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We present scaling laws for the jet velocity resulting from bubble collapse at a liquid
surface which bring out the effects of gravity and viscosity. The present experiments
conducted in the range of Bond numbers 0.004< Bo <2.5 and Ohnesorge numbers
0.001< Oh <0.1 were motivated by the discrepancy between previous experimental re-
sults and numerical simulations. We show here that the actual dependence of We on
Bo is determined by the gravity dependency of the bubble immersion (cavity) depth
which has no power law variation. The power law variation of the jet Weber number,
We ∼ 1/

√
Bo suggested by Ghabache et al. (2014) is only a good approximation in a

limited range of Bo values (0.1< Bo <1). Viscosity enters the jet velocity scaling in
two ways: (a) through damping of precursor capillary waves which merge at the bubble
base and weaken the pressure impulse, and (b) through direct viscous damping of the
jet formation and dynamics. These damping processes are expressed by a dependence
of the jet velocity on Ohnesorge number from which critical values of Oh are obtained
for capillary wave damping, the onset of jet weakening, the absence of jetting and the
absence of jet breakup into droplets.

Key words:

1. Introduction

Collapse of small bubbles at liquid surfaces is an ubiquitous phenomenon in nature.
It is a fascinating fundamental problem because of the interconnection between capil-
lary, gravity and viscous forces. The bubble breakup process at a free surface and the
subsequent jetting was visualized first by Woodcock et al. (1953) using high speed pho-
tographic techniques who identified the following three stages: (i) the retraction and
fragmentation of the top thin film, (ii) the collapse of the unstable cavity formed due to
the absence of the thin film and (iii) formation and breakup of the jet. Kientzler et al.

(1954) conducted experiments with a range of bubble sizes and found that the bubble
collapse time decreases with decreasing bubble size. For small bubbles of radii less than
3 mm, the complete process till jetting occurs in a time of the order of 102 to 103 µs with
jet velocities of the order of 1 ms−1 to more than 10 ms−1, when viscous damping can
be neglected. This phenomenon is of importance in ocean- atmosphere exchange where
micro-sized aerosol drops are generated by the fragmentation of the thin film, followed
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by larger droplets due to the jet break up, which are still one order less than the bubble
radius; both these drops contribute to the sea-air exchange (Blanchard (1963); MacIn-
tyre (1972); Spiel (1995); Lhuissier & Villermaux (2012)). In carbonated beverages like
sparkling wine, small bubbles are desired because the aerosols created by their break
up enhances the aroma (Liger-Belair et al. (2012)). The aerosol generation by bubble
bursting is found to be the mechanism behind the distinctive odour (petrichor) after the
first rain ( Joung & Buie (2015)). Bubble bursting at a compound interface, like the
interface formed after oil spill at the ocean surface, can lead to reverse mass transport
of free surface materials into the bulk of the liquid (Feng et al. (2014)). In bio-reactors,
bursting of free surface bubbles can cause mass scale bacterial cell destruction around
aeration sites ( Boulton-Stone & Blake (1993)). In recent studies Shakhova et al. (2014)
found that thawing of sub sea Arctic permafrost in East Siberia releases methane, a
green house gas, and the transfer of this gas to the atmosphere is mediated by bubbles
and its subsequent bursting at the ocean surface. The study reveals that bubbles, during
stormy times, enhance the methane flux transfer from ocean to atmosphere. For all these
reasons, this problem has received considerable attention so far.

A first attempt to understand the physics behind jetting from free surface bubble
collapse was made by MacIntyre (1972), who conducted experiments with dyed bubbles,
and proposed a boundary layer flow along the bubble cavity, which causes a stagnation
pressure at the bottom of the cavity, causing jet formation. The bubble collapse at an
air-water interface was first simulated numerically by Boulton-Stone & Blake (1993)
(herein after BSB) for a range of bubble radii 0.5 mm < R < 3 mm who then estimated
the resulting jet velocities. Spiel (1995) measured the velocities of the first drops from air
bubbles bursting at a water surface and proposed an empirical exponential dependence
of jet velocity on R. A more comprehensive analysis of the scaling of jet velocities (Uj)
was done by Duchemin et al. (2002), who performed direct numerical simulations for
a wide range of sizes 1.4µm < R < 20 mm of air bubbles in water; they showed that
Uj/Uµ ∼ (R/Rµ)

−1/2, where Uµ = σ/µ and Rµ = µ2/ρσ are the viscous- capillary
velocity and length scales, with ρ being the liquid density, σ the liquid-gas surface tension
and µ the dynamic viscosity. However, this dependence of Uj on R is not supported by
the experimental results of Spiel (1995) nor the numerical simulations of BSB which are
closer to Uj ∼ 1/R (Sangeeth et al. (2012)).

In order to answer this question of the dependence of jet velocity on bubble radius,
and of the effects of viscosity and gravity on jet formation, experiments in other more
viscous fluids and/or fluids of lower surface tension were needed. Such results, with
different fluids, have recently been reported by Sangeeth et al. (2012) and Ghabache
et al. (2014). Sangeeth et al. (2012) showed that, indeed, the viscous-capillary scaling
(Uj ∼ 1/

√
R) suggested by Duchemin et al. (2002) cannot collapse the experimental

data, which displayed a 1/R variation for an intermediate range of R. Ghabache et al.

(2014) showed that the gravity- capillary scaling, We ∝ Bo−1/2, (Uj ∼ 1/R), collapse
the data reasonably well for 0.007< Bo <1, where the jet Weber number We = ρU2

j R/σ

and the Bond number Bo = ρgR2/σ, with g being the acceleration due to gravity.
However, as we show in this paper, such a scaling is unlikely to hold for Bo < 0.1 and
Bo >1. Our data (see Sangeeth et al. (2012)) can also be approximated by a Bo−1/2

dependence of We, but only for 0.1 < Bo < 1, beyond which there are deviations
from such a power law, as indicated also by the results of Spiel (1995) and BSB. In
Ghabache et al. (2014), viscous effects were expressed as a dependence of We

√
Bo on

Morton number, Mo = Bo Oh4, where Ohnesorge number Oh = µ/
√
ρRσ. However,

the extremely small values of Mo in their scaling (10−9 < Mo < 10−6) indicates the
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Water △ GW48 N GW48 ⊲ GW55 � GW68 ∗ GW72 ♦ 2-propanol + Ethanol ⊳

(20◦C) (30◦C) (20◦C) (20◦C) (30◦C) (30◦C) (20◦C) (20◦C)

µ mPa s 1.01 3.9 5.5 8 12.4 16.6 2.07 1.14
ρ kg m−3 1000 1115 1120 1140 1170 1181 781 789
σ kg s−2 0.072 0.068 0.068 0.067 0.066 0.064 0.018 0.022
R mm 0.18 - 4.08 0.42 -3.4 0.81-1.96 0.71 - 2.3 0.48 -2.3 0.6 - 3.6 1.46 - 2.41 0.19 - 1.16
Bo 0.004 - 2.27 0.029 -1.9 0.1 - 0.62 0.083 - 0.88 0.041 -0.89 0.063 - 2.36 0.9 - 2.4 0.013 - 0.47
Oh× 10−3 1.9 - 9 7.6 - 21.6 14 - 22 19.2 - 34.7 29.7 - 64.1 32 - 79.1 11.2 - 14.4 8 - 20
Re 2204 - 4276 774 -1506 627 - 723 284 - 393 19 -207 14 - 135 — —

Table 1: Properties of the fluids, the range of radii of the bubbles and the range of
dimensionless numbers used in the experiments. Bo = ρgR2/σ, Oh = µ/

√
σρR, Re =

ρUjR/µ.

inadequacy of such a viscous scaling. These issues called for further experiments and a
search for the appropriate Bo dependence of the jet We and the possible limits of the
We ∼ 1/

√
Bo “power law”; the scaling of viscous effects also needed reexamination.

In this paper we show that the Bo dependence of the jet We is closely related with
the square of the dimensionless cavity depth, which implies that there is no simple power
law scaling as proposed by Ghabache et al. (2014). We further show that the viscous
damping effects are well captured by Ohnesorge number, for which critical values for
capillary wave damping, dominant viscous damping, the absence of jet break up and the
absence of jetting are given.

2. Experimental conditions

The experiments were conducted in a transparent acrylic tank of 3.5 × 5 cm2 cross
sectional area and in a glass tank of 5× 5 cm2 cross sectional area. The tanks were fixed on
a leveling board and were filled up to the brim to avoid meniscus effects. We use distilled
water and glycerol-water mixtures of 48%, 55%, 68 % and 72% glycerine concentration
(herein after referred to as GW48, GW55, GW68 and GW72). In addition to these fluids,
we have used 2-propanol and ethanol for the measurement of static parameters of the
bubble, the properties of all these fluids are given in table 1. Gas bubbles in the range
of equivalent spherical radii 0.17 mm < R < 4.1 mm were produced by pumping air
into glass capillary tubes of different sizes using a syringe pump operated at a constant
discharge rate. The flow rate in the capillaries were selected so that the bubble detachment
was within the periodic dripping regime described by Clanet & Lasheras (1999) and the
periodic bubbling regime of Oguz & Prosperetti (1993). Care was taken to avoid crowding
and merging of bubbles at the free surface. Capillaries were carefully fixed in the same
alignment through out the experiments to avoid variations in bubble sizes (Doshi et al.
(2003)). The liquids were changed after each run to minimize surface contamination.
The rising bubbles, which are almost elliptical in shape were photographed to determine

the bubble volumes, from which the equivalent spherical radii R were calculated. The
bubble stays at the free surface for a short time after its initial oscillations had died
down and then bursts, giving rise to a vertical or nearly vertical jet. This time of stay
for the smallest bubble of our experimentation (water, Bo = 4.2× 10−3, Oh = 9× 10−3)
was 91 ms. The time of stay increased to more than 1 s with increasing Bo, i.e, beyond
Bo = 0.1, in water and glycerol-water mixtures. Since the bubbles do not break during
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Figure 1: The bursting sequence of a bubble of radius R = 2.15 mm, Bo = 0.63,
Oh = 0.00255 in water. Each image, from a to p, is separated by 0.25 ms. Images p
to q and q to r are separated by 0.5 and 1.3 ms respectively. The whole process up to
jet emergence at the free surface took 4.5 ms. The lines in images a and r are 1 mm in
length.

their initial oscillations, possibly since the upper film is replenished; the bursting happens
from a static configuration. This bursting process and the jet emergence from the free
surface were captured by a high speed camera (La Vision ProHS for fps 6 19000 fps and
Photron SA4 for fps 6 100000) using high intensity LED back lighting. The jet velocity
was measured by tracking the tip of the jet in successive images, before the jet breaks up
into drops. The image acquisition rates met the condition that ti < 1/ |dUj/dz|, where
ti =1/fps. The spatial resolution was such that ∆Zi < Uj te, where ∆Zi is the size of
each pixel and te is the exposure time. The lowest and highest resolution for the imaging
were 27µm/pix and 3.4µm/pix. The corresponding jet diameters are 1.3 mm and 0.03 mm
respectively; the jets were hence well resolved in our images. For glycerol-water mixtures,
the viscosity values are less sensitive to changes in temperature at 30◦C than at 20◦C;
i.e, (∂µ/∂T )20◦C > (∂µ/∂T )30◦C . Hence, in regimes where viscosity of the jet is strongly
dependent on viscosity (or Oh), especially when sharp changes in velocity is expected
with change in Oh, like at Oh = 0.037 where the viscous cut off occurs, we conducted
experiments at 30◦C so that small changes from the set temperatures do not change the
viscosity much. The experiments were conducted in a temperature controlled laboratory
after the temperature stabilised to the set values of 20◦C or 30◦C.

3. Jet velocity scaling

A typical bubble collapse sequence is shown in figure 1 for a bubble of R = 2.15 mm
in water. Time evolution of the jets for the same and other conditions are shown in
Figures B.15 and B.16 in Appendix B. Note that there are precursor capillary waves
ahead of the kink caused by the change of the curvature of the bubble boundary from
convex to concave, as seen in images f to k in figure 1. The group velocity of these waves
is equal to the kink velocity as is observed ahead of the crest of steep water waves (Perlin
et al. (1993)). These dispersive capillary waves cause perturbations and hence weaken the
jet velocity, either through a weakening of the pressure impulse at the base, or by bubble
pinch-off. In the coalescence of larger bubbles, bubble pinch-off is a frequent phenomenon
( Zhang & Thoroddsen (2008), Zhang et al. (2015)); we however observe bubble pinch-off
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Figure 2: Weber number of the emerging jet velocities as a function of the Bond number.
△, Water; N, GW48 (30◦C); ⊲, GW48 (20◦C); �, GW55; ∗ , GW68; ♦, GW72; ×, the jet
velocities of Ghabache et al. (2014) for water; - -, We = 55Bo−1/2; ..., the jet velocities
of Ghabache et al. (2014) for glycerine-water solutions of viscosities 4.4 to 6.2 mPas.

only at one low Bo in water. With decreasing bubble size or with increasing viscosity,
these capillary waves are progressively damped, giving rise to an increase in jet velocity.
The question of capillary wave damping and its effect on jet velocity will be examined
in § 3.2.1; we focus first on the question of the origin of gravity effects on jet velocity.

3.1. Gravity effects

Figure 2 shows the variation of the square of the dimensionless jet velocity (Uj/Uc)
2 = We,

with the square of the dimensionless radius (R/Rc)
2 = Bo, where the capillary velocity,

Uc =
√

σ/ρR and the capillary radius, Rc =
√
σ/ρg. The water data of Ghabache

et al. (2014) are included in figure 2 for comparison and their results with glycerine-water
solution of 4.4 to 6.2 times the water viscosity are indicated by the dotted line. It is clear
from figure 2 that the data of Ghabache et al. (2014) show a good correlation of We with
Bo−1/2 (1/R variation) as shown by the dashed line, corresponding to

We = 55 Bo−1/2 (3.1)

covering the whole range of Bo considered. At a first view, our experimental results also
seem to support a 1/R variation of the jet velocity except when viscous effects become
important on the bubble scale, as is in the case of GW68 and GW72. However, there is
a deviation in our data from the 1/R behaviour when Bo > 1. Furthermore, there is also
a deviation of We from the Bo−1/2 dependence when Bo < 0.1, with the trend of We
becoming independent of Bo. In fact, we show later that even in the intermediate range
0.1 < Bo < 1, the Bo−1/2 scaling is only a good approximation and a continually
varying power of Bo fits the present data, as well as that of BSB, better. The jet velocities
of Ghabache et al. (2014) in glycerine-water solution of 4.4 to 6.2 times the water viscosity
is larger with respect to that in water by about a factor of 2; we do not observe such
a large velocity increase in our jet velocity measurements using GW48. We also note
from figure 2 that We at the same Bo first increase with increase in viscosity (see water
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Figure 3: (a) Schematic of the static bubble shape; (b) hc/hr as a function of Bo. △,
Water; ⊲, GW48 (20◦C); N, GW48 (30◦C); ∗, GW68; ♦, GW72; ⊳, ethanol; +, 2-propanol;
—, hc/hr = 2.

and GW48 (30◦C)) and then decrease monotonically with a further increase in viscosity.
When capillary waves are damped due to increase in viscosity or decrease in bubble
radius, the bubble boundary is smoother and this may lead to a higher impulse at the
bubble base and hence a higher jet velocity; we discuss this viscosity effect in § 3.2.1.

The question is, what is the reason for the gravity (or Bo) dependence of jet Weber
number and why should there be a Bo−1/2 dependence? It is well known that the jet
velocity resulting from cavity collapse related with stationary surface gravity waves de-
pends on the cavity depth or the last wave amplitude (Zeff et al. (2000); Das & Hopfinger
(2008)). We expect a similar association between the jet velocity and the bubble cavity
depth in the case of bubble collapse also. In bubble collapse, the cavity depth is de-
termined by the balance between gravity and surface tension forces, as will be shown
below.

3.1.1. Dimensionless cavity depth

The cavity depth Zc is defined as the depth of the base of the bubble from the free,
undisturbed, liquid surface (figure 3a). A theoretical expression of Zc can easily be ob-
tained when neglecting bubble deformation. To leading order,

Zc = 2R− hc, (3.2)

where hc is the height of the top of the bubble from the free surface (see figure 3a).
Assuming symmetry at the point of inflection of the bubble surface at the rim gives,

hc = 2η, (3.3)

where η = hc−hr is the height of the bubble cap above the rim, with hr being the height
of the rim from the free surface. Figure 3b shows hc/hr = hc/η, plotted against Bo in the
range 10−1 < Bo < 3. The measured values are close to hc/hr = hc/η = 2, hence the
validity of the assumptions leading to (3.3) is supported by experiments. The relatively
large experimental error is due to the very small values of hr and hc.

For a spherical bubble, from geometry,

η = R−
√
R2 −R2

r , (3.4)

where Rr is the radius of the rim (figure 3a). From the force balance, FB = Fσ, where the
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Figure 4: Square of the dimensionless cavity depth of the bubble as a function of the
Bond number. △, Water; ⊲, GW48 (20◦C); N, GW48 (30◦C); ∗, GW68; ♦, GW72;
⊳, ethanol; +, 2-propanol; - -, 1.32Bo−1/2; -.-, (Zc/R)2 = 4 (1 − 2/3 Bo); —
, (Zcd/R)2 = 4(

√
1− 2/3Bo− 0.17 Bo0.8)2.

buoyancy force, FB = ρg(4/3)πR3(1 − η2(3 − η/R)/4R2) and the surface tension force,
Fσ = (2σ/R)πR2

r , we get

Rr

R
=

√
2

3
Bo(1− η2

4R2
(3− η

R
)). (3.5)

When Bo 6 1, η/R 6 0.4, so the term η2(3− η/R)/4R2 6 0.1, which can be neglected
to first order, resulting in,

Rr

R
=

√
2

3
Bo, (3.6)

which when substituted in (3.4) gives,

η = R(1−
√
1− 2

3
Bo). (3.7)

Using (3.7) in (3.3), we get from (3.2),

Zc

R
= 2

√
1− 2

3
Bo. (3.8)

Figure 4 shows the square of the experimental (Zce/R)2 and the square of the theo-
retical dimensionless cavity depths (Zc/R)2, calculated from (3.8), as a function of Bo.
Note that we plot (Zc/R)2 rather than Zc/R because the Weber number also has the
square of velocity. It is seen that in the range 0.1 < Bo < 1, the experimental (Zce/R)
can be fitted by (Zce/R)2 ∼ Bo−1/2, which is the same approximate dependence of We
on Bo seen in figure 2. In figure 2, when Bo is large, Bo > 1, the jet velocity starts
to decrease and at Bo = 2.25, R = 4.08 mm in water, We deviates considerably from
the Bo−1/2 correlation. The experimental (Zce/R)2 in figure 4 shows a similar deviation
from the approximate power law Bo−1/2. The theoretical (Zc/R)2 has a steeper fall off
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with Bo than the experimental (Zce/R)2 because when Bo > 1, the limit of validity
of (3.8) is approached. When Bo → 0 the theoretical cavity depth (3.8) tends to the
asymptotic limit of 2R and is practically independent of Bo when Bo < 0.1 because for
Bo = 0.1, Zc/R = 1.93 and for Bo = 0.01, Zc/R = 1.99, which is only a 3 % variation.
We can therefore assume that when Bo < 0.1, Zc/R is nearly invariant. On the other
hand, between Bo = 0.1 (Zc/R = 1.93) and Bo = 1 (Zc/R = 1.15) gravity has a large
effect on the cavity depth.

The bubble deformation is negligible up to Bo ≈ 0.1 and remains small up to
Bo ≈ 3/2, with the deformation varying from about 4 to 15 % of R as Bo increases
from 0.1 to 1. Although these deformations are relatively small, this seems to affect
the cavity depth sufficiently when Bo < 1 to make the theoretical depths (3.8) de-
viate noticeably from the experiments, as can be seen in figure 4 when Bo < 1.
Zc/R given by (3.8) can be corrected for these small deformations by assuming an
ellipsoidal shape of the bubble. The expression for such a corrected cavity depth is
Zcd/R ≈ 2(R/Rm − 1 +

√
1− (2/3) Bo), where Rm is the measured horizon-

tal radius at the equator, approximated by R/Rm ≈ 1 − 0.17 Bo0.8, to get,

Zcd

R
= 2(

√
1− 2

3
Bo− 0.17Bo0.8). (3.9)

As shown by the continuous line in figure 4, we obtain a better match of (Zcd/R)2 vs
Bo obtained from (3.9) with the experimental variation of (Zce/R)2 vs Bo, compared to
that obtained by (3.8).

3.1.2. Cavity depth model for gravity effects

Gravity effects can be best demonstrated with data from one fluid alone rather than
data from different viscosity fluids as in figure 2. Figure 5 shows the experimental jet
velocities for water plotted in terms of We vs Bo, along with the data from BSB, the
drop velocities measured by Spiel (1995), the jet velocity measured from the images of
Kientzler et al. (1954) and the jet velocity data of Ghabache et al. (2014). The continuous
line is

We = 62.5

(
Zcd

R

)2

(3.10)

while the dashed line is (3.1). The following three regimes can be identified in figure 5.
(a) Bo < 0.1 : At these low Bo numbers the theoretical cavity depth varies only by

3% from Bo = 0 to 0.1 ( see figure 4) and according to the cavity depth model (3.10),
We should also asymptote to a constant value, as shown by the solid line in figure 5. Our
data and those of BSB tend to asymptote toward such a constant value of We rather
than to increasing We with decreasing Bo, following a Bo−1/2 law, given by Ghabache
et al. The deviation of our data from the cavity depth model (3.10), seen as a slight
increase in We with decreasing Bo, for Bo < 0.1 is due to capillary wave damping. As
we discuss in § 3.2.1, (figure 9), if the Weber number is corrected for this damping, it is
practically a constant for Bo < 0.1.

(b) Bo > 1 : In this range, there is, no doubt, a clear deviation of our We data from
the Bo−1/2 trend. This is because the cavity depth decreases more rapidly with Bo than
Bo−1/2 and there is also larger bubble deformation for Bo > 1.

(c) Intermediate range 0.1 < Bo < 1 : In this range, the data of Ghabache et al. are well
fitted by Bo−1/2 whereas the present results and those of BSB deviate noticeably from
this power law and closely follow the cavity depth model (3.10). For 0.06 < Bo < 0.15
Spiel’s results follow We ∼ Bo−1/2 but deviate from this power law when Bo increases.
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Figure 5: Variation of jet Weber number with Bond number in water. △, present ex-
periments; ⋆, BSB; ♦, drop velocities of Spiel (1995); �, Kientzler et al. (1954); —
, We = 62.5(Zcd/R)2; - -, We = 55 Bo−1/2; ×, jet velocities of Ghabache et al. (2014)
for water.

Spiel measured the first drop velocities and not the jet tip velocities when the jet emerges
from the free surface; the values of the drop velocities are different from the unbroken
jet tip velocities. Figure 6 shows the measured jet velocities at increasing heights as time
increases, culminating in the first drop velocity due to jet fragmentation at some height.
We see that at moderate Bo (0.2 6 Bo 6 0.63) there is a 30% to 60% reduction in drop
velocity compared to the jet velocity at the free surface. This reduction in drop velocities
increases with increasing Bo since jets from larger Bo bubbles fragment farther away
from the free surface (figure B.15). This decrease in drop velocities at moderate Bo is
the reason why Spiel’s data is lower than the solid curve from the cavity model in figure 5.
Based on the above considerations, it can be concluded that the present experimental

data for water and the BSB data, when considered over the whole range of Bo, show
better agreement with (3.10) than with (3.1). This agreement implies that the jet velocity
scales as Uj ∼ (Zcd/R) Uc, the gravity effects in jet velocity comes purely from the
gravity effects in the cavity depth. This scaling can also be demonstrated by measuring
the jet velocity from the vertical retraction of cavity, as shown in Appendix A. It is shown
in Appendix A that the time taken by the jet to travel the distance of cavity depth is
independent of gravity effects, implying that the gravity effects in jet velocity comes
only from the gravity dependence of static cavity depths. As we show later in § 3.2, this
conclusion is further strengthened when the experimental We, compensated for capillary
wave damping (see § 3.2.1), support the cavity depth model (see figure 9).

It could be argued that the dynamic cavity depth when the singular collapse com-
mences (figure 1 m) is of importance and not the static depth just after the surface film
disintegration (figure 1 c). An estimate of the change in cavity depth during the time of
bubble collapse tbc ≈ 0.3 tc (Sangeeth & Puthenveettil (2015)), where the capillary time
tc = R

√
ρR/σ is obtained by evaluating the upward bubble displacement ∆z = gt2bc/2

to get,

∆z/R ≈ 4.5× 10−2Bo, (3.11)
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Figure 6: Variation of the jet We with the dimensionless time for bubbles of different
Bo in water. ⋄, Bo = 0.2; �, Bo = 0.3; ©, Bo = 0.49; △, Bo = 0.63. Unfragmented jet
velocities are shown by hollow symbols while the velocities of the first drop after jet frag-
mentation are shown by filled symbols. The cubic polynomial fits, show the progression
of velocities with time of each jet.
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Figure 7: Variation of the dimensionless jet velocity with the dimensionless bubble ra-
dius for low Bo. The velocities and radii are normalised by the viscous capillary scales:
△, Water; N, GW48 (30◦C); ⊲, GW48 (20◦C); �, GW55; ∗, GW68; ♦, GW72; ©, jet
velocities of Duchemin et al. (2002) for water; ×, jet velocities of Ghabache et al. (2014)
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vertical dashed lines demarcate the Bo < 0.1 data on the left with the Bo > 0.1 data on
the right for water (W), GW48 and GW55. Viscous- capillary scaling is seen for Bo < 0.1
part of each data set.
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which is negligible when Bo < 1. Any decrease in cavity depth would hence have to be
due to capillary forces caused by the curvature of the bubble base, our experiments show
that this is small for small bubble sizes.

The proposed scaling law for gravitational effects on jet velocity, namelyWe ∼ (Zcd/R)2,
where Zcd/R is given by (3.9), implies that the jet We becomes practically independent
of Bo at Bo < 0.1. Hence at these low Bond numbers the viscous-capillary scaling of
Duchemin et al. (2002) should be appropriate. As shown in figure 7, the data closely
follow the relation

Uj

Uµ
= 16

(
R

Rµ

)
−1/2

, (3.12)

i.e, Ca = 16 Oh for Bo < 0.1 where the capillary number Ca = µUj/σ. This power law
variation of jet velocity gives Uj = 16 Uc or We = (Uj/Uc)

2 ≃ 250 as seen in figure 5

for Bo < 0.1. The relation (3.12) implies that Uj ∼ 1/
√
R (Duchemin et al. (2002)).

Curiously their data deviate from the R−1/2 scaling when R/Rµ < 5 × 103, which is
not observed in the present experiments. The data of Ghabache et al. (2014) show a
We ∼ Bo−1/2 scaling for their whole range of Bo, 0.007 < Bo < 1.

3.2. Viscosity effects

Ghabache et al. (2014) expressed the viscosity dependence of jet velocity by plotting
We

√
Bo in terms of Morton numberMo = Oh4Bo, a dimensionless number that contains

gravity. However, there is no physical reason as to why gravity should be important in
viscous damping of capillary driven flows. Gravity determines the cavity depth and shape,
but once formed, the collapse, after film rupture, is surface tension driven; as indicated
above, the change in cavity depth in the bubble collapse time due to gravity is negligibly
small when Bo is of order one or less. The importance of viscous effects on capillary
driven flows is therefore expressed by an Ohnesorge number which is the ratio of viscous
to capillary forces. The Ohnesorge number can also be interpreted in terms of a Reynolds
number Rec = 1/Oh, where Rec = ρUcR/µ. Viscosity enters the jet velocity scaling in
two ways: (a) through damping of the capillary waves which merge at the bubble base and
weaken the pressure impulse and (b) through direct viscous damping of the jet formation
and dynamics; we discuss both these effects now.

3.2.1. Capillary wave damping

Figure 8 shows the damping of capillary waves on the collapsing cavity surface with
increase in Oh. Figure 8 (a)-(b) is a bubble collapse sequence of a moderate Bo water
bubble (Bo = 0.63) with Oh = 0.0026. Here, in the wave train preceding the kink
two wavelengths λ1 ≈ 0.36R and λ2 ≈ 0.17R can be clearly identified, with faster
and shorter waves being practically damped. The wave train, group velocity Cg =

3/2
√

σ k/ρ ≃ 3/2
√

2πσ/ρλ1 ≈ 6 Uc which corresponds to the measured speed of the
kink. Figure 8 (c) -(d) is a collapsing sequence of a smaller water bubble (Bo = 3×10−2)
with a relatively larger Oh = 0.0055 which shows only wavelength λ1 clearly; the shortest
wave (λ2) is nearly damped. Figure 8 (e)-(f) show the capillary waves in GW48 (30◦C)
bubble with Oh = 0.0139 in which the longer wave (λ1) alone moves ahead of the kink,
with the amplitude noticeably decreased. As can be seen in figure 8 (g)-(h), a further
increase in Oh from 0.0139 to 0.0225 results in complete damping of the capillary waves
on the cavity surface.

The amplitude α of capillary waves falls off exponentially in the form α = α0e
−κt

with the damping rate κ = 8π2µ/ρλ2. In the collapse time tbc ≈ 0.3tc (Sangeeth &
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Figure 8: Progressive damping of capillary waves with increase in Oh, shown in image
pairs from (a) to (h). Collapsing sequence, (a)-(b): water, Oh = 0.0026 (Bo = 0.63);
(c)- (d): water, Oh = 0.0055 (Bo = 3 × 10−2); (e)-(f): GW48 (30◦C), Oh = 0.0139
(Bo = 0.17); (g)-(h): GW55, Oh = 0.0225 (Bo = 0.47). In each image pair, images are
separated by 741, 100, 148 and 375 micro seconds, respectively. The lines in (a)-(b): 1mm,
(c)- (d): 0.2mm, (e)-(f): 0.5mm, (g)-(h):0.5mm.

Puthenveettil (2015)), the decrease in capillary wave amplitude is then given by

ln
( α

α0

)
≈ −24

(R
λ

)2

Oh. (3.13)

Capillary waves can be considered completely absent when α/α0 = e−n with n ≈ 4.
Equation (3.13) with n = 4 then implies that capillary waves with wave length less than
λ/R ≈ 0.17 are absent at a value of Oh ≈ 0.0048 (see figure 8 (a) to (d)). Similarly,
capillary waves of wave length λ/R ≈ 0.36 will be absent at Oh ≈ 0.022 (see figure 8 (e)
to (h)). We can hence infer that capillary waves are progressively damped as Oh increases
and there is an increase in jet velocity up to about Oh ≈ 0.02 due to this damping.

For given fluid properties, Oh increases with decreasing bubble radius, resulting in a
corresponding decrease in Bo. We saw in figure 5 that with decreasing Bo when Bo <
0.1, the jet We increases, deviating from the cavity model (3.10) and this is due to
increasing capillary wave damping. If we assume that the radius at the bottom of the
cavity increases by a factor R/λ, given by (3.13), due to the presence of capillary waves,
then We has to be compensated by

√
Oh to account for capillary wave damping. As

shown in figure 9, We/Oh1/2 is practically a constant for the experimental data for
Bo < 0.1 and matches well with the cavity depth model. We of Spiel is also practically
independent of Bo when Bo < 0.06 in figure 9. Even Ghabache’s data could be considered
to be following our cavity depth model in figure 9. Unfortunately, Ghabache et al. (2014)
have no measurements at smaller Bo, say at Bo about 0.003 for a clearer verification.
In figure 10, we now plot We/(Zcd/R)2 as a function of Ohnesorge number, Oh. There

is a small region of decreasing We/(Zcd/R)2 with increasing Oh at small Oh, which is an
artifact of the deviation of the theoretical cavity depth (3.9) from the experimental values
at large Bo (see figure 4). When Oh < Ohc ≃ 0.037, except in the range of 0.02 < Oh <
Ohc, the data sets of water and GW48 indicate an increase of We/(Zcd/R)2 with Oh
in figure 10. As mentioned above, this increase of We/(Zcd/R)2 with Oh occur because
capillary waves are more and more damped as Oh increases, leading to a smoother cavity
and hence a stronger pressure impulse. Hence we plot the compensated We, namely
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(a) (b) (c) (d)

Figure 11: Images of jets for different combinations of Bo and Oh to show the effect
of gravity and viscosity. (a) and (b) are at around the same Bo, but (b) has a much
larger Oh, still less than Oh = 0.02. (a) and (c) are at the same Oh < 0.02, but (c)
has a much larger Bo. (a) and (d) have around the same Bo, but (d) has a much larger
Oh > Ohc = 0.037. (a) Bubble of R= 2.15 mm in water, Bo= 0.629, Oh= 2.55 × 10−3;
(b) R= 2 mm in GW48 (30◦C), Bo= 0.646, Oh= 10 × 10−3; (c) R=4.08 mm in water,
Bo= 2.25, Oh= 1.85 × 10−3; (d) R= 1.46 mm in GW72, Bo= 0.39, Oh= 4.9 × 10−2.
The lines in images 11a, 11b and 11d are 1 mm in length. The grid size in image 11c is
1 mm.

We/((Zcd/R)2Oh1/2), in figure 10 as a function of Oh. This rescaling collapse the present
water and GW48 data reasonably well to a nearly constant value of compensated We.
The increase in compensatedWe with decrease in Oh at small Oh (large Bo) still persists,
being an outcome of (3.9) being valid only till Bo ≈ 1.

3.2.2. Direct viscous damping of jet

It is seen that when Oh > Ohc ≃ 0.037 there is a rapid decrease in jet velocity.
This is because when Oh > Ohc the Reynolds number on the bubble scale falls below
102, viscous effects become on the bubble scale and the jet velocity decreases rapidly
with increasing Oh. Note that Ohc = 0.037 corresponds to R/Rµ = Oh−2 ≃ 730 in
figure 7, below which the jet velocity drops off rapidly in agreement with the numerical
simulations of Duchemin et al. (2002). Corresponding to Ohc, we can estimate a criti-
cal Bond number Boc = µ4g/(0.037)4σ3ρ, which is 1.5 × 10−5 in water, beyond the
range of our experiments. For higher viscosity fluids like GW68 and GW72, Boc = 0.3
and Boc = 1.28 respectively, which can be seen in figure 2, where a rapid drop of We
occurs for Bo < Boc. In figure 10, we have empirically fitted this viscous regime by
We/((Zcd/R)2Oh1/2) = 8.3× 10−9Oh−7.3 − 0.17. This critical value of Oh above which
the jet velocity decreases rapidly corresponds to the value proposed by Walls et al.

(2015) as a critical value beyond which the jet does not break up into drops. Figure 11
shows images of jets for different Oh values. It is seen that for conditions of figure 11d,
Oh = 0.05 > Ohc, for instance, there is no breakup of the jet into drops (figure B.16d),
whereas breakup occurs for lower values of Oh (figure 11a to 11b). In figure 11c there
is no breakup either, even though Oh < Ohc (see figure B.15a for full sequence of jet
evolution). This is because Bo is large, as discussed below in § 3.2.3. Furthermore, we find
that no jet emerges when Oh = Oh∗ ≃ 0.1, a value larger than the value of Oh∗ = 0.052
proposed by San Lee et al. (2011); the difference could possibly arise from the small
liquid layer depth (of the order of R) in their experiments.

Figure 10 clearly indicates the existence of an intermediary regime in the range 0.02 <
Oh < Ohc where the compensated Weber number for GW48 (20◦C), GW55 and GW68
falls below the nearly constant value observed when Oh < 0.02. This reduction in jet
velocity is most likely due to a viscous effect on the jet scale expressed here by the jet
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Reynolds number Re = ρUjR/µ that decreases from about 103 in the case of GW48 to
102 for GW55 (see table 1). For the latter experiment, when Re is defined with the jet
radius instead the bubble radius, it is well below 102.

3.2.3. Large Bond number effects

At very large Bo numbers, the ascending velocity of the bubble due to the buoyancy
force approaches the bubble collapse velocity due to the capillary force. An estimate
of Bo for no jet formation can be obtained from (3.11) by using ∆z ≈ 0.5 R during
the collapse time to obtain Bo ≈ 12. Walls et al. (2015) indicate that there is still jet
formation at Bo ≈ 5 (bubble in water) but no breakup into drops. As seen in figure 11c,
our experiments also show no drop formation for a R = 4.08 mm bubble in water at
Bo = 2.25. Hence we expect that at Bo ≈ 10 no jet will be formed.

4. Conclusions

The first main novel result from the present work is that the dependence of the dimen-
sionless jet velocity, expressed in terms of the Weber number (We), on the Bond number
(Bo) is determined by the dimensionless cavity depth. The variation of the square of the
dimensionless cavity depth (Zcd/R)2 of the bubble with the Bond number is of the same
form as that of We with Bo (compare figures 4, 5 and 9), which is not a power law. In
a limited range of Bond number values, 0.1 < Bo < 1, this dependence can however be
approximated as Bo−1/2 as was proposed by Ghabache et al. (2014). When Bo < 0.1 the
cavity depth approaches the asymptotic limit of Zc/R ≃ 2 and is practically indepen-
dent of Bo; the viscous-capillary scaling of Duchemin et al. (2002) is then appropriate
(figure 7). In the large Bond number limit (Bo >1) the cavity depth decreases rapidly
and so does the jet velocity or We. Bubble deformation also becomes important at these
large Bo numbers. No approximate power law for We in terms of Bo exists when Bo > 1.

The second important conclusion is that viscosity effects are best expressed in terms
of Ohnersorge number (Oh=viscous/capillary forces), which is usual for capillary driven
flows. Jet formation is strongly affected by viscosity when Oh > Ohc ≃ 0.037 with the
jet formation being completely inhibited when Oh = Oh∗ ≃ 0.1. In the range Oh < 0.02
an increasing viscosity can increase the jet velocity through capillary wave damping;
the present experiments suggest that We is proportional to

√
Oh in this regime. In the

intermediate range 0.02 < Oh < Ohc jet velocities are lower because of low jet Reynolds
number. When Oh > Ohc the Reynolds number is also small on the bubble scale.

While the present results are in overall agreement with those of Ghabache et al. (2014),
we point out important differences which exist at small Bond numbers (Bo < 0.1) and
large Bond numbers (Bo > 1). These differences occur due to the variation of the cavity
depth with Bo, which deviates from the approximate Bo−1/2 power law at small and
large Bo. In addition, we bring out the complex effects of viscosity, which result in three
regimes, the first in which viscosity affects the jet dynamics at large Oh, the second in
which it affects only the jet formation and finally the third regime in which viscosity
affects the jet velocity through capillary wave damping.

We are grateful to Prof. Mahesh Panchagnula, Dept. of Applied Mechanics, IIT Madras,
for allowing us to use the high speed photographic facility in his lab.
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Figure A.12: (a) Static bubble of R = 2.15mm in water; (b) the conical cavity just before
jet formation in the same bubble; (c) the shape contours extracted from (a) and (b) are
superposed together to show the displacement of the bottom of the cavity.

Appendix A. Jet velocity-cavity depth relation

The relation of jet velocity with cavity depth can also be demonstrated by considering
that the jet velocity is given by

Ujc = Z̃ce/tj , (A 1)

where tj is the time measured from the beginning of vertical retraction of the conically
shaped cavity (figure 1m) to jet emergence at the free surface (just before figure 1q) and

Z̃ce is the cavity depth at the instant when the conically shaped cavity starts to retract
vertically (see figure A.12c). In writing equation (A 1), it is assumed that the jet velocity
inside the cavity is constant and that the impulse at the conical cavity bottom occurs
in a time short compared with tj . As shown in figure A.13a, Z̃ce is found to be directly
proportional to Zce with no additional dependence on Bo so that,

Z̃ce = C1Zce, (A 2)

where, from measurements in water, C1 = 0.86. The measured values of tj scales with

the capillary time, tc =
√
ρR3/σ as,

tj = C2tc. (A 3)

Figure A.13b shows that in the intermediate range of Bo, where viscous damping of
capillary waves are not significant, C2 = 0.11, but at lower Bo values, corresponding to
larger values of Oh, C2 is likely to be less. We however were not able to measure at these
low Bo and therefore took the same value of C2, knowing that this would underestimate
Uj . Substituting (A 2) and (A 3) in (A 1) leads to

Wejc = 60.7 (Zce/R)2, (A 4)

where Wejc is the Weber number based on Ujc. The expression for Wejc (A 4) has the
same functional dependence as (3.10) and is quite close to (3.10) shown in figure 5. Fig-

ure A.14 compares Wejc determined from measured Z̃ce and tj with We determined from
jet velocity measurements close to the free surface; there is a close agreement between the
two. The slightly lower values of Wejc are due to the neglect of the initial acceleration of

the jet in estimating Ujc since Ujc is an average velocity measurement over Z̃ce. Hence,

since the time taken for the jet to travel a distance Z̃ce - proportional to the cavity depth
- scales as the capillary time tc, independent of gravity effects, the gravity effects in jet
velocity can only come from the gravity effects on the cavity depth.
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Figure A.13: (a) Variation of the difference between the static cavity depth Zce and the

cavity depth just before jet formation from a conical cavity Z̃ce, Dn = Zce − Z̃ce, in
dimensionless form with Bo for water. △, water; —, Dn/Zce = 0.143. (b) Variation of
the time of cavity retraction measured from the conical shape of the cavity to the jet
emergence at the free surface, in dimensionless form, with Bo. —, tj/tc = 0.11.
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Figure A.14: Comparison of the jet Weber number measured by two methods plotted
against Bo. △, We based on jet velocity at free surface; •, Wejc based on jet velocity

measured as Ujc = Z̃ce/tj , where tj = 0.11tc from figure A.13b and Z̃ce = 0.86 Zce; -
-, We = 55 Bo−1/2; —, We = 62.5(Zcd/R)2.

Appendix B. Time evolution of jets

Figure B.15 (a) to (d) show the time sequence of the evolution of jets and their breakup
into drops with decreasing Bo and increasing Oh, while Oh < 0.02. Among these fig-
ures, figure B.15b shows a more detailed sequence of jet evolution for R = 2.15 mm in
water as a continuation of figure 1. The other images, figures B.15a, B.15c and B.15d
show the jet evolution issuing from collapsing bubbles in water for different Bo and Oh
values. Qualitatively, it is seen that with decreasing Bo and increasing Oh the jet ve-
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(a) R = 4.08mm (Bo = 2.25, Oh = 1.85×10−3). The grid size in the image is 1mm. dj/R ≈ 0.32.
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(b) R = 2.15mm (Bo = 0.63, Oh = 2.55× 10−3). The line in image is 1mm. dj/R ≈ 0.24.
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(c) R = 0.71mm (Bo = 0.069, Oh = 4.5× 10−3). The line in image is 0.2mm. dj/R ≈ 0.25.
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(d) R = 0.175mm (Bo = 0.0042, Oh = 9× 10−3). The line in image is 0.1mm. dj/R ≈ 0.17.

Figure B.15: Time evolution of the structure of the jet in water. Figures (a) - (d) are
arranged in the order of decreasing Bo from the largest to the smallest Bo of present
experiments (4.2× 10−3 6 Bo 6 2.25). Time is marked on each image.
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(a) R = 1.04mm (Bo = 0.17, Oh = 1.39× 10−2) in GW48 (30◦C). The line in image is 0.5 mm.
dj/R ≈ 0.09.

0.34 0.510.17
ms

0

5.95.07
0.78 1.11 3.98 4.31

4.64

(b) R = 0.81mm (Bo = 0.11, Oh = 2.21× 10−2) in GW48 (20◦C). The line in image is 0.5mm.
dj/R ≈ 0.04.
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(c) R = 0.71mm (Bo = 0.084, Oh = 3.44 × 10−2) in GW55. The line in image is 0.5mm.
dj/R ≈ 0.14.
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(d) R = 1.52mm (Bo = 0.42, Oh = 4.9× 10−2) in GW72. Grid size is 1mm. dj/R ≈ 0.3

Figure B.16: Time evolution of the structure of the jet with increasing Oh in different
glycerine water solutions. Figures (a) to (d) are arranged in the increasing order of Oh
from Oh = 1.39 × 10−2 in figure B.16a of GW48 (30◦C) to Oh = 4.9 × 10−2 in figure
B.16d of GW72. Time is marked on each image.

locity increases, as long as Oh < 0.02, in agreement with figure 10. The jet diameter
(dj) is measured near the free surface when the jet just emerges. At large Bo, here at
Bo = 2.25 (figure B.15a), there is no jet breakup into drops, with the scaled jet diameter
being dj/R ≈ 0.32. When Bo = 0.63, figure B.15b, dj/R ≈ 0.24 and one drop is formed
from the jet tip. In figure B.15c, Bo = 0.069 the jet fragments into three droplets and
dj/R ≈ 0.25. A further reduction in Bo, i.e, Bo = 4.2 × 10−3, results in a thinner jet
(dj/R ≈ 0.17) and the entire jet gets pinched off from the surface in addition to the
initial droplets shedding from the jet tip as shown in figure B.15d.
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The jet size is directly related with the bubble size as seen in figure B.15 (a) to (d).
However, the damping of capillary waves causes further reduction in jet size (Ghabache
et al. (2014)) as could be seen in figure B.15d. This effect of damping on the jet size
could be made clear by the jet behaviour in GWs shown in figure B.16, which shows
the jet sequence with increasing Oh. Figure B.16a shows a jet from a slightly larger
bubble (R = 1.04 mm, Bo = 0.17, Oh = 0.0139) compared with the jet in figure B.15c
(R = 0.71 mm, Bo = 0.069, Oh = 0.0045). The jet in figure B.16a has a smaller diameter
(dj/R ≈ 0.09) than the jet in figure B.15c (dj/R ≈ 0.25) due to much larger Oh. Both
undergo drop shedding from the jet tip (three drops) but in figure B.16a the entire jet
gets pinched off from the free surface like in figure B.15d (dj/R ≈ 0.17). In figures B.16b
and B.16c jet evolution sequences for bubbles of approximately the same Bo values
(Bo ≈ 0.1) are shown, however, the dimensionless jet radii are dj/R ≈ 0.04 in figure
B.16b and 0.14 in figure B.16c. Only one drop is shed from the jet tip in figures B.16b
and B.16c as viscosity effects become important. The jet is pinched off from its base in
figure B.16b as in figure B.15d and B.16a. With increase in Oh from Oh = 2.21 × 10−2

(figure B.16b) to Oh = 4.9× 10−2 (figure B.16d), the drop pinch-off is fully stopped, as
discussed in §3.2 and the jet size is increased (dj/R ≈ 0.3).
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