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ABSENCE OF EMBEDDED EIGENVALUES FOR
TRANSLATIONALLY INVARIANT MAGNETIC LAPLACIANS

N. RAYMOND AND J. ROYER

ABSTRACT. Translationnally invariant bidimensional magnetic Laplacians are
considered. Using an improved version of the harmonic approximation, we es-
tablish the absence of point spectrum under various assumptions on the behavior
of the magnetic field.

1. CONTEXT AND RESULTS

1.1. Translationally invariant magnetic Laplacians. This paper is devoted to
the description of the point spectrum of translationally invariant magnetic Lapla-
cians in two dimensions. Here the magnetic field B is assumed to be a smooth
enough function that only depends on its first variable. More precisely, we assume
that

V(z,y) e R®,  B(z,y) = b(x),
where b € €' (R,R). Associated with B, we may consider a vector potential
A = (Ay, Ay) where

T

Aj(z,y) =0, Asy(z,y) = a(z) == ap + Jo b(u)du, (1.1)

for some arbitrary ag. When the limits exist in R u {£0o0}, we set

¢+ = lim a(x). (1.2)

r—+00

The magnetic Laplacian under consideration in this paper is the self-adjoint
differential operator

2

& =(-iV—-AP? =D+ (D,—a(z))”, D=-id, (1.3)
equipped with the domain
Dom(Z) = {ue Hp(R?) : (—iV — A)*ue L*(R*)},

where

Hj (R?) = {u e L*(R?) :1 (—iV — A)u e L*(R?)}.
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1.2. Context and motivation. Due to the translation invariance, it is easy to
see that the spectrum of .Z is essential:

0(ZL) = 0es(Z) .

The main question addressed in this paper is to find conditions under which
% has no eigenvalue. Thus, we would like to exclude the existence of (A, v) €
[0, +00) x Dom(Z) such that ¢ # 0 and £ = A). In order to understand how
subtle this question can be, let us remark the following:

— When b is constant and non-zero, it is well-known that the spectrum is
made of infinitely degenerate eigenvalues, the Landau levels:

o(Z)={2n—-1)b|,n = 1}.
— When ¢, or ¢_ is finite, one will see in our proofs that
o(&)=10,+x0).

Thus, as noticed in the seminal paper [7], even the nature of the essential spectrum
itself strongly depends on the variations of b.

In this paper, we focus our investigation on proving the absence of point spec-
trum, even if, in some particular situations, our proof might also imply the absolute
continuity of the spectrum. In particular, in Theorem 1.2, one will see that, if b(z)
behaves like z® (with a@ # 0 and o > —1) at infinity, the Landau levels structure
is lost as well as the existence of eigenvalues. Theorem 1.4 is of asympotic nature:
when b € L'(R,R;) and when the magnetic field is large, we show that the only
possible eigenvalues are essentially of the order of the flux squared.

Our main results deal with cases when a is semi-bounded, semi-unbounded, and
when a is bounded. They partially extend the results in [7] (where the assumptions
imply xl—1>r-ir-looa(x> = +00) by considering non-necessarily bounded magnetic fields.

More generally, this paper can be considered as an exploration of the conjecture
stated in [1, Theorem 6.6 & Remark 1]. Let us recall a theorem whose proof may
be deduced from the investigation in [7] (and also [1, Theorem 6.6] where the
magnetic field is allowed to vanish).

Theorem 1.1 (Ywatsuka ’85). Assume
(i) either that (see (1.2))
(b*:(bJr:_oo or ¢7:¢+:+Oou
(i) or that liIP b(x) = by with by € R\{0} distinct.
Tr— 100

Then £ has absolutely continuous spectrum. In particular, £ has no eigenvalue.
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1.3. Some relations with the literature. In [7], the author is mainly concerned
by proving the absolute continuity of the spectrum. Note that this issue is closely
connected to the existence of edge currents (quantified by Mourre estimates), as
explained for instance in [6], where positive magnetic fields are considered. The
reader might also want to consider

— the physical considerations in [13],

— the article [3, Sec. 2] considering translationnally invariant magnetic fields
constant away from a compact,

— the paper [5] considering the dispersion curves associated with non-smooth
magnetic fields,

— the contribution [15] generalizing Iwatsuka’s result by adding a transla-
tionnaly invariant electric potential, and also [2] where a magnetized layer
invariant by translation is considered,

— the paper [16] devoted to dimension three and fields having cylindrical and
longitudinal symmetries,

— or [9] where various estimates of the band functions are established for in-
creasing, positive, and bounded magnetic fields, and applied to the estimate
of quantum currents.

1.4. Main results. Let us now state our main theorems. In the first result we
generalize Theorem 1.1.(ii) by considering situations where ¢, = +o0 and ¢_ €
Ry {—o}.

Theorem 1.2. Assume that ¢_ exists as an element of R u {fowo} and that for
some o € (—1,0) U (0, 4+00) and ¢1,C > 0 we have

bz) ~ cz* and |V(z)] <C(x)*". (1.4)

xr—+00
Then £ has no eigenvalue.

Remark 1.3. — By the symmetry z — —x, we can easily adapt this theorem
to consider behaviors in —oo. We have a similar result if —b satisfies (1.4).
— Theorem 1.2 can be applied, for instance, to by (z) = (z)*z. In particular,
the same proof will establish the absence of eigenvalues for some magnetic
fields tending to +oo0 or to 0 at infinity.
— We will see in Theorem 1.4 that, when b tends to 0 too rapidly, the absence
of eigenvalues is more subtle to establish.

Our second theorem gives some results in situations where ¢, and ¢_ are finite
but with ¢ = ¢, — ¢_ » 1 (the case ¢ « —1 would be similar). By a change of

gauge (take ap = SEOO b(u)du in (1.1)), we can assume that ¢_ = 0 (and hence
¢+ > 0).
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The problem can then be rewritten in a semiclassical framework. If we set

h=¢;', bi(z) = hb(x) and a;(z) = ha(x), then we have £ = ¢? %, where
% = h2D? + (hDy — ay(z))*. (1.5)
Thus our purpose is now to prove the absence of eigenvalues of the operator .,
with
T +00
ar(z) = f bi(s)ds, f bi(s)ds = 1.
—Q0 —0Q0
Theorem 1.4. (i) For all h > 0, the operator £, has no point spectrum in
[1,+0).
(ii) Assume that by is of class €*(R) and takes positive values. Assume also that
— for some N = 0 we have
v = O(|aY
($) |x|—+00 (|x| )’
— ay € LY(R_) and (a1 — 1) € LY(R,).
Let (n)n=0 be such that n, = o(|In(h)|~%) as h — 0. Then, there exists hy > 0
such that for h € (0, ho) the operator £, has no eigenvalue smaller than ny,.

Remark 1.5. For example, we can apply Theorem 1.4 to by(z) = ﬁe_ﬁ. An
interesting question is left open: for h small enough, can we exclude the presence
of eigenvalues in the interval (nh, i)? One will see in the proof that this function
N, is related to the harmonic approximation. To replace, for instance, n;, by i —€
would not only suppose to find a convenient effective Hamiltonian in the harmonic
approximation (what is possible via a Birkhoff normal form in dimension one,
under analyticity assumptions), but also to be able to deduce from it a non-trivial
behavior of each dispersion curve. FEven if such a description were possible, it
would still not exclude the existence of embedded eigenvalues near i in the limit
h — 0.

1.5. Organization of the proofs. In Section 2, we recall basic facts about the
Fourier fibration of translationnaly invariant magnetic Laplacians. In particular,
Proposition 2.2 provides a criterion to exclude the existence of eigenvalues as soon
as no dispersion curve is constant. Even though this proposition seems to be
well-known, the presence of essential spectrum for the fibered operator requires
to give a careful proof. This will immediately imply Theorem 1.2. Section 3
is devoted to some facts about a parameter dependent version of the harmonic
approximation which will be crucial in the proof of Theorem 1.4 (ii) and which
will appear when analysing the large frequency limit of the dispersion curves.
This approximation will allow us to use somehow the existence of a non-constant
“center-guide dynamics” to prove the non-constant character of some dispersion
curves (see Remark 5.2).
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2. REMINDERS ON FIBERED MAGNETIC HAMILTONIANS

Since . commutes with the translation in y, the Fourier transform in y will
play a fundamental role in our analysis. For u € L?(R?) and for almost all z € R
we denote by ug the Fourier transform of u(z, ). For u € S(R?) it is given by

ue(, €) = %27 fRe@'yiu(x, y)dy.

This induces the following direct integral representation (see, for instance, [12,
Section XIII.16] about such direct integrals)

D
g:f Zde, (2.1)
R

where, for all £ € R,
ZLe = D + (€ —al2))”.
For all £ € R this defines an operator on L?*(R) with domain
Dom(%) = {ue H'(R) : a(z)u e L*(R) and (D2 + (£ — a(z))*)u e L*(R)}
= {ue H*R) : (¢ —a(z))’ue L*(R)} .
In the following proposition we gather some spectral properties of .Z; that will be
useful to the spectral analysis of .. Let us emphasize here that, in [7, Assumption
(B)], the assumption on b implies that oess(-Zz) = . This will not always be the

case in this paper (see Figure 1 where the bottom of the essential spectrum is
represented as a function of &).

Proposition 2.1. The operator Z; is self-adjoint and non-negative for all £ € R.
The family (Z¢)eer is analytic of type (A). Let € € R.
(i) We have

o(Z) < [irellf& (= a(x))Z, +oo).
(ii) We have
Uess(é/ﬂ&) = [min ((é - ¢*)27 (é - ¢+>2)7 +OO)'

In particular, when |p_| = |¢4| = 490, Tess(Z2) = .

(iii) If ¢4 € R we assume that (€ —a(x))?—(E—¢+)? € LY(Ry). Then the operator
Ze has no embedded eigenvalue in Tess(-Z%).

(iv) The eigenvalues of £ are simple and depend analytically on &.

Proof. The first statements are standard. For (ii), if ¢_ and ¢, are infinite then
Z; has a compact resolvent by the Riesz-Fréchet-Kolmogorov Theorem. If ¢_ and
¢, are finite then % is a relatively compact perturbation of D? + V(z) where
Viz) = (§—¢_)? for x <0 and V(z) = (£ — ¢.)? for z > 0. We conclude with
the Weyl Theorem. If ¢_ € R and ¢, = +00 we conclude similarly by considering
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Viz) = (- 9¢_)?if x <0and V(z) = max((§ — ¢_)? (£ — a(z))?) if z > 0. The
other cases are similar.

For (iii) we use Lemma A.1. If ¢, € R then for A > (£ — ¢, )? we apply the
lemma with w? = X — (£ — ¢,)? and w = (£ —a(x))? — (£ — ¢,)? € L'(R,).
This proves that A is not an eigenvalue. Similarly, if ¢_ is finite then .Z; has no
eigenvalue \ > (£ — ¢_)2.

Let us briefly recall why the eigenvalues of .Z; are simple. Assume that u
and v are eigenfunctions of .Z; associated with the same eigenvalue A. Letting
W = wul — ujus, we easily get W' = 0, so that W is constant. Since u; and
uy belong to the domain, we get that W is integrable, and thus that W = 0.
This shows that the family (uq,us) is not free. Combining the simplicity of the
eigenvalues and the analyticity of the family, we finally get the analyticity of the
eigenvalues. 0

Let & € R. If % has eigenvalues (necessarily simple and under the essential
spectrum, according to Proposition 2.1), we label them by increasing order

(Me(€))1shene,  with  Ap(§) < Mga(§), 1<k <N,

for some Ng € N U {+0}.
When 0es(Z:) = &, the following proposition can be found in [12, Theorem
XII1.86]. In this paper, the essential spectrum will not be empty in general.

Proposition 2.2. Let A€ R and
Yra={¢eR : \¢0es(Z)}. (2.2)

If X is an eigenvalue of £, then there exists n € N* and a connected component I
of ¥\ such that Z; has at least n eigenvalues for all { € I and

Veel, (€)=

Proof. Let A € R and v € Dom(£)\{0} be such that Zu = Au. For almost all
¢ € R, we have
.,%5?% = )\Ug .
Consider
E={{eR:us#0}.

In particular, A is an eigenvalue of .Z; for all £ € =, and hence, with Proposition 2.1,
= < Y. Moreover, = has positive Lebesgue measure, so there exist a connected
component [ of ¥, and a compact K < [ such that K n = has positive measure.
Then there exists & € K n = such that [y — &, + €] n E has positive measure
for all e > 0. Since { € =, A is an eigenvalue of .7, so there exists n € N*
such that % has at least n eigenvalues and A, () = A. By simplicity of the
eigenvalues and continuity with respect to &, together with the non-negativeness

of Z; (so that the eigenvalues cannot escape to —), there exists € > 0 such that
o(ZLe)n[A—e, A +e] ={ (&)} for all £ € [§g — €, & + €]. Since A, is analytic and
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An(€) = X on a subset of [§y — &, &y + £] of positive measure, we have A\, (§) = A for
all { € [{o —,& + <.

Assume by contradiction that there exists £ € I such that £ > &, and .Z; does
not have n eigenvalues. Let

& =sup{€ el : Z has at least n eigenvalues} € I.

By analycity we have \,(§) = X for all £ € [£,&1). Moreover [&,&1] is a
compact subset of ¥, s0 A < infeefg) ] inf 0ess(Z%). By continuity of the spectrum
of Z; around § = & we obtain that .Z; has at least n eigenvalues for £ on some
neighborhood of &;, which gives a contradiction. Then .Z; has at least n eigenvalues
for all £ € I with & > &;. The case £ < & is similar. Then A, is defined on the
whole interval I and, by analycity, we have \,(§) = A for all £ € I. O

Note that, with these properties in hand, we can easily deduce Theorem 1.1 (i):
the essential spectrum of Z; is empty so if A € R is an eigenvalue of .Z there exists
n € N* such that \,(§) = A for all £ € R, which is impossible since the bottom of
the spectrum of .Z; goes to +00 when { — +o0.

We can also easily prove the first statement of Theorem 1.4:

Proof of Theorem 1.4.(1). Note that, here, h > 0 is fixed (and we may assume that
h=1).

Assume by contradiction that A >
we have

i is an eigenvalue of .. By Proposition 2.1

Sy=R\[ = VA 1+ VA
Since a is bounded, we have

inf o(%) —— +0.

-t

Then Proposition 2.2 gives a contradiction. O

We cannot use the same argument when a is surjective (since then we have
inf,er (€ — a(z))? = 0 for all £ € R) or when a is bounded and X < § (because X,
has also a bounded connected component, see Figure 1).

To go further, we will use the harmonic approximation to estimate the eigenval-
ues of Z.

3. HARMONIC APPROXIMATION FOR MODERATELY SMALL EIGENVALUES

In this section, we prove a parameter dependent version of the classical harmonic
approximation (see for instance [14, 4]). The main interest of Theorem 3.1 below is
that we consider eigenvalues which are “not too small” (in particular, much larger
than the low lying eigenvalues, which are of order &'(h)).

Without this version of the harmonic approximation, one would only be able to
prove the absence of eigenvalues below C'h in Theorem 1.4.
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-

VA VA 5§ 6—VA ¢ ¢+ VA

FiGURE 1. Bottom of the essential spectrum as a function of ¢

We consider a family (Vp)geo of continuous and real-valued potentials on R which

satisfies the following properties.
(i) We can write
Va(s) = s%vj + s>wp(s)
where, for some v_,v,,C,, N > 0, we have
Ve O, VseR, v_<wvy<wv, and |wy(s)| < Cy(s)V.
In particular, there exists €9 > 0 such that

v_s
2
(ii) There exists ¢, > 0 such that for § € © and s € R\[—¢¢, €o] we have

VO € ©,Vs € [—eg,20], Vi(s) =

Va(s) > ¢y
Then, for h € (0,1] and 0 € ©, we consider the operator
Zh,g = hQDz + ‘/9(8),

with domain

Dom(%,9) = {uec H*R) : Voue L*(R)}.

(3.1)

(3.2)

We recall that, for h € (0, 1], the spectrum of the operator h2D, + vys? is given
by the sequence of simple eigenvalues (2n — 1)hvg, n € N*. We prove that for h
small enough the bottom of the spectrum .7, ¢ is given by simple eigenvalues close

to those of this harmonic oscillator.
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For 6 € © and h > 0 we denote by
0< )\1(}1,9) < )\Q(h,e) < -

the eigenvalues of .%}, y under the essential spectrum, and we consider a correspond-
ing orthonormal family (¢ 5¢) of eigenvectors. Then for E € (0, inf 0ess(-Z5,1)) we
denote by N(E, h,#) the number of eigenvalues of %}, ¢ (counted with multiplici-
ties) smaller than E:

N(E,h,0) =max{neN*: \,(h,0) < E}.
For 6 € ©, h > 0 and n € N* we set
&n(h,0) = span(Vypp)1<k<n-

We consider a family (7y,)n=0 of positive numbers such that

Theorem 3.1. There exist hy > 0 such that for 6 € © and h € (0, hy|] we have
m < inf Uess(gh,g) and

N(nn, b, 0) = th 1. (3.3)

Moreover, there exists a function e(h) converging to 0 as h — 0 such that, for all
n e {1,...,N(T}h,h,9)},

(R, 0) — (2 — 1)hvg| < e(h)An(h, 6). (3.4)

Remark 3.2. From (3.4) we obtain that for h small enough we have \,(h,0) <
(2n — 1)hvy, so with a possibly different function € we can rewrite (3.4) as

(R, 0) — (20— 1)hovg| < e(h)(2n — 1)h. (3.5)

The proof of Theorem 3.1 relies on the classical Agmon Formula (see for instance
[10, Prop. 4.7]):

Proposition 3.3. Let ® be a real-valued, Lipschitzian and bounded function on
R. Then for h >0, 0 € © and u € Dom(Z}, 9) we have

J ‘hD(eq’u)‘2 do + J (Vo — h2|®'[)e*® [uf* do = Re (% gu, **u) .
R R
In particular, if (A, u) is an eigenpair of £}, ¢ then
J [hD(e®u)[* do + J (Vg — h2|@' 1> = \)e*® |uf* do = 0.
R R

On the other hand, the following lemma is an easy consequence of Proposition
4.4 in [10], where we check that the rest is estimated uniformly in 6 € ©.
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Lemma 3.4. There exists hy > 0 such that for all € © and h € (0, hy) we have

h
inf O'(gh,g) = %

The following result about the uniform exponential decay of the eigenfunctions
has its own interest:

Proposition 3.5. Let hy > 0 be as in Lemma 3.4. For
Ee (O, lim inf inf Vg(l’))

|z|—+00 0€©

there exist v > 0 and C > 0 such that for h € (0,hg), 0 € © and an eigenpair
(N, ) of L with A < E we have

J VA 2ds < O3 p, -
R

Proof. There exist x € (0,1) and cg > 0 such that for all § € © and s € R we have
Vo(s) = min (cps®, (1 + 2k)E). (3.6)

Then we set

U7ﬁ>0

”)/ =
2
where v_ is given by (3.1). Let 8 € © and h € (0, ho). Let (A, %) be an eigenpair
of £, with A < E. For ¢ > 0 and s € R we set

o6 min (211,

2,2
J <Vg(s) O )\) e*®[y’ds < 0.
R A

By Lemma 3.4 we have A > 2= so

JR (Va(s) — (1 + w)A)e**|y’ds < 0.

Proposition 3.3 gives

We choose R > 0 so large that cgR* — (1 + k) > k. Then we write
| - mnetopds < = | (1(s) - L+ s,
|s|=RvVA |s|<RvVA

There exists ¢, > 0 such that 0 < Vy(s) < ¢y for all § € © and |s| < RVE, so
with (3.6) we have

/{)\J P |y)Pds < Mey R+ 1+ /@)J e*®<[y|*ds,
|s|=RvVA |s|<RvVA
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and hence

J e |Pds < (14w (s R*+ 1+ ,‘-c))e?m2 J []%ds.
R |s|<RVX

It only remains to let € go to 0 to conclude. U
Now we can prove Theorem 3.1.

Proof of Theorem 3.1. There exists hg € (0, 1] such that Lemma 3.4 holds and for
all h € (0, ho] and 6 € © we have

N

i < o < Inf Oess (L),

0
2
where cq, is given by (3.2).

Let h € (0,ho] and n € {1,..., N(np, h,0)}. For ¢ € &,(h,0) with [¢] o) =1
we have

(Lo, ) < Au(h,0). (3.7)
On the other hand, by (3.1),

(Lo, ) = ((W*D3 + vgs™ ), 9 — wa EROMIKES (3.8)
R
Let v be given by Proposition 3.5 for E' = ¢,,/2. We set
2
an(h,0) = ;«/An(h, 0) [In(h)].

Since a,(h,0) is bounded uniformly in § € ©, h € (0, ho] and n < N(np, h,0), we
have

| P s < 20! (i) 39)
s <an (h9)
Then we consider ¢4, ..., ¢, € C such that

Y = Z Cj¥jno -

j=1
By the triangle inequality and Proposition 3.5 we have
3, N < 3, N
[1s]2¢s) ¢"L2(\s|2a(h70)) S Z leil[1s]2¢s)2 @Z’J}hﬂuw(\sga(hﬂ))
j=1
ye(h,0) n

_ s
< e 2k Z |Cj|He\/>\n(h,9) ;o

=1

L2(lslza(h0)  (3.10)

<h el
j=1
< ha/n.
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With (3.9) and (3.10) we get, for some ¢ > 0 independant of 6, h or n,
(L, ) = ((12D2 + 35,0y = ¢ (Aa(h, ) In(h)* +nh?) .
This, with (3.7) and the min-max Theorem, implies that
An(h,0) = (2n — 1)hvy — ¢ <)\n(h, 6)3 [In(h)|* + nh2> . (3.11)
In particular, if hg was chosen small enough, there exists C' > 0 such that, for
h e (0,ho], @ € ©® and n < N(n, h,0),
nh < CA,(h,0). (3.12)
Then (3.11) yields
(2n — 1)hvg — A (h, 0) < e1(h)An(h,0), (3.13)
where
ei(h) = ¢ ()\n(h, 8)% [In(h)® + Ch) 0.
For n e N* we denote by f, the n-th Hermite function. It solves on R
(D2 +0*— (2n—1)) fu(o) = 0.
Then for h > 0, # € © and n € N* we set
fone:s— h_%v(;%fn <h_%v§s) .
We have | f, n0| =1 and
(W*D? + s*vy — (2n — 1)hvp) frpo(s) =

For f in span(fje)i<j<n With Hing(R) =1 we have

Following the same lines as above we obtain, for some Cs > 0,
C’wf s ()™ | £ ds < p(n, h) = C’g((nh)% IIn(h)|” + nh?).
R

If n € N* is not greater than n,/(4v,h) we have
plnh) Gy
o (dvy)3
Hence, if hg is small enough, then for h € (0,hg], # € © and n < n,/(4v,h) we
have

(Lol f) < (2n—Dvoh + p(n, h) < .
By the min-max Theorem this implies A, (h, ) < n,, and (3.3) is proved.
On the other hand for n < N(n, h,0) we have

Anl(h,0) — (2n — 1)hvg < A (h, 0)ea(h), (3.14)
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where, by (3.12),

p(n, h)
eq(h) = su
2( ) nsN(nf,h,e) )\2(7% h)

Then (3.4) follows from (3.13) and (3.14).

< G032 (W) + CoCh —0.

O

4. ABSENCE OF EMBEDDED EIGENVALUES WITH TRANSVERSE CONFINEMENT

In this section, we prove Theorem 1.2.

Since ¢, = 400, we observe that if ¢_ = +00, we can apply Theorem 1.1. Thus,
we can restrict our attention to the cases ¢_ € R and ¢_ = —oo. The proof relies
on the following asymptotics for the eigenvalues:

Proposition 4.1. Assume that (1.4) holds (for any o > —1) and that ¢_ €
[—o0, +0). Let n € N*. Then for £ large enough the operator Z; has at least n
eigenvalues and its n-th eigenvalue A, (§) satisfies

Ml€) = (2= Dewey TS +o(e75),

where cog = ¢1/(1 + ).

Proof. There exists xg > 1 such that for x > zy we have

c1x®

2
In particular, @ is increasing on [zg, +00). Since a has a limit in [—o0,4+00) at
—o0 we can assume, by choosing x larger if necessary, that a(zy) > a(x) for all
x € (—w,1z). We set & = a(2xp). Then for £ > &, there is a unique z¢ € R such
that a(z¢) = €. Since

a(x) =0b(z) =

(4.1)

a(z) :J blu)du ~ coz™™,

0 T—+00

it satisfies
1

P CRILEE

Let £ = &. For ve L*(R) and s € R, we set

(Uev)(s) = wgv(we(1 +5)) .
U is a unitary operator on L*(R) and
UeLeUTt = oD+ (€= alwe(1+5))" = 2 [h2D? + Ve(s)] . (4.2)

where

he = (6x)™" and Vi(s) = (1- & Ma(we(1+9)).
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Ve takes non-negative values and has a unique zero at s = 0. By the Taylor
formula,
1
a(ze(1+8)) = & + swea () + 5%2[ (1 —7)a"((1+ 78)ze)dr, (4.3)
0

so we can write
Ve(s) = s°0¢ + s™we(s),
where, by using (1.4),
_ 1 / €1 ~ max(2a—1,a—1)
ve =& Txea (xg) — — and  |we(s)| < Os ,
e =& wed(ve) > o |we(s)] < CCs)
for some C' > 0 independent of £ and s.
Let us now consider the coercivity property away from the minimum. Let ¢ €
(0,1). Let & = &. For s > € we have by the Mean Value Theorem and (4.1)

1 sx?“

a(ze(l +5)) - alze) > —

= ¢,
for some ¢, > 0, and hence
Ve(s) = .
Similarly, if s < —¢ we have

a(ze) —a(ze(1+5)) = a(ze) —a(xe(l —¢)) = Cl;% (%)0"

and we conclude similarly. In any case we obtain c,, > 0 such that for £ > £, and
|s| = e we have

Ve(s) = coo -
With all these properties we can apply Theorem 3.1. We obtain that, for all n € N*,
there exists £ > 0 such that for £ > & the operator hiD? + Vg(s) has at least n
eigenvalues and its n-th eigenvalue A, (&) satisfies
1

)\n(g) 5_:;_00 (277/ — 1)h§1}§ 5_:;_00 (2n — ]-)ClcO_H_ag_H—_a_l '

The asymptotic behavior of A, (&) follows since, by (4.2), we have \,(£) = €2\, (€).
U

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. Let A > 0 and assume by contradiction that A\ is an eigen-
value of .Z.

Consider the case ¢_ = —oo. Then, for all £ € R the spectrum of % is purely
discrete. By Proposition 2.2, there exists n € N* such that A, () = A for all £ € R.
This gives a contradiction with Proposition 4.1.

Consider now the case ¢_ € R. Then, we have ¥y = R\[¢_ — v\, 6_ ++/A] and
we consider its two connected components in order to apply Proposition 2.2.

— By Proposition 4.1, A cannot be an eigenvalue of .Z; for all £ > ¢_ + VA
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— Since a is bounded from below, Proposition 2.1 gives flim inf o (%) = 40,
——00

so A cannot be an eigenvalue of .Z; for all { < ¢_ — VA

This is a contradiction. O

Remark 4.2. These arguments also imply Theorem 1.1 (ii). Since by # 0, we are in
a situation where oes(-Z¢) is empty for all £ € R, so if . has an eigenvalue there
exists n € N such that A\,(§) does not depend on £. This gives a contradiction
since, by Proposition 4.1, we should have

lim A,(§) = (2n — 1)bs .

-t
5. MODERATELY SMALL EIGENVALUES WITHOUT TRANSVERSE CONFINEMENT

In this section we prove the second statement of Theorem 1.4. We recall that
b1, a; and the operators %}, h > 0, were defined before the statement of Theorem
1.4.

For 0 € R, we let

«Zh,e = hQDi + (9 — al(:p))Q.
Then %}, is the direct integral of .2, ¢, 6 € R, as in (2.1).

Proof of Theorem 1.4.(ii). Since b; takes positive values, a; is an increasing bijec-
tion from R to (0,1). For 6 € (0,1) we set 19 = a; (). Then for s € R we
set Vy(s) = (0 — ay(zp + s))?. This defines a nonnegative valued potential, 0 is
the unique solution of V4(0) = 0 and V}(0) = 2b;(x)* > 0, so Vp has a unique
non-degenerate minimum at 0 (and this minimum is not attained at infinity).
Let J be a compact interval of R on which b is not constant and © = a(.J). As
in (4.3) we write
ay(zg + 8) = 0 + sby(xg) + s*1(0, 5),
where .
1(0,s) = J (1 —7)b}(zg + s7) dr.
0
This gives
Vo(s) = s%b1(p)* + s (201 () 1(0, 5) + sI(0, 5)?).
Since by is continuous and takes postive values, there exist v_,v, > 0 such that
v_ < bi(zg) < vy for all @ € ©. On the other hand, since 0] grows at most
polynomially, this is also the case for I(f,-), uniformly in § € ©. Thus, we can
apply Theorem 3.1. By (3.5) there exist hy > 0 and ¢ : RY — R* going to 0 at 0
such that for 6 € ©, h € (0, hg) and n < N(np, h,0) we have

(R, 0) — (20 — 1)hby (20)| < £(h)(2n — 1)h. (5.1)

Let 1,29 € J be such that by(xy) # bi(z3). We set 6; = ai(x1), 6 = ai(x2).
Choosing hg smaller if necessary, we can assume that for all h € (0, hy) we have

|b1([L‘1) — b1($2)| > €(h) (52)
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Now assume by contradiction that there exist h € (0, hy) and A € [0, n,] such
that \ is an eigenvalue of .%j,. We necessarily have \ € [O, i) Then, with Xy
defined as in (2.2), we have

o= (=0, —VA) U (VA1 =VA) U (1+ VA, +0).
As in the proof of the first statement of Theorem 1.4 we see that A\ cannot be
an eigenvalue of %, 4 for all § € (—o0, —/A) or for all § € (1 + /A, +0), so by
Proposition 2.2 there exists k£ € N* such that A = Agx(h, 8) for all 6 € (\f)\, 1— ﬁ)

If hy was chosen small enough, we have 6,6, € (\f)\, 1-— \F)\), so Ag(h,01) = X =
Ak (h, 02), which gives a contradiction with (5.1) and (5.2). O

Remark 5.1. Note that (5.1) describes the dispersion curves on the interval (v/X, 1—
\f)\), see Figure 1. The eigenvalues under consideration here are far below the
“peak” of the essential spectrum.

Remark 5.2. The function © 3 6 — by (zy) is nothing but an effective Hamiltonian
which emerges from the semiclassical limit. In the semiclassical spectral theory of
the magnetic Laplacian, this effective Hamiltonian appears, for instance, in [11,
Theorem 1.1]. With this interpretation, the function # — x4 corresponds to a
parametrization of the “characteristic manifold” of the magnetic Laplacian.
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the Mittag-Leffler Institute where part of this work was completed.

APPENDIX A.

The following lemma is very classical and originally appears in [8].

Lemma A.1. Let w >0 and w e LY(R,). Let ¢ € C*(R,) be such that

—" — WP +wyp = 0.
There exists a unique (a,b) € C* such that
() LT et be " +0(1), w>0,
() LT, at br +o(l), w=0.

In particular, if € L*(R,), then ¢ = 0.
Proof. We first assume that w > 0. For > 0 we set U(z) = (¢(x),¢'(x))T. Then

UeCYR,) and
; 0 1 0 0
e (8 o (0 )
We have

(0 1\, . (w0 /11
P (—w2 O)P_ZQ’ Q_<O —w)’ P_<iw —iw)'
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Then we have
V'(z) =iQV(z) + M(2)V ()
where

V=P, and M=p" @ 8) PeL'(R,).

The Duhamel Formula gives, for all x >

0,

V(z) =V (0) + J e M=) (5)V (s)ds . (A.1)

0
In particular,
V() < [V(0)] +JO [M(s)[ [V (s)lds,
and hence, by the Gronwall Lemma,
[V (@) < [V (0)] eloMlds.
This proves that V' is bounded. Thus, by (A.1) we can set
A= lim e ™V (x).

T—+00

The Duhamel Formula now gives
+oo
V() = A - J NIV (5)V (s)ds = €A+ o(1). (A.2)
z r—+00
It remains to multiply by P to conclude. If w = 0 then we proceed similarly,
without change of basis, and using the fact that

oo(37)-( 1)

This establishes the existence of a and b. Since they are necessarily unique, the
proof is complete.

0
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