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Finite Horizon Mean Field Games on Networks

Yves Achdou ∗, Manh-Khang Dao †, Olivier Ley ‡, Nicoletta Tchou §

March 6, 2019

Abstract

We consider finite horizon stochastic mean field games in which the state space is a
network. They are described by a system coupling a backward in time Hamilton-Jacobi-
Bellman equation and a forward in time Fokker-Planck equation. The value function u is
continuous and satisfies general Kirchhoff conditions at the vertices. The density m of the
distribution of states satisfies dual transmission conditions: in particular, m is generally
discontinuous across the vertices, and the values of m on each side of the vertices satisfy
special compatibility conditions. The stress is put on the case when the Hamiltonian is
Lipschitz continuous. Existence and uniqueness are proven.

1 Introduction and main results

This work is the continuation of [2] which was devoted to mean field games on networks in the
case of an infinite time horizon. The topic of mean field games (MFGs for short) is more and more
investigated since the pioneering works [14, 15, 16] of Lasry and Lions: it aims at studying the
asymptotic behavior of stochastic differential games (Nash equilibria) as the number N of agents
tends to infinity. We refer to [2] for a more extended discussion on MFGs and for additional
references on the analysis of the system of PDEs that stem from the model when there is no
common noise.

A network (or a graph) is a set of items, referred to as vertices (or nodes or crosspoints),
with connections between them referred to as edges. In the recent years, there has been an
increasing interest in the investigation of dynamical systems and differential equations on net-
works, in particular in connection with problems of data transmission and traffic management.
The literature on optimal control in which the state variable takes its values on a network is
recent: deterministic control problems and related Hamilton-Jacobi equations were studied in
[1, 3, 11, 12, 20, 21]. Stochastic processes on networks and related Kirchhoff conditions at the
vertices were studied in [8, 9].

The present work is devoted to finite horizon stochastic mean field games (MFGs) taking
place on networks. The most important difficulty will be to deal with the transition conditions
at the vertices. The latter are obtained from the theory of stochastic control in [9, 8], see
Section 1.3 below. In [6], the first article on MFGs on networks, Camilli and Marchi consider
a particular type of Kirchhoff condition at the vertices for the value function: this condition
comes from an assumption which can be informally stated as follows: consider a vertex ν of the
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network and assume that it is the intersection of p edges Γ1, . . . ,Γp, ; if, at time τ , the controlled
stochastic process Xt associated to a given agent hits ν, then the probability that Xτ` belongs
to Γi is proportional to the diffusion coefficient in Γi. Under this assumption, it can be seen
that the density of the distribution of states is continuous at the vertices of the network. In the
present work, the above mentioned assumption is not made any longer. Therefore, it will be seen
below that the value function satisfies more general Kirchhoff conditions, and accordingly, that
the density of the distribution of states is no longer continuous at the vertices; the continuity
condition is then replaced by suitable compatibility conditions on the jumps across the vertices.
A complete study of the system of differential equations arising in infinite horizon mean field
games on networks with at most quadratic Hamiltonians and very general coupling costs has
been supplied in a previous work, see [2].

In the present work, we focus on a more basic case, namely finite horizon MFG with globally
Lipschitz Hamiltonian with rather strong assumptions on the coupling cost. This will allow
us to concentrate on the difficulties induced by the Kirchhoff conditions. Therefore, this work
should be seen as a first and necessary step in order to deal with more difficult situations, for
example with quadratic or subquadratic Hamiltonians. We believe that treating such cases will
be possible by combining the results contained in the present work with methods that can be
found in [22, 23], see also [5, 13, 17] for references on Hamilton-Jacobi equations.

After obtaining the transmission conditions at the vertices for both the value function and the
density, we shall prove existence and uniqueness of weak solutions of the uncoupled Hamilton-
Jacobi-Bellman (HJB) and Fokker-Planck (FP) equations (in suitable space-time Sobolev spaces),
and regularity results.

The present work is organized as follows: the remainder of Section 1 is devoted to setting
the problem and obtaining the system of partial differential equations and the transmission
conditions at the vertices. Section 2 contains useful results on a modified heat equation in the
network with general Kirchhoff conditions. Section 3 is devoted to the Fokker-Planck equation.
Weak solutions are defined by using a special pair of Sobolev spaces of functions defined on the
network referred to as V and W below. Section 4 is devoted to the HJB equation supplemented
with the Kirchhoff conditions: it addresses the main difficulty of the work, consisting of obtaining
regularity results for the weak solution (note that, to the best of our knowledge, such results for
networks and general Kirchhoff conditions do not exist in the literature). Finally, the proofs of
the main results of existence and uniqueness for the MFG system of partial differential equations
are completed in Section 5.

1.1 Networks and function spaces

1.1.1 The geometry

A bounded network Γ (or a bounded connected graph) is a connected subset of Rn made of a
finite number of bounded non-intersecting straight segments, referred to as edges, which connect
nodes referred to as vertices. The finite collection of vertices and the finite set of closed edges
are respectively denoted by V :“ tνi, i P Iu and E :“ tΓα, α P Au, where I and A are finite sets
of indices contained in N. We assume that for α, β P A, if α ­“ β, then Γα X Γβ is either empty
or made of a single vertex. The length of Γα is denoted by ℓα. Given νi P V, the set of indices
of edges that are adjacent to the vertex νi is denoted by Ai “ tα P A : νi P Γαu. A vertex νi
is named a boundary vertex if 7 pAiq “ 1, otherwise it is named a transition vertex. The set
containing all the boundary vertices is named the boundary of the network and is denoted by
BΓ hereafter.

The edges Γα P E are oriented in an arbitrary manner. In most of what follows, we shall make
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the following arbitrary choice that an edge Γα P E connecting two vertices νi and νj, with i ă j

is oriented from νi toward νj : this induces a natural parametrization πα : r0, ℓαs Ñ Γα “ rνi, νjs:

παpyq “ pℓα ´ yqνi ` yνj for y P r0, ℓαs. (1.1)

For a function v : Γ Ñ R and α P A, we define vα : p0, ℓαq Ñ R by

vαpyq :“ v ˝ παpyq, for all y P p0, ℓαq.

The function vα is a priori defined only in p0, ℓαq. When it is possible, we extend it by continuity
at the boundary by setting

vα p0q :“ lim
yÑ0`

vα pyq and vα pℓαq :“ lim
yÑℓ´

α

vα pyq .

In that latter case, we can define

v|Γα pxq “

$
’’’’&
’’’’%

vα
`
π´1
α pxq

˘
, if x P ΓαzV,

vα p0q “ lim
yÑ0`

vα pyq , if x “ νi,

vα pℓαq “ lim
yÑℓ´

α

vα pyq , if x “ νj .

(1.2)

Notice that v|Γα does not coincide with the original function v at the vertices in general when v
is not continuous.

Remark 1.1. In what precedes, the edges have been arbitrarily oriented from the vertex with the
smaller index toward the vertex with the larger one. Other choices are of course possible. In
particular, by possibly dividing a single edge into two, adding thereby new artificial vertices, it
is always possible to assume that for all vertices νi P V,

either παp0q “ νi, for all α P Ai or παpℓαq “ νi, for all α P Ai. (1.3)

This idea was used by Von Below in [24]: some edges of Γ are cut into two by adding artificial
vertices so that the new oriented network Γ has the property (1.3), see Figure 1 for an example.

Γ1ν1 ν2

Γ2

ν3

Γ3

ν4
Γ4

Γ̃1ν̃1 ν̃2

Γ̃2

ν̃5

Γ̃5

ν̃3

Γ̃3

ν̃4
Γ̃4

Figure 1: Left: the network Γ in which the edges are oriented toward the vertex with larger
index (4 vertices and 4 edges). Right: a new network Γ̃ obtained by adding an artificial vertex
(5 vertices and 5 edges): the oriented edges sharing a given vertex ν either have all their starting
point equal ν, or have all their terminal point equal ν.
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1.1.2 Function spaces related to the space variable

The set of continuous functions on Γ is denoted by CpΓq and we set

PC pΓq

“

#
v : Γ Ñ R : for all α P A,

ˇ̌
ˇ̌
ˇ
vα P Cp0, ℓαq

vα can be extended by continuity to r0, ℓαs.

+
.

By the definition of piecewise continuous functions v P PCpΓq, for all α P A, it is possible to
define v|Γα by (1.2) and we have v|Γα P CpΓαq, vα P Cpr0, ℓαsq.

For m P N, the space of m-times continuously differentiable functions on Γ is defined by

Cm pΓq :“ tv P C pΓq : vα P Cm pr0, ℓαsq for all α P Au .

Notice that v P Cm pΓq is assumed to be continuous on Γ, and that its restriction v|Γα
to

each edge Γα belongs to CmpΓαq. The space Cm pΓq is endowed with the norm }v}CmpΓq :“ř
αPA

ř
kďm

››Bkvα
››
L8p0,ℓαq

. For σ P p0, 1q, the space Cm,σ pΓq, contains the functions v P Cm pΓq

such that Bmvα P C0,σ pr0, ℓαsq for all α P A; it is endowed with the norm

}v}Cm,σpΓq :“ }v}CmpΓq ` sup
αPA

sup
y‰z

y,zPr0,ℓαs

|Bmvα pyq ´ Bmvα pzq|

|y ´ z|σ
.

For a positive integer m and a function v P Cm pΓq, we set for k ď m,

Bkv pxq “ Bkvα
`
π´1
α pxq

˘
if x P ΓαzV. (1.4)

For a vertex ν, we define Bαv pνq as the outward directional derivative of v|Γα at ν as follows:

Bαv pνq :“

$
’&
’%

lim
hÑ0`

vα p0q ´ vα phq

h
, if ν “ πα p0q ,

lim
hÑ0`

vα pℓαq ´ vα pℓα ´ hq

h
, if ν “ πα pℓαq .

(1.5)

For all i P I and α P Ai, setting

niα “

#
1 if νi “ παpℓαq,

´1 if νi “ παp0q,
(1.6)

we have
Bαvpνiq “ niα Bv|Γαpνiq “ niα Bvαpπ´1

α pνiqq. (1.7)

Remark 1.2. Changing the orientation of the edge does not change the value of Bαvpνq in (1.5).

We say that v is Lebesgue-integrable on Γα if vα is Lebesgue-integrable on p0, ℓαq. In this
case, for all x1, x2 P Γα,

ż

rx1,x2s
v pxq dx :“

ż π´1
α px2q

π´1
α px1q

vα pyq dy. (1.8)

When v is Lebesgue-integrable on Γα for all α P A, we say that v is Lebesgue-integrable on Γ

and we define
ż

Γ

v pxq dx :“
ÿ

αPA

ż ℓα

0

vα pyq dy.
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The space Lp pΓq “ tv : v|Γα P Lp pΓαq for all α P Au, p P r1,8s, is endowed with the norm

}v}LppΓq :“
´ř

αPA }vα}p
Lpp0,ℓαq

¯ 1

p
if 1 ď p ă 8, and maxαPA }vα}L8p0,ℓαq if p “ `8. We shall

also need to deal with functions on Γ whose restrictions to the edges are weakly-differentiable:
we shall use the same notations for the weak derivatives.

Definition 1.3. For any integer s ě 1 and any real number p ě 1, the Sobolev space W s,p
b pΓq

is defined as follows

W
s,p
b pΓq :“ tv : Γ Ñ R s.t. vα P W s,p p0, ℓαq for all α P Au ,

and endowed with the norm

}v}W s,p
b

pΓq “

˜
sÿ

k“1

ÿ

αPA

›››Bkvα
›››
p

Lpp0,ℓαq
` }v}p

LppΓq

¸ 1

p

.

For s P Nzt0u, we also set Hs
b pΓq “ W

s,2
b pΓq and HspΓq “ CpΓq XHs

b pΓq.

Finally, when dealing with probability distributions in mean field games, we will often use
the set M of probability densities, i.e., m P L1pΓq, m ě 0 and

ş
Γ
mpxqdx “ 1.

1.1.3 Some space-time function spaces

The space of continuous real valued functions on Γ ˆ r0, T s is denoted by CpΓ ˆ r0, T sq.
Let PCpΓ ˆ r0, T sq be the space of the functions v : Γ ˆ r0, T s Ñ R such that

1. for all t P r0, T s, vp¨, tq belongs to PCpΓq

2. for all α P A, v|Γαˆr0,T s is continuous on Γα ˆ r0, T s;

For a function v P PCpΓ ˆ r0, T sq, α P A, we set vαpy, tq “ v|Γαˆr0,tspπαpyq, tq for all py, tq P
r0, ℓαs ˆ r0, T s.

For two nonnegative integers m and n, let Cm,npΓ ˆ r0, T sq be the space of continuous real
valued functions v on Γ ˆ r0, T s such that for all α P A, v|Γαˆr0,T s P Cm,npΓα ˆ r0, T sq. For
σ P p0, 1q, τ P p0, 1q, we define in the same manner Cm`σ,n`τ pΓ ˆ r0, T sq

Useful results on continuous and compact embeddings of space-time function spaces are given
in Appendix A.

1.2 A class of stochastic processes on Γ

After rescaling the edges, it may be assumed that ℓα “ 1 for all α P A. Let µα, α P A and
piα, i P I, α P Ai be positive constants such that

ř
αPAi

piα “ 1. Consider also a real valued
function a P PCpΓ ˆ r0, T sq, such that, for all α P A, t P r0, T s, a|Γαp¨, tq belongs to C1pΓαq.

As in Remark 1.1, we make the assumption (1.3) by possibly adding artificial nodes: if νi is
such an artificial node, then 7pAiq “ 2, and we assume that piα “ 1{2 for α P Ai. The diffusion
parameter µ has the same value on the two sides of an artificial vertex. Similarly, the function
a does not have jumps across an artificial vertex.

Consider a Brownian motion pWtq defined on the real line. Following Freidlin and Sheu ([8]),
we know that there exists a unique Markov process on Γ with continuous sample paths that can
be written pXt, αtq where Xt P Γαt (if Xt “ νi, i P I, αt is arbitrarily chosen as the smallest
index in Ai) such that, defining the process xt “ παtpXtq with values in r0, 1s,
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• we have
dxt “

a
2µαtdWt ` aαtpxt, tqdt ` dℓi,t ` dhi,t, (1.9)

• ℓi,t is continuous non-decreasing process (measurable with respect to the σ-field generated
by pXt, αtq) which increases only when Xt “ νi and xt “ 0,

• hi,t is continuous non-increasing process (measurable with respect to the σ-field generated
by pXt, αtq) which decreases only when Xt “ νi and xt “ 1,

and for all function v P C2,1pΓ ˆ r0, T sq such that

ÿ

αPAi

piαBαv pνi, tq “ 0, for all i P I, t P r0, T s, (1.10)

the process

Mt “ vpXt, tq ´

ż t

0

´
Btv pXs, sq ` µαsB2v pXs, sq ` a|Γαs

pXs, sq Bv pXs, sq
¯
ds (1.11)

is a martingale, i.e.,
EpMt|Xsq “ Ms, for all 0 ď s ă t ď T. (1.12)

For what follows, it will be convenient to set

D :“

#
u P C2 pΓq :

ÿ

αPAi

piαBαu pνiq “ 0, for all i P I

+
. (1.13)

Remark 1.4. Note that in (1.10), the condition at boundary vertices boils down to a Neumann
condition.

Remark 1.5. The assumption that all the edges have unit length is not restrictive, because we
can always rescale the constants µα and the piecewise continuous function a.

The goal is to derive the boundary value problem satisfied by the law of the stochastic process
Xt. Since the derivation here is formal, we assume that the law of the stochastic process Xt is a
measure which is absolutely continuous with respect to the Lebesgue measure on Γ and regular
enough so that the following computations make sense. Let mpx, tq be its density. We have

E rv pXt, tqs “

ż

Γ

v px, tqm px, tq dx, for all v P PCpΓ ˆ r0, T sq. (1.14)

Consider u P C2,1pΓ ˆ r0, T sq such that for all t P r0, T s, up¨, tq P D. Then, from (1.11)-(1.12),
we see that

E ru pXt, tqs “ E ru pX0, 0qs ` E

„ż t

0

´
Btu pXs, sq ` µαsB2u pXs, sq ` a|Γαs

pXs, sq Bu pXs, sq
¯
ds


.

(1.15)
Using (1.14) and taking the time-derivative of each member of (1.15), we obtain

ż

Γ

Btpumqpx, tqdx “ E

´
Btu pXt, tq ` µαsB2u pXt, tq ` a|Γαs

pXt, tq Bu pXt, tq
¯
.

Using again (1.14), we get
ż

Γ

`
µB2upx, tq ` apx, tqBupx, tq

˘
mpx, tqdx “

ż

Γ

upx, tqBtmpx, tqdx. (1.16)
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By integration by parts, recalling (1.3), we get

0 “
ÿ

αPA

ż

Γα

`
Btmpx, tq ´ µαB2mpx, tq ` Bpamqpx, tq

˘
upx, tqdx

´
ÿ

iPI

ÿ

αPAi

rniαa|Γαpνi, tqm|Γαpνi, tq ´ µαBαmpνi, tqs u|Γαpνi, tq

´
ÿ

iPI

ÿ

αPAi

µαm|Γαpνi, tqBαupνi, tq, (1.17)

where niα is defined in (1.6).
We choose first, for every α P A, a smooth function u which is compactly supported in

pΓαzVq ˆ r0, T s. Hence u|Γβ
pνi, tq “ 0 and Bβupνi, tq “ 0 for all i P I, β P Ai. Notice that

up¨, tq P D. It follows that m satisfies

`
Btm´ µαB2m` B pmaq

˘
px, tq “ 0, for x P ΓαzV, t P p0, T q, α P A. (1.18)

For a smooth function χ : r0, T s Ñ R compactly supported in p0, T q, we may choose for every
i P I, a smooth function u such that upνj , tq “ χptqδi,j for all t P r0, T s, j P I and Bαupνj , tq “ 0

for all t P r0, T s, j P I and α P Aj, we infer a condition for m at the vertices,

ÿ

αPAi

niαa|Γαpνi, tqm|Γαpνi, tq ´ µαBαmpνi, tq “ 0 for all i P I, t P p0, T q. (1.19)

This condition is called a transmission condition if νi is a transition vertex and reduces to a
Robin boundary condition when νi is a boundary vertex.

Finally, for a smooth function χ : r0, T s Ñ R compactly supported in p0, T q, for every
transition vertex νi P VzBΓ and α, β P Ai, we choose u such that

• up¨, tq P D

• Bαupνi, tq “ χptq{piα, Bβupνiq “ ´χptq{piβ, Bγupνiq “ 0 if γ P Aiztα, βu

• The directional derivatives of u at the vertices ν ­“ νi are 0.

Using such a test-function in (1.17) yields a jump condition for m,

m|Γα pνi, tq

γiα
“
m|Γβ

pνi, tq

γiβ
, for all α, β P Ai, νi P V, t P p0, T q,

in which
γiα “

piα

µα
, for all i P I, α P Ai. (1.20)

Summarizing, we get the following boundary value problem for m (recall that the coefficients
niα are defined in (1.6)):

$
’’’’’’’’&
’’’’’’’’%

Btm´ µαB2m` B pmaq “ 0, px, tq P pΓαzVq ˆ p0, T q, α P A,
ÿ

αPAi

µαBαm pνi, tq ´ niαa|Γαpνiqm|Γα pνi, tq “ 0, t P p0, T q, νi P V,

m|Γα pνi, tq

γiα
“
m|Γβ

pνi, tq

γiβ
, t P p0, T q, α, β P Ai, νi P V,

mpx, 0q “ m0pxq, x P Γ.

(1.21)
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1.3 Formal derivation of the MFG system on Γ

Here we aim at obtaining the MFG system of forward-backward partial differential equations on
the network, at least formally. The assumptions that we are going to make below on the optimal
control problem are a little restrictive, for two reasons: first, we wish to avoid some technicalities
linked to the measurability of the control process; second, the assumptions on the costs must
be consistent with the assumptions that we shall make on the Hamiltonian, see Section 1.4.2
below. In particular, we shall impose that the Hamiltonian is globally Lipschitz continuous.
More general and difficult cases, e.g., quadratic Hamiltonians, will be the subject of a future
work.

Consider a continuum of indistinguishable agents moving on the network Γ. The state of a
representative agent at time t is a time-continuous controlled stochastic process Xt as defined
in Section 1.2, where the control is the drift at, supposed to be in the form at “ apXt, tq. Let
mp¨, tq be the probability measure on Γ that describes the distribution of states at time t.

For a representative agent, the optimal control problem is of the form

v px, tq “ inf
as

Ext

„ż T

t

pL pXs, asq ` V rmp¨, tqs pXsqq ds` vT pXT q


, (1.22)

where Ext stands for the expectation conditioned by the event Xt “ x.
We discuss the ingredients appearing in (1.22):

• We assume that the control is in a feeback form at “ apXt, tq where the function a, defined
on Γ ˆ r0, T s, is sufficiently regular in the edges of the network. Then, almost surely if
Xt P ΓαzV,

dπ´1
α pXtq “ aαpπ´1

α pXtq, tqdt `
a

2µαdWt.

An informal way to describe the behavior of the process at the vertices is as follows: if
Xt hits νi P V, then it enters Γα, α P Ai with probability piα ą 0 (piα was introduced in
Section 1.2). We assume that there is an optimal feedback law a‹.

• We assume that for all α P A, aα maps r0, ℓαs ˆ r0, T s to a compact interval Aα “ raα, aαs.

• The contribution of the control to the running cost involves the Lagrangian L, i.e., a real
valued function defined on YαPA pΓαzV ˆAαq. If x P ΓαzV and a P Aα, then Lpx, aq “
Lαpπ´1

α pxq, aq, where Lα is a continuous real valued function defined on r0, ℓαs ˆ Aα. We
assume that Lαpx, ¨q is strictly convex on Aα.

• The contribution of the distribution of states to the running ccost involves the coupling
cost operator, which can either be nonlocal, i.e., V : P pΓq Ñ C2pΓq (where P pΓq is the set
of Borel probability measures on Γ), or local, i.e., V rmspxq “ F pmpxqq for a continuous
function F : R

` Ñ R, assuming that m is absolutely continuous with respect to the
Lebesgue measure and identifying with its density.

• The last term is the terminal cost vT , which depends only on the state variable for simplicity.

Under suitable additional assumptions, Ito calculus as in [8, 9] and the dynamic programming
principle lead to the following HJB equation on Γ, more precisely the following boundary value

8



problem

$
’’’’’’’&
’’’’’’’%

´Btv ´ µαB2v `H px, Bvq “ V rmp¨, tqspxq, in pΓαzVq ˆ p0, T q , α P A,
ÿ

αPAi

γiαµαBαv pνi, tq “ 0, if pνi, tq P V ˆ p0, T q ,

v|Γα pνi, tq “ v|Γβ
pνi, tq for all νi P V, t P p0, T qα, β P Ai,

v px, T q “ vT pxq in Γ.

(1.23)

We refer to [14, 15, 16] for the interpretation of the value function v. Let us comment the different
equations in (1.23):

1. The first equation is a HJB equation the Hamiltonian H of which is a real valued function
defined on pYαPAΓαzVq ˆ R given by

H px, pq “ sup
aPAα

 
´ap´ Lα

`
π´1
α pxq, a

˘(
for x P ΓαzV and p P R. (1.24)

We assume that L is such that the Hamiltonians H|ΓαˆR are Lipschitz continuous with
respect to p and C1.

2. The second equation in (1.23) is a Kirchhoff transmission condition (or Neumann boundary
condition if νi P BΓ); it is the consequence of the assumption on the behavior of Xs at
vertices. It involves the positive constants γiα defined in (1.20).

3. The third condition means in particular that v is continuous at the vertices.

4. The fourth condition is a terminal condition for the backward in time HJB equation.

If (1.23) has a smooth solution, then it provides a feedback law for the optimal control problem,
i.e.,

a‹px, tq “ ´BpH px, Bv px, tqq .

At the MFG equilibrium, m is the density of the invariant measure associated with the op-
timal feedback law, so, according to Section 1.2, it satisfies (1.21), where a is replaced by
a‹ “ ´BpH px, Bv px, tqq. We end up with the following system:

$
’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’%

´Btv ´ µαB2v `H px, Bvq “ V rmp¨, tqs pxq, px, tq P pΓαzVq ˆ p0, T q , α P A,

Btm´ µαB2m´ B pmBpH px, Bvqq “ 0, px, tq P pΓαzVq ˆ p0, T q , α P A,
ÿ

αPAi

γiαµαBαv pνi, tq “ 0, pνi, tq P V ˆ p0, T q ,

ÿ

αPAi

µαBαm pνi, tq ` niαBpH
α pνi, Bv|Γαpνi, tqqm|Γα pνi, tq “ 0, pνi, tq P V ˆ p0, T q ,

v|Γα pνi, tq “ v|Γβ
pνi, tq ,

m|Γα pνi, tq

γiα
“
m|Γβ

pνi, tq

γiβ
, α, β P Ai, pνi, tq P V ˆ p0, T q ,

v px, T q “ vT pxq , m px, 0q “ m0 pxq x P Γ,

(1.25)
where Hα :“ H|ΓαˆR. At a vertex νi, i P I, the transmission conditions for both v and m consist
of dνi “ 7pAiq linear relations, which is the appropriate number of relations to have a well posed
problem. If νi P BΓ, there is of course only one Neumann like condition for v and for m.
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1.4 Assumptions and main results

Before giving the precise definition of solutions of the MFG system (1.25) and stating our result,
we need to introduce some suitable functions spaces.

1.4.1 Function spaces related to the Kirchhoff conditions

The following function spaces will be the key ingredients in order to build weak solutions of (1.25).

Definition 1.6. We define two Sobolev spaces: V :“ H1pΓq, and

W :“

"
w : Γ Ñ R : w P H1

b pΓq and
w|Γα pνiq

γiα
“
w|Γβ

pνiq

γiβ
for all i P I, α, β P Ai

*
, (1.26)

which is a subspace of H1
b pΓq.

Definition 1.7. Let the function ϕ P W be defined as follows:

$
’’&
’’%

ϕα is affine on p0, ℓαq ,

ϕ|Γα pνiq “ γiα, if α P Ai,

ϕ is constant on the edges Γα which touch the boundary of Γ.

(1.27)

Note that ϕ is positive and bounded. We set ϕ “ maxΓ ϕ, ϕ “ minΓ ϕ.

Remark 1.8. One can see that v P V ÞÝÑ vϕ is an isomorphism from V onto W and w P W ÞÝÑ
wϕ´1 is the inverse isomorphism.

Definition 1.9. Let the function space W Ă W be defined as follows:

W :“

"
m : Γ Ñ R : mα P C1 pr0, ℓαsq and

m|Γα pνiq

γiα
“
m|Γβ

pνiq

γiβ
for all i P I, α, β P Ai

*
.

(1.28)

1.4.2 Running assumptions (H)

(Diffusion constants) pµαqαPA is a family of positive numbers.

(Jump coefficients) pγiαqαPAi
is a family of positive numbers such that

ÿ

αPAi

γiαµα “ 1.

(Hamiltonian) The Hamiltonian H is defined by the collection Hα :“ H|ΓαˆR, α P A: we
assume that

Hα P C1 pΓα ˆ Rq , (1.29)

Hα px, ¨q is convex in p, for any x P Γα, (1.30)

Hα px, pq ď C0p|p| ` 1q, for any px, pq P Γα ˆ R, (1.31)

|BpH
α px, pq| ď C0, for any px, pq P Γα ˆ R, (1.32)

|BxH
α px, pq| ď C0p|p| ` 1q, for any px, pq P Γα ˆ R, (1.33)

for a constant C0 independent of α.
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(Coupling operator) We assume that V is a continuous map from L2pΓq to L2pΓq, such
that for all m P L2pΓq,

}V rms}L2pΓq ď Cp}m}L2pΓq ` 1q. (1.34)

Note that such an assumption is satisfied by local operators of the form V rmspxq “
F pmpxqq where F is a Lipschitz-continuous function.

(Initial and terminal data) m0 P L2pΓq X M and vT P H1pΓq.

The above set of assumptions, referred to as (H), will be the running assumptions hereafter. We
will use the following notation: µ :“ minαPA µα ą 0 and µ :“ maxαPA µα.

1.4.3 Strictly increasing coupling

We will also say that the coupling V is strictly increasing if, for any m1,m2 P M X L2pΓq,
ż

Γ

pm1 ´m2qpV rm1s ´ V rm2sqdx ě 0

and equality implies m1 “ m2.

1.4.4 Stronger assumptions on the coupling operator

We will sometimes need to strengthen the assumptions on the coupling operator, namely that
V has the following smoothing properties:

V maps the topological dual of W to H1
b pΓq; more precisely, V defines a Lipschitz map from

W 1 to H1
b pΓq.

Note that such an assumption is not satisfied by local operators.

1.4.5 Definition of solutions and main result

Definition 1.10. (solutions of the MFG system) A weak solution of the Mean Field Games
system (1.25) is a pair pv,mq such that

v P L2
`
0, T ;H2 pΓq

˘
XCpr0, T s;V q, Btv P L2

`
0, T ;L2 pΓq

˘
,

m P L2 p0, T ;W q X Cpp0, T s;L2pΓq X Mq, Btm P L2
`
0, T ;V 1

˘
,

v satisfies
$
’’’’&
’’’’%

´
ÿ

αPA

ż

Γα

rBtv px, tqw pxq ` µαBv px, tq Bw pxq `H px, Bv px, tqqw pxqs dx

“

ż

Γ

V rmp¨, tqspxqw pxq dx, for all w P W , a.e. t P p0, T q,

vpx, T q “ vT pxq for a.e. x P Γ,

and m satisfies
$
’’’&
’’’%

ÿ

αPA

ż

Γα

rBtm px, tq v pxq dx ` µαBm px, tq Bv pxq ` BpH px, Bv px, tqqm px, tq Bv pxqs dx

“ 0, for all v P V , a.e. t P p0, T q,

mpx, 0q “ m0pxq for a.e. x P Γ,

where V and W are introduced in Definition 1.6.
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We are ready to state the main result:

Theorem 1.11. Under assumptions (H),

(i) (Existence) There exists a weak solution pv,mq of (1.25).

(ii) (Uniqueness) If V is strictly increasing (see 1.4.3), then the solution is unique.

(iii) (Regularity) If V satisfies furthermore the stronger assumptions made in Section 1.4.4 and
if vT P C2`ηpΓq XD for some η P p0, 1q (D is given in (1.13)), then v P C2,1pΓ ˆ r0, T sq.
Moreover, if for all α P A, BpH

αpx, pq is a Lipschitz function defined in Γα ˆ R, and if
m0 P W , then m P Cpr0, T s;W q XW 1,2p0, T ;L2pΓqq X L2p0, T ;H2

b pΓqq.

2 Preliminary: a modified heat equation on the network with
general Kirchhoff conditions

This section contains results on the solvability of some linear boundary value problems with
terminal condition, that will be useful in what follows. Consider

$
’’’’’’’&
’’’’’’’%

´Btv ´ µαB2v “ h, in pΓαzVq ˆ p0, T q , α P A,

v|Γα pνi, tq “ v|Γβ
pνi, tq , t P p0, T qα, β P Ai, νi P V,

ÿ

αPAi

γiαµαBαv pνi, tq “ 0, t P p0, T q , νi P V,

v px, T q “ vT pxq , x P Γ,

(2.1)

where h P L2 p0, T ;W 1q and vT P L2pΓq.

Definition 2.1. If vT P L2pΓq and h P L2 p0, T ;W 1q, a weak solution of (2.1) is a function
v P L2 p0, T ;V q X Cpr0, T s;L2pΓqq such that Btv P L2 p0, T ;W 1q and

$
&
%

´ xBtv ptq , wyW 1,W ` B pv p¨, tq , wq “ xhptq, wyW 1,W for all w P W and a.e. t P p0, T q,

v px, T q “ vT pxq,

(2.2)
where B : V ˆW Ñ R is the bilinear form defined as follows:

B pv,wq :“

ż

Γ

µBvBwdx “
ÿ

αPA

ż

Γα

µαBvBwdx.

We use the Galerkin’s method (see [7]), i.e., we construct solutions of some finite-dimensional
approximations to (2.1).

Recall that ϕ has been defined in Definition 1.7. We notice first that the symmetric bilinear
form pBpu, vq :“

ş
Γ
µϕBuBv is such that pu, vq ÞÑ pu, vqL2pΓq ` pBpu, vq is an inner product in V

equivalent to the standard inner product in V , namely pu, vqV “ pu, vqL2pΓq `
ş
Γ

BuBv. Therefore,
by standard Fredholm’s theory, there exist

• a non decreasing sequence of nonnegative real numbers pλkq8
k“1, that tends to `8 as k Ñ 8

• A Hilbert basis pvkq8
k“1 of L2pΓq , which is also a a total sequence of V (and orthogonal if

V is endowed with the scalar product pu, vqL2pΓq ` pBpu, vq),
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such that
pBpvk, vq “ λkpvk, vqL2pΓq for all v P V. (2.3)

Note that
ż

Γ

µBvkBvℓϕdx “

$
&
%
λk if k “ ℓ,

0 if k ‰ ℓ.

Note also that vk is a weak solution of
$
’’’’&
’’’’%

´µαB pϕBvkq “ λkvk, in ΓαzV, α P A,

vk|Γα pνiq “ vk|Γβ
pνiq , α, β P Ai,ÿ

αPA

γiαµαBαvk pνiq “ 0, νi P V,

(2.4)

which implies that vk P C2pΓq.
Finally, by Remark 1.8, the sequence pϕvkq8

k“1 is a total family in W (but is not orthogonal
if W is endowed with the standard inner product).

Lemma 2.2. For any positive integer n, there exist n absolutely continuous functions ynk :

r0, T s Ñ R , k “ 1, . . . , n, and a function vn : r0, T s Ñ L2pΓq of the form

vn px, tq “
nÿ

k“1

ynk ptq vkpxq, (2.5)

such that

ynk pT q “

ż

Γ

vT vkdx, for k “ 1, . . . , n, (2.6)

and

´
d

dt
pvn, vkϕqL2pΓq ` B pvn, vkϕq “ xhptq, vkϕy , for a.a. t P p0, T q , for all k “ 1, . . . , n. (2.7)

Proof of Lemma 2.2. For n ě 1, we consider the symmetric n by n matrix Mn defined by

pMnqkℓ “

ż

Γ

vkvℓϕdx.

Since ϕ is positive and pvkq8
k“1 is a Hilbert basis of L2 pΓq, we can check that Mn is a positive

definite matrix and there exist two constants c, C independent of n such that

c |ξ|2 ď
nÿ

k,ℓ“1

pMnqkℓ ξkξℓ ď C |ξ|2 , for all ξ P R
n. (2.8)

Looking for vn of the form (2.5), and setting Y “ pyn1 , . . . , y
n
nqT , 9Y “

`
d
dt
yn1 , . . . ,

d
dt
ynn
˘T

, (2.7) im-
plies that we have to solve the following system of differential equations

´Mn
9Y `BY “ Fn, Y pT q “

ˆż

Γ

vT v1, . . . ,

ż

Γ

vT vn

˙T
,

where Bkℓ “ B pvℓ, vkϕq and Fnptq “ pxhptq, v1ϕy, . . . , xhptq, vnϕyqT . Since the matrix Mn is
invertible, the ODE system has a unique absolutely continuous solution. The lemma is proved.
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We propose to send n to `8 and show that a subsequence of tvnu converges to a solution
of (2.1). Hence, we need some uniform estimates for tvnu.

Lemma 2.3. There exists a constant C depending only on Γ, pµαqαPA, T and ϕ such that

}vn}L8p0,T ;L2pΓqq ` }vn}L2p0,T ;V q ` }Btvn}L2p0,T ;W 1q ď C
´

}h}L2p0,T ;W 1q ` }vT }L2pΓq

¯
.

Proof of Lemma 2.3. Multiplying (2.7) by ynk ptq eλt for a positive constant λ to be chosen later,
summing for k “ 1, . . . , n and using the formula (2.5) for vn, we get

´

ż

Γ

Btvnvne
λtϕdx `

ż

Γ

µBvnB
´
vne

λtϕ
¯
dx “ eλtxhptq, vnϕyW 1,W ,

and

´

ż

Γ

„
Bt

ˆ
v2n
2
eλt

˙
´
λ

2
v2ne

λt


ϕdx `

ż

Γ

µ pBvnq2 eλtϕdx `

ż

Γ

µBvnvne
λtBϕdx “ eλtxhptq, vnϕy.

Integrating both sides from s to T , we obtain

ż

Γ

ˆ
v2n px, sq

2
eλs ´

v2n px, T q

2
eλT

˙
ϕdx `

λ

2

ż T

s

ż

Γ

v2ne
λtϕdxdt

`

ż T

s

ż

Γ

µpBvnq2eλtϕdxdt `

ż T

s

ż

Γ

µBvnvne
λtBϕdxdt

“

ż T

s

eλtxhptq, vnptqϕydt

ď C

ż T

s

eλt}hptq}W 1}vnptq}V dt

ď
1

2

ż T

s

ż

Γ

µ
`
pBvnq2 ` v2n

˘
eλtϕdxdt `

C2

2µ

ż T

s

eλt}hptq}2W 1dt,

where C is positive constant depending on ϕ, because of Remark 1.8. Therefore,

eλs
ż

Γ

v2n px, sq

2
ϕdx `

1

4

ż T

s

ż

Γ

µpBvnq2ϕeλtdxdt `

˜
λ

2
´
µ

2
´ µ

}Bϕ}2
L8pΓq

ϕ2

¸ż T

s

ż

Γ

v2ne
λtϕdxdt

ď eλT
ż

Γ

v2n px, T q

2
ϕdx `

C2

2µ
eλT

ż T

s

}hptq}2W 1dt.

Choosing λ ě 1{2 ` µ ` 2µ||Bϕ||2
L8pΓq{ϕ

2 and noticing that
ş
Γ
v2n px, T qϕdx is bounded by

ϕ
ş
Γ
v2Tdx from (2.6), it follows that

ż

Γ

v2npx, sqϕdx `

ż T

s

ż

Γ

v2nϕdxdt `

ż T

s

ż

Γ

µpBvnq2ϕdxdt

ď 2eλT
ˆ
C2

µ
}h}2L2p0,T ;W 1q ` ϕ

ż

Γ

v2Tdx

˙
. (2.9)

Estimate of vn in L8
`
0, T ;L2 pΓq

˘
and L2 p0, T ;V q. From (2.9), it is straightforward to see

that

}vn}L8p0,T ;L2pΓqq ` }vn}L2p0,T ;V q ď C
´

}h}L2p0,T ;W 1q ` }vT }L2pΓq

¯
(2.10)

14



for some constant C depending only on pµαqαPA, ϕ and T .
Estimate Btvn in L2 p0, T ;W 1q. Consider the closed subspace G1 of W defined by G1 “ 

w P W :
ş
Γ
vkwdx “ 0 for all k ď n

(
. It has a finite co-dimension equal to n. Consider also

the n-dimensional subspace G2 “ span tv1ϕ, . . . , vnϕu of W . The invertibility of the matrix Mn

introduced in the proof of Lemma 2.2 implies that G1XG2 “ t0u. This implies thatW “ G1‘G2.
For w P W , we can write w of the form w “ wn ` ŵn, where wn P G2 and ŵn P G1. Hence, for
a.e. t P r0, T s, from (2.5) and (2.7), one gets

xBtvnptq, wyW 1,W “
d

dt

ˆż

Γ

vnwdx

˙
“

d

dt

ˆż

Γ

vnwndx

˙
“ ´xhptq, wnyW 1,W `

ż

Γ

µBvnBwndx.

(2.11)
Since there exists a constant C independent of n such that }wn}W ď C }w}W , it follows that

}Btvn ptq}W 1 ď C p}h ptq}W 1 ` µ }vn ptq}V q ,

for almost every t, and therefore, from (2.10), we obtain

}Btvn ptq}2L2p0,T ;W 1q ď C
´

}h}2L2p0,T ;W 1q ` }vT }2L2pΓq

¯
,

for a constant C independent of n.

Theorem 2.4. There exists a unique solution v of (2.1), which satisfies

}v}L8p0,T ;L2pΓqq ` }v}L2p0,T ;V q ` }Btv}L2p0,T ;W 1q ď C
´

}h}L2p0,T ;W 1q ` }vT }L2pΓq

¯
, (2.12)

where C is a constant that depends only on Γ, pµαqαPA, T and ϕ.

Proof of Theorem 2.4. From Lemma 2.3, the sequence pvnqnPN is bounded in L2 p0, T ;V q and the
sequence pBtvnqnPN is bounded in L2p0, T ;W 1q. Hence, up to the extraction of a subsequence,
there exists a function v such that v P L2 p0, T ;V q , Btv P L2 p0, T ;W 1q and

#
vn á v weakly in L2 p0, T ;V q ,

Btvn á Btv weakly in L2 p0, T ;W 1q .
(2.13)

Fix an integer N and choose a function v P C1 pr0, T s ;V q having the form

v ptq “
Nÿ

k“1

dk ptq vk, (2.14)

where d1, . . . , dN are given real valued C1 functions defined in r0, T s. For all n ě N , multiplying
(2.7) by dk ptq, summing for k “ 1, . . . , n and integrating over p0, T q leads to

´

ż T

0

ż

Γ

Btvnvϕdxdt `

ż T

0

ż

Γ

µBvnB pvϕq dxdt “

ż T

0

xh, vϕydt. (2.15)

Letting n Ñ `8, we obtain from (2.13) that

´

ż T

0

xBtv, vϕydt `

ż T

0

ż

Γ

µBvB pvϕq dxdt “

ż T

0

xh, vϕydt. (2.16)
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Since the functions of the form (2.14) are dense in L2 p0, T ;V q, (2.16) holds for all test function
v P L2 p0, T ;V q. Recalling the isomorphism v P V ÞÑ vϕ P W (see Remark 1.8), we obtain that,
for all w P W and ψ P C1

c p0, T q,

´

ż T

0

xBtv,wyψdt `

ż T

0

ż

Γ

µBvBwψdxdt “

ż T

0

xh,wyψdt.

This implies that, for a.e. t P p0, T q,

´xBtv,wy ` B pv,wq “ xh,wy for all w P W.

Using [19, Theorem 3.1] (or the same argument as in [7, pages 287-288]), we see that v P
Cpr0, T s;L2

ϕpΓqq, where L2
ϕpΓq “ tw : Γ Ñ R :

ş
Γ
w2ϕdx ă `8u, and since ϕ is bounded from

below and from above by positive numbers, L2
ϕpΓq “ L2pΓq with equivalent norms. Moreover,

max
0ďtďT

}vp¨, tq}L2pΓq ď C
`
}Btv}L2p0,T ;W 1q ` }v}L2p0,T ;V q

˘
.

We are now going to prove v pT q “ vT . For all v P C1 pr0, T s ;V q of the form (2.14) and such
that v p0q “ 0, we deduce from (2.15) and (2.16) that

´

ż T

0

ż

Γ

Btvvnϕdxdt ´

ż

Γ

v pT q vn pT qϕdx `

ż T

0

ż

Γ

µBvnB pvϕq dxdt

“ ´

ż T

0

ż

Γ

Btvvϕdxdt ´

ż

Γ

v pT q v pT qϕdx `

ż T

0

ż

Γ

µBvB pvϕq dxdt.

We know that vn pT q Ñ vT in L2 pΓq. Then, using (2.13), we obtain
ż

Γ

v pT q vTϕdx “

ż

Γ

v pT q v pT qϕdx.

Since the functions of the form
řN
k“1 dk pT q vk are dense in L2pΓq, we conclude that v pT q “ vT .

In order to prove the energy estimate (2.12), we use veλtϕ as a test function in (2.2) and
apply similar arguments as in the proof of Lemma 2.3 for λ large enough, we get (2.12).

Finally, if h “ 0 and vT “ 0, by the energy estimate for v in (2.12), we deduce that v “ 0.
Uniqueness is proved.

Theorem 2.5. If vT P V and h P L2 pΓ ˆ p0, T qq, then the unique solution v of (2.1) satisfies
v P L2

`
0, T ;H2 pΓq

˘
X Cpr0, T s;V q and Btv P L2

`
0, T ;L2 pΓq

˘
. Moreover,

}v}L8p0,T ;V q ` }v}L2p0,T ;H2pΓqq ` }Btv}L2p0,T ;L2pΓqq ď C
´

}h}L2p0,T ;L2pΓqq ` }vT }V

¯
, (2.17)

for a positive constant C that depends only on Γ, pµαqαPA, T and ϕ.

Proof of Theorem 2.5. It is enough to prove estimate (2.17) for vn.
Multiplying (2.7) by ´ d

dt
ynk , summing for k “ 1, . . . , n and using (2.5) leads to

ż

Γ

pBtvnq2ϕdx ´

ż

Γ

µBvnB pBtvnϕq dx “ ´

ż

Γ

hBtvnϕdx,

hence
ż

Γ

pBtvnq2ϕdx ´

ż

Γ

µBt
pBvnq2

2
ϕdx ´

ż

Γ

µBvnBtvnBϕdx “ ´

ż

Γ

hBtvnϕdx.
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Multiplying by eλt where λ will chosen later, and taking the integral from s to T , we obtain
ż T

s

ż

Γ

pBtvnq2eλtϕdxdt ´

ż

Γ

µ

2

”
pBvn pT qq2eλT ´ pBvn psqq2eλs

ı
ϕdx

`λ

ż T

s

ż

Γ

µ

2
pBvnq2eλtϕdxdt ´

ż T

s

ż

Γ

µBvnBtvne
λtBϕdxdt

“ ´

ż T

s

ż

Γ

hBtvne
λtϕdxdt

ď
1

2

ż T

s

ż

Γ

h2eλtϕdxdt `
1

2

ż T

s

ż

Γ

pBtvnq2eλtϕdxdt. (2.18)

Let us deal with the term
ş
Γ

pBvn px, T qq2ϕdx. From (2.6),

ż

Γ

µpBvn px, T qq2ϕdx “
nÿ

k“1

λk

ˆż

Γ

vT vkdx

˙2

ď
8ÿ

k“1

λk

ˆż

Γ

vT vkdx

˙2

“

ż

Γ

µpBvT pxqq2ϕdx

ď µ

ż

Γ

pBvT pxqq2ϕdx.

Then, choosing λ “ 2µ2||Bϕ||2
L8pΓq{pϕ2µq, we obtain that

ż

Γ

2µpBvnpx, sqq2ϕdx `

ż T

s

ż

Γ

pBtvnq2ϕdxdt ď 2eλTϕ

ˆ
}h}2L2pΓˆp0,T qq ` µ

ż

Γ

pBvT q2dx

˙
. (2.19)

Estimate of Bvn in L8
`
0, T ;L2 pΓq

˘
and Btvn in L2 pΓ ˆ p0, T qq. From (2.19), it is straight-

forward to see that

}Bvn}L8p0,T ;L2pΓqq ` }Btvn}L2pΓˆp0,T qq ď C
´

}h}L2pΓˆp0,T qq ` }BvT }L2pΓq

¯

for some constant C depending only on Γ, µ, T and ϕ.
Estimate of B2vn in L2 pΓ ˆ p0, T qq. Finally, using the PDE in (2.1), we can see that B2vn

belongs to L2 pΓ ˆ p0, T qq and is bounded by C
´

}h}L2pΓˆp0,T qq ` }vT }V

¯
, hence vn is bounded in

L2
`
0, T ;H2 pΓq

˘
by the same quantity. The Kirchhoff conditions (which boil down to Neumann

conditions at BΓ) are therefore satisfied in a strong sense for almost all t.
Using [19, Theorem 3.1] (or a similar argument as [7, pages 287-288]), we see that v in

Cpr0, T s;V q.

3 The Fokker-Planck equation

This paragraph is devoted to a boundary value problem including a Fokker-Planck equation
$
’’’’’’’’&
’’’’’’’’%

Btm´ µαB2m´ B pbmq “ 0, in pΓαzVq ˆ p0, T q , α P A,

m|Γα pνi, tq

γiα
“
m|Γβ

pνi, tq

γiβ
, t P p0, T q , α, β P Ai, νi P VzBΓ,

ÿ

αPAi

µαBαm pνi, tq ` niαb pνi, tqm|Γα pνi, tq “ 0, t P p0, T q , νi P V,

m px, 0q “ m0 pxq , x P Γ,

(3.1)

17



where b P PC pΓ ˆ r0, T sq and m0 P L2pΓq.

Definition 3.1. A weak solution of (3.1) is a function m P L2 p0, T ;W q XCpr0, T s;L2pΓqq such
that Btm P L2 p0, T ;V 1q and

$
&
%

xBtm, vyV 1,V ` A pm, vq “ 0 for all v P V and a.e. t P p0, T q,

m p¨, 0q “ m0,
(3.2)

where A : W ˆ V Ñ R is the bilinear form

A pv,wq “

ż

Γ

µBmBvdx `

ż

Γ

bmBvdx.

Using similar arguments as in Section 2, in particular a Galerkin method, we obtain the
following result, the proof of which is omitted.

Theorem 3.2. If b P L8pΓ ˆ p0, T qq and m0 P L2pΓq, there exists a unique function m P
L2 p0, T ;W q X Cpr0, T s;L2pΓqq such that Btm P L2 p0, T ;V 1q and (3.2). Moreover, there exists a
constant C which depends on pµαqαPA, }b}8, T and ϕ, such that

}m}L2p0,T ;W q ` }m}L8p0,T ;L2pΓqq ` }Btm}L2p0,T ;V 1q ď C }m0}L2pΓq . (3.3)

Remark 3.3. If m0 P M, which will be the case when solving the MFG system (1.25), then
mp¨, tq P M for all t P r0, T s. Indeed, we use v ” 1 P V as a test-function for (3.1). Since Bv “ 0,
integrating (3.2) from 0 to t, we get

şt
0

ş
Γ

Btmpx, sqdxds “ 0. This implies that

ż

Γ

mpx, tqdx “

ż

Γ

m0pxqdx “ 1, for all t P p0, T s.

Setting m´ “ ´1tmă0um, we can also use v “ ϕ´1m´e´λt as a test-function for λ P R`. Indeed,
the latter function belongs to L2p0, T ;V q. Taking λ large enough and using similar arguments
as for the energy estimate (3.3) yield that m´ “ 0, i.e., m ě 0.

We end this section by stating a stability result, which will be useful in the proof of the main
Theorem.

Lemma 3.4. Let m0ε, bε be sequences of functions satisfying

m0ε ÝÑ m0 in L2 pΓq , bε ÝÑ b in L2 pΓ ˆ p0, T qq ,

and for some positive number K independent of ε, }b}L8pΓˆp0,T qq ď K, }bε}L8pΓˆp0,T qq ď K.
Let mε (respectively m) be the solution of (3.2) corresponding to the datum m0ε (resp. m0) and
the coefficient bε (resp. b). The sequence pmεq converges to m in L2 p0, T ;W qXL8

`
0, T ;L2pΓq

˘
,

and the sequence pBtmεq converges to pBtmq in L2 p0, T ;V 1q.

Proof of Lemma 3.4. Taking pmε ´mq e´λtϕ´1 as a test-function in the versions of (3.2) satisfied
by mε and m, subtracting, we obtain that

ż

Γ

„
1

2
Bt

´
pmε ´mq2 e´λt

¯
`
λ

2
pmε ´mq2 e´λt


ϕ´1dx`

ż

Γ

µpB pmε ´mqq2e´λtϕ´1dx

`

ż

Γ

µ pmε ´mq B pmε ´mq e´λtBpϕ´1qdx `

ż

Γ

pbεmε ´ bmq B pmε ´mq e´λtϕ´1dx

`

ż

Γ

pbεmε ´ bmq pmε ´mq e´λtBpϕ´1qdx “ 0. (3.4)
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There exists a positive constant K such that }bε}8 , }b}8 ď K for all ε. Hence, there exists a
positive constant C (in fact it varies from one line to the other in what follows) such that

ż

Γ

„
1

2
Bt

´
pmε ´mq2 e´λt

¯
`
λ

2
pmε ´mq2 e´λt


ϕ´1dx `

ż

Γ

µpB pmε ´mqq2e´λtϕ´1dx

ď C

ż

Γ

´
|mε ´m|2 ` |mε ´m| |B pmε ´mq| ` |m| |bε ´ b| p|B pmε ´mq| ` |mε ´m|q

¯
e´λtϕ´1dx

ď C

ż

Γ

´
|mε ´m|2 ` |bε ´ b|2m2

¯
e´λtϕ´1dx `

ż

Γ

µ

2
pB pmε ´mqq2e´λtϕ´1dx.

The assumptions on the coefficents bε and b imply in fact that bε Ñ b in LppΓ ˆ p0, T qq for
all 1 ď p ă 8. On the other hand, we know that m P LqpΓ ˆ p0, T qq for all 1 ď q ă 8. From

the latter observation with p “ q “ 4, we see that the quantity
şT
0

ş
Γ

´
|bε ´ b|2m2

¯
e´λtϕ´1dxdt

tends to 0 as ε Ñ 0 uniformly in λ ą 0. We write

ż T

0

ż

Γ

´
|bε ´ b|2m2

¯
e´λtϕ´1dxdt “ oεp1q.

Choosing λ large enough and integrating the latter inequality from 0 to t P r0, T s, we obtain

}mε ´m}L2p0,T ;W q ` }mε ´m}L8p0,T ;L2pΓqq ď oεp1q ` C }m0ε ´m0}L2pΓq .

Subtracting the two versions of (3.2) and using the latter estimate also yields

}Btmε ´ Btm}L2p0,T ;V 1q ď oεp1q `C }m0ε ´m0}L2pΓq ,

which achieves the proof.

4 The Hamilton-Jacobi equation

This section is devoted to the following boundary value problem including a Hamilton-Jacobi
equation $

’’’’’’’&
’’’’’’’%

´Btv ´ µαB2v `H px, Bvq “ f, in pΓαzVq ˆ p0, T q , α P A,

v|Γα pνi, tq “ v|Γβ
pνi, tq t P p0, T q , α, β P Ai, νi P V,

ÿ

αPAi

γiαµαBαv pνi, tq “ 0, t P p0, T q , νi P V,

v px, T q “ vT pxq , x P Γ,

(4.1)

where f P L2 pΓ ˆ p0, T qq, vT P V and the Hamiltonian H : Γ ˆ R Ñ R satisfies the running
assumptions (H).

Definition 4.1. For f P L2 pΓ ˆ p0, T qq and vT P V , a weak solution of (4.1) is a function
v P L2

`
0, T ;H2 pΓq

˘
X Cpr0, T s;V q such that Btv P L2 pΓ ˆ p0, T qq and

$
&
%

ż

Γ

p´Btvw ` µBvBw `H px, Bvqwq dx “

ż

Γ

fwdx for all w P W, a.a. t P p0, T q ,

v px, T q “ vT pxq.
(4.2)

We start by proving existence and uniqueness of a weak solution for (4.1). Next, further
regularity for the solution will be obtained under stronger assumptions.
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4.1 Existence and uniqueness for the Hamilton-Jacobi equation

Theorem 4.2. Under the running assumptions (H), if f P L2 pΓ ˆ p0, T qq, then the boundary
value problem (4.1) has a unique weak solution.

Uniqueness is a direct consequence of the following proposition.

Proposition 4.3. (Comparison principle) Under the same assumptions as in Theorem 4.2, let v
and v̂ be respectively weak sub- and super-solution of (4.1), i.e., v, v̂ P L2

`
0, T ;H2 pΓq

˘
, Btv, Btv̂ P

L2 pΓ ˆ p0, T qq such that

$
’’’’&
’’’’%

ż

Γ

p´Btvw ` µBvBw `H px, Bvqwq dx ď

ż

Γ

fwdx,
ż

Γ

p´Btv̂w ` µBv̂Bw `H px, Bv̂qwq dx ě

ż

Γ

fwdx,

for all w P W, w ě 0, a.a. t P p0, T q ,

v px, T q ď vT pxq ď v̂ px, T q for a.a. x P Γ.

Then v ď v̂ in Γ ˆ p0, T q.

Proof of Proposition 4.3. Setting v “ v ´ v̂, we have, for all w P W such that w ě 0 and for a.a
t P p0, T q: ż

Γ

´Btvw ` µBvBw ` pH px, Bvq ´H px, Bv̂qqwdx ď 0,

and v px, T q ď 0 for all x P Γ. Set v` “ v 1tvą0u and w “ v`eλtϕ. We have

´

ż

Γ

Bt

ˆ
pv`q2

2
eλt

˙
ϕdx `

ż

Γ

λ

2
pv`q2eλtϕdx `

ż

Γ

µBv`Bpv`ϕqeλtdx

`

ż

Γ

rH px, Bvq ´H px, Bv̂qs v`ϕeλtdx “ 0.

Integrating from 0 to T , we get

ż

Γ

˜
v` p0q2

2
´
v` pT q2

2
eλT

¸
ϕdx `

ż T

0

ż

Γ

λ

2
pv`q2eλtϕdxdt

`

ż T

0

ż

Γ

µpBv`q2ϕeλtdxdt `

ż T

0

ż

Γ

µBv`v`Bϕeλtdxdt

`

ż T

0

ż

Γ

rH px, Bvq ´H px, Bv̂qs v`ϕeλtdxdt “ 0.

From (1.32), |H px, Bvq ´H px, Bv̂q| ď C0|Bv|. Hence, since v` pT q “ 0 and |Bv|v` “ |Bv`|v`

almost everywhere, we get

ż T

0

ż

Γ

ˆ
λ

2
pv`q2 ` µpBv`q2

˙
eλtϕdxdt ´

ż T

0

ż

Γ

pµ |Bϕ| ` C0ϕq |Bv`|v`eλtdxdt ď 0. (4.3)

For λ large enough, the first term in the left hand side is not smaller than the second term. This
implies that v` “ 0.

Now we prove Theorem 4.2. We start with a bounded Hamiltonian H.
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Proof of existence in Theorem 4.2 when H is bounded by CH . Take v P L2 p0, T ;V q and f P L2 pΓ ˆ p0, T qq.
From Theorem 2.4 and Theorem 2.5 with h “ f ´H px, Bvq and vT P V , the following boundary
value problem

$
’’’’’&
’’’’’%

´Btv ´ µαB2v “ f ´H px, Bvq , in pΓαzVq ˆ p0, T q , α P A,

v|Γα pνi, tq “ v|Γβ
pνi, tq , t P p0, T q , α, β P Ai, νi P Ai,

ř
αPAi

γiαµαBαv pνi, tq “ 0, t P ˆ p0, T q , νi P V,

v px, T q “ vT pxq , x P Γ,

(4.4)

has a unique weak solution v P L2
`
0, T ;H2 pΓq

˘
XCpr0, T s;V q XW 1,2

`
0, T ;L2 pΓq

˘
. This allows

us to define the map T :

T : L2 p0, T ;V q ÝÑ L2 p0, T ;V q ,

v ÞÝÑ v.

From (1.32), v ÞÝÑ H px, Bvq is continuous from L2 p0, T ;V q into L2 pΓ ˆ p0, T qq. Using again
Theorem 2.5, we have that T is continuous from L2 p0, T ;V q to L2 p0, T ;V q. Moreover, there
exists a constant C depending only on CH ,Γ,pµαqαPA, f , T , ϕ and vT such that

}Btv}L2pΓˆp0,T qq ` }v}L2p0,T ;H2pΓqq ď C. (4.5)

Therefore, from Aubin-Lions theorem (see Lemma A.1), we obtain that T
`
L2 p0, T ;V q

˘
is rel-

atively compact in L2 p0, T ;V q. By Schauder fixed point theorem, see [10, Corollary 11.2], T
admits a fixed point which is a weak solution of (4.1).

Proof of existence in Theorem 4.2 in the general case. Now we truncate the Hamiltonian as fol-
lows

Hn px, pq “

$
’&
’%

H px, pq if |p| ď n,

H

ˆ
x,

p

|p|
n

˙
if |p| ą n.

From the previous proof for bounded Hamiltonians, for all n, there exists a solution vn P
L2

`
0, T ;H2 pΓq

˘
X Cpr0, T s;V q X W 1,2

`
0, T ;L2 pΓq

˘
of (4.1), where H is replaced by Hn. We

propose to send n to `8 and to show a subsequence of tvnu converges to a solution of (4.1).
Hence, we need some uniform estimates for tvnu. As in the proof of Proposition 4.3, using
´vne

λtϕ as a test-function, integrating from 0 to T and noticing that H is sublinear, see (1.31),
we obtain

ż

Γ

„
v2n px, 0q

2
´
v2n px, T q

2
eλT


ϕdx `

ż T

0

ż

Γ

„
λ

2
v2ne

λtϕ ` µ |Bvn|2 eλtϕ ` µBvnvne
λtBϕ


dxdt

“ ´

ż T

0

ż

Γ

Hn px, Bvnq vne
λtϕdxdt `

ż T

0

ż

Γ

fvne
λtϕdxdt

ď C0

ż T

0

ż

Γ

p1 ` |Bvn|q |vn| eλtϕdxdt `
1

2

ż T

0

ż

Γ

f2eλtϕdxdt `
1

2

ż T

0

ż

Γ

v2ne
λtϕdxdt.

In the following lines, the constant C above will vary from line to line and will depend only on
pµαqαPA, CH , T and ϕ. Taking λ large enough leads to the following estimate:

}vn}L2p0,T ;V q ď C
´

}f}L2p0,T ;L2pΓqq ` }vT }L2pΓq ` 1
¯
, (4.6)
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and thus, from (1.31) again, we also obtain

ż T

0

ż

Γ

|Hn px, Bvnq|2 dxdt ď

ż T

0

ż

Γ

C2
0 p|Bvn| ` 1q2 dxdt ď

ż T

0

ż

Γ

2C2
0

´
|Bvn|2 ` 1

¯
dxdt

ď C
´

}f}2L2p0,T ;L2pΓqq ` }vT }2L2pΓq ` 1
¯
.

Therefore, tHn px, Bvnq ´ fu is uniformly bounded in L2
`
0, T ;L2 pΓq

˘
. From Theorem 2.5, we

obtain that pvnqnPN is uniformly bounded in L2
`
0, T ;H2 pΓq

˘
XCpr0, T s;V qXW 1,2

`
0, T ;L2 pΓq

˘
.

By the Aubin-Lions theorem (see Lemma A.1), pvnqn is relatively compact in L2 p0, T ;V q (and
bounded in C pr0, T s;V q). Hence, up to the extraction of a subsequence, there exists v P
L2 p0, T ;V q XW 1,2

`
0, T ;L2 pΓq

˘
such that

vn Ñ v, in L2 p0, T ;V q (strongly), Btvn á Btv, in L2pΓ ˆ p0, T qq (weakly). (4.7)

Hence, Hn px, Bvnq Ñ H px, Bvq a.e. in Γ ˆ p0, T q. Note also that we can apply Lebesgue
dominated convergence theorem to Hn px, Bvnq because Hn px, Bvnq ď H px, Bvnq ď C0p1`|Bvn|q.
Therefore, Hn px, Bvnq Ñ H px, Bvq in L2pΓ ˆ p0, T qq. Thus, it is possible to pass to the limit in
the weak formulation satisfied by vn and obtain that for all w P W , χ P Ccp0, T q,

ż T

0

χptq

ˆ
´

ż

Γ

Btvwdx `

ż

Γ

BvBwdx `

ż

Γ

H px, Bvqwdx

˙
dt “

ż T

0

χptq

ˆż

Γ

fwdx

˙
dt.

Therefore, v satisfies the first line in (4.2).
From Theorem 2.4, vn pT q “ vT for all n. Since for all α P A, pvnqn tends to v in L2pΓα ˆ

p0, T qq strongly and in W 1,2pΓα ˆ p0, T qq weakly, vn|Γαˆtt“T u converges to v|Γαˆtt“T u in L2pΓαq
strongly. Passing to the limit in the latter identity, we get the second condition in (4.2). We
have proven that v is a weak solution of (4.1).

We end the section with a stability result for the Hamilton-Jacobi equation.

Lemma 4.4. Let pvTεqε, pfεqε be sequences of functions satisfying

vTε ÝÑ vT in V, fε ÝÑ f in L2 pΓ ˆ p0, T qq .

Let vε be the weak solution of (4.1) with data vTε, fε, then pvεqε converges in L2
`
0, T ;H2pΓq

˘
X

Cpr0, T s;V q XW 1,2
`
0, T ;L2 pΓq

˘
to the weak solution v of (4.1) with data vT , f .

Proof of Lemma 4.4. Subtracting the two PDEs for vε and v, multiplying by pvε ´ vq eλtϕ´1,
taking the integral on Γˆp0, T q and using similar computations as in the proof of Proposition 4.3,
we obtain

}vε ´ v}L2p0,T ;V q ď C
´

}fε ´ f}L2pΓˆp0,T qq ` }vTε ´ vT }L2pΓq

¯
,

for λ large enough and C independent of ε. This proves the convergence of vǫ to v in L2 p0, T ;V q.
Then, the convergence in L2

`
0, T ;H2pΓq

˘
X Cpr0, T s;V q X W 1,2

`
0, T ;L2 pΓq

˘
results from the

assumption that H is Lipschitz with respect to its second argument, and from stability results
for the linear boundary value problem (2.1) which are obtained with similar arguments as in the
proof of Theorem 2.5.
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4.2 Regularity for the Hamilton-Jacobi equation

In this section, we prove further regularity for the solution of (4.1).

Theorem 4.5. We suppose that the assumptions of Theorem 4.2 hold and that, in addition,
vT P H2pΓq satisfies the Kirchhoff conditions given by the third equation in (4.1), f P PCpΓ ˆ
r0, T sq X L2p0, T ;H1

b pΩqq and Btf P L2p0, T ;H1
b pΓqq.

Then, the unique solution v of (4.1) satisfies v P L2
`
0, T ;H3 pΓq

˘
and Btv P L2

`
0, T ;H1 pΓq

˘
.

Moreover, there exists a constant C depending only on }vT }H2pΓq, pµαqαPA, H and f such that

}v}L2p0,T ;H3pΓqq ` }Btv}L2p0,T ;H1pΓqq ď C. (4.8)

If, in addition, there exists η P p0, 1q such that vT P C2`ηpΓq then there exists τ P p0, 1q such
v P C2`τ,1` τ

2 pΓ ˆ r0, T sq, and v is a classical solution of (4.1).

The main idea to prove Theorem 4.5 is to differentiate (4.1) with respect to the space variable
and to prove some regularity properties for the derived equation. Let us explain formally our
method. Assuming the solution v of (4.1) is in C2,1pΓ ˆ p0, T qq and taking the space-derivative
of (4.1) on pΓαzVq ˆ p0, T q, we have

´BtBv ´ µαB3v ` B pHpx, Bvqq “ Bf.

Therefore, u “ Bv satisfies the following PDE

´Btu´ µαB2u` B pH px, uqq “ Bf,

with terminal condition upx, T q “ BvT pxq. From the Kirchhoff conditions in (4.1) and Re-
mark 1.1, we obtain a condition for u of Dirichlet type, namely

ÿ

αPAi

µαγiαniαu|Γαpνi, tq “ 0, t P p0, T q, νi P V.

Note that the latter condition is an homogeneous Dirichlet condition at the boundary vertices of
Γ.

Now, by extending continuously the PDEs in (4.1) until the vertex νi in the branchs Γα and
Γβ, α, β P Ai, and using the continuity condition in (4.1), one gets

´µαB2v|Γα `Hα pνi, Bv|Γαpνi, tqq ´ f |Γαpνi, tq “ ´µβB2v|Γβ
`Hβpνi, Bv|Γβ

pνi, tqq ´ f |Γβ
pνi, tq.

This gives a second transmission condition for u at νi P VzBΓ of Robin type, namely

µαBu|Γα pνi, tq ´Hαpνi, u|Γαpνi, tqq ` f |Γα pνi, tq

“µβBu|Γβ
pνi, tq ´Hβpνi, u|Γβ

pνi, tqq ` f |Γβ
pνi, tq,

(4.9)

which is equivalent to

µαniαBαu pνi, tq ´Hαpνi, u|Γαpνi, tqq ` f |Γα pνi, tq

“µβniβBβu pνi, tq ´Hβpνi, u|Γβ
pνi, tqq ` f |Γβ

pνi, tq.
(4.10)
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Hence, we shall study the following nonlinear boundary value problem for u “ Bv,
$
’’’’’’’’’’&
’’’’’’’’’’%

´Btu´ µαB2u` B pH px, uqq “ Bf px, tq , px, tq P pΓαzVq ˆ p0, T q , α P A,
ÿ

αPAi

γiαµαniαu|Γα pνi, tq “ 0, t P p0, T q , νi P V,

µαniαBαu pνi, tq ´Hαpνi, u|Γαpνi, tqq ` f |Γα pνi, tq

“ µβniβBβu pνi, tq ´Hβpνi, u|Γβ
pνi, tqq ` f |Γβ

pνi, tq , t P p0, T q , α, β P Ai, νi P VzBΓ,

u px, T q “ uT pxq , x P Γ,

(4.11)
where Bf P L2 pΓ ˆ p0, T qq and uT P F defined in (4.12) below. Theorem 4.5 will follow by
choosing uT “ BvT .

In order to define the weak solutions of (4.11), we need the following subspaces of H1
b pΓq.

Definition 4.6. We define the Sobolev spaces

F :“

#
u P H1

b pΓq and
ÿ

αPAi

γiαµαniαu|Γα pνiq “ 0 for all νi P V

+
, (4.12)

E :“

#
e P H1

b pΓq and
ÿ

αPAi

niαe|Γα pνiq “ 0 for all νi P V

+
. (4.13)

Definition 4.7. Let the function ψ be defined as follows:

$
’’&
’’%

ψα is affine on p0, ℓαq ,

ψ|Γα pνiq “ µαγiα, if νi P VzBΓ, α P Ai,

ψ is constant on the edges Γα which touch the boundary of Γ.

(4.14)

Note that ψ is positive and bounded. The map f ÞÝÑ fψ is an isomorphism from F onto E.

Definition 4.8. A weak solution of (4.11) is a function u P L2 p0, T ;F q such that Btu P
L2 p0, T ;E1q, and

$
&
%

´xBtu, eyE1,E `

ż

Γ

´
µBuBe ´ pH px, uqq Be

¯
dx “ ´

ż

Γ

fBedx, for all e P E, a.a t P p0, T q,

u p¨, T q “ uT .

(4.15)

Remark 4.9. Note that if u is regular enough, then (4.15) can also be written

´ xBtu, eyE1,E `

ż

Γ

´
µBuBe ` B pH px, uqq e

¯
dx ´

ÿ

iPI

ÿ

αPAi

niα rHα pνi, u|Γα pνi, tqq ´ f |Γα pνi, tqs e|Γα pνiq

“

ż

Γ

pBfqedx for all e P E, a.a t P p0, T q.

(4.16)

Remark 4.10. To explain formally the definition of weak solutions, let us use e P E as a test-
function in the PDE in (4.11). After an integration by parts, we get

ż

Γ

p´Btue ` µBuBe ` B pH px, uqq eq dx ´
ÿ

iPI

ÿ

αPAi

niαµαBu|Γαpνi, tqe|Γαpνiq “

ż

Γ

pBfqedx,
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where niα is defined in (1.6). On the one hand, from the second transmission condition, there
exists a function ci : p0, T q Ñ R such that µαBu|Γα pνi, tq´Hαpνi, u|Γαpνi, tqq`f |Γα pνi, tq “ ciptq
for all α P Ai. It follows that

´
ÿ

iPI

ÿ

αPAi

niαµαBu|Γαpνi, tqe|Γαpνiq

“ ´
ÿ

iPI

ciptq
ÿ

αPAi

niαe|Γαpνiq `
ÿ

iPI

ÿ

αPAi

niα r´Hαpνi, u|Γαpνi, tqq ` f |Γα pνi, tqs e|Γαpνiq

“
ÿ

iPI

ÿ

αPAi

niα r´Hαpνi, u|Γαpνi, tqq ` f |Γα pνi, tqs e|Γαpνiq,

because e P E. Then we may use the Remark 4.9 and obtain (4.15).

We start by proving the following result about (4.11) and then give the proof of Theorem 4.5.

Theorem 4.11. Under the running assumptions, if uT P F , f P CpΓ ˆ r0, T sq XL2p0, T ;H1
b pΓq

and Btf P L2p0, T ;H1
b pΓqq, then (4.11) has a unique weak solution u. Moreover, there exists a con-

stant C depending only on Γ, T , ψ, }uT }F , }Bf}L2pΓˆp0,T qq, }f}CpΓˆr0,T sq and }Btf}L2p0,T ;H1

b
pΓqq

such that

}u}L2p0,T ;H2

b
pΓqq ` }u}Cpr0,T s;F q ` }Btu}L2pΓˆp0,T qq ď C. (4.17)

Remark 4.12. Theorem 4.11 implies that up¨, tq P C1 pΓαq for all α P A for a.e. t. Hence, the
transmission conditions for u hold in a classical sense for a.e. t P r0, T s.

We use the Galerkin’s method to construct solutions of certain finite-dimension approxima-
tions to (4.11).

We notice first that the symmetric bilinear form qBpu, vq :“
ş
Γ
µψ´1BuBv is such that pu, vq ÞÑ

pu, vqL2pΓq ` qBpu, vq is an inner product in E equivalent to the standard inner product in E,
namely pu, vqE “ pu, vqL2pΓq `

ş
Γ

BuBv. Therefore, by standard Fredholm’s theory, there exist

• a non decreasing sequence of nonnegative real numbers pλkq8
k“1, that tends to `8 as k Ñ 8

• A Hilbert basis pekq8
k“1 of L2pΓq, which is also a a total sequence of E (and orthogonal if

E is endowed with the scalar product pu, vqL2pΓq ` qBpu, vq),

such that
qBpek, eq “ λkpek, eqL2pΓq, for all e P E. (4.18)

Note that
ż

Γ

µBekBeℓψ
´1dx “

$
&
%
λk if k “ ℓ,

0 if k ‰ ℓ.

Note also that ek is a weak solution of

$
’’’&
’’’%

´µαB
`
ψ´1Bek

˘
“ λkek in ΓαzV, α P A,

Bαek pνiq

γiα
“

Bβek pνiq

γiβ
for all α, β P Ai,

ř
αPAi

niαek|Γα pνiq “ 0 if νi P V.

(4.19)

which implies that ek|Γα P C2pΓαq for all α P A.
Finally, the sequence pfkq8

k“1 given by fk “ ψ´1
ek is a total family in F (but is not orthogonal).
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Lemma 4.13. Under the assumptions made in Theorem 4.11, for any positive integer n, there
exist n absolutely continuous functions ynk : r0, T s Ñ R , k “ 1, . . . , n, and a function un :

r0, T s Ñ L2pΓq of the form

un ptq “
nÿ

k“1

ynk ptq fk, (4.20)

such that for all k “ 1, . . . , n,

ynk pT q “

ż

Γ

uT fkψ
2dx, (4.21)

and

´
d

dt
pun, fkψqL2pΓq `

ż

Γ

´
µBun ´H px, unq

¯
B pfkψq dx “ ´

ż

Γ

fBpfkψqdx. (4.22)

Proof of Lemma 4.13. The proof follows the same lines as the one of Lemma 2.2 but it is more
technical since we obtain a system of nonlinear differential equations. For n ě 1, we consider
the symmetric n by n matrix Mn defined by

pMnqkℓ “

ż

Γ

fkfℓψdx.

Since ψ is positive and bounded and since pψfkq8
k“1 is a Hilbert basis of L2 pΓq, we can check

that Mn is a positive definite matrix and there exist two constants c, C independent of n such
that

c |ξ|2 ď
nÿ

k,ℓ“1

pMnqkℓ ξkξℓ ď C |ξ|2 , for all ξ P R
n. (4.23)

Looking for un of the form (4.20) and setting Y “ pyn1 , . . . , y
n
nqT , 9Y “

`
d
dt
yn1 , . . . ,

d
dt
ynn
˘T

, (2.7)
implies that we have to solve the following a system of ODEs:

$
’&
’%

´Mn
9Y ptq `BY ptq ` HpY qptq “ Gptq, t P r0, T s

Y pT q “

ˆż

Γ

uT f1ψ
2dx, ¨ ¨ ¨ ,

ż

Γ

uT fnψ
2dx

˙T
,

(4.24)

where

• Bkℓ “
ş
Γ
µBfℓBpψfkqdx

• HipY q “ ´
ş
Γ
Hpx, Y TF qBpfiψqdx with F “ pf1, ¨ ¨ ¨ , fnqT and Y TF “

ř
ℓ y

n
ℓ fℓ “ un

• Giptq “ ´
ş
Γ
fpx, tqBpfiψqdx for all i P 1, ¨ ¨ ¨ , n.

Since the matrix M is invertible and the function H is Lipschitz continuous by (1.32), the
system (4.24) has a unique global solution. This ends the proof of the lemma.

We start by giving some estimates for the approximation un.

Lemma 4.14. Under the assumptions made in Theorem 4.11, there exists a constant C depend-
ing only on Γ, T , ψ, }uT }F , }Bf}L2pΓˆp0,T qq }f}CpΓˆr0,T sq and }Btf}L2p0,T ;H1

b
pΓqq such that

}un}L8p0,T ;F q ` }un}
L2p0,T ;H2

b
pΓqq ` }Btun}L2pΓˆp0,T qq ď C.
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Proof of Lemma 4.14. We divide the proof into two steps:
Step 1: Uniform estimates of un in L8p0, T ;L2pΓqq, L2p0, T ;F q and W 1,2p0, T ;E1q. Mul-

tiplying (4.22) by ynk ptq fke
λtψ where λ is a positive constant to be chosen later, summing for

k “ 1, . . . , n and using (4.20), we get

´

ż

Γ

Btunune
λtψdx `

ż

Γ

´
µBun ´Hpx, unq

¯
B
´
une

λtψ
¯
dx “ ´

ż

Γ

fBpunψe
λtqdx.

In the following lines, C will be a constant that may vary from lines to lines. Since H satisfies
(1.31) and f is bounded, there exists a constant C such that

´

ż

Γ

„
Bt

ˆ
u2n
2
eλt

˙
´
λ

2
u2ne

λt


ψdx `

ż

Γ

µ |Bun|2 eλtψdx ´ C

ż

Γ

|un| p|un| ` |Bun|q eλtdx

ďC

ż

Γ

p|un| ` |Bun|qeλtdx. (4.25)

The desired estimate on un is obtained from the previous inequality in a similar way as in the
proof of Lemma 2.3, by taking λ large enough.

Step 2: Uniform estimates of un in L8p0, T ;F q X L2p0, T ;H2
b pΓqq and of Btun in L2pΓ ˆ

p0, T qq. Multiplying (4.22) by Bty
n
k ptq fke

λtψ where λ is a positive constant to be chosen later,
integrating by part the term containing H and f (all the integration by parts are justified)
summing for k “ 1, . . . , n and using (4.20), we obtain that

´

ż

Γ

pBtunq2eλtψdx `

ż

Γ

µBunB
´

Btune
λtψ

¯
dx `

ż

Γ

B pH px, unqq Btune
λtψdx (4.26)

´
ÿ

iPI

ÿ

αPAi

niα rHαpνi, un|Γα pνi, tqq ´ f |Γα pνi, tqs Btun|Γα pνi, tqψ|Γα pνiq e
λt “

ż

Γ

BfBtunψe
λtdx.

Note that from (1.32) and (1.33),

|B pH px, unqq| ď C0p1 ` |un| ` |Bun|q (4.27)

so, from Step 1, this function is bounded in L2pΓ ˆ p0, T qq by a constant. Moreover,

ż T

s

ż

Γ

BfBtunψe
λtdxdt ď C

ˆż T

s

ż

Γ

pBfq2eλtdxdt

˙ 1

2
ˆż T

s

ż

Γ

pBtunq2eλtψdxdt

˙ 1

2

, (4.28)

and we can also estimate the term
ş
Γ
µBunB

`
Btune

λtψ
˘
dx as in the proof of Theorem 2.5. There-

fore, the only new difficulty with respect to the proof of Theorem 2.5 consists of obtaining a bound
for the term

ÿ

iPI

ÿ

αPAi

niα rHα pνi, un|Γα pνi, tqq ´ f |Γα pνi, tqs Btun|Γα pνi, tq e
λtψ|Γα pνiq .

Let Jiαppq be the primitive function of p ÞÑ Hαpνi, pq such that Jiαp0q “ 0:

Hα pνi, un|Γα pνi, sqq Btun|Γα pνi, sq “
d

dt
Jiαpun|Γα pνi, sqq.

We can then write

´

ż T

s

´
niαH

α pνi, un|Γα pνi, tqq Btun|Γα pνi, tq e
λtψ|Γα pνiq

¯
dt

“niαψ|Γα pνiq

ˆ
´Jiα pun|Γα pνi, T qq eλT ` Jiα pun|Γα pνi, sqq eλs ` λ

ż T

s

Jiα pun|Γα pνi, tqq eλtdt

˙
.
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Since Hαpx, ¨q is sublinear, see (1.31), |Jiαppq| is subquadratic, i.e., |Jiαppq| ď Cp1 ` p2q, for a
constant C independent of α and i. This implies that

ˇ̌
ˇ̌
ż T

s

´
niαH

α pνi, un|Γα pνi, tqq Btun|Γα pνi, tq e
λtψ|Γα pνiq

¯
dt

ˇ̌
ˇ̌

ďC
´
eλT ` u2n|Γα pνi, T q eλT ` u2n|Γα pνi, sq e

λs
¯

`Cλ

ż T

0

`
1 ` u2n|Γα pνi, tq

˘
eλtdt.

Note that, from Step 1 and the stability of the trace, λ
şT
s

`
1 ` u2n|Γα pνi, tq

˘
eλtdt ď CλeλT . To

summarize
ˇ̌
ˇ̌
ż T

s

´
niαH

α pνi, un|Γα pνi, tqq Btun|Γα pνi, tq e
λtψ|Γα pνiq

¯
dt

ˇ̌
ˇ̌

ďC
´
u2n|Γα pνi, T q eλT ` u2n|Γα pνi, sq

2 eλs
¯

` C̃pλq.

(4.29)

Similarly, using the fact that f P CpΓ ˆ r0, T sq and Btf |Γα pνi, ¨q P L2 p0, T q, and integrating by
part, we see that

ˇ̌
ˇ̌
ż T

s

f |Γα pνi, tq Btun|Γα pνi, tq e
λtdt

ˇ̌
ˇ̌

“

ˇ̌
ˇ̌pf |Γαunq|Γα pνi, T q eλT ´ pf |Γαunq|Γα pνi, tq e

λs ´

ż T

s

pλf |Γα pνi, tq ` Btf |Γα pνi, tqq un|Γα pνi, tq e
λtdt

ˇ̌
ˇ̌

ď C

ˆ
|un|Γα pνi, T q |eλT ` |un|Γα pνi, sq |eλs ` λ

ż T

s

|un|Γα pνi, tq| eλtdt

˙

`
1

2

ż T

s

u2n|Γα pνi, tq e
λtdt `

1

2

ż T

s

pBtf |Γα pνi, tqq2 eλtdt.

From Step 1 and the assumptions on f , the last three terms in the right hand side of the latter
estimate are bounded by a constant depending on λ, but not on n. To summarize,

ˇ̌
ˇ̌
ż T

s

f |Γα pνi, tq Btun|Γα pνi, tq e
λtdt

ˇ̌
ˇ̌ ď C

´
|un|Γα pνi, T q |eλT ` |un|Γα pνi, sq |eλs

¯
` C̃pλq. (4.30)

To conclude from (4.29) and (4.30), we use the following estimates

$
’’&
’’%

|un|Γα pνi, tq| ď C

ˆż

Γα

|un px, tq| dx `

ż

Γα

|Bun px, tq| dx

˙
,

u2n|Γα pνi, tq ď C

ˆż

Γα

u2n px, tq dx `

ż

Γα

|unBun px, tq| dx

˙
,

(4.31)

for t “ s and t “ T .
Then proceeding as in the proof of Theorem 2.5 and combining (4.26), (4.27), (4.28), (4.29)

and (4.30) with (4.31), we find the desired estimates by taking λ large enough.
Let us end the proof by proving (4.31). The function φ “ un|Γα p¨, tq is in H1pΓαq. By

the continuous embedding H1pΓαq ãÑ CpΓαq, we can define φ in the pointwise sense (and even
at two endpoints of any edges, see (1.2)). For all α P A and x, y P Γα, we have φpxq “
φpyq `

ş
ry,xs Bφpξqdξ. It follows

|Γα|φpxq “

ż

Γα

φpxqdy “

ż

Γα

φpyqdy `

ż

Γα

ż

ry,xs
Bφpξqdξdy ď

ż

Γα

|φpξq|dξ ` |Γα|

ż

Γα

|Bφpξq|dξ,
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which gives the first estimate setting x “ νi. The second estimate is obtained in the same way
replacing φ by φ2 and using the fact that W 1,1pΓαqss is continuously imbedded in CpΓαq.

Proof of Theorem 4.11. From Lemma 4.14, up to the extraction of a subsequence, there exists
u P L2

`
0, T ;H2

b pΓq
˘

XW 1,2 pΓ ˆ p0, T qq such that

$
&
%
un á u, in L2

`
0, T ;F XH2

b pΓq
˘
,

Btun á Btu, in L2 pΓ ˆ p0, T qq .
(4.32)

Moreover, by Aubin-Lions Theorem (see Lemma A.1),

L2
`
0, T ;F XH2

b pΓq
˘

XW 1,2
`
0, T ;L2 pΓq

˘ compact
ãÑ L2 p0, T ;F q ,

so up to the extraction of a subsequence, we may assume that un Ñ u in L2p0, T ;F q and almost
everywhere. Moreover, from the compactness of the trace operator from W 1,2pΓα ˆ p0, T qq to
L2pBΓα ˆ p0, T qq, un|BΓαˆp0,T q Ñ u|BΓαˆp0,T q in L2pBΓα ˆ p0, T qq and for almost every t P p0, T q.
Similarly, un|Γαˆtt“T u Ñ u|Γαˆtt“T u in L2pΓαq and almost everywhere in Γα. Then, using the
Lipschitz continuity of H with respect to its second argument, and similar arguments as in the
proof of Theorem 2.4, we obtain the existence of a solution of (4.11) satisfying (4.17) by letting
n Ñ `8. Since H2pΓαq Ă C1`σpΓαq for some σ P p0, 1{2q, up¨, tq P C1`σ pΓαq for all α P A and
a.a. t.

Finally, the proof of uniqueness is a consequence of the energy estimate (4.17) for u.

Next, we want to prove that, if u is the solution of (4.11) and v is the solution (4.1), then
Bu “ v. It means that we have to define a primitive function on the network Γ.

Definition 4.15. Let x P Γα0
“ rνi0 , νi1s and y P Γαm “

“
νim , νim`1

‰
. We denote the set of

paths joining from x to y by ÝÑxy. More precisely, if L P ÝÑxy, we can write L under the form

L “ x Ñ νi1 Ñ νi2 Ñ . . . Ñ νim Ñ y,

with νik P V and
“
νik , νik`1

‰
“ Γαk

. The integral of a function φ on L is defined by

ż

L

φ pξq dξ “

ż

rx,νi1 s
φ pξq dξ `

mÿ

k“1

ż

rνik ,νik`1
s
φ pξq dξ `

ż

rνim ,ys
φ pξq dξ, (4.33)

recalling that the integrals on a segment are defined in (1.8).

Lemma 4.16. Let u be the unique solution of (4.11) with uT “ BvT . Then for all x, y P Γ and
a.e. t P r0, T s, ż

L1

u pζ, tq dζ “

ż

L2

u pζ, tq dζ, for all L1,L2 P ÝÑxy.

This means that the integral of u from x to y does not depend on the path. Hence, for any L P ÝÑxy,
we can define ż

ÝÑxy
u pζ, tq dζ :“

ż

L

u pζ, tq dζ.
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Proof of Lemma 4.16. First, it is sufficient to prove
ş
L
u pζ, tq dζ “ 0 for all L P ÝÑxx. Secondly,

if a given edge is browsed twice in opposite senses, the two related contributions to the integral
sum to zero. It follows that, without loss of generality, we only need to consider loops in ÝÑxx such
that all the complete edges that it contains are browsed once only. It is also easy to see that we
can focus on the case when x P V. To summarize, we only need to prove that

ż

L

u pζ, tq dζ “ 0

when νi0 P VzBΓ and L “ νi0 Ñ νi1 Ñ . . . Ñ νim Ñ νi0 , where νik ‰ νiℓ for k ­“ l.
The following conditions

1. e|Γα “ 0 on each edge Γα not contained in L

2. for all k “ 0, . . . m´ 1, e|Γαk
“ 1ikăik`1

´ 1ikąik`1
if Γαk

is the edge joining νik and νik`1

3. e|Γαm
“ 1imăi0 ´ 1imąi0 if Γαm is the edge joining νim and νi0

define a unique function e P E which takes at most two values on L, namely ˘1.
From Definition 4.15, we have

d

dt

ż

L

u pζ, tq dt “
mÿ

k“0

d

dt

ż

rνik ,νik`1
s
u pζ, tq dζ `

d

dt

ż

rνim ,νi0 s
u pζ, tq dζ

“
d

dt

ż

Γ

u pζ, tq e pζq dζ “

ż

Γ

Btu pζ, tq e pζq dζ.

Then, using Definition 4.8, Remark 4.9 and Remark 4.10 yields that

d

dt

ż

L

u pζ, tq dζ

“
ÿ

αPA

ż

Γα

“
´µαB2u pζ, tq ` BH pζ, u pζ, tqq ´ Bf pζ, tq

‰
e pζq dζ

“
mÿ

k“0

ż

Γαk

“
´µαk

B2u pζ, tq ` BH pζ, u pζ, tqq ´ Bf pζ, tq
‰
e pζq dζ

“
mÿ

k“0

e|Γαk
pνiq

¨
˝ nik`1αk

´
´µαk

Bu|Γαk

`
νik`1

, t
˘

`Hα
´
νik`1

, u|Γαk

`
νik`1

, t
˘¯

´ f
`
νik`1

, t
˘¯

`nikαk

´
´µαk

Bu|Γαk
pνik , tq `Hα

´
νik , u|Γαk

pνik , tq
¯

´ f pνik , tq
¯

˛
‚,

where we have set im`1 “ i0. Now using (4.9) (which is satisfied for a.e. t from the regularity of
u) and the fact that e P E, we conclude that

d

dt

ż

L

u pζ, tq dζ “ 0. (4.34)

Hence ż

L

u pζ, tq dζ “

ż

L

u pζ, T q dζ “

ż

L

uT pζq dζ “

ż

L

BvT pζq dζ “ 0,

where the last identity comes from the assumption that vT P V (the continuity of vT ).

Lemma 4.17. If uT “ BvT P F , then the weak solution u of (4.11) satisfies u “ Bv where v is
the unique solution of (4.1).
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Proof of Lemma 4.17. For simplicity, we write the proof in the case when BΓ ­“ H. The proof is
similar in the other case.

Let us fix some vertex νk P BΓ. From standard regularity results for Hamilton-Jacobi equation
with homogeneous Neumann condition, we know that that there exists ω, a closed neighborhood
of tνku in Γ made of a single straigt line segment and containing no other vertices of Γ than νk,
such that v|ωˆp0,T q P L2p0, T ;H3pωqq X Cpr0, T s;H2pωq X W 1,2p0, T ;H1pωqq. Hence, v satisfies
the Hamilton-Jacobi equation at almost every point of ω ˆ p0, T q. Moreover the equation

Btvpνk, tq ` µB2vpνk, tq ´Hpνk, 0q ` fpνk, tq “ 0 (4.35)

holds for almost every t P p0, T q and in L2p0, T q.
For every x P Γ and t P r0, T s, we define

v̂ px, tq “ v pνk, tq `

ż

ÝÑνkx
u pζ, tq dζ. (4.36)

Remark 4.18. If BΓ “ H, then the proof should be modified by replacing νk by a point ν P ΓzV
and by using local regularity results for the HJB equation in (4.1).

We claim that v̂ is a solution of (4.1).
First, v̂ p¨, tq is continuous on Γ. Indeed, v̂py, tq ´ v̂px, tq “

ş
ÝÑxy upζ, tqdζ. On the other hand,

u P Cpr0, T s;F q Ă L8pΓ ˆ r0, T sq. It follows that |v̂py, tq ´ v̂px, tq| ď ||u||L8pΓˆr0,T sqdistpx, yq
which implies that v̂ p¨, tq is continuous on Γ.

Next, from the terminal conditions for u,

v̂ px, T q “ v pνk, T q `

ż

ÝÑνkx
u pζ, T q dζ “ vT pνkq `

ż

ÝÑνkx
BvT pζq dζ “ vT pxq ,

where the last identity follows from the continuity of vT on Γ.
Let us check the Kirchhoff condition for v̂. Take νi P V and α P Ai. From (1.7), for a.e.

t P p0, T q, Bαv̂pνi, tq “ niαBv̂|Γαpνi, tq and from (4.36), Bv̂|Γαpνi, tq “ u|Γαpνi, tq. Since up¨, tq P F ,
we get

ÿ

αPAi

γiαµαBαv̂pνi, tq “
ÿ

αPAi

γiαµαniαu|Γαpνi, tq “ 0,

which is exactly the Kirchhoff condition for v̂ at νi.
There remains to prove v̂ solves the Hamilton-Jacobi equation in ΓzV: Take x P ΓαzV for

some α P A and consider a path ÝÑνkx Q L “ νi0 Ñ ¨ ¨ ¨ Ñ νim Ñ x, where i0 “ k and νim P Γα.
Let νim`1

be the other endpoint of Γα. We proceed as in the proof of Lemma 4.16: the following
conditions

1. e|Γα “ 0 on each edge Γα not contained in L

2. for all j “ 0, . . . m, e|Γj
“ 1ijăij`1

´ 1ijąij`1
if Γj is the edge joining νij and νij`1

define a unique piecewise constant function e which takes at most two values on L, namely ˘1.
Note that e does not belong to E because epνkq ­“ 0, but that e satisfies

ř
αPAi

niαe|Γα pνiq “
0 for all νi P VzBΓ.

Using this function, a similar computation as in the proof of Lemma 4.16 implies that, for
almost every t P p0, T q,

Btv̂px, tq ´ Btvpνk, tq “ ´ µαBu|Γα px, tq `H px, u|Γα px, tqq ´ f px, tq

` µαB2v pνk, tq ´H pνk, 0q ` f pνk, tq .
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Then, using (4.35) and the fact that Bv̂ “ u, the latter identity yields that for almost every
px, tq P p0, T q ˆ Γ,

Btv̂px, tq ` µαB2v̂ px, tq ´H px, Bv̂ px, tqq ` f px, tq “ 0.

We have proven that v̂ is a solution of (4.1). Since v is the unique solution of (4.1), we conclude
that v “ v̂ and Bv “ u.

We are now ready to give the proof of Theorem 4.5.

Proof of Theorem 4.5. Since Bv “ u by Lemma 4.17 and u satisfies (4.17) by Theorem 4.11, we
obtain that v P L2

`
0, T ;H3 pΓq

˘
and Btv P L2

`
0, T ;H1 pΓq

˘
and (4.8) holds.

Therefore, using an interpolation result combined with Sobolev embeddings, see [4] or Lemma A.2
in the Appendix, v P C1`σ,σ{2pΓ ˆ r0, T sq for some 0 ă σ ă 1.

Finally, we know that since f P W 1,2p0, T,H1
b pΓqq, f |Γαˆr0,T s P Cη,ηpΓα ˆ r0, T sq for all

η P p0, 1{2q. If f P Cη,
η
2 pΓα ˆ r0, T sq for some η P p0, 1{2q, we claim that v P C2,1pΓ ˆ r0, T sq.

This is a direct consequence of a theorem of Von Below, see the main theorem in [24], for the
(modified) heat equation

´ Btw ´ µαB2w “ gpx, tq in pΓαzVq ˆ p0, T q, (4.37)

with the same Kirchhoff conditions as in (4.1): Note that if the terminal Cauchy condition
for w is wp¨, t “ T q “ vT and if g “ f ´ Hpx, Bvq, then w “ v. Now g “ f ´ Hpx, Bvq P
Cτ,

τ
2 pΓα ˆ r0, T sq, where 1{2 ą τ “ minpσ, ηq ą 0. Using the result in [24], we obtain that

v “ w P C2`τ,1`τ{2pΓα ˆ r0, T sq, then that v is a classical solution of (4.1).

5 Existence, uniqueness and regularity for the MFG system (Proof
of Theorem 1.11)

Proof of existence in Theorem 1.11. Givenm0 and vT , let us construct the map T : L2 p0, T ;V q Ñ
L2 p0, T ;V q as follows.

Given v P L2 p0, T ;V q, we first define m as the weak solution of (3.1) with initial data m0

and b “ Hppx, Bvq. We know that m P L2 p0, T ;W q X Cpr0, T s;L2pΓqq XW 1,2p0, T ;V 1q.
We claim that if vn Ñ v in L2 p0, T ;V q then Hpp¨, Bvnq tends to Hpp¨, Bvq in L2pΓ ˆ p0, T qq.

To prove the claim, we argue by contradiction: assume that there exist a positive number ǫ and a
subsequence vφpnq such that }Hpp¨, Bvφpnqq ´Hpp¨, Bvq}L2pΓˆp0,T qq ą ǫ. Then since Bvφpnq tends to
Bv in L2pΓˆ p0, T qq, we can extract another subsequence vψpnq from vφpnq such that Bvψpnq tends
to Bv almost every where in Γ ˆ p0, T q. From the continuity of Hp, we deduce that Hpp¨, Bvψpnqq
tends to Hpp¨, Bvq almost everywhere in Γ ˆ p0, T q. Since there exists a positive constant C0

such that }Hpp¨, Bvψpnqq}8 ď C0, }Hpp¨, Bvq}8 ď C0, Lebesgue dominated convergence theorem
ensures that Hpp¨, Bvψpnqq tends to Hpp¨, Bvq in L2pΓˆ p0, T qq, which is the desired contradiction.

To summarize, Hpp¨, Bvnq tends to Hpp¨, Bvq in L2pΓ ˆ p0, T qq on the one hand, and for a
positive constant C0, }Hpp¨, Bvnq}8 ď C0, }Hpp¨, Bvq}8 ď C0. Using Lemma 3.4, we see that
mn, the weak solution of (3.1) with initial data m0 and b “ Hppx, Bvnq converges to m in
L2 p0, T ;W q X L8

`
0, T ;L2pΓq

˘
X W 1,2p0, T ;V 1q. Hence, the map v ÞÑ m is continuous from

L2 p0, T ;V q to L2 p0, T ;W q X L8
`
0, T ;L2pΓq

˘
XW 1,2p0, T ;V 1q. Moreover, the a priori estimate

(3.3) holds uniformly with respect to v.
Then, knowing m, we construct T pvq ” rv as the unique weak solution of (4.1) with fpx, tq “

V rmp¨, tqspxq. Note that m ÞÑ f is continuous and locally bounded from L2pΓ ˆ p0, T qq to
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L2pΓˆp0, T qq. Then Lemma 4.4 ensures that the map m Ñ ṽ is continuous from L2pΓˆp0, T qq to
L2

`
0, T ;H2pΓq

˘
XL8 p0, T ;V qXW 1,2p0, T ;L2pΓqq. From Aubin-Lions theorem, see Lemma A.1,

m Ñ ṽ maps bounded sets of L2pΓ ˆ p0, T qq to relatively compact sets of L2 p0, T ;V q.
Therefore, the map T : v ÞÑ ṽ is continuous from L2 p0, T ;V q to L2 p0, T ;V q and has a

relatively compact image. Finally, we apply Schauder fixed point theorem [10, Corollary 11.2]
and conclude that the map T admits a fixed point v. We know that v P L2

`
0, T ;H2pΓq

˘
X

L8 p0, T ;V q XW 1,2p0, T ;L2pΓqq and m P L2 p0, T ;W q X L8
`
0, T ;L2pΓq

˘
XW 1,2p0, T ;V 1pΓqq.

Hence, there exists a weak solution pv,mq to the mean field games system (1.25).

Proof of uniqueness in Theorem 1.11. We assume that there exist two solutions pv1,m1q and
pv2,m2q of (1.25). We set v “ v1 ´ v2 and m “ m1 ´m2 and write the system for v,m

$
’’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’’%

´Btv ´ µαB2v `H px, Bv1q ´H px, Bv2q ´ pV rm1s ´ V rm2sq “ 0, x P ΓαzV, t P p0, T q ,

Btm´ µαB2m´ B pm1BpH px, Bm1q ´m2BpH px, Bm2qq “ 0 x P ΓαzV, t P p0, T q ,

v|Γα pνi, tq “ v|Γβ
pνi, tq ,

m|Γα pνi, tq

γiα
“
m|Γβ

pνi, tq

γiβ
, α, β P Ai, νi P V,

ÿ

αPAi

γiαµαBαv pνi, tq “ 0, νi P V, t P p0, T q ,

ÿ

αPAi

niα rm1|Γα pνiq BpH
α pνi, Bv1|Γα pνi, tqq ´m2|Γα pνiq BpH

α pνi, Bv2|Γα pνi, tqqs

`
ÿ

αPAi

µαBαm pνi, tq “ 0, νi P V, t P p0, T q ,

v px, T q “ 0, m px, 0q “ 0.

Testing by m the boundary value problem satified by u, testing by u the boundary value problem
satified by m, subtracting, we obtain

ż T

0

ż

Γ

pm1 ´m2q pV rm1s ´ V rm2qs dxdt `

ż T

0

ż

Γ

Bt pm vq dxdt

`
ÿ

αPA

ż

Γα

m1 rH px, Bv2q ´H px, Bv1q ´ BpH px, Bv1q Bvs dx

`
ÿ

αPA

ż

Γα

m2 rH px, Bv1q ´H px, Bv2q ` BpH px, Bv1q Bvs dx “ 0.

Since V is strictly monotone, the first sum is nonnegative. Moreover,

ż T

0

ż

Γ

Bt pm vq dxdt “

ż

Γ

rmpx, T q vpx, T q ´mpx, 0q vpx, 0qsdx “ 0,

since vpx, T q “ 0 and mpx, 0q “ 0. From the convexity of H and the fact that m1,m2 are
nonnegative, the last two sums are nonnegative. Therefore, all the terms are zero and thanks
again to the fact that V is strictly increasing, we obtain m1 “ m2. From Lemma 4.2, we finally
obtain v1 “ v2.

Proof of regularity in Theorem 1.11. We make the stronger assumptions written in Section 1.4.4
on the coupling operator V . We know that V rms P W 1,2p0, T,H1

b pΓqq X PCpΓ ˆ r0, T sq. As-
suming also that vT P V and BvT P F , we can apply the regularity result in Theorem 4.5:
v P L2

`
0, T ;H3 pΓq

˘
XW 1,2

`
0, T ;H1 pΓq

˘
.
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Moreover, since V rms P W 1,2p0, T,H1
b pΓqq, we know that pV rmsq|Γαˆr0,T s P Cσ,σ{2pΓα ˆ

r0, T sq for all 0 ă σ ă 1{2. If vT P C2`η X D for some η P p0, 1q (D is defined in (1.13)), then
from Theorem 4.5, v P C2`τ,1`τ{2pΓˆr0, T sq for some τ P p0, 1q and the boundary value problem
for v is satisfied in a classical sense.

In turn, if for all α P A, BpHαpx, pq is a Lipschitz function defined in Γα ˆR, and if m0 P W ,
then we can use the latter regularity of v and arguments similar to those contained in the proof
of Theorem 2.5 and prove that m P Cpr0, T s;W q XW 1,2p0, T ;L2pΓqq X L2p0, T ;H2

b pΓqq.

A Some continuous and compact embeddings

Lemma A.1. (Aubin-Lions Lemma, see [18]) Let X0,X and X1 be function spaces, (X0 and X1

are reflexive). Suppose that X0 is compactly embedded in X and that X is continuously embedded
in X1. Consider some real numbers 1 ă p, q ă `8. Then the following set

tv : p0, T q ÞÑ X0 : v P Lp p0, T ;X0q , Btv P Lq p0, T ;X1qu

is compactly embedded in Lp p0, T ;Xq.

Lemma A.2. (Amann, see [4]) Let φ : ra, bs ˆ r0, T s Ñ R such that φ P L2p0, T ;H2pa, bqq and
Btφ P L2p0, T ;L2pa, bqq. Then φ P Csp0, T ;H1pa, bqq for some s P p0, 1{2q.

This result is a consequence of the general result [4, Theorem 1.1] taking into account [4,
Remark 7.4]. More precisely, we have

E1 :“ H2pa, bq
compact

ãÑ E :“ H1pa, bq ãÑ E0 :“ L2pa, bq.

Let r0 “ r1 “ r “ 2, σ0 “ 0, σ1 “ 2 and σ “ 1. For any ν P p0, 1q, we define

1

rν
“

1

r0
`

1 ´ ν

r1
, σν :“ p1 ´ νqs0 ` νs1.

This implies that rν “ 2 and σν “ 2ν. Therefore, if ν P p1{2, 1q, then the following inequality is
satisfied

σ ´ 1{r ă σν ´ 1{rν ă σ1 ´ 1{r1.

Hence, we infer from [4, Remark 7.4]

E1 ãÑ pE0, E1qν,1 ãÑ pE0.E1qν,rν “ W σν ,rν pa, bq ãÑ E,

where pE0, E1qν,1, pE0.E1qν,rν are interpolation spaces. This is precisely the assumption allowing
to apply [4, Theorem 1.1], which gives the result of Lemma A.2.
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