary manner. In most of what follows, we shall make



the following arbitrary choice that an edge I'y, € £ connecting two vertices v; and v;, with 7 < j
is oriented from v; toward v;: this induces a natural parametrization 7, : [0,45] — I'q = [vi, 5]

Ta(y) = (bo —y)vi +yv; for y e [0,4,]. (1.1)
For a function v : ' - R and a € A, we define v, : (0,4,) — R by
Va(y) :=vomy(y), forall ye (0,4,).

The function v, is a priori defined only in (0, £,). When it is possible, we extend it by continuity
at the boundary by setting

Vg (0) := lim v, (y) and vy (b) := lim v, (y) .
y—0*t y—la

In that latter case, we can define

Vo (5! (7)) if x e TR\,
olr, (@) = v () = m va(y), i =0, (1.2)

Vg (la) = lim v, (y), ifz=vj;.
y—=Lo

Notice that v|p, does not coincide with the original function v at the vertices in general when v
is not continuous.

Remark 1.1. In what precedes, the edges have been arbitrarily oriented from the vertex with the
smaller index toward the vertex with the larger one. Other choices are of course possible. In
particular, by possibly dividing a single edge into two, adding thereby new artificial vertices, it
is always possible to assume that for all vertices v; € V,

either 7, (0) = v;, for all « € A; or 7, ({y) = v;, for all a € A;. (1.3)

This idea was used by Von Below in [24]: some edges of T" are cut into two by adding artificial
vertices so that the new oriented network I" has the property (1.3), see Figure 1 for an example.

Iy _ I .
141 14 1P 1 1 4 1)
T -
I_‘3 2 F3
LY vsX
I's
V3 4 2 U3 —> Uy
1_‘4 F4

Figure 1: Left: the network I' in which the edges are oriented toward the vertex with larger
index (4 vertices and 4 edges). Right: a new network I obtained by adding an artificial vertex
(5 vertices and 5 edges): the oriented edges sharing a given vertex v either have all their starting
point equal v, or have all their terminal point equal v.



1.1.2 Function spaces related to the space variable

The set of continuous functions on I' is denoted by C(I') and we set
PC(T)

= v:T>R: forall ae A, Vo € C(0, £a) .
Ve can be extended by continuity to [0, 4]

By the definition of piecewise continuous functions v € PC(T"), for all « € A, it is possible to
define v|r, by (1.2) and we have v|r, € C(T'y), vy € C([0,44]).
For m € N, the space of m-times continuously differentiable functions on I' is defined by

C"([T):={veC(I):v,eC™([0,4y]) forall a € A}.

Notice that v € C™ (T') is assumed to be continuous on I', and that its restriction v, to
each edge I'y belongs to C™(I'y). The space C™ (I') is endowed with the norm [vcmy =
e A k<m H(’J’kvaHLw(MQ). For o € (0,1), the space C" (I'), contains the functions v € C™ (T")
such that 0™v, € C% ([0, £,]) for all a € A; it is endowed with the norm

0", (Y) — 0™y, (2
HUHC’”’%U(I‘) = HU”C’”(F) + sup sup | ( ) ( )|

aeA  y#z |y - Z|U
y,2€[0,4x ]

For a positive integer m and a function v € C™ (T"), we set for k < m,
kv (z) = 0%v, (! (2)) if z € To\V. (1.4)
For a vertex v, we define d,v (v) as the outward directional derivative of v|p, at v as follows:

Vo (0) — vg (h)

hlim+ . , if v =7, (0),

Oov (V) := { "0 _ B (1.5)
lim 22 (fa) = va (£ h), ifv=my ).
h—0+ h

For all ¢ € I and « € A;, setting

Mg = 1 if v; = Fa(fa), (16)
-1 if V; = 7Ta(0),

we have
00 (1) = Niq V|1, (V) = Ny OV (105 (15)). (1.7)
Remark 1.2. Changing the orientation of the edge does not change the value of d,v(v) in (1.5).

We say that v is Lebesgue-integrable on T, if v, is Lebesgue-integrable on (0,£,). In this
case, for all x1, 29 € Ty,

o (22)
j v (z)dr = j Vo (y) dy. (1.8)
[x1,22]

Ta (x1)

When v is Lebesgue-integrable on T'y, for all « € A, we say that v is Lebesgue-integrable on T’
and we define



The space LP (I') = {v:v|r, € LP(T'y) for all « € A}, p € [1,0], is endowed with the norm
1

HUHL,,(F) = (ZaeA HvaHIiP(OJQ)) if 1 < p < oo, and maxeesa H?}aHLoo (0,60) if p = +00. We shall
also need to deal with functions on I' whose restrictions to the edges are weakly-differentiable:
we shall use the same notations for the weak derivatives.

Definition 1.3. For any integer s > 1 and any real number p > 1, the Sobolev space Wlf P(T)
is defined as follows

W;’p(F) ={v: I > Rs.t. vy W (0,{,) for all « € A},

and endowed with the norm

)
ol = (22” L I ||Lp<p>p.

k=1acA
For s € N\{0}, we also set Hy(') = W;*(T") and H3(T') = C(T') n Hy(T).

Finally, when dealing with probability distributions in mean field games, we will often use
the set M of probability densities, i.e., m € L'(T'), m > 0 and . m(z)dz = 1.

1.1.3 Some space-time function spaces

The space of continuous real valued functions on I' x [0, 7] is denoted by C(I" x [0,T]).
Let PC(T" x [0,T]) be the space of the functions v : I" x [0,7] — R such that

1. for all t € [0,T], v(-,t) belongs to PC(T")
2. for all € A, v|p, «[o,r] is continuous on Ty, x [0, T];

For a function v € PC(T' x [0,T1]), a € A, we set va(y,t) = v|r, x[0,¢(Ta(y),t) for all (y,t) €
[0, £a] % [0,T].
For two nonnegative integers m and n, let C""(I" x [0,T]) be the space of continuous real
valued functions v on I' x [0,7] such that for all a € A, v|p xjo,7] € C™"(T'a x [0,T]). For
€ (0,1), 7 € (0,1), we define in the same manner C™+>"*+7(T" x [0,7T])
Useful results on continuous and compact embeddings of space-time function spaces are given
in Appendix A.

1.2 A class of stochastic processes on I

After rescaling the edges, it may be assumed that ¢, = 1 for all « € A. Let p,,a € A and
Pia,t € I, € A; be positive constants such that ), . A, Pia = 1. Consider also a real valued
function a € PC(T x [0,T1]), such that, for all a € A, t € [0,T], alr, (-,t) belongs to C1(Ty,).

As in Remark 1.1, we make the assumption (1.3) by possibly adding artificial nodes: if v; is
such an artificial node, then #(.A4;) = 2, and we assume that p;, = 1/2 for a € A;. The diffusion
parameter p has the same value on the two sides of an artificial vertex. Similarly, the function
a does not have jumps across an artificial vertex.

Consider a Brownian motion (W;) defined on the real line. Following Freidlin and Sheu (][8]),
we know that there exists a unique Markov process on I' with continuous sample paths that can
be written (X, ;) where X; € T, (if Xy = v4, i € I, ay is arbitrarily chosen as the smallest
index in A;) such that, defining the process x; = 7, (X;) with values in [0, 1],



e we have

dzy = /240, dWi + ag, (2, t)dt + dl; y + dhi 4, (1.9)

e (; is continuous non-decreasing process (measurable with respect to the o-field generated
by (X¢, a¢)) which increases only when X; = v; and x; = 0,

e h;; is continuous non-increasing process (measurable with respect to the o-field generated
by (X¢, a¢)) which decreases only when Xy = v; and z; = 1,

and for all function v € C%1(T' x [0,T]) such that

> Pialav (vi,t) =0, foralliel,te[0,T], (1.10)
OcE.Ai
the process
¢
My = v(Xy,t) — f (@v (Xs,8) + Ha,0%v (X, 8) + alr,, (X5, 8) v (Xs,s)>ds (1.11)
0
is a martingale, i.e.,
E(MXs) = M, forall0<s<t<T. (1.12)
For what follows, it will be convenient to set
D := {u e C*(I): Z Pialau (1;) =0, forallie I} . (1.13)
OcE.Ai

Remark 1.4. Note that in (1.10), the condition at boundary vertices boils down to a Neumann
condition.

Remark 1.5. The assumption that all the edges have unit length is not restrictive, because we
can always rescale the constants p, and the piecewise continuous function a.

The goal is to derive the boundary value problem satisfied by the law of the stochastic process
X;. Since the derivation here is formal, we assume that the law of the stochastic process X; is a
measure which is absolutely continuous with respect to the Lebesgue measure on I' and regular
enough so that the following computations make sense. Let m(x,t) be its density. We have

E[v (X, t)] = LU (x,t)ym (x,t)dx, for allve PC(T x [0,T]). (1.14)

Consider u € C%1(T" x [0,T]) such that for all ¢t € [0,7], u(-,t) € D. Then, from (1.11)-(1.12),

we see that

Eu (X, )] = E[u(Xo,0)] + E Ut <(9tu (Xe,5) + po, 0 (Xs, 8) + alr,, (Xs, ) du (X, s))ds} .

" (1.15)
Using (1.14) and taking the time-derivative of each member of (1.15), we obtain
L Or(um)(z, t)dx = E(&tu (Xt,t) + Hoy 0w (Xe,t) + alr,, (X, t) Ou (X, t))
Using again (1.14), we get
L (,u02u(x,t) + a(z, t)ou(z,t)) m(z, t)de = L u(x, t)oym(z,t)dx. (1.16)

6



By integration by parts, recalling (1.3), we get

0 = Z f (oym(x,t) — padim(z,t) + d(am)(z,t)) u(z, t)ds
ae AV«

=2 2 [miaalr, (vis ymlr, (vis £) = padam(vi, t)] ulr, (vi, t)

i€l aeA;

_Z Z Mam|ra(1/i,t)5au(yi,t), (1.17)

el aeA;

where n;q, is defined in (1.6).

We choose first, for every a € A, a smooth function u which is compactly supported in
(I'a\V) x [0,T]. Hence ulr,(vi,t) = 0 and Jgu(v;,t) = 0 for all i € I,3 € A;. Notice that
u(-,t) € D. It follows that m satisfies

(6sm — pad®m + 0 (ma)) (z,t) =0, forzeT,\V, te (0,T), ae A (1.18)

For a smooth function x : [0,7] — R compactly supported in (0,7"), we may choose for every
i € I, a smooth function u such that u(v;,t) = x(¢)d; ; for all t € [0,T], j € I and dqu(v;,t) =0
for all t € [0,T], j € I and o € A;, we infer a condition for m at the vertices,

Z niaalr, Vi, t)m|r, (i, t) — piaOam(vi,t) =0 forallie I, te (0,7). (1.19)
acA;

This condition is called a transmission condition if v; is a transition vertex and reduces to a
Robin boundary condition when v; is a boundary vertex.

Finally, for a smooth function x : [0,7] — R compactly supported in (0,7), for every
transition vertex v; € V\dI' and a, 8 € A;, we choose u such that

o u(-,t)eD
o Jau(vit) = X(t)/Dias Opuvi) = —x(t)/pig, dyu(vi) = 0 if v € A\{e, B}
e The directional derivatives of u at the vertices v = v; are 0.

Using such a test-function in (1.17) yields a jump condition for m,

m‘f‘a (Viat) _ m|F5 (Vivt)
Yia Yip

, forallo,fe A;,v; €V, te(0,T),

in which '
Vi = @, forallie I,a e A;. (1.20)
Ko

Summarizing, we get the following boundary value problem for m (recall that the coefficients
Njq are defined in (1.6)):

Orm — pad*m + 0 (ma) =0,  (z,t) e (To\V) x (0,T), a € A,

Z palam (Viyt) — nigalr, (vi)mlr, (vi,t) =0, te(0,T),v;eV,
OcE.Ai
(1.21)
.t m v;,t
e (0) _ I WD -y .1y, 0 pe A e,
Vi Yip

m(z,0) = mo(z), zel.

7



1.3 Formal derivation of the MFG system on I’

Here we aim at obtaining the MFG system of forward-backward partial differential equations on
the network, at least formally. The assumptions that we are going to make below on the optimal
control problem are a little restrictive, for two reasons: first, we wish to avoid some technicalities
linked to the measurability of the control process; second, the assumptions on the costs must
be consistent with the assumptions that we shall make on the Hamiltonian, see Section 1.4.2
below. In particular, we shall impose that the Hamiltonian is globally Lipschitz continuous.
More general and difficult cases, e.g., quadratic Hamiltonians, will be the subject of a future
work.

Consider a continuum of indistinguishable agents moving on the network I". The state of a
representative agent at time ¢ is a time-continuous controlled stochastic process X; as defined
in Section 1.2, where the control is the drift a;, supposed to be in the form a; = a(Xy,t). Let
m(-,t) be the probability measure on I' that describes the distribution of states at time ¢.

For a representative agent, the optimal control problem is of the form

v(z,t) =infE, {f
as ¢

where E,; stands for the expectation conditioned by the event X; = x.
We discuss the ingredients appearing in (1.22):

T
(L (Xs,as) + ¥ [m(-,t)] (Xs))ds + vp (XT)] , (1.22)

e We assume that the control is in a feeback form a; = a(Xy,t) where the function a, defined
on I' x [0,T1], is sufficiently regular in the edges of the network. Then, almost surely if
X eTo\V,

drg ' (Xp) = ao(mg ' (X0) )t + /2 d Wi

An informal way to describe the behavior of the process at the vertices is as follows: if
X; hits v; € V, then it enters 'y, o € A; with probability p;, > 0 (pio was introduced in
Section 1.2). We assume that there is an optimal feedback law a*.

e We assume that for all a € A, a,, maps [0, ¢,] x [0,T] to a compact interval A, = [aq, Ga-

e The contribution of the control to the running cost involves the Lagrangian L, i.e., a real
valued function defined on Ugea (To\V x Ay). If 2 € T,\V and a € A,, then L(z,a) =
Lo(m;1(x),a), where L, is a continuous real valued function defined on [0,£,] x A,. We
assume that L, (z,-) is strictly convex on A,.

e The contribution of the distribution of states to the running ccost involves the coupling
cost operator, which can either be nonlocal, i.e., ¥ : P (I') — C%(T') (where P (T) is the set
of Borel probability measures on I'), or local, i.e., #[m](z) = F(m(x)) for a continuous
function F : RT — R, assuming that m is absolutely continuous with respect to the
Lebesgue measure and identifying with its density.

e The last term is the terminal cost vy, which depends only on the state variable for simplicity.

Under suitable additional assumptions, Ito calculus as in [8, 9] and the dynamic programming
principle lead to the following HJB equation on I', more precisely the following boundary value



problem

(000 — pod®v + H (2, 00) = ¥[m(- D)), in (T\V) x (0,T),a e A,
Z Yiattala¥ (Vist) =0, if (v,t) eV x(0,7T),
aed; (1.23)
vlr, (i t) = vlr, (Vi) for all v; e V,t € (0,T) o, 5 € A;,

(v (z,T) =vr(z) inT.

We refer to [14, 15, 16] for the interpretation of the value function v. Let us comment the different
equations in (1.23):

1. The first equation is a HJB equation the Hamiltonian H of which is a real valued function
defined on (Ugeal's\V) x R given by

H (z,p) = sup {—ap — Lq (ﬂgl(az),a)} for x € Ty \V and p € R. (1.24)

acAq

We assume that L is such that the Hamiltonians H|p_ xgr are Lipschitz continuous with
respect to p and C*.

2. The second equation in (1.23) is a Kirchhoff transmission condition (or Neumann boundary
condition if v; € dT'); it is the consequence of the assumption on the behavior of X at
vertices. It involves the positive constants 7;, defined in (1.20).

3. The third condition means in particular that v is continuous at the vertices.

4. The fourth condition is a terminal condition for the backward in time HJB equation.

If (1.23) has a smooth solution, then it provides a feedback law for the optimal control problem,
i.e.,

a*(z,t) = —0pH (z,0v (z,t)) .

At the MFG equilibrium, m is the density of the invariant measure associated with the op-
timal feedback law, so, according to Section 1.2, it satisfies (1.21), where a is replaced by
a* = —0pH (x,0v (z,t)). We end up with the following system:

r_at'U - /Laa2v + H (337 61}) =7 [m(7 t)] (:E)’ (337 t) € (FQ\V) X (07 T) ya € A,
orm — pad?m — 0 (mopH (x,0v)) = 0, (z,t) € (TL\V) x (0,T),c € A,
Z ’Yiaﬂaaocv (Vi7t) = 07 (Viat) € V X (07T) )
aEAi

Z PaOam (v, t) + nin O, H® (v3, 0v|r, (v, 1)) m|p, (vi,t) =0, (v3,t) €V x (0,T),
aEAi

ot m Vi, t
vlr,, (Vi,t) = vlr, (v, t), mlra (#i:?) = I, (v ), a,BeA;, (v,t) eV x (0,T),
Yiaw Yip

(v (z,T) =vr (z), m(z,0) =mg(x) xel,

(1.25)
where HY := H|r_xr. At a vertex v;, i € I, the transmission conditions for both v and m consist
of d,, = #(A;) linear relations, which is the appropriate number of relations to have a well posed
problem. If v; € dI'; there is of course only one Neumann like condition for v and for m.



1.4 Assumptions and main results

Before giving the precise definition of solutions of the MFG system (1.25) and stating our result,
we need to introduce some suitable functions spaces.

1.4.1 Function spaces related to the Kirchhoff conditions

The following function spaces will be the key ingredients in order to build weak solutions of (1.25).

Definition 1.6. We define two Sobolev spaces: V := H!(T), and

wlr, () _ wlr, (%)
Yiew Yip

W= {w:F—»R: we H} (') and forallie I, a,ﬂeAi}, (1.26)

which is a subspace of H} (T).

Definition 1.7. Let the function ¢ € W be defined as follows:

©q is affine on (0,4,),
¢lr, Vi) = Yia, if @ € A, (1.27)
 is constant on the edges I', which touch the boundary of T'.

Note that ¢ is positive and bounded. We set ¥ = maxr ¢, ¢ = minr .

Remark 1.8. One can see that v € V —— vy is an isomorphism from V onto W and we W —
wp~! is the inverse isomorphism.

Definition 1.9. Let the function space W < W be defined as follows:

W= {m :T - R:mye CH([0,4,]) and mle, (1) = mr, () forallieI,a,( € Ai} .

Yia ]
(1.28)

1.4.2 Running assumptions (H)

(Diffusion constants) (ia)aea is a family of positive numbers.

(Jump coefficients) (Via)ae4, is a family of positive numbers such that Z Yiatta = 1.
aGAi

(Hamiltonian) The Hamiltonian H is defined by the collection H* := H|p_ g, a € A: we
assume that

H*e C* (T, xR), (1.29)
H® (z,-)is convex in p, for any x € Iy, (1.30)
H® (z,p) < Co(lp| + 1), for any (z,p) € Ty x R, (1.31)
|opH® (2, p)| < Cy, for any (z,p) € Ty x R, (1.32)
|0 H® (z,p)] < Co(|p| + 1), for any (z,p) € Ty x R, (1.33)

for a constant Cy independent of a.
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(Coupling operator) We assume that 7 is a continuous map from L?(T") to L?(T), such
that for all m e L?(T'),
|7 Im]l 2y < Cml L2y +1)- (1.34)

Note that such an assumption is satisfied by local operators of the form ¥ [m](zx) =
F(m(z)) where F is a Lipschitz-continuous function.

(Initial and terminal data) mg € L?(I') n M and vy € HY(T).

The above set of assumptions, referred to as (H), will be the running assumptions hereafter. We
will use the following notation: p := mingea po > 0 and @7 := maxaea pla-
1.4.3 Strictly increasing coupling

We will also say that the coupling ¥ is strictly increasing if, for any mq,ms € M n L3(T),
f (1 — mo)(¥[mi] — ¥ [ma])de > 0
r
and equality implies m; = mo.

1.4.4 Stronger assumptions on the coupling operator

We will sometimes need to strengthen the assumptions on the coupling operator, namely that
¥ has the following smoothing properties:

¥ maps the topological dual of W to H I} (T"); more precisely, ¥ defines a Lipschitz map from
W' to H}(T).

Note that such an assumption is not satisfied by local operators.

1.4.5 Definition of solutions and main result

Definition 1.10. (solutions of the MFG system) A weak solution of the Mean Field Games
system (1.25) is a pair (v, m) such that

ve L*(0,T; H*(T)) n C([0,T); V), éwe L*(0,T;L*(T)),
me L*(0,T;W) n C((0,T); L*(T) n M), dme L? (0,T; V'),

v satisfies

- Z f [0 (z,t)w (x) + padv (z,t) Ow () + H (x,0v (z,t)) w (z)] dx
ae AV«

= f VIm(-, t)](x)w (z)dx, forallwe W, ae. te (0,7),
r
v(z,T) = vp(x) forae zel,

and m satisfies

Z f [Oem (z,t) v () dx + podm (x,t) Ov (x) + OpH (z,0v (x,t)) m (z,t) ov (z)] dx
aEA Y
=0, forallveV, ae. te(0,7T),

m(z,0) = mo(z) for a.e. x €T,

where V and W are introduced in Definition 1.6.
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We are ready to state the main result:
Theorem 1.11. Under assumptions (H),
(i) (Existence) There exists a weak solution (v,m) of (1.25).
(ii) (Uniqueness) If ¥V is strictly increasing (see 1.4.3), then the solution is unique.

(iii) (Regularity) If ¥ satisfies furthermore the stronger assumptions made in Section 1.4.4 and
if vp € C**1(T) N D for some n € (0,1) (D is given in (1.13)), then v e C*Y(T x [0,T]).
Moreover, if for all o € A, O,H*(x,p) is a Lipschitz function defined in I'y x R, and if
mo € W, then m e C([0,T); W) n WL2(0,T; L3(T)) n L?(0,T; HZ(1)).

2 Preliminary: a modified heat equation on the network with
general Kirchhoff conditions

This section contains results on the solvability of some linear boundary value problems with

terminal condition, that will be useful in what follows. Consider

-

— 0V — 0%V = h, in ([,\V) x (0,T),a € A,
U|Fa (Vi7t) = U|F/J‘ (Vi7t) , te (07T) a,fe A, v eV,

3 2.1
Z ’7@'04#0:60/0 (Viyt) =0, te (07T) Vi €V, ( )
aG.Ai

(v (z,T) =vr (), zxel,

where h e L? (0,T;W') and vr € L*(T).

Definition 2.1. If vy € L?(T) and h € L% (0,T;W'), a weak solution of (2.1) is a function
ve L?(0,T;V) n C([0,T]; L*(T)) such that é;v € L? (0,7;W’) and

=0 (t) sy + B (v (1) ,w) = (), why y,  for allw e W and ace. t€ (0,7,
v (3:7 T) = ’UT(:E)7
(2.2)
where % : V x W — R is the bilinear form defined as follows:

B (v,w) := j povowdz = Z j Lo Ovowd.
r aeA Yo

We use the Galerkin’s method (see [7]), i.e., we construct solutions of some finite-dimensional
approximations to (2.1).

Recall that ¢ has been defined in Definition 1.7. We notice first that the symmetric bilinear
form %(u,v) := . ppdudv is such that (u,v) — (u,v)2(r) + %(u,v) is an inner product in V
equivalent to the standard inner product in V, namely (u,v)y = (u,v)p2(r) + § dudv. Therefore,
by standard Fredholm’s theory, there exist

e anon decreasing sequence of nonnegative real numbers (A\;)7_;, that tends to +00 as k — o0
e A Hilbert basis (vg),—; of L*(T) , which is also a a total sequence of V' (and orthogonal if
V' is endowed with the scalar product (u,v)r2ry + %(u,v)),
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such that

B(vp,v) = M (Vi,v) 2y forallve V. (2.3)
Note that
£ =
J OV Ovppdr = Av k=
r 0 itk#L

Note also that vj is a weak solution of

— 1160 (POVE) = AV, in T,\V,a € A,

Vilra (i) = vilr, (i), o, Be A, (2.4)
Z Viaﬂaaocvk (Vz) =0, ye€ Va
acA

which implies that v;, € C?(T).
Finally, by Remark 1.8, the sequence (¢vi){L, is a total family in W (but is not orthogonal
if W is endowed with the standard inner product).

Lemma 2.2. For any positive integer n, there exist n absolutely continuous functions y; :

[0,T] >R, k=1,...,n, and a function v, : [0,T] — L*T) of the form

Up (z,t) = Z yp () vi(x), (2.5)
k=1
such that
yp (1) = f vpvgde,  fork=1,...,n, (2.6)
r
and

— %(vn,vkgp)p(p) + B (vn, Vi) = (h(t),vipy, fora.a. te(0,T), forallk=1,...,n. (2.7)

Proof of Lemma 2.2. For n > 1, we consider the symmetric n by n matrix M,, defined by

(Mn) g = f Vievepd.
r

Since ¢ is positive and (vg)72; is a Hilbert basis of L? (T'), we can check that M, is a positive
definite matrix and there exist two constants ¢, C' independent of n such that

n

clé < Y (M) && < CIE[°,  forall € R (2.8)
k=1

Looking for vy, of the form (2.5), and setting Y = (y7, ... ,yﬁ)T, Y = (%y{‘, e %yZ)T, (2.7) im-
plies that we have to solve the following system of differential equations

T
—M,Y + BY = F,, Y(T) = (J VTV, . . .,f vTvn> )
r r
where By = B (v, vip) and F,,(t) = ((h(t),vi), ..., h(t),vae))T. Since the matrix M, is
invertible, the ODE system has a unique absolutely continuous solution. The lemma is proved.

O
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We propose to send n to +00 and show that a subsequence of {v,} converges to a solution
of (2.1). Hence, we need some uniform estimates for {v,}.

Lemma 2.3. There ezists a constant C depending only on T, (tia)aca, T and ¢ such that

lvnll Lo 0, 20y) + [vnll L2,y + 100nl 20 7wy < € <||h||L2(o,T;W/) + ||UTHL2(F)) :

Proof of Lemma 2.3. Multiplying (2.7) by v} (t) eM for a positive constant A to be chosen later,

summing for £ = 1,...,n and using the formula (2.5) for v,,, we get
—f Srvonvnetode +f 10OV, 0 <Un€ <p> = Mh(t), vndw W,
r r
and
Up A 2N 2 Xt At At
- O 5 € )~ gvne wdx + F,u (Ovp,)” e pdx + F,u(?vnvne opdr = e {(h(t), v,p).

Integrating both sides from s to 1", we obtain

L (U% (;;’S) e — ( ) ) edr + = j J v2eMpdadt

T
—i—f f 1(0vp)? eModadt +f f povpvpe dpdrdt
s JI' s JI'

T
- f MR (t), vy () pydt

N

T
c f AUA(E) s on () [y dt

1 T C2 T
< 3 J L,u ((Qvy)? +v2) eModrdt + o j M h(t)|3dt,

where C' is positive constant depending on ¢, because of Remark 1.8. Therefore,

2 1 (T I ‘a@H
EASJ R @S) s _j j 1(0vn) 2 pe N devdt + (3 -L- f f vne™pdadt
T 2 4 s I 2

2 T 2 T
< o7 f Mcpda:—i—c—emj Ih(0)|2dt.
I 2 ZH s

\)

Choosing A > 1/2 + 71 + 2ﬁ||0<p||%w(r)/£2 and noticing that §.v2 (z,T) ¢dx is bounded by
? {vidz from (2.6), it follows that

T T
J v2(z, 8)pdx + j j v2pdrdt + j J w(ovy, ) pdxdt
r s JU s JU
< 207 (e 7| vid 2.9
S Ze m 122 0,2w7) + P FUT z). (2.9)

Estimate of vy, in L* (0,T; L*(T')) and L* (0,73 V). From (2.9), it is straightforward to see
that

lvnll Lo 0,7 2200y) + Ivnll 20y < € <HhHL2(0,T;W’) + HUT||L2(F)> (2.10)
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for some constant C' depending only on (iq)aca, ¢ and T

Estimate 0;v, in L? (0, T;W’). Consider the closed subspace G7 of W defined by G; =
{w eW: SF viwdr = 0 for all k < n} It has a finite co-dimension equal to n. Consider also
the n-dimensional subspace Gy = span{vip,...,v,p} of W. The invertibility of the matrix M,
introduced in the proof of Lemma 2.2 implies that G1 "G = {0}. This implies that W = G1®Gs.
For w € W, we can write w of the form w = w,, + w,, where w,, € G9 and w, € G1. Hence, for
a.e. t€[0,T], from (2.5) and (2.7), one gets

Opon(t), Wy w = 4 j vpwdx | = 4 J vpwpdr | = —(h(t), wp ) wrw ~|—j OV, Owp,d.
’ dt r dt T ’ T

(2.11)
Since there exists a constant C' independent of n such that |wy|,, < C |wly,, it follows that

[0on @)y < C (10 @O)llyyr + 7 lon By,

for almost every ¢, and therefore, from (2.10), we obtain

2 2 2
J0n D202y < C (IR 20 ) + lorliaqry)
for a constant C independent of n. O

Theorem 2.4. There exists a unique solution v of (2.1), which satisfies

[Vl Lo 0,200y + 1Vl 20,7y + 1000 20wy < € (HhHL2(O,T;W’) + HUTHL2(F)> ; (2.12)
where C is a constant that depends only on T, (tia)aca, T and p.

Proof of Theorem 2.4. From Lemma 2.3, the sequence (vy,),,cy is bounded in L?(0,T;V) and the
sequence (Q;vy),cy is bounded in L?(0,T;W’). Hence, up to the extraction of a subsequence,
there exists a function v such that v e L (0,T;V), dv e L?(0,T; W') and

Up — U weakly in L2 (0,T;V), (2.13)
Oy — Opv weakly in L2 (0, T; W'). -
Fix an integer N and choose a function ¥ € C* ([0,7];V) having the form
N
() = 3 di (H)vi (2.14)
k=1
where dy, ..., dy are given real valued C* functions defined in [0, T]. For all n > N, multiplying
(2.7) by dj, (t), summing for £ = 1,...,n and integrating over (0,7) leads to
T T T
- f f OrunTpdxdt + f f pov, 0 () dadt = f (h, Tp)dt. (2.15)
0o Jr 0o Jr 0
Letting n — +00, we obtain from (2.13) that
T T T
- f (O, Dp)dt + f f uovo (vp) dedt = f (h,Tp)dt. (2.16)
0 0o Jr 0
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Since the functions of the form (2.14) are dense in L2 (0,7;V), (2.16) holds for all test function
e L2(0,T;V). Recalling the isomorphism 7 € V + Tp € W (see Remark 1.8), we obtain that,
for all we W and ¢ € C} (0,T),

_ fo Y oy wydt + LT L povdwpdzdt = L by,

This implies that, for a.e. t € (0,7),
—(Opv,w) + B (v,w) = (h,w)y for all we W.

Using [19, Theorem 3.1] (or the same argument as in |7, pages 287-288|), we see that v €
C([0,T]; LZ(T)), where LZ(T) = {w : T —= R : §w?pdz < +o0}, and since ¢ is bounded from
below and from above by positive numbers, Li (I') = L(T") with equivalent norms. Moreover,

ax [o(s )2y < € (loevll 20wy + 0] 200,7:v)) -

We are now going to prove v (T) = vy. For all w € C' ([0,T];V) of the form (2.14) and such
that 7 (0) = 0, we deduce from (2.15) and (2.16) that

T T
- j j Or0vp pdxdt — j U (T) v, (T) pdx + j J 10V, 0 (V) dadt
o Jr r o Jr

T T
=— j j orvvpdrdt — j v(T)v(T) pdx + J J wovd (V) dxdt.
o Jr r o Jr
We know that v, (T) — vr in L? (T'). Then, using (2.13), we obtain
j U (T) vppdr = J v (T)v (T) pdx.
r r

Since the functions of the form Z]kv=1 dy, (T) vy are dense in L%(T), we conclude that v (T') = vr.
In order to prove the energy estimate (2.12), we use veMy as a test function in (2.2) and

apply similar arguments as in the proof of Lemma 2.3 for A large enough, we get (2.12).
Finally, if h = 0 and vp = 0, by the energy estimate for v in (2.12), we deduce that v = 0.

Uniqueness is proved. ]

Theorem 2.5. If vy € V and h e L?> (T x (0,T)), then the unique solution v of (2.1) satisfies
ve L?(0,T; H*(T)) n C([0,T); V) and v € L? (0,T; L? (T')). Moreover,

ol oy + Wiz zmey + 10l o razmy < € (IBlzermy + lory) . @17)
for a positive constant C' that depends only on T, (pia)aca, T and p.
Proof of Theorem 2.5. It is enough to prove estimate (2.17) for v,,.

Multiplying (2.7) by —%y,’;, summing for £k = 1,...,n and using (2.5) leads to

f (6tvn)2g0dm — f 10V, 0 (Opvpp) dx = —f hoyvypd,
r r r

hence

2
f (8tvn)2cpda: - f 140¢ ((%2") pdxr — f 1OV, Opvp Opdr = —f hopvppd.
r r r r
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Multiplying by e* where A will chosen later, and taking the integral from s to T, we obtain

LT L(@tvn)QEAt(’Dd;ﬁdt — L g [(0% (T))2€)\T — (Ovn (S))Qe)\s] oz

Ty T
+)\f f 5(6vn)26)‘tcpda;dt — f f Mavnatvne)\ta(pdxdt
s JI s JI

T
= —f f h@tvneAtgpdxdt
s I

IR 1" 2 A\t
< h=e™pdxdt + = (Opvn) e pddt. (2.18)
2 s JI 2 s JU

Let us deal with the term {..(dvy, (z,T))?pdz. From (2.6),

Then, choosing A = 2ﬁ2\|84p\|%w(r)/(£2ﬁ), we obtain that

T
j 20(0vn(, 5)) pda + j j (Orvn)*pdzdt < 26X <”hH%2(I‘X(O,T)) + ﬁf (5UT)2d$> - (219)
r s Jr r

Estimate of dv, in L* (0,T;L* (")) and dyvy, in L* (I x (0,T)). From (2.19), it is straight-
forward to see that

|0val (0 iz + 1evnl a0y < € (IBlzaeomy + 1007l ary)
for some constant C depending only on I', p, T and ¢.

Estimate of 0*v, in L? (I' x (0,T)). Finally, using the PDE in (2.1), we can see that 0uv,
belongs to L? (I' x (0,7)) and is bounded by C <HhHL2(F><(0,T)) + HUTHV>, hence v, is bounded in
L? (0, T; H? (F)) by the same quantity. The Kirchhoff conditions (which boil down to Neumann
conditions at 0I") are therefore satisfied in a strong sense for almost all t.

Using [19, Theorem 3.1] (or a similar argument as |7, pages 287-288|), we see that v in
C([0,7]; V).

O
3 The Fokker-Planck equation
This paragraph is devoted to a boundary value problem including a Fokker-Planck equation
Orm — 1o, 0*m — 0 (bm) = 0, in (Ta\V) x (0,T), a€ A,
; m Vi, t
M, '(V“t) = |FBF ), te (0,T), a,Be A;, v; € V\oT,
Yia YiB (31)
D7 Habam (Vi t) + nigh (vi, t) mir,, (vi,t) =0, te (0,T), eV,
acA;
Lm(l"O):mO(gj)’ zel,
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where b e PC (T x [0,T]) and mg € L*(T).

Definition 3.1. A weak solution of (3.1) is a function m € L? (0, T; W) n C([0, T]; L*(T")) such
that o;m € L% (0,7; V') and

Oym,vyyry + 4 (m,v) =0 forallveV and ae. te(0,7), (3.2)

m (-,0) = mo,

where &/ : W x V — R is the bilinear form

o (v, w) —f

uomovdx + f bmadvdz.
r

T

Using similar arguments as in Section 2, in particular a Galerkin method, we obtain the
following result, the proof of which is omitted.

Theorem 3.2. If b € L®(I" x (0,7)) and mg € L?*(T), there erists a unique function m €
L?(0,T;W) n C([0,T); L*(T")) such that oym € L?(0,T;V') and (3.2). Moreover, there exists a
constant C' which depends on (pa)aca, |0, T and @, such that

Imll 20 7wy + Il oo o, p2a0y) + 10l 20,00y < C lmol 2y - (3.3)

Remark 3.3. If my € M, which will be the case when solving the MFG system (1.25), then
m(-,t) € M for all t € [0,T]. Indeed, we use v =1¢€ V as a test-function for (3.1). Since dv = 0,
integrating (3.2) from 0 to ¢, we get Sé §p 0em(z, s)dzds = 0. This implies that

f m(z,t)dr = f mo(z)de =1, for all t € (0,T].
r r

1 At

Setting m™ = —1,,.0ym, we can also use v = ¢~ "m~e” " as a test-function for A € R, . Indeed,
the latter function belongs to L2(0,T;V). Taking A large enough and using similar arguments
as for the energy estimate (3.3) yield that m~ = 0, i.e., m = 0.

We end this section by stating a stability result, which will be useful in the proof of the main

Theorem.

Lemma 3.4. Let mg.,b. be sequences of functions satisfying
moe —> myq in L* (I, be — b in L? (T x (0,7)),

and for some positive number K independent of €, ||b| Lo (0,1)) < K, b (rx0,7)) < K.
Let m. (respectively m) be the solution of (3.2) corresponding to the datum mo. (resp. mo) and
the coefficient b (resp. b). The sequence (m.) converges to m in L* (0,T; W) L® (0,T; L*(T")),
and the sequence (0ym.) converges to (d;m) in L% (0,T;V").

Proof of Lemma 8.4. Taking (m. —m)e ™! as a test-function in the versions of (3.2) satisfied
by m. and m, subtracting, we obtain that

L [%&g ((m€ —m)? e*/\t> . % (me — m)? e)\t] o ldo + L (8 (e — m))2e MoV dz

+ L p(me —m) @ (me —m) e Mo(e Hda + L (beme — bm) 0 (me —m) e Mo~ tdz
+ L (b.me — bm) (me —m) e Ma(p 1 )dx = 0. (3.4)
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There exists a positive constant K such that [bc||, ,|b],, < K for all e. Hence, there exists a
positive constant C' (in fact it varies from one line to the other in what follows) such that

L Bat <<ma —m)® e—At) + % (me — m)? e—)\t} oo + Lu(a(ma —m))2e Mo de

< O [ (jme—mf* 4 fm =m0 (me = m)| + ] b = b1 (2 (m — )| + [ — m]) e
r

< C’j <|m6 —m|® + |b. — bJ? m2) e Mo tdr + j g(@ (me —m))2e Mplde.
r r

The assumptions on the coefficents b. and b imply in fact that b — b in LP(T" x (0,7)) for
all 1 < p < 0. On the other hand, we know that m € LT x (0,7)) for all 1 < ¢ < c0. From

the latter observation with p = ¢ = 4, we see that the quantity S(:)F SF <|bE — b|2 m2) e Mo~ tdxdt
tends to 0 as € — 0 uniformly in A > 0. We write

T
j J <|b€ —b? m2) e Mo ldedt = 0.(1).
o Jr

Choosing A large enough and integrating the latter inequality from 0 to ¢t € [0, 7], we obtain
Ime — mHLZ(o,T;W) + [lme — mHLoo(o,T;L2(r)) < 0:(1) + C |moe — moHLZ(F) :
Subtracting the two versions of (3.2) and using the latter estimate also yields
[0eme — 0em| 20 1vry < 02(1) + C [moe — moll 2y »

which achieves the proof. O

4 The Hamilton-Jacobi equation

This section is devoted to the following boundary value problem including a Hamilton-Jacobi

equation
.

—0iv — 0% + H (z,0v) = f, in (To\V) x (0,T), aec A,
vlr, (Vi) = vlr, (Vi 1) te(0,7), a,fe A;, v; €V,
Z YialaOaV (Vi t) =0, te(0,7), v;eV, (4.1)
acA;
(v (z,T) =vr (), zel,

where f € L? (T x (0,7T)), vy € V and the Hamiltonian H : T' x R — R satisfies the running
assumptions (H).

Definition 4.1. For f € L?(I' x (0,7)) and vy € V, a weak solution of (4.1) is a function
ve L?(0,T; H*(T)) n C([0,T]; V) such that év € L2 (I' x (0,T)) and
f (—0rww + pdvow + H (x, 0v) w) de = f fwdz  for all we W, a.a. te (0,T),
r r

v(z,T) = vp(x).

(4.2)

We start by proving existence and uniqueness of a weak solution for (4.1). Next, further
regularity for the solution will be obtained under stronger assumptions.
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4.1 Existence and uniqueness for the Hamilton-Jacobi equation

Theorem 4.2. Under the running assumptions (H), if f € L?>(I' x (0,T)), then the boundary
value problem (4.1) has a unique weak solution.

Uniqueness is a direct consequence of the following proposition.

Proposition 4.3. (Comparison principle) Under the same assumptions as in Theorem 4.2, let v
and © be respectively weak sub- and super-solution of (4.1), i.e., v, v € L? (O, T; H? (F)) , 010, 040 €
L?(T x (0,7)) such that

J (—0vw + povow + H (z,0v) w)dr < | fwdz,

r r forallwe W, w =0, a.a. t€(0,T),
f (00w + pdvow + H (z,00) w)dr = | fwdz,

r

v(z,T) <vp(z) <o(x,T) fora.a. zel.
Then v < v in I x (0,7T).

Proof of Proposition 4.5. Setting v = v — 0, we have, for all w € W such that w > 0 and for a.a
€ (0,7):

j —0ftw + povow + (H (x,0v) — H (x,00)) wdz < 0,

+)\t

and 7 (z,T) <0 for all x € T'. Set v =7 Loy and w =70 . We have

(TF)Q A2 (7 ) A
— | o edr + | =(@")eMpdr + ,ué’v oV p)edx
r 2 r2
+ f [H (z,0v) — H (z,00)] 7" peMdz = 0.
r

Integrating from 0 to T', we get

— 2 —
J <U ;0) Y ( ) pdx + J J )2 eModrdt
J j (o) 2 peMdadt +J J 1ot T dpe drdt

J j (z,00) — H (z,00)] 7+ peMdzdt = 0.

From (1.32), |H (z,0v) — H (z,00)| < Cy|ov|. Hence, since vt (T) = 0 and |0v[v" = |dvt|vt

almost everywhere, we get

T
J j ( 2 4 p(ovt) > eModrdt — j j (11 |0| + Coyp) |00 [T eMdadt < 0. (4.3)
0o Jr

For M\ large enough, the first term in the left hand side is not smaller than the second term. This
implies that v+ = 0. O

Now we prove Theorem 4.2. We start with a bounded Hamiltonian H.
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Proof of existence in Theorem 4.2 when H is bounded by Cg. Takew e L?(0,T;V) and f € L? (' x (0,7)).
From Theorem 2.4 and Theorem 2.5 with h = f — H (z,00) and vy € V, the following boundary
value problem

_atv - Ma&QU = f - H (‘Ta %) ’ in (Fa\v) X (07T) y € -A7
vlr, (vi,t) = vlr, (v, 1), te(0,7), a, e A; v; €A,
ZaeAi YViattaOaV (Vi t) = 0, te x(0,T), v;eV,

v(z,T) =vr(x), zel,

(4.4)

has a unique weak solution v € L? (0,T; H? (T')) n C([0,T]; V) n W2 (0, T; L? (I')). This allows
us to define the map T

T:L%(0,T;V) — L*(0,T;V),

v — .

From (1.32), ¥ —> H (x,0v) is continuous from L? (0,T;V) into L? (T x (0,7)). Using again
Theorem 2.5, we have that T is continuous from L?(0,7;V) to L?(0,T;V). Moreover, there
exists a constant C' depending only on Cy,I',(tta)aca, f, T, ¢ and vp such that

10wl 20 0.7)) + 101 200,75 12(0)) < C- (4.5)

Therefore, from Aubin-Lions theorem (see Lemma A.1), we obtain that T' (L? (0,T;V)) is rel-
atively compact in L2 (0,7;V). By Schauder fixed point theorem, see [10, Corollary 11.2], T
admits a fixed point which is a weak solution of (4.1). O

Proof of existence in Theorem 4.2 in the general case. Now we truncate the Hamiltonian as fol-
lows

H (z,p) if [p| <n,

H <:1:, ﬁn) if |p| > n.

p|
From the previous proof for bounded Hamiltonians, for all n, there exists a solution v, €
L?(0,T; H*(T)) n C([0,T]; V) n W2 (0,T; L* (T)) of (4.1), where H is replaced by H,. We
propose to send n to +00 and to show a subsequence of {v,} converges to a solution of (4.1).
Hence, we need some uniform estimates for {v,}. As in the proof of Proposition 4.3, using

—v,eMp as a test-function, integrating from 0 to 7' and noticing that H is sublinear, see (1.31),
we obtain

2 2 T T A
f {U" (2x, 0) _ v (;’ )eAT} edr + f f {Ev%e’\tw + p|ov,|? Mo + ,u&’vnvne)‘té’gp] dzdt
r o Jr

Hy (l‘,p) =

T T
= — f f H,, (x,0vy,) vpeMpdadt + f f foneModadt
o Jr o Jr

T 1 (T 1 (T
< Coj j (1 + [0vn]) |vn| eModzdt + = J J freModrdt + —J j v2eModrdt.
o Jr 2Jo Jr 2Jo Jr

In the following lines, the constant C' above will vary from line to line and will depend only on
(tta)aeca, Cr, T and . Taking X large enough leads to the following estimate:

lvnl 20,00y < € (”fHL?(o,T;L?(F)) + vrl L2y + 1) ; (4.6)
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and thus, from (1.31) again, we also obtain

T T T
J J |H, (m,avn)\2 dxdt < J j Cg (|ovn| + 1)2dmdt < j j 2Cg <\6vn\2 + 1) dxdt
o Jr o Jr 0o Jr
< C (11320 mizeqey + Iorliaey +1)

Therefore, { H, (x, dv,) — f} is uniformly bounded in L? (0, T; L? (F)) From Theorem 2.5, we
obtain that (vy),,ey is uniformly bounded in L? (0,75 H? (I')) nC([0,T]; V) n W2 (0, T; L? (T')).
By the Aubin-Lions theorem (see Lemma A.1), (vy,), is relatively compact in L? (0,7;V) (and
bounded in C([0,7];V)). Hence, up to the extraction of a subsequence, there exists v €

L?(0,T;V) nWh2(0,T; L* (I)) such that
v, — v, in L*(0,T;V) (strongly), Ovp — dpv, in L*(T' x (0,7)) (weakly). (4.7)

Hence, H, (z,0v,) — H (x,0v) a.e. in I' x (0,7). Note also that we can apply Lebesgue
dominated convergence theorem to H,, (x, dv,,) because Hy, (x, dvy,) < H (x, 0v,,) < Co(1+ |0vy]).
Therefore, H,, (z,0v,) — H (z,0v) in L?*(T" x (0,T)). Thus, it is possible to pass to the limit in
the weak formulation satisfied by v, and obtain that for all w e W, x € C.(0,T),

LT x(®) <— L ovwdz + L ovdwds + L H (z,00) wd:n) dt - fo ) < L fwdx> d.

Therefore, v satisfies the first line in (4.2).

From Theorem 2.4, v, (T') = vy for all n. Since for all a € A, (v,), tends to v in L*(Ty, x
(0, 7)) strongly and in Wh2(T'y, x (0,7')) weakly, Un o x {t=T} converges to v|p, x =7} in L*(T'y)
strongly. Passing to the limit in the latter identity, we get the second condition in (4.2). We
have proven that v is a weak solution of (4.1). O

We end the section with a stability result for the Hamilton-Jacobi equation.

Lemma 4.4. Let (vre)e, (fz)e be sequences of functions satisfying
vpe —> vr in 'V, fo — fin L*> (T x (0,7)) .

Let v. be the weak solution of (4.1) with data vre, f-, then (ve)e converges in L* (0,T; H*(T'))
C([0,T]; V) n W12 (0,T; L* (T')) to the weak solution v of (4.1) with data vr, f.

Proof of Lemma 4.4. Subtracting the two PDEs for v, and v, multiplying by (ve — v)eM@™,

taking the integral on I" x (0,7") and using similar computations as in the proof of Proposition 4.3,
we obtain

e ~ vl 207y < € (Ife = Flzzqnioy * lore =vrlia))

for A large enough and C' independent of £. This proves the convergence of v, to v in L? (0,T; V).
Then, the convergence in L? (0,7 H*(T')) n C([0,T]; V) n W2 (0,7 L* (T')) results from the
assumption that H is Lipschitz with respect to its second argument, and from stability results
for the linear boundary value problem (2.1) which are obtained with similar arguments as in the
proof of Theorem 2.5. O
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4.2 Regularity for the Hamilton-Jacobi equation

In this section, we prove further regularity for the solution of (4.1).

Theorem 4.5. We suppose that the assumptions of Theorem 4.2 hold and that, in addition,
vy € H?(T') satisfies the Kirchhoff conditions given by the third equation in (4.1), f € PC(T x
[0,T]) n L*(0, T; H}(Q)) and o,f € L*(0,T; H}(T)).

Then, the unique solution v of (4.1) satisfiesv € L? (0, T, H? (F)) and oy € L? (0, T;H' (F))
Moreover, there exists a constant C' depending only on ||vr| g2y, (Ka)aca, H and f such that

N

Il 220,13 (ry) + 1000l L2071 (1)) < C- (4.8)

If, in addition, there exists n € (0,1) such that vy € C*T(T) then there exists T € (0,1) such
ve CHTIFL( x [0,T]), and v is a classical solution of (4.1).

The main idea to prove Theorem 4.5 is to differentiate (4.1) with respect to the space variable
and to prove some regularity properties for the derived equation. Let us explain formally our
method. Assuming the solution v of (4.1) is in C*Y(T" x (0,T)) and taking the space-derivative
of (4.1) on (I',\V) x (0,T), we have

—0100 — 0% + 0 (H(x, v)) = 0f.
Therefore, u = dv satisfies the following PDE
—0uu — p1o,0%u + 0 (H (z,u)) = of,

with terminal condition u(z,T) = dvp(z). From the Kirchhoff conditions in (4.1) and Re-
mark 1.1, we obtain a condition for w of Dirichlet type, namely

Z HoYiaMiall|r, (Vi t) =0, te (0,T), v; e V.
aGAi

Note that the latter condition is an homogeneous Dirichlet condition at the boundary vertices of
r.

Now, by extending continuously the PDEs in (4.1) until the vertex v; in the branchs I', and
I's, a, f € A;, and using the continuity condition in (4.1), one gets

—pad®v|r, + H* (v;,00|r, (vi, 1)) — flra (vi,t) = —pad®vlr, + HP (v, 00|, (vi, t)) — flr, (vi, t).
This gives a second transmission condition for u at v; € V\dI' of Robin type, namely
fiaQulr, (Vi t) — H* (vi, ulr, (vi, t) + flr, (v, t)
=pgoulr, (vi,t) — H (v, ulr, (vi, 1) + flr, (v, 1),
which is equivalent to

Naniaaocu (Vi7t) - Ha(Viau‘Fa (V’lat)) + f‘Fa (Vi7t)

5 (4.10)
:,ugniga@u (I/Z',t) —H (Vi,u‘pﬂ (I/Z',t)) + f‘f‘ﬂ (I/Z',t).
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Hence, we shall study the following nonlinear boundary value problem for u = v,

-

_atu - /Laa2u + a(H (ZE,’LL)) = af (l‘,t), (:Evt) € (Fa\v) X (07T)7 a e -’47
Z 'Yia,uaniauh"a (Vi7t) = 07 te (OvT)7 Vi € Vv
acA;
HaNiaOat (v, t) — H* (v, ulr, (v, t)) + flr. (vi,t)
= pgnipdpu (vi, t) — (Vi,uh‘B(Vi,t)) + f|F6 (vi,t), te(0,T), a,B € A;, v;eV\oT,
u(z,T) =ur (x), zel,
(4.11)

where df € L?(I' x (0,T)) and ur € F defined in (4.12) below. Theorem 4.5 will follow by
choosing ur = dvr.
In order to define the weak solutions of (4.11), we need the following subspaces of H}} (T).

Definition 4.6. We define the Sobolev spaces

F = {u e H} (I') and Z ViattaNiat|r, (Vi) =0 for all v; € V} , (4.12)
aG.Ai

E = {e e H} (I') and Z nia€lr, (v;) =0 for all v; € V} . (4.13)
aG.Ai

Definition 4.7. Let the function ¢ be defined as follows:

e is affine on (0,4,),
Ylr, () = paia, if v; € V\OL', a € A;, (4.14)
1 18 constant on the edges I', which touch the boundary of I'.
Note that v is positive and bounded. The map f —— f1) is an isomorphism from F onto F.
Definition 4.8. A weak solution of (4.11) is a function u € L?(0,T;F) such that dyu €
L?(0,T;E'), and
—(Ou,e)pr g + f <u6u8e — (H (z,u)) 6e> f foedz, forallee E, a.ate (0,7T),
r
u(-,T) = up.

(4.15)

Remark 4.9. Note that if u is regular enough, then (4.15) can also be written

— (Oru, &g g + j (uauae +0(H (x )da: =3 nia [H* (vi,ulr, (vi,1) = flr, (vist)] elr, (v4)

iel aeA;
=J (0f )edx forallee E, aate (0,7).
r
(4.16)

Remark 4.10. To explain formally the definition of weak solutions, let us use e € E as a test-
function in the PDE in (4.11). After an integration by parts, we get

L (—0Orue + poude + 0 (H (z,u)) e) dx — Z Z NiallaOu|r, (Vi t)elr, (Vi) = L(c?f)eda;,

i€l aeA;
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where n;, is defined in (1.6). On the one hand, from the second transmission condition, there
exists a function ¢; : (0,7) — R such that uqdu|r, (vi,t)—H*(vs, ulr, (vi, t))+ flr, (Vi t) = ¢i(t)
for all o € A;. It follows that

- Z Z niaﬂaau|Fa (Via t)e‘f‘a (I/Z)

el aeA;
= = Dalt) D) miaelr, (i) + X D mia [~H (v, ulr, (v, 1) + flr. (vist)] elr, (1)
iel acA; i€l acA;
= 33 e [ Bl (1)) + Fle (v, 6] el (),
i€l aceA;

because e € E. Then we may use the Remark 4.9 and obtain (4.15).
We start by proving the following result about (4.11) and then give the proof of Theorem 4.5.

Theorem 4.11. Under the running assumptions, if ur € F, f € C(I x [0,T]) n L*(0,T; H}(T')
and o, f € L*(0,T; H} (1)), then (4.11) has a unique weak solution u. Moreover, there exists a con-

stant C' depending only on L', T, 4, [ur|p, [0f| 20w oy 1flewxpory and |0cf L2070 )
such that

lull 20,7 m2(0y) + Ul oo, m) + 100l 20 0,7y < C- (4.17)

Remark 4.12. Theorem 4.11 implies that u(-,t) € C! (T',) for all a € A for a.e. t. Hence, the
transmission conditions for u hold in a classical sense for a.e. t € [0,T].

We use the Galerkin’s method to construct solutions of certain finite-dimension approxima-
tions to (4.11).
We notice first that the symmetric bilinear form %(u,v) := §. ptp~' 0udv is such that (u,v) —

(u,v) r2r) + ,%v’(u,fu) is an inner product in E equivalent to the standard inner product in F,
namely (u,v)p = (u,v)r2(r) + § dudv. Therefore, by standard Fredholm’s theory, there exist

e anon decreasing sequence of nonnegative real numbers (A;){,, that tends to +00 as k — o0

e A Hilbert basis (eg);.; of L*(T'), which is also a a total sequence of E (and orthogonal if
E is endowed with the scalar product (u,v) 2y + %(u,v)),

such that -
B(ek,e) = \p(ek, e)Lz(F), for all e e F. (4.18)
Note that
N, ifk=1¢
f ey depy tdr = { F ! ’
r 0 ifk#¢L

Note also that e is a weak solution of

— a0 (T/)_laek) =\er InT,\V,ae A,

Oatr (V4) _ aﬁek (VZ) for all o, B € A;, (4.19)
Yia Vi

ZaeAi niaek‘pa (VZ) =0 if V; € V.

which implies that ej|r, € C?(T,) for all a € A.
Finally, the sequence ()7, given by fi = ¢~ 'ey is a total family in F' (but is not orthogonal).
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Lemma 4.13. Under the assumptions made in Theorem 4.11, for any positive integer n, there
exist n absolutely continuous functions yi : [0,T] - R , k = 1,...,n, and a function uy, :
[0,T] — L*(T') of the form

i £) i, (4.20)

such that for allk=1,...,n
(1) = [ wrtias, (4.21)
r

and
d

— = (un Fi) 2 + L <u6un - H(w,un)) (fep) d f Fo(fu)d (4.22)

Proof of Lemma 4.13. The proof follows the same lines as the one of Lemma 2.2 but it is more
technical since we obtain a system of nonlinear differential equations. For n > 1, we consider
the symmetric n by n matrix M, defined by

(Mn)kg = L f]Jg?ﬁdl‘

Since 1) is positive and bounded and since (¢fy){_, is a Hilbert basis of L?(T'), we can check
that M, is a positive definite matrix and there exist two constants ¢, C' independent of n such
that

n

clé? < D) (M) & < CIE[°,  for all £ R™. (4.23)

Ef=1

Looking for u, of the form (4.20) and setting Y = (y7,...,5")7, Y = (Lyp,..., %yﬁ)T, (2.7)
implies that we have to solve the following a system of ODEs:

—M,Y(t) + BY(t) + H(Y)(t) = G(t),  te[0,T]

) 5 \7© (4.24)
Y<T) = (f UTfll/f d.Z', 7J\ UTfn¢ dw) )
I N
where
(] BM = SI‘ uafga(l/}fk)dx
e H;(YV)=— SF (2, YTF)o(fip)dx with F = (fy,--- ,f,)T and YTF = Doyt =un

= —{ fz,t)0(fi)dx for all i € 1, -

Since the matrix M is invertible and the function # is Lipschitz continuous by (1.32), the
system (4.24) has a unique global solution. This ends the proof of the lemma. O

We start by giving some estimates for the approximation u,,.

Lemma 4.14. Under the assumptions made in Theorem 4.11, there exists a constant C depend-
ing only on I', T, b, [ur| g, 10f [ L20u o)) 1flewxory and [0cf] 120,701 ry) such that

|unl Lo 0.7y + ”un”m(o,T;Hg(F)) +0unl p2rx 0,1y < €
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Proof of Lemma 4.14. We divide the proof into two steps:

Step 1: Uniform estimates of up, in L*(0,T;L*(T")), L?(0,T;F) and W12(0,T; E"). Mul-
tiplying (4.22) by y} () freMip where X is a positive constant to be chosen later, summing for
k=1,...,n and using (4.20), we get

—f Ortununepdr + f <,u0un — H(m,un))é’ (u e>‘t1[) dx = f fo uni/)e)‘t)
r T

In the following lines, C' will be a constant that may vary from lines to lines. Since H satisfies
(1.31) and f is bounded, there exists a constant C' such that

2
- j {&g <%e>‘t> - izﬂe”} pdx + J 1| Oup|* eMepda — C’j [t | ([tin| + |Oun|) eMdz
r 2 2 r r

<cf ([ttn] + |Gun|)eMde. (4.25)
I

The desired estimate on wu,, is obtained from the previous inequality in a similar way as in the
proof of Lemma 2.3, by taking A large enough.

Step 2: Uniform estimates of u, in L®(0,T;F) n L*(0,T; H3(T)) and of dyuy, in L*(T x
(0,7)). Multiplying (4.22) by dy}! (t) freM1p where X is a positive constant to be chosen later,
integrating by part the term containing H and f (all the integration by parts are justified)

summing for £ = 1,...,n and using (4.20), we obtain that
— f (8tun)2e)‘twda: + f 1OUR O (@une)‘tw) dx + f 0 (H (z,up)) OrupeMipda (4.26)
r r r

- Z Z Nia [H*(Vis unlr, (Vist)) — flr, (Wi t)] Oeunlr, (vist) ¥lr, (vi) J 0f6tun¢e)‘td:1:

i€l aeA;
Note that from (1.32) and (1.33),
|0 (H (2, un))| < Co(1 + [un| + [Oun]) (4.27)

so, from Step 1, this function is bounded in L?(T" x (0,T)) by a constant. Moreover,

L ' L O f dpuntpeMdrdt < C < f ' L(af)%’\tda;dt)% < f ' L(@tun)%)‘twdxdt>%, (4.28)

and we can also estimate the term SF 1OU, O (@une)‘tw) dx as in the proof of Theorem 2.5. There-
fore, the only new difficulty with respect to the proof of Theorem 2.5 consists of obtaining a bound
for the term

Z Z nza VZ7uTL|Fa (Vlv )) - f|Fa (Vivt)] atunh—‘a (Vivt) e)\tqz[)h—‘a (VZ) :

iel aeA;

Let Jia(p) be the primitive function of p — H(v;,p) such that J;,(0) = 0:

d
_%a(unh‘a (Vi7 S))

HE (05t (,9)) Oyt (,8) =

We can then write

T
- J <ana (Vis unlr,, (Vi 1)) Gpunlr, (vist) eM9|r, (%‘)) dt

s

T
:nioﬂMFa (Vz) <_u7ia (un|1"a (Via T)) e)\T + Jia (un|1"a (Via 3)) e)\s + )‘f Jia (un|1"a (W) t)) e)\tdt> .
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Since H%(x,-) is sublinear, see (1.31), |Jia(p)| is subquadratic, i.e., |Jia(p)] < C(1 + p?), for a
constant C independent of o and 4. This implies that

T
f <ana (Vis unlr,, (Vi 1)) Gptunr, (vist) eX9|r, (%‘)) dt‘

s

T
<C (e)‘T +ullr, i, T) M +ullr, (v, s) e’\5> + C)\f (1 +u2|r, (v;,1)) eNdt.
0
Note that, from Step 1 and the stability of the trace, A SST (1+u2|r, (vi,t)) eMdt < CheM'. To
summarize

T
f (anO‘ (Vis tn |ty (Viyt)) Gptinlr,, (Vi) eM9|p,, (W)) dt‘

S

(4.29)
<C (u%\pa (v, T) AT 4 ui|pa (v4, 3)2 e)‘s) + é()\)

Similarly, using the fact that f € C(I' x [0,7]) and &;f|r, (v;,-) € L? (0,T), and integrating by
part, we see that

T
f flra (vi,t) Ogun|r, (Vi) t) e’\tdt‘

T
= ‘(f\raunﬂra i, T) N — (flraun)lr., (Vi t) e — f (Mflra (i t) + 0uf It (Vi t)) unlr, (vi t) eMdt

s

T
< C <\un|pa (vi, T) |eM + |unlr, (v, 8) [ + )\f [un|r, (vi,t)] eMdt>

s
T

1 (T 1
+§J uflhﬂa (vi, t) Mt + §j (0 fr, (VZ-,t))2 Mt

From Step 1 and the assumptions on f, the last three terms in the right hand side of the latter
estimate are bounded by a constant depending on A, but not on n. To summarize,

T ~
j FIra (Vi £) Grunlr, (vist) e)‘tdt‘ < C (Junle, 011X + Junlr, (vi,5) |€) + C(A). (4:30)

To conclude from (4.29) and (4.30), we use the following estimates

e (vint)] < C U (2, )] d +f Oun (2, 1) dm) ,
Ta Ta (4.31)
ullp, (vi,t) < C <f u (x,t) do +f |t Ouny, (x,1)] dx) ,
To o
fort=sandt="1T.
Then proceeding as in the proof of Theorem 2.5 and combining (4.26), (4.27), (4.28), (4.29)
and (4.30) with (4.31), we find the desired estimates by taking A large enough.
Let us end the proof by proving (4.31). The function ¢ = uy,|r, (+,t) is in H'(Ty). By
the continuous embedding H'(T',) — C(T,), we can define ¢ in the pointwise sense (and even
at two endpoints of any edges, see (1.2)). For all « € A and z,y € Ty, we have ¢(x) =

G(y) + §py 01 00(€)dE. Tt follows

Tale(z) = La plz)dy = La o)y + | a f[ | avle)dsdy < [

Ta

B(E)]de + Tl L 106(€)|de
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which gives the first estimate setting = v;. The second estimate is obtained in the same way
replacing ¢ by ¢? and using the fact that W1(T',)ss is continuously imbedded in C(T,).
O

Proof of Theorem 4.11. From Lemma 4.14, up to the extraction of a subsequence, there exists

we L? (0,T; HE (T)) n WH2 (I x (0,T)) such that

Uy — U, in L? (0, T; F n H (1)),

(4.32)
Optn, — dpu, in L2 (T x (0,T)).

Moreover, by Aubin-Lions Theorem (see Lemma A.1),

compact
—>

L?(0,T;F n HZ (T)) n W2 (0,T; L* () L*(0,T; F),

so up to the extraction of a subsequence, we may assume that u, — u in L?(0,T; F) and almost
everywhere. Moreover, from the compactness of the trace operator from Wh2(I'y, x (0,7)) to
L?(0q x (0,7)), tnlor, x(0,1) = tlora x(o,r) in L*(0Tq x (0,T)) and for almost every t € (0, 7).
Similarly, un|r, x(e=1y = Ulr, xge=17 in L?(I'y) and almost everywhere in I'y. Then, using the
Lipschitz continuity of H with respect to its second argument, and similar arguments as in the
proof of Theorem 2.4, we obtain the existence of a solution of (4.11) satisfying (4.17) by letting
n — +oo. Since H*(T',) € C'*9(T,) for some o € (0,1/2), u(-,t) € C1*7 (Ty,) for all a € A and
a.a. t.

Finally, the proof of uniqueness is a consequence of the energy estimate (4.17) for w. U

Next, we want to prove that, if u is the solution of (4.11) and v is the solution (4.1), then
ou = v. It means that we have to define a primitive function on the network T'.

Definition 4.15. Let © € To, = [V, v4,] and y € Tq,, = [Vin Vipnyi |- We denote the set of
paths joining from z to y by 7. More precisely, if £ € Zf, we can write £ under the form

L=x—>V; >Vy— ...V, —Y,

with v;, € V and [I/Z'k, l/ik+1] =Ty, . The integral of a function ¢ on L is defined by

L¢<£)ds=f[x’yi1]¢<£)ds+éf[

recalling that the integrals on a segment are defined in (1.8).

]¢<s>ds+f b(6) e, (4.33)

Vi Vig 41 [Vimvy]

Lemma 4.16. Let u be the unique solution of (4.11) with up = dvp. Then for all x,y € T and
a.e. te0,T],

f w(Ctyde = [ w(Ctyde, for all £, Lo € T
El 52

This means that the integral of u from x to y does not depend on the path. Hence, for any L € T7,
we can define

| wcnac=| uicoa

Ty
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Proof of Lemma 4.16. First, it is sufficient to prove Sﬁu (¢, t)d¢ = 0 for all £ € TZ. Secondly,
if a given edge is browsed twice in opposite senses, the two related contributions to the integral
sum to zero. It follows that, without loss of generality, we only need to consider loops in ZZ such
that all the complete edges that it contains are browsed once only. It is also easy to see that we
can focus on the case when x € V. To summarize, we only need to prove that

L
when v;, € VoI and £ = vy — v, — ... = v, — V4, where v;, # v;, for k = 1.
The following conditions
1. e|r, = 0 on each edge I', not contained in £
2. forall k=0,...m—1, e|pak = liy<ipr1 = Lip>ipy, if Do, is the edge joining v, and vy,
3. elr,,, = lim<io — Lip>ip if L, is the edge joining v;,, and v,

define a unique function e € E which takes at most two values on £, namely +1.

From Definition 4.15, we have
d - d
glocna = XG0 wenaeg | o
k=0 [Vik7'/ik+1] [Vimvui()]
d

d
at
= G reneic [ auicneac

Then, using Definition 4.8, Remark 4.9 and Remark 4.10 yields that

G| ucna
) j ~pad®u (1) + OH (G (1) = Of (¢ 0)] e () de
acA

_ Zf [ o (C.1) + OH (G, (C,8)) — F (G,8)] e () d

i el (1) Mg 10, <_Nakau‘1“ak (Vik+17t) + He (Vik+17u|rak (Vik+1=t)) - f (Vik+1=t))
= Ta )
ST\ i (—Hanfule,, s t) + B (v ulr,, (,8)) = £ (v, 1))

where we have set 4,11 = i9. Now using (4.9) (which is satisfied for a.e. ¢ from the regularity of
u) and the fact that e € E, we conclude that

jt f (C,4)d¢ = 0. (4.34)

[Lucta= [ wena | ur©a- | arac-o

where the last identity comes from the assumption that vy € V' (the continuity of vr).

Hence

O

Lemma 4.17. If up = dvp € F, then the weak solution u of (4.11) satisfies u = dv where v is
the unique solution of (4.1).
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Proof of Lemma 4.17. For simplicity, we write the proof in the case when oI"' = . The proof is
similar in the other case.

Let us fix some vertex v € 0I'. From standard regularity results for Hamilton-Jacobi equation
with homogeneous Neumann condition, we know that that there exists w, a closed neighborhood
of {vx} in I made of a single straigt line segment and containing no other vertices of I" than v,
such that v|,xo7) € L*(0,T; H*(w)) n C([0,T]; H*(w) n WH2(0,T; H' (w)). Hence, v satisfies

the Hamilton-Jacobi equation at almost every point of w x (0,7"). Moreover the equation
Orv(vp, t) + pd*v(vg, t) — H(vy,0) + f(vp,t) =0 (4.35)

holds for almost every ¢ € (0,T) and in L?(0,T).
For every z € T" and t € [0,T], we define

0 (x,t) = v (v, t) + J u (¢, t)dC. (4.36)
Uk

Remark 4.18. If oI' = &, then the proof should be modified by replacing v by a point v € T'\V

and by using local regularity results for the HJB equation in (4.1).

We claim that ¢ is a solution of (4.1).

First, 0 (-,t) is continuous on I'. Indeed, 0(y,t) — v(z,t) = Sa:_g)/ u(¢,t)d¢. On the other hand,
ue O(0,T; F) ¢ L*(T x [0,T]). Tt follows that |0(y,t) — 0(z,t)| < [|u|[zerx (o, dist(z,y)
which implies that o (-, ) is continuous on T.

Next, from the terminal conditions for w,

0 (2, T) =v (v, T) +J
7k

WG T)dG = vr () + | _ ovr ()¢ = vr (z).
Uk
where the last identity follows from the continuity of vy on I'.
Let us check the Kirchhoff condition for 9. Take v; € V and a € A;. From (1.7), for a.e.
te (0,T), 0a0(vi,t) = nindo|r, (v, t) and from (4.36), 00|p, (vi,t) = u|r, (v4,t). Since u(-,t) € F,
we get

Z Yialalal(Vi, ) = Z YiakaNiat|r, (Vi, t) = 0,
acA; acA;

which is exactly the Kirchhoff condition for ¢ at v;.

There remains to prove ¢ solves the Hamilton-Jacobi equation in I'\V: Take = € T',\V for
some a € A and consider a path 3% 3 £ = v, — --- — v;,, — x, where iy = k and v;,, € I',.
Let v;,, ., be the other endpoint of I',. We proceed as in the proof of Lemma 4.16: the following
conditions

1. e|r, = 0 on each edge I', not contained in £
2. forall j =0,...m, e|pj = Li;<i;y, — Lij>i;,, if T'j is the edge joining v;; and v;, .,

define a unique piecewise constant function e which takes at most two values on £, namely +1.
Note that e does not belong to E because e(vx) = 0, but that e satisfies > . 4. niaelr, (vi) =
0 for all v; € V\dT'.

Using this function, a similar computation as in the proof of Lemma 4.16 implies that, for
almost every t € (0,7,

oro(z,t) — Qw(vk, t) = — padulr, (x,t) + H (z,ulr, (z,t)) — f(x,t)
+ o Oov (I/k, t) —H (Vk, O) +f (Vk, t) .
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Then, using (4.35) and the fact that 00 = wu, the latter identity yields that for almost every
(x,t) € (0,T) x T,

040 (x,t) + 110,00 (x,t) — H (z,00 (x,t)) + f (z,t) = 0.

We have proven that v is a solution of (4.1). Since v is the unique solution of (4.1), we conclude
that v = 0 and Jv = w. O

We are now ready to give the proof of Theorem 4.5.

Proof of Theorem 4.5. Since 0v = u by Lemma 4.17 and w satisfies (4.17) by Theorem 4.11, we
obtain that v € L? (0,7 H* (")) and dw € L* (0,T; H' (T')) and (4.8) holds.

Therefore, using an interpolation result combined with Sobolev embeddings, see [4] or Lemma A.2
in the Appendix, v € C'*%7/2(I" x [0,T]) for some 0 < o < 1.

Finally, we know that since f € W'2(0,T, H}(I)), flr.xp1r] € C™(Tq x [0,T]) for all
ne (0,1/2). If f € C™2 (T x [0,T7]) for some n € (0,1/2), we claim that v € C2L(T" x [0,T]).
This is a direct consequence of a theorem of Von Below, see the main theorem in [24], for the
(modified) heat equation

— 0w — pad*w = g(x,t) in (T,\V) x (0,7), (4.37)

with the same Kirchhoff conditions as in (4.1): Note that if the terminal Cauchy condition
for wis w(-,t = T) = vp and if ¢ = f — H(x,0v), then w = v. Now g = f — H(z,0v) €
C™2(Ty x [0,T]), where 1/2 > 7 = min(o,7) > 0. Using the result in [24], we obtain that
v=we C*I+7/2(T, x [0,T]), then that v is a classical solution of (4.1). O

5 Existence, uniqueness and regularity for the MFG system (Proof
of Theorem 1.11)

Proof of existence in Theorem 1.11. Given mg and vr, let us construct the map 7 : L2 (0,T;V) —
L?(0,T;V) as follows.

Given v € L? (0,T;V), we first define m as the weak solution of (3.1) with initial data mq
and b = Hy(x,0v). We know that m € L% (0, T; W) n C([0,T]; L*(T)) n W12(0,T; V).

We claim that if v, — v in L? (0,73 V) then Hy(-, dv,) tends to Hy(-, 0v) in L3(T x (0,7)).
To prove the claim, we argue by contradiction: assume that there exist a positive number € and a
subsequence vy, such that |Hy (-, 0vg(ny) — Hp(+, V)| L2(0x(0,r)) > € Then since 0vgy, tends to
ov in L2(T' x (0,T)), we can extract another subsequence Vy(n) from vy, such that dvy(, tends
to dv almost every where in I' x (0, 7). From the continuity of Hy, we deduce that Hy (-, 0vy(n))
tends to Hp(-,dv) almost everywhere in I' x (0,T"). Since there exists a positive constant Cy
such that |[Hy (-, dvym))|eo < Co, [Hp(+, 0v)|eo < Co, Lebesgue dominated convergence theorem
ensures that Hy(-, 0vy(n)) tends to Hy(-, 0v) in L*(T x (0,T)), which is the desired contradiction.

To summarize, H,(-,0v,) tends to Hy(-,dv) in L?(T' x (0,7)) on the one hand, and for a
positive constant Co, |Hp(-, 0vp)|w < Co, |Hp(-, 0v)|w < Cp. Using Lemma 3.4, we see that
my, the weak solution of (3.1) with initial data mg and b = Hp(z, dv,) converges to m in
L?(0,T;W) n L™ (O,T; L2(F)) ~ W1H2(0,T;V"). Hence, the map v +~ m is continuous from
L?(0,T;V) to L? (0, T; W) n L® (O, T; L2(F)) A W2(0,T; V). Moreover, the a priori estimate
(3.3) holds uniformly with respect to v.

Then, knowing m, we construct T'(v) = ¥ as the unique weak solution of (4.1) with f(x,t) =
¥ [m(-,t)](x). Note that m ~ f is continuous and locally bounded from L?*(T' x (0,7)) to

32



L*(T'x(0,T)). Then Lemma 4.4 ensures that the map m — % is continuous from L?(T'x (0, 7)) to
L?(0,T; H*()) nL* (0, T; V) nWh2(0,T; L*(T")). From Aubin-Lions theorem, see Lemma A 1,
m — ¥ maps bounded sets of L%(T" x (0,T)) to relatively compact sets of L2 (0,7;V).
Therefore, the map T : v — © is continuous from L?(0,7;V) to L?(0,7;V) and has a
relatively compact image. Finally, we apply Schauder fixed point theorem [10, Corollary 11.2]
and conclude that the map 7 admits a fixed point v. We know that v € L? (O,T; H 2(F)) N
L®(0,T;V) n WH2(0,T; L*(T)) and m € L? (0, T; W) n L (0, T; L*(T')) n W12(0,T; V'(T')).
Hence, there exists a weak solution (v,m) to the mean field games system (1.25). O

Proof of uniqueness in Theorem 1.11. We assume that there exist two solutions (vi,m;) and
(va,m2) of (1.25). We set U = v; — v and @ = my — mo and write the system for 7,m

.
— 04T — 11 0°T + H (z,0v1) — H (z,0v9) — (¥ [m1] — ¥ [m2]) =0, x el \V, te(0,T),
O — pa0*m — 0 (m10pH (z,0m1) — madyH (x,0ms)) = 0 xeTl \V, te(0,T),

_ ' -
@\Fa (Vi7t) = @‘Fg (Vi7t)7 m|Fa <V“t) = m|F,3 (V )7 a,BeA;, vieV,
Vi YiB
Z VialaOal (Vi t) = 0, vieV, te(0,T),

)\ aG.Ai
>, i [malr, (1) H® (vi, Qo1 (vist)) = malr, (vi) S H® (vi, 0var,, (vi,1))]
aG.Ai
+ Z Lo 0o (Vi t) =0, v,eV, te(0,T),
aG.Ai
v(x,T) =0, m(z,0) =0.

Testing by m the boundary value problem satified by @, testing by w the boundary value problem
satified by 7, subtracting, we obtain

LTL(ml_m2)(7/[ 1] = 7 [m2)] dmdt—kf f&tm@ drdt

+ Z my [H (z,0ve) — H (z,0v1) — 0pH (z, 0v1) 0] dx

+ Z mg [H (z,0v1) — H (x, 0v2) + 0pH (z,0v1) 0v] dx = 0.
acA 'l

Since V is strictly monotone, the first sum is nonnegative. Moreover,

since v(x,T) = 0 and m(x,0) = 0. From the convexity of H and the fact that mi,mo are
nonnegative, the last two sums are nonnegative. Therefore, all the terms are zero and thanks
again to the fact that 7 is strictly increasing, we obtain mq = mo. From Lemma 4.2, we finally
obtain v; = vs. O

Proof of reqularity in Theorem 1.11. We make the stronger assumptions written in Section 1.4.4
on the coupling operator ¥. We know that ¥ [m] € W12(0,T, H}(I')) n PC(T' x [0,T]). As-
suming also that vp € V and dvyr € F, we can apply the regularity result in Theorem 4.5:
ve L?(0,T; H?(T)) n Wh2(0,T; H' (I)).
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Moreover, since ¥ [m] € WH2(0,T, H}(T')), we know that (Y [m])|r,xjo,r) € C79/2(Ty x
[0,T]) for all 0 < o < 1/2. If vy € C**" A D for some n € (0,1) (D is defined in (1.13)), then
from Theorem 4.5, v € C**7147/2(T" x [0, T]) for some 7 € (0,1) and the boundary value problem
for v is satisfied in a classical sense.

In turn, if for all @ € A, dpH®(z, p) is a Lipschitz function defined in I'y, x R, and if mg € W,
then we can use the latter regularity of v and arguments similar to those contained in the proof
of Theorem 2.5 and prove that m € C([0,T]; W) n W12(0,T; L*(T')) n L*(0,T; HZ(T)). O

A Some continuous and compact embeddings

Lemma A.1. (Aubin-Lions Lemma, see [18]) Let Xo,X and X; be function spaces, (Xo and X,
are reflexive). Suppose that X¢ is compactly embedded in X and that X is continuously embedded
in X1. Consider some real numbers 1 < p,q < +00. Then the following set

{v:(0,T) > Xo: ve L (0,T; Xy), dve L1(0,T; X1)}
is compactly embedded in LP (0,T; X).

Lemma A.2. (Amann, see [4]) Let ¢ : [a,b] x [0,T] — R such that ¢ € L*(0,T; H?(a,b)) and
orp e L2(0,T; L?(a,b)). Then ¢ € C5(0,T; H'(a,b)) for some s € (0,1/2).

This result is a consequence of the general result [4, Theorem 1.1] taking into account [4,
Remark 7.4]. More precisely, we have

compact
—>

By i= H(a,0) "5 B = H'(a,0) — By = L*(a,b).

Let ro=r1=r=2,00=0,01=2and o =1. For any v € (0,1), we define

1 1 1—v
— = —+ , oy:i=(1—v)sg+ vsy.
Ty To 1

This implies that r, = 2 and 0, = 2v. Therefore, if v € (1/2,1), then the following inequality is
satisfied
o—1/r<o,—1/r, <o1—1/r.

Hence, we infer from [4, Remark 7.4]
Ey — (Eo, E1)uy = (Eo-E1)y,y, = W™ (a,b) — E,

where (Ey, E1)y.1, (Eo-E1).,r, are interpolation spaces. This is precisely the assumption allowing
to apply [4, Theorem 1.1|, which gives the result of Lemma A.2.
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