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ABSTRACT
We report the findings of new exact analytical solutions to the cosmological fluid equations,
namely for the case where the initial conditions are perturbatively close to a spherical top-hat
profile. To do so we enable a fluid description in a Lagrangian-coordinates approach, and prove
the convergence of the Taylor-series representation of the Lagrangian displacement field until
the time of collapse (‘shell-crossing’). This allows the determination of the time for quasi-
spherical collapse, which is shown to happen generically earlier than in the spherical case.
For pedagogical reasons, calculations are first given for a spatially flat universe that is only
filled with a non-relativistic component of cold dark matter (CDM). Then, the methodology
is updated to a �CDM Universe, with the inclusion of a cosmological constant � > 0.
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1 IN T RO D U C T I O N

The spherical collapse model (SCM) is central to many aspects
of cosmology. Although being a simplified collapse scenario, its
practical use can be justified by statistical arguments from peaks
theory of Bardeen et al. (1986), which predict that high-density
peaks in the Universe tend to be more spherically symmetric than
low-density peaks.

Within the context of General Relativity, the non-linear solution
of the spherical collapse is a spherically symmetric space–time
of a collapsed region occupied by homogeneous matter, given by
the Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) solution with
positive spatial curvature. Furthermore, it is well known that there
exists an exact parametric solution for the spherical collapse, at
least for simplified cosmologies (see e.g. Peebles 1967; Tomita
1969; Gunn & Gott 1972; Bertschinger & Jain 1994).

Important applications of the SCM include the analytical pre-
diction of the shape and position of the baryon acoustic oscillation
feature, the latter being a standard distance scale imprinted into the
clustering statistics of tracers within the large-scale structure (LSS),
such as galaxies and their host haloes (see e.g. Desjacques et al.
2010; Paranjape, Sheth & Desjacques 2013). Another application of
the SCM concerns the determination of the abundance of primordial
black holes (see e.g. Carr, Kuhnel & Sandstad 2016). In many of
these applications – be it relevant for galaxy, halo, or primordial
black hole formation, the SCM is employed to predict the threshold
of linear density fluctuation (at collapse time). This density thresh-
old is then frequently used as the input in phenomenological models
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that aim to determine the abundance, mass, or shape of a given
object. The SCM is also highly relevant for extracting accurately the
cosmological parameters from the probability distribution functions
of spherically averaged densities and velocity divergences, as shown
by Uhlemann et al. (2017, 2018). The standard framework of the
SCM can also be extended/generalized to incorporate the effects
of massive neutrino clustering, see Ichiki & Takada (2012) and
LoVerde (2014).

For many cosmological scenarios, the collapse cannot be mod-
elled by the parametric solution to the dynamics of a closed FLRW
universe. Instead one is led to investigate the collapse directly at
the level of the equations of motion. This is for example necessary
when incorporating the effect of shear or rotation, as has been
done by Reischke et al. (2018). Another interesting example is
when investigating the collapse within the framework of general
modifications of the gravitational theory, such as the class of
f(R) theories (Hu & Sawicki 2007; Starobinsky 2007). There, the
appearance of non-local terms in the action of gravity violates the
validity of Birkhoff’s theorem – a central requirement to model
the matter collapse in terms of a simplistic FLRW model. See e.g.
Borisov, Jain & Zhang (2012), Lombriser et al. (2013), and Kopp
et al. (2013) for related semi-analytic works.

Apart from the above examples, the SCM is not a suitable
framework for incorporating a host of other physical effects. In
particular, it is a poor model for realistic matter collapse which is
well known to be not exactly spherical. For this reason, perhaps
one of the most natural advancements to the SCM is the ellipsoidal
collapse model, with pioneering works, amongst others, by Icke
(1973) and Bond & Myers (1996). Based on these works, Sheth,
Mo & Tormen (2001) obtained a fitting formula for ellipsoidal
collapse which approximately agrees with results from numerical
simulations.
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On the theory side, over the past decades there have been also
efforts to obtain approximative collapse models that go beyond
exact sphericity. The earliest attempts for departing from spherical
symmetry is the work by Zel’dovich (1970), who employed a
first-order Lagrangian-coordinates formulation of a matter fluid,
leading to the well-known Zel’dovich approximation. It turns out
that such low-order perturbative solutions do not deliver good
approximations for a collapse of initial inhomogeneities that are
close to spherical. Better approximations of such collapse problems
have been employed by White & Silk (1979), Bond & Myers (1996),
and Shen et al. (2006), who introduced and refined the so-called
triaxial collapse model. There, instead of attempting to solve the
underlying fluid equations, the collapse problem is reformulated
into an approximative set of three evolution equations for the
principal axes of a homogeneous ellipsoid.

In this paper we solve for the matter collapse analytically by
virtue of the cosmological fluid equations. One important difference
between the aforementioned collapse models and this work is that
we work with initial conditions (ICs) that represent a perturbed
spherical collapse – the so-called quasi-spherical collapse. As a
consequence of the used methodology, it turns out that the collapse
problem comes with a mathematically convergent description,
thereby establishing a new class of exact analytical solutions
for the cosmological fluid equations. Generally, exact analytical
solutions to the fluid equations are a very rare-case scenario; so
far the only known exact solutions are those for one-dimensional
(Novikov 1970; Zel’dovich 1970) and quasi-one-dimensional col-
lapse (Rampf & Frisch 2017).

The methodology of the present approach is as follows. We work
in a Cartesian coordinate system for the Euler–Poisson equations,
and therein employ a Lagrangian-coordinates formulation. The last
part is crucial since the use of Lagrangian coordinates regularizes
the highly singular collapse problem, which is not at all the case
in Eulerian coordinates where the density becomes singular. For
the pure spherical case, we use ICs that are, to the zeroth order in
some expansion parameter ε > 0, identical with those that resemble
the classical spherical collapse of matter. This way, one obtains an
infinite Taylor series for the Lagrangian displacement field, whose
low-order Taylor coefficients have been derived by Munshi, Sahni &
Starobinsky (1994) and Wagner et al. (2015). Whether the Taylor
series for the displacement is convergent – even for the case of
exact sphericity, however, was not known, since addressing such
questions usually requires the knowledge of the limiting behaviour
of the Taylor coefficients at arbitrary large orders. In this paper, we
formally go to all orders in the Taylor series, which allows us to
determine the radius of convergence of the Taylor series.

Then, by going to first order in the small expansion parameter ε,
we switch on the arbitrary asymmetric perturbation in the ICs, and
determine the recursion relations for the Taylor coefficients of the
perturbed displacement field. As a consequence, we obtain a new
exact solution to the Euler–Poisson equations, namely for the quasi-
spherical matter collapse.

This paper is organized as follows. For pedagogical reasons
we choose for the beginning parts of the paper (sections 2–5) an
Einstein-de Sitter (EdS) model, and later update to the commonly
accepted cosmological model, the �CDM model (Section 6). In
the following section we briefly review the cosmological fluid
equations, first in Eulerian and then in Lagrangian coordinates.
In Section 3 we formulate the perturbation problem, the appropriate
ICs, and provide the solution Ansatz in Lagrangian space. Then, in
sections 4 and 5 we solve the problem respectively to zeroth order
and first order in ε. Sections 5.2 and 5.3 are devoted to the calculation

of the time of perturbed collapse and the linear density threshold,
both relevant as input for e.g. halo models. In Section 6, we then
generalize our results to the �CDM model. Finally, a discussion
and a summary of our results is given in Section 7.

2 EULER–POI SSON EQUATI ONS (EDS
UNI VERSE)

2.1 Basic equations in Eulerian coordinates

The cosmological fluid equations can be formulated in comoving
coordinates x = r/a, where r is the physical space coordinate
and a the cosmic scale factor. The evolution of the latter is given
by the usual Friedmann equations. In the present and following
sections 3–5, for simplicity, we choose for the cosmological model
an EdS universe. See Section 6 where we generalize our results
to the �CDM Universe (where expressions tend to become more
cluttered).

In an EdS universe it is assumed that the only evolving energy
component is the cold dark matter (CDM); the cosmological
constant (�) and the spatial curvature are set to zero. The fluid
equations for the CDM component are (Shandarin 1992, 1994;
Brenier et al. 2003)

∂av + (v · ∇)v = − 3

2a

(
v + ∇ϕg

)
, (1a)

∂aδ + ∇ · [(1 + δ)v] = 0 , (1b)

∇2ϕg = δ

a
, (1c)

where v is the peculiar velocity and δ = (ρ − ρ̄)/ρ̄ the density
contrast of matter. We make use of the linear growth time a, which,
for an EdS universe is identical to the cosmic scale factor. As pointed
out by Zheligovsky & Frisch (2014), Rampf, Villone & Frisch
(2015), and Rampf & Frisch (2017), enabling a as the time variable
is essential when investigating the time analyticity of the Lagrangian
map.

Before considering the Lagrangian-coordinates approach, let us
briefly discuss the properties of the fluid equations at arbitrary short
times. Formally linearizing the three equations (1), it is straightfor-
ward to obtain a single differential equation for the density contrast
(see e.g. Peebles 1980). This second-order differential equation has
two power-law solutions for the density, one is decaying as a−3/2

and the other is growing linearly in a. From these observations, it
becomes evident that the following boundary conditions select the
growing-mode and curl-free solution of the fluid equations (Brenier
et al. 2003),

δ(init) = 0 , v(init) = −∇ϕ(init)
g , (2)

where ‘(init)’ refers to the evaluation at initial time a = 0. Thanks
to these slaving conditions, the solutions of the fluid equations are,
for sufficiently early times, time-analytic and thus devoid of any
catastrophic behaviour. Real singularities none the less appear at
the instant of shell-crossing, where particle trajectories intersect for
the first time and the density becomes infinite.

2.2 Basic equations in Lagrangian coordinates

Let us now turn to the Lagrangian formulation of the fluid
equations (1). We denote the Lagrangian coordinates by q, with
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components qi (i = 1,2,3). A partial derivative with respect to qi

acting on a given function f is denoted by f, i. Summation over
repeated indices is implied. Let q �→ x(q, a) be the Lagrangian
map from the initial (a = 0) position q to the Eulerian position
x at time a. The map satisfies v(x(q, a), a) = ẋ(q, a), where the
overdot is the Lagrangian time derivative (sometimes also denoted
with ∂L

a ). At initial time (a = 0), the velocity is

v(init)(q) = v(x(q, 0), 0) , (3)

which agrees with the initial Eulerian velocity. Mass conservation
is, until the first shell-crossing, given by

δ = 1/J − 1 , (4)

where J = det(xi,j ) is the Jacobian, which is the determinant of the
Jacobian matrix xi,j. With these definitions, the fluid equations can
be written in Lagrangian coordinates in compact form (Rampf &
Frisch 2017),

εiklεjmn xk,m xl,nRaxi,j = 3 (J − 1) , (5a)

εijk ẋl,j xl,k = 0 , (5b)

where we have defined the operator Ra ≡ a2
(
∂L

a

)2 + (3a/2)∂L
a ,

and εijk is the fundamental antisymmetric tensor. Equation (5a) is a
scalar equation that is obtained by combining equations (1a) and (1c)
in Lagrangian coordinates, as well as taking mass conservation (4)
into account. Equations (5b) are of vectorial character and state
the conservation of the zero-vorticity (which holds until shell-
crossing) written in Lagrangian coordinates. Calculational details
about equations (5) are given by Ehlers & Buchert (1997) and
Zheligovsky & Frisch (2014). General derivations of the Lagrangian
evolution equations are given by Buchert & Goetz (1987), Rampf &
Buchert (2012), and references therein.

3 PRO BLEM AND SOLUTION ANSATZ

Matter collapse that can be exactly reduced to a spherical problem is
degenerate; given the nature of the initial (Gaussian) random density
fluctuations, the probability of finding such objects in the LSS is
zero. Furthermore, even just a small random perturbation that is
added to, say, a spherical overdensity is crucial as it decides shape
and orientation of the collapsed object. ICs that resemble such a
problem are introduced in the following section, and an appropriate
solution Ansatz is given in Section 3.2.

3.1 Initial conditions

In this paper we analyse three-dimensional matter collapse with ICs
that are quasi-spherical, i.e. the ICs amount, to the zeroth order in a
perturbation parameter ε, to a spherical problem, and to first order
in ε a geometrical perturbation that breaks spherical symmetry. In
the following we will not make any assumption about the form of
this geometrical perturbation (that can depend on all three space
coordinates), and thus leave it as a free function.

For the given scenario, perturbed ICs can be formulated in terms
of a superposition of two contributions to the initial gravitational
potential, the first being the spherical (‘top-hat’) part and the second
one a small asymmetric perturbation. Specifically we write for the
Hessian of the initial gravitational potential

ϕ
(init)
,ij = δij

A

3
+ εφ

(init)
,ij , (6)

where A is a positive constant function, ε a small perturbation
parameter, and φ(init) an arbitrary function of all three space
variables. The case A < 0, which resembles the evolution of a
void, is not treated in this paper and will be investigated elsewhere
(see Sahni & Shandarin 1996; Nadkarni-Ghosh & Chernoff 2011
for low-order approximations).

Taking into account the slaving conditions (2), we have the
following relation between the gradients of the initial velocity and
gravitational potential,

v
(init)
i,j

!= −ϕ
(init)
,ij = −δij

A

3
− εφ

(init)
,ij . (7)

3.2 The Lagrangian perturbation Ansatz

We employ a perturbation method in which the solutions to the
Lagrangian equations are expanded in powers of ε. Specifically, we
impose for the particle trajectories

x(q, a) = q + ξ (0)(q, a) + εξ (1)(q, a) + ε2ξ (2)(q, a) + . . . , (8)

where ξ (n) is the nth coefficient in the ε expansion for the displace-
ment x − q. Evidently, for the zeroth order in the ε expansion, we
have the spherical problem; we call this the unperturbed problem.
For the unperturbed problem the tensor of displacement gradients
must be isotropic, thus

ξ
(0)
i,j = δij S , (9)

where S is a time-dependent unknown and δij the Kronecker delta.
In this paper we only expand to first order in ε, henceforth we
write ξ (1)(q, a) = ξ (q, a) and neglect all higher order terms. We
thus impose for the Jacobian matrix

xi,j = δij (1 + S) + εξi,j + O(ε2) , (10)

and for its determinant, the Jacobian of the perturbed problem,

Jε = J (0) + ε(1 + S)2ξl,l + O(ε2) , (11)

where J(0) = (1 + S)3 is the unperturbed Jacobian.
As evident from the Lagrangian mass conservation (4), the

density blows up when the Jacobian vanishes. Thus, the vanishing
of the Jacobian can be used as an indicator that matter has collapsed
to high-density objects. In more mathematical terms, the first
vanishing of the Jacobian marks the instance of first shell-crossing,
i.e. the time where particle trajectories begin to intersect and the
single-stream description breaks down.

In the following section we solve for the particle trajectories to
zeroth order in ε. Then, in Section 5, we include the asymmetrical
perturbation in the problem and show that the particle trajectories are
time-analytic and thus representable by a convergent time-Taylor
series until the final stage of the non-linear collapse.

4 THE UNPERTURBED PROBLEM (EDS
UNI VERSE)

4.1 Spherical collapse: equations and solutions to order ε0

Exact analytical solutions to the spherical problem are known in the
literature, but are always investigated by considering a Friedmann
toy model. Here we approach the problem in a more flexible
environment, namely by solving the fluid equations. We note that a
very similar Lagrangian approach to ours, however restricted to low-
order approximations, has been applied by Munshi et al. (1994) and
Yoshisato, Matsubara & Morikawa (1998). Here we go, formally,
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to all orders, which allows us to proof mathematical convergence
of the perturbation series.

Plugging the Ansatz to order ε0 in equation (5b) gives a trivial
identity, whereas for equation (5a) we obtain

(1 + S)2RaS = 3

2

[
S + S2 + S3

3

]
. (12)

To solve this equation, we seek a nested Ansatz for the unperturbed
displacement in terms of a power series around a = 0,

S(a) = −
∞∑

n=1

σn(Aa)n , (13)

where σ n are numerical coefficients to be determined. Note the
minus sign and the powers of A in our Ansatz, due to convention.

Using this Ansatz and applying the slaving conditions (2), we
obtain directly the first-order solution σ 1 = 1/3. To solve for the
higher order Taylor coefficients, we plug (13) into (12); identifying
the powers in Aa we then get (n > 1)(

n + 3

2

)
(n − 1) σn =

∑
p+q=n

(
2q2 + q − 3

2

)
σpσq

−
∑

k+l+m=n

(
m2 + m

2
− 1

2

)
σkσlσm . (14)

After symmetrizing the terms on the r.h.s. and division of the
coefficients in front of the l.h.s., we obtain the recursion relations
for the coefficients of the unperturbed displacement (n ≥ 1)

σn = 1

3
δn1 +

∑
q<n

q2 + (n − q)2 − (3 − n)/2

(n + 3/2)(n − 1)
σqσn−q

−
∑

k+l+m=n

k2 + l2 + m2 − (3 − n)/2

3(n + 3/2)(n − 1)
σkσlσm . (15)

The first Taylor coefficients are

σ1 = 1

3
, σ2 = 1

21
, σ3 = 23

1701
, σ4 = 1894

392931
. (16)

The first three coefficients σ 1–σ 3 can be found in Munshi et al.
(1994). Sahni & Shandarin (1996) derived the Taylor coefficients
up to order n = 5, however for a void spherical top-hat and
thus some of their coefficients have different signs. Wagner et al.
(2015) determined σ 1–σ 5 within the separate universe approach
(see their equation B.15); the match of these coefficients could
reveal an interesting relationship between the separate universe
and Lagrangian-coordinates approaches, and should be investigated
further.

To our knowledge, the recursion relation (15) has not been
reported before in the literature. None the less, as we show briefly
now, this result can be set in direct context to standard calculations
of the density in the SCM. Indeed, by plugging our results for the
displacement into the definition of the density at the Lagrangian
position, δ = 1/J(0) − 1, with J(0) = (1 + S)3, and Taylor expanding
we find

δ =
∞∑

n=1

νn

n!
(Aa)n , (17)

with the first non-vanishing coefficients

ν1 = 1 , ν2 = 34

21
, ν3 = 682

189
, ν4 = 446440

43659
. (18)

These coefficients agree with the ones obtained from Bernardeau
(1992), however we emphasize that our approach is different to

Figure 1. Domb–Sykes plot for the unperturbed collapse. Shown are ratios
of the Taylor coefficients δn = νn/n! for the density contrast (red dotted
line) and of the displacement coefficients σ n (blue solid line). Both ratios
of subsequent coefficients approach 0.593 for n → ∞ (obtained by a linear
fit for 10 � n < 800; dashed lines) and thus mark the radius of convergence
of the time series at |Aa

(0)
� | = 1/0.593 = 1.686 in the complex time disc.

Formally evaluating the unperturbed Jacobian, J(0), at the real time value
of Aa

(0)
� = 1.686, it is seen that the radius of convergence is limited by the

instance of first shell-crossing, where J(0) vanishes and the density becomes
infinite.

theirs; obtaining these coefficients in this paper is little more
than a check that our methodology can be directly connected to
existing works in the literature. Furthermore, we are not aware
of any literature that establishes the mathematical convergence
of equation (17) until collapse, although we note that there exist
explicit recursion relations for the density (cf. Bernardeau et al.
2002; see also equation 23).

4.2 Spherical case: convergence until collapse

After having found recursive solutions for the Taylor series of the
unperturbed displacement, it is natural to ask the question: is

S(a) = −
∞∑

n=1

σn(Aa)n (19)

a convergent series and thus defines an exact solution until shell-
crossing?

To address this question, we perform the ratio test which states
that the radius of convergence R of the series is given by the
relation

1

R
= lim

n→∞
σn

σn−1
(20)

(if that limit exists), where σ n are the Taylor coefficients of the
unperturbed displacement field (13). We determine the radius of
convergence of the time-Taylor series of the displacement by
drawing the Domb–Sykes plot (Domb & Sykes 1957), shown in
Fig. 1 (blue solid line). To obtain this plot we have generated Taylor
coefficients for the displacement (and the density; red dotted line)
up to order n = 800; the output, though quite lengthy at large Taylor
orders, can be easily obtained by employing standard computer
algebra programs and by the use of our recursion relations. As
evident from Fig. 1, for sufficiently large Taylor orders (n > 10),
both ratios of Taylor coefficients settle into a linear behaviour. By
linearly extrapolating the ratios, shown as dashed lines, we obtain
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Quasi-spherical collapse of matter 5227

the value 0.593 at the intersection of 1/n = 0, from which we
conclude that the radius of convergence is, for both the displacement
and density, given by Aa(0)

� = 1/0.593 = 1.686.
The radius of convergence of a series is determined by the nearest

singularity in the complex disc of its argument. For a time-Taylor
series, complex time singularities generally restrict the time for
which the time series does converge; however, in most cases it
is possible to extend the time of validity by employing suitable
analytic continuation techniques, see Nadkarni-Ghosh & Chernoff
(2011) for related discussions within the SCM, and Podvigina,
Zheligovsky & Frisch (2016) for highly related techniques for
incompressible Euler flow. In the present case, at least for the
displacement, it is a priori not ruled if the first singularity occurs
for real times. To clarify the nature of the singularity at the disc of
convergence, we perform numerically a Cauchy convergence test
for the series coefficients Sn ≡ −σ n(Aa)n of the displacement (S =∑

nSn), at the critical vicinity of Aa(0)
� = 1.686.

Evaluating the Cauchy test to orders as large as n = 1000, we find
that indeed the series converges absolutely until the real time value
of Aa(0)

� = 1.686. As a direct consequence, we can solve for the dis-
placement from initial time a = 0 until a = a(0)

� = 1.686/A, where
convergence is guaranteed. Evaluating the unperturbed Jacobian J(0)

≡ (1 + S)3 at this maximal time, one finds

J (0)(a(0)
� ) = 0 , (21)

and thus, as expected, a(0)
� marks the time of first shell-crossing /

matter collapse in the unperturbed case. Therefore, in Lagrangian
coordinates, we can solve for the particle trajectories all the
way to the collapse, and for that only a single time-step is
required.

Also shown in Fig. 1 is the ratio of Taylor coefficients of the
density contrast

δ =
∞∑

n=1

νn

n!
(Aa)n =

∞∑
n=1

δn(Aa)n . (22)

The νn coefficients are determined by the recursion relations
(Bernardeau et al. 2002)

νn =
n−1∑
m=1

(
n

m

)
μm

(2n + 1)νn−m + 2μn−m/3

(2n + 3)(n − 1)
, (23)

μn =
n−1∑
m=1

(
n

m

)
μm

3νn−m + 2nμn−m/3

(2n + 3)(n − 1)
, (24)

themselves being the result of a spherical average of the perturbative
Eulerian density and velocity divergence, respectively. Similarly as
above, we draw the Domb–Sykes plot for the Taylor series of the
density. As evident from the red (dotted) line in Fig. 1, the radius
of convergence for the density is identical with the one for the
displacement. This coincidence is because of the vanishing of the
convective term in the Euler equation (second term on the l.h.s.
in 1a), due to spherical symmetry. For non-isotropical ICs, the
convective term does generally not vanish, and as a consequence
we expect the radius of convergence of the Eulerian density to be
smaller than the radius of convergence of the displacement (cf.
Rampf et al. 2015).

There is an even more striking argument why the Lagrangian-
coordinates approach is superior compared to the Eulerian one,
even for the simplistic case of perfect sphericity. At the instance of
shell-crossing, the density is indeed a real singularity; approaching
it by Eulerian means, and in a controlled way is impossible. Even

Figure 2. Unperturbed turnaround and collapse, here for A = 1. Shown
is the divergence of the non-comoving particle trajectory approximated to
nth order in the time-Taylor expansion, where n = 1, 5, 10, 20, and 1000
(top to bottom lines). Beyond order n � 100, the trajectory does not change
visibly, and converges to the results of the SCM. We remark that we use the
cosmic scale factor as time variable, not cosmic time; this explains why the
above plot appears to be deformed in comparison to the standard spherical
collapse results (see e.g. fig. 2 in LoVerde 2014).

slightly before the time of shell-crossing, when the density is not
yet infinity but very large, very high orders in the Taylor series of
the density are required to resolve the matter collapse in its final
stages. In the Lagrangian approach, by contrast, the displacement is
the only dynamical variable, and behaves fairly smoothly at shell-
crossing (cf. upper panel of Fig. 4, showing J(0) = (1 + S)3 which
controls the inverse of the density).

4.3 Further results on the unperturbed problem

Taking the trace of the unperturbed Jacobian matrix xi,j = δij(1 +
S) + O(ε), and multiplying it by the scale factor, we arrive at the
divergence of the non-comoving particle trajectory,

∇L · rε=0(q, a) ≡ 3a(1 + S) , (25)

shown in Fig. 2 for several levels of accuracies in the time-Taylor
expansion. Evidently, low-order approximations for the trajectory
perform poorly, none the less even the first-order solution, in
Lagrangian space, predicts the existence of a turnaround and a
collapse. This should be contrasted to Eulerian perturbation theory
which, at first order, does not predict a collapse.

Going to higher orders in the time-Taylor coefficients, the
trajectory converges quite quickly to a stable answer. More in detail,
beyond order n � 100 and for times 0 ≤ Aa ≤ 1.6, the corrections
to the exact solution of the trajectory are less than 0.07 �, with
the largest deviation at the latest time. Higher orders are only
required when evaluating the final stages of the collapse. Indeed,
resolving this highly non-linear regime, we find that the time-Taylor
series must be truncated up to order n = 950 to obtain better than
0.6 per cent precision for 1.6 ≤ Aa ≤ 1.685.

We note that the time of unperturbed shell-crossing could also be
obtained by numerically evaluating J (0)(a(0)

� ) = 0 to a given order
n, and the approximative results for a(0)

� are shown in Fig. 3. The
accuracy for obtaining a(0)

� numerically gets increasingly better at
large Taylor orders, and we find that, at n = 1000, the time of
unperturbed shell-crossing can be obtained to an accuracy of better
than 0.05 per cent w.r.t. the exact prediction of the SCM, which is
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5228 C. Rampf

Figure 3. Time of unperturbed shell-crossing, here for A = 1. Shown is
the nth-order approximation of a

(0)
� , as the result of solving numerically

for the vanishing of the unperturbed Jacobian. Evidently, the numerical
approximation asymptotes to the exact value of 1.686, shown as dashed
line.

(see e.g. Peebles 1980)

Aa(0)
�scm = 3

5

(
3π

2

)2/3


 1.68647 . (26)

In our framework, however, a much better prediction can be obtained
by using the extrapolation method that leads to our Fig. 1. Indeed,
by drawing the Domb–Sykes plot for the Taylor coefficients to order
n = 800, we obtain a prediction for Aa(0)

� which is two orders of
magnitude better than the numerical method as employed in Fig. 3.

Numerically evaluating for the time of ‘turn around’, by contrast,
delivers very accurate predictions already at fairly low Taylor orders.
Specifically, the time Aata of unperturbed turnaround is achieved
when the first time derivative of the non-comoving trajectory (25)
vanishes. The standard parametric solution in the SCM gives (see
e.g. Bertschinger & Jain 1994)

Aata,scm = 3

20
(6π)2/3 
 1.06241 , (27)

whereas numerically evaluating for Aata, with our methods and to
fixed time-Taylor orders n = 10, 20, and 100, yields a precision of
better than 10−4, 10−5, and 10−15, respectively.

5 THE PERTURBED PROBLEM (EDS
UNIVERSE)

5.1 Quasi-spherical case: equations and solutions to order ε1

Collecting all terms O(ε), we obtain from equations (5a) and (5b),
respectively

(1 + S)3 Raξl,l = 3

2
ξl,l

[
1 + S + S2 + S3

3

]
, (28a)

(1 + S) εijk ξ̇j,k = Ṡ εijkξj,k , (28b)

where we remind the reader that the overdot stands for a time
derivative w.r.t. the scale factor a. The last equation dictates that no
transverse displacement is generated during the evolution, and thus,
to order ε, the perturbed displacement is purely potential. Therefore,
the perturbed displacement is entirely described by its divergence

part, which we define as

∇ · ξ ≡ Q . (29)

Furthermore, since the perturbed equation (28a) is autonomous in
the space variables, and because the only spatial scale is given by
the perturbed ICs, it follows that we can write Q in separable form,

Q(q, a) = −χ (a) A−1�(init)(q) . (30)

The latter space-dependent function is fully determined by the
perturbed ICs (6), supplemented with the initial constraint χ̇(a =
0) = A, it is

�(init)(q) = ∇2φ(init) . (31)

Thus, the space dependence of the perturbed solution is already
imprinted in the ICs of the perturbed problem, and we only need to
solve for the time dependence, given by χ which is subject to the
time differential equation

(1 + S)3 Raχ = 3

2
χ

[
1 + S + S2 + S3

3

]
. (32)

This is our evolution equation for the perturbed problem that we
solve by imposing the time-Taylor series Ansatz

χ =
∞∑

n=1

χn(Aa)n . (33)

The first-order solution, determined by the slaving condition, is
simply χ1 = 1. To get the solutions for the time-Taylor coefficients
for n > 1, we plug the Ansatz into the evolution equation (32).
Matching the time-Taylor coefficients at fixed order, we get for n >

1(
n + 3

2

)
(n − 1) χn = 3

∑
p+q=n

(
q2 + q

2
− 1

2

)
σpχq

− 3
∑

p+q+r=n

(
r2 + r

2
− 1

2

)
σpσqχr

+
∑

p+q+r+s=n

(
s2 + s

2
− 1

2

)
σpσqσrχs ,

(34)

which, after symmetrization, yields a recursion relation for χn.
Here we will not show the explicit recursion relations as derived
from (34), mainly because the involved symmetrization of the terms
on its r.h.s. becomes fairly cluttered (see equation 63 and in there
λ = 0). Instead and much simpler, we find that χn are entirely
determined by the following recursion relation (n ≥ 1)

χn = 3n σn , (35)

where the σ n’s are given by their own recursion relation (15). We
prove the validity of this trivial recursion relation in Appendix A,
which appears to be only valid for an EdS universe (and thus
does not apply for a �CDM Universe, see Section 6). For future
reference, we report here the first Taylor coefficients for the
perturbed displacement,

χ1 = 1 , χ2 = 2

7
, χ3 = 23

189
, χ4 = 7576

130977
, (36)

which, to our knowledge, have not yet been reported in the literature.
Furthermore, because the time-Taylor coefficients of the perturbed
displacement are intrinsically related to the coefficients of the
unperturbed displacement, it is trivial to determine the radius of
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Quasi-spherical collapse of matter 5229

convergence of the time-Taylor series χ = ∑
nχn(Aa)n. Indeed,

performing the ratio test for its coefficients, we find

1

R
= lim

n→∞
χn

χn−1
= lim

n→∞
3nσn

3(n − 1)σn−1
= lim

n→∞
σn

σn−1
, (37)

and thus, the radius of convergence of the series representation
of χ is identical with the one for σ , namely R = Aa(0)

� . Note
however, that in the perturbed case, the absolute value of that radius
of convergence is not identical with the time of perturbed shell-
crossing, the latter denoted with a�. This is simply because the total
trajectory is a superposition of the unperturbed trajectory and the
perturbed displacement, both coming with their individual validity
regime. Rather, as we show in the following section, the time of
perturbed collapse occurs generically earlier than in the unperturbed
case, i.e. a� ≤ a(0)

� . This allows us to solve exactly for the perturbed
particle trajectory (including the unperturbed part) before and at the
instance of perturbed shell-crossing.

It is also interesting to plug the r.h.s. of equation (35) into
the Ansatz for χ , which reveals a novel relationship between the
perturbed and unperturbed displacement and the fluid velocity,

χ =
∞∑

n=1

χn(Aa)n = 3
∞∑

n=1

nσn(Aa)n ≡ −3aṠ , (38)

where Ṡ = ∂L
aS = −∂L

a

∑
n σn(Aa)n is the fluid velocity of the

unperturbed theory.
Summing up, from the above results we obtain, to order ε,

respectively the Jacobian matrix and the Jacobian

xi,j = δij (1 + S) − ε
χ

A
∇−2

L ∂L
i ∂

L
j �

(init) , (39a)

Jε = (1 + S)3 − ε(1 + S)2 χ

A
�(init) , (39b)

with S = ∑
nσ n(Aa)n and χ = −3aṠ, where the σ n’s are given by

equation (15). We remark again, that S is independent of the chosen
ICs for �(init) = ∇2φ(init), and thus the above results hold for an
arbitrary choice of ICs.

Equations (39a) and (39b) constitute the main technical results
of this paper, which we will explore in the following two sections.

5.2 The time of perturbed shell-crossing/matter collapse

In the absence of any perturbations, spherical collapse occurs at
Aa(0)

� = 1.686. Since the leading-order correction to the displace-
ment is linear in ε, it is expected that the time of matter collapse
receives a correction linear in ε as well. Our solution Ansatz for the
time of perturbed collapse is therefore

Aa� = Aa(0)
� + εC , (40)

where C is a constant which can only depend on the space
coordinates. Perturbed shell-crossing occurs at the time a� for which
the Jacobian vanishes,

Jε(a�) = [1 + S(a�)]2

(
1 + S(a�) + ε

3a�Ṡ(a�)

A
�(init)

)
= 0. (41)

Evidently, this Jacobian vanishes also at the time of unperturbed
shell-crossing, a(0)

� , for which the square bracketed term vanishes.
However, as we argue above, in the perturbed scenario shell-
crossing could be shifted to earlier times, in which case we expect
the deciding contribution in (41) coming from the round bracketed
term. Assuming that a� < a(0)

� for the moment, and to leading order

in ε, we can ignore the overall factor of [1 + S(a�)]2 in the last
equation, and thus are left with

1 + S(a�) + ε
3a�Ṡ(a�)

A
�(init) = 0 . (42)

Now, since S(a�) = S(a(0)
� ) + εCṠ(a(0)

� )/A + O(ε2), and because
of 1 + S(a(0)

� ) = 0, it is straightforward to find from equation (42)
that C = −3a(0)

� �(init). Thus, the time of perturbed shell-crossing
is, to order ε, and for times a� < a(0)

� ,

Aa� = Aa(0)
� (1 − 3ε�(init)/A) , (43)

with Aa(0)
� = 1.686 and �(init) = ∇2φ(init). Since �(init) can take

generally also positive values, we thus conclude that if �(init) > 0
locally, then indeed perturbed shell-crossing occurs earlier than in
the unperturbed case. Stated in another way, an initially overdense
region will collapse earlier, if the perturbation �(init) amplifies the
initial overdensity.

What about locations q = Q for which �(init)( Q) ≤ 0? Will the
time of perturbed shell-crossing be delayed w.r.t. the unperturbed
case? The answer to this question is no, since what matters
physically is the first vanishing of the Jacobian (41), which is
guaranteed to happen, at the latest, at the time of unperturbed
shell-crossing (for which the square bracketed term in equation
41 vanishes).

Summing up, to leading order in ε, and for �(init) > 0 perturbed
shell-crossing occurs as instructed by equation (43), but for �(init)

≤ 0, the time of perturbed shell-crossing is identical with the time
of unperturbed shell-crossing.

To our knowledge, the qualitative observation that perturbations
to the spherical collapse can lead to a decrease of the time of collapse
has been made the first time by Monaco (1997), who investigated
the ellipsoidal collapse up to third order in Lagrangian perturbation
theory. There, the time of collapse has been determined by solving
numerically for the first vanishing of the Jacobian. This solution
technique, when restricted to the perturbed problem (and thus not
to arbitrary large deformations for which we can make no positive
statements on the convergence), however, converges very slowly,
as very high perturbation orders are required to accurately resolve
the Jacobian at the final stages of the collapse (cf. our Fig. 3). The
presented results, by contrast, though restricted to sufficiently small
departures from spherical symmetry, are exact results – represented
in terms of fully converging Taylor series – results that can be
determined to arbitrary high accuracy.

5.3 Further results on the perturbed problem

In Fig. 4 we show the unperturbed Jacobian as well as the difference
�Jε = Jε − J(0), for several values of the perturbation parameter ε.
For simplicity we have set A = 1 and �(init). Noticeable from
that figure is that the effect of the perturbation yields the largest
deviation from the unperturbed Jacobian at the time of turnaround,
the latter defined by the maximum value of the divergence of the
non-comoving particle trajectory. This is most easily seen on the
following Fig. 5, where we plot the physical particle trajectories,
for the same values of ε as in the last figure.

Let us discuss the consequences for the density in the perturbed
case. Since the fully non-linear density becomes infinite at the
collapse, the non-linear density is not a useful quantity to determine.
The linearized density, however, is still a well behaved quantity even
at the collapse, and can be thus useful (e.g. the linear density is a
central input quantity in halo formation models). In this paper,
we perform essentially a double expansion scheme, one being an
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5230 C. Rampf

Figure 4. Upper panel: The unperturbed Jacobian J(0) as a function of
the a-time. Lower panel: Difference between the perturbed and unperturbed
Jacobian, i.e. �Jε = Jε − J(0) for several values of the perturbation parameter
ε. For these plots we have set A = 1 and �(init) = 1.

expansion around a = 0 and the other being a perturbative departure
from exact sphericity, the latter parametrized with ε. Thus, in
the present double expansion, a linearization involves taking the
leading-order terms in ε as well as in a.

Performing the just described linearization of the density δ = 1/J
− 1, we obtain the linearized density

δlin(a) = Aa
(
1 + ε�(init)/A

)
. (44)

Evaluating the linear density contrast at the critical vicinity of
perturbed shell-crossing a�, which for �(init) > 0 is given by
equation (43), and otherwise is identical with a(0)

� , we then find

δlin(a�) = 1.686
(
1 − c ε|�(init)|/A)

, (45)

where

c =
{

1, for �(init) < 0
2, for �(init) > 0

. (46)

Thus, irrespective of the sign of the perturbation to the spherical
collapse, the threshold for the linear density contrast at collapse is
decreased w.r.t. the unperturbed problem.

6 G ENERALIZATION TO A �C D M U N I V E R S E

Our results can be easily generalized to more realistic cosmologies,
such as to the spatially flat �CDM Universe that includes, apart
from CDM, also a cosmological constant ∼�. To employ our
developed tools, we first need the Lagrangian evolution equations
for a dark matter fluid in �CDM. These equations and a thorough
derivation are given by Rampf et al. (2015). Although the �CDM
Universe is nowadays the commonly accepted cosmological model
and thus the literature of �CDM vast, the present formulation is
only little known, hence for the sake of clarity we briefly summarize
its derivation.

We begin with the fluid equations in physical (i.e. non-comoving)
coordinates which are (Peebles 1980)

∂t U + (U · ∇r ) U = −∇rφg , (47a)

∂t� + ∇r · (�U) = 0 , (47b)

∇2
r φg = 4πG� − 3� , (47c)

with r the proper space coordinate, t the cosmic time, U the physical
velocity (including the Hubble term), � the fluid density, and the
cosmological constant given by 3�. Using the decomposition

r = a(t) x , � = ρ̄(t)[1 + δ] , U = H (t) r + au (48)

in the above fluid equations, where H(t) = (∂ ta)/a is the usual Hubble
parameter, we obtain for the purely time-dependent background part
the well-known Friedmann equation,

H 2 = a−3 + � , (49)

where for notational simplicity we have absorbed some of the
standard coefficients into �. For the mass and velocity fluctuations
δ and u = ∂x/∂t , the fluid equations become

∂t u + (u · ∇x) u = −2H u − 3

2a2 ∇xϕg , (50a)

∂t δ + ∇x · [(1 + δ)u] = 0 , (50b)

∇2
xϕg = δ

a
. (50c)

In these fluid equations, although being indeed valid for �CDM,
there is no explicit appearance of the cosmological constant 3�,
since the background part has been subtracted out. Instead, the �

dependence is imprinted in the time evolution of the cosmic scale
factor a(t) (and H), itself determined by the Friedmann equations.

Perturbative solutions to arbitrary high order for the fluid equa-
tions are most easily obtained by changing from cosmic time
t to the a-time. This task is straightforward by noting that the
time-derivatives are related via ∂t = (∂a/∂t) ∂a , and using the
first Friedmann equation to get an expression for (∂a/∂t). Then
one obtains the so-called peculiar fluid equations in the a-time
formulation (Rampf et al. 2015)

(1 + �a3)[∂av + (v · ∇x)v] = − 3

2a
(v + ∇xϕg) − 3�a2v, (51a)

∂aδ + ∇x · [(1 + δ) v] = 0 , (51b)

∇2
xϕg = δ

a
, (51c)

with u = (∂ta) v. One note is in order. Apart from the scale
factor time, there is another convenient time variable for �CDM
calculations, namely the linear growing mode for �CDM which is
usually called D (cf. Hamilton 2001). However, as argued by Rampf
et al. (2015), the resulting perturbative expressions take its simplest
form when expressed in the a-time, hence our choice for the scale
factor time.

Finally, we transform equations (51) to Lagrangian space, which
yields

εiklεjmnxk,mxl,n R
(�)
a xi,j = 3 (J − 1) , (52a)

εijk ẋl,j xl,k = 0 , (52b)
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Quasi-spherical collapse of matter 5231

Figure 5. The perturbed non-comoving (i.e. physical) particle trajectory,
for A = 1 and �(init) = 1. Shown are several choices of values of the
perturbation parameter, where ε = 0 refers to the unperturbed trajectory
(black line). The case ε = 10−3 (blue line) is almost exactly overlapping
with the unperturbed case. Generally, the larger the value of ε, the earlier is
the time of turnaround and collapse.

with notations and conventions as in the previous sections, except
with a new temporal operator which we define with

R(�)
a ≡ [

a2(1 + �a3)
(
∂L

a

)2 + 3�a4∂L
a + (3a/2)∂L

a

]
. (53)

Observe that, apart from the slightly updated temporal operator
which has two additional terms ∼�, the Lagrangian evolution
equations for �CDM are formally identical with those for EdS
(cf. equation 5). This correspondence allows us to employ the same
tools as in the previous sections and to obtain all-order solutions for
the displacement.

6.1 Spherical collapse in �CDM

Let us investigate the spherical collapse in �CDM for which we
need to solve for the �CDM displacement S� in the equation

(1 + S�)2 R(�)
a S� = 3

2

[
S� + S2

� + S3
�

3

]
, (54)

with the operator R(�)
a given in (53). We impose for the displace-

ment

S�(a) = −
∞∑

n=1

σ (�)
n (Aa)n . (55)

Plugging this Ansatz into equation (52) and identifying the powers
in (Aa)n, we obtain the following all-order recursion relation for the
Taylor coefficients (n ≥ 1)

σ (�)
n = 1

3
δn1 − �

A3

n − 3

n + 3/2
σn−3

+
∑
q<n

q2 + (n − q)2 − (3 − n)/2

(n + 3/2)(n − 1)
σqσn−q

+ �

A3

∑
q<n

q2 + (n − q)2 − 4n + 6

(n + 3/2)(n − 1)
σqσn−q−3

−
∑

k+l+m=n

k2 + l2 + m2 − (3 − n)/2

3(n + 3/2)(n − 1)
σkσlσm

− �

A3

∑
k+l+m=n

k2 + l2 + m2 − 4n + 9

3(n + 3/2)(n − 1)
σkσlσm−3 , (56)

Figure 6. Domb–Sykes plot for the spherical collapse in �CDM, zoomed
in at large Taylor orders 250 ≤ n ≤ 400. Shown are subsequent ratios of the
Taylor coefficients of the displacement coefficients σ

(�)
n /σ

(�)
n−1, for several

choices of the free parameter λ = �/A3. The (mostly) overlapping dashed
lines are the result of linear extrapolations, obtained by linear fits for 350
� n ≤ 400. The linear extrapolations for n → ∞ indicate that the inverse
of the radius of convergence is an increasing function of λ. For the radii of
convergence we find |Aa�| = 1.686, 1.692, 1.745 for λ = 0, 10−3, 10−2.
Formally evaluating the physical trajectory (see also Fig. 7) at this critical
time value, it is seen that the radius of convergence is limited by the collapse.

where we demand that σ
(�)
k = 0 if k ≤ 0. Comparing this recursion

relation against the one for EdS, given in equation (15), it becomes
evident that in the �CDM case there are double as many terms
involved, thanks to � (As can be easily checked, setting � = 0
returns the EdS result).

Furthermore, because of the given structure of the �CDM
recursion relation, Taylor coefficients involving � only appear for
n ≥ 4. Explicitly, the first Taylor coefficients are

σ
(�)
1 = 1/3 , σ

(�)
2 = 1/21 , σ

(�)
3 = 23/1701 ,

σ
(�)
4 = 1894

392931
− 2�

33A3
, σ

(�)
5 = 3293

1702701
− 179�

6006A3
.

(57)

Furthermore, for orders n > 6, higher order Taylor coefficients are
generally populated by powers of (�/A3)m, with m ∈ N and 1 ≤ m
≤ n − 6. The explicit appearance of � and of the top-hat amplitude
A in the recursion relations renders the collapse problem inherently
scale dependent, an expected phenomenon when departing from
EdS.

Having obtained the all-order Taylor-series representation for the
spherical collapse in �CDM, let us investigate the convergence
properties of its series. Clearly, the introduction of a non-zero �,
although only visibly present at large Taylor orders, should affect
the radius of convergence, since it is indeed the large Taylor orders
that determine the convergence properties (or non-convergence)
of a series. We perform the ratio test to obtain the radius of
convergence R(�) of the Taylor series (55) in �CDM, with

1

R(�)
= lim

n→∞
σ (�)

n

σ
(�)
n−1

. (58)

In Fig. 6 we show the numerical results for several choices of the
free parameter λ ≡ �/A3 = 0, 10−3, 10−2. To obtain this figure,
we have determined the Taylor coefficients up to order n = 400.
The linear extrapolations for each parameter choice indicate that
convergent solutions of the series (55) are obtained for the maximal
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5232 C. Rampf

Figure 7. Spherical collapse in �CDM, here for A = 1. Shown is the
divergence of the non-comoving particle trajectory at the final stages of the
collapse, for the same values of λ as in the previous figure. To obtain the
�CDM trajectories we have evaluated the displacement up to order n = 400.
The collapse times, for which ∇L · rλ = 0, according to the present figure
agree well with the linear extrapolations from the Domb–Sykes method
(Fig. 6).

time values of

|Aa
(0)
��| =

⎧⎨
⎩

1/0.593 = 1.686 for λ = 0
1/0.591 = 1.692 for λ = 10−3

1/0.573 = 1.745 for λ = 10−2
. (59)

Thus, the radius of convergence increases with larger λ. Formally
evaluating the divergence of the unperturbed physical trajectories
(r = ax) at that critical time value

∇L · rλ

(
q, a

(0)
��

) = 3a
[
1 + S�

(
a

(0)
��

)] → 0 , (60)

it becomes evident that |Aa
(0)
��| marks the time of unperturbed

collapse (for which ∇L · rλ = 0).
This can also be seen in Fig. 7 where we show the physical

trajectory (60) in �CDM. For larger values of λ (and for fixed
A) the cosmological constant opposes the collapse stronger, and
thus the collapse becomes delayed. From that figure we can also
read off the collapse times, which, for sufficiently small λ, agree
excellently with those as predicted by the Domb–Sykes method. For
the trajectory with the largest shown value of λ = 10−2, we observe
a slight mismatch of collapse times of the order of 0.4 per cent,
indicating that higher Taylor orders in the displacement (55) are
required for larger values of λ whilst keeping the accuracy goal.
Actually, the fact that the displacement is not yet fully converged at
order n = 400 for λ = 10−2 can also be seen in the previous Fig. 6:
evidently, the ratios of subsequent Taylor coefficients have not yet
settled into a linear behaviour even at orders n ≈ 300.

For larger values of λ than ∼10−1 but for fixed A the collapse
will not occur at all, since the strong accelerated expansion washes
the density fluctuations away (not shown). At increasingly larger
values for λ, it is furthermore expected that the Taylor series will
cease to converge, however we consider this large λ scenario as
physically less relevant (besides the seemingly close analogy with
standard inflationary theory which however requires a relativistic
description).

We note that the used λ values for Fig. 7 are only exemplary
to show the effect of a non-zero �; realistic values for � would
not deliver any visible effect for the present perturbative expansion,
since the expansion is performed around a = 0, i.e. initial data

for the collapse is formally provided at a = 0, a property of our
mathematical model. At such early times, we are deep in the matter
era and thus � has little influence on the matter dynamics. Of
course, our tools can also be used for late-time initializations, and
in Section 7 we provide an in-depth discussion about such avenues.

6.2 Quasi-spherical collapse in �CDM

Continuing to a perturbed collapse in �CDM, we require to find a
solution to the following equations at O(ε),

(1 + S)3 R(�)
a ξl,l = 3

2
ξl,l

[
1 + S + S2 + S3

3

]
, (61a)

(1 + S) εijk ξ̇j,k = Ṡ εijkξj,k . (61b)

As before, our strategy is to find solutions for the perturbed Jaco-
bian matrix of the form xi,j = δij (1 + S� + εξ

(�)
i,j ), where the all-

order solution for S� is given in equations (55)–(56). Because of ex-
actly the same arguments as given in Section 5.1, the only non-zero
contribution to the perturbed displacement comes from its diver-
gence part which we set to ∇ · ξ (�) ≡ Q� = −χ�(a) A−1�(init)(q).
To solve for the time dependence of the unknown, we seek solutions
of the form

χ� =
∞∑

n=1

χ (�)
n (Aa)n . (62)

Repeating similar calculations as before, we then find the all-order
solution (n ≥ 1)

χ (�)
n = δn1 − λ

n − 3

n + 3/2
χ

(�)
n−3

+ 3
∑

p+q=n

q2 + q/2 − 1/2

(n + 3/2) (n − 1)
σ (�)

p χ (�)
q

+ 3λ
∑

p+q=n

q2 − 4q + 3

(n + 3/2) (n − 1)
σ (�)

p χ
(�)
q−3

− 3
∑

p+q+r=n

r2 + r/2 − 1/2

(n + 3/2) (n − 1)
σ (�)

p σ (�)
q χ (�)

r

− 3λ
∑

p+q+r=n

r2 − 4r + 3

(n + 3/2) (n − 1)
σ (�)

p σ (�)
q χ

(�)
r−3

+
∑

p+q+r+s=n

{
s2 + s/2 − 1/2

(n + 3/2) (n − 1)
σ (�)

p σ (�)
q σ (�)

r χ (�)
s

+ λ
s2 − 4s + 3

(n + 3/2) (n − 1)
σ (�)

p σ (�)
q σ (�)

r χ
(�)
s−3

}
, (63)

where λ = �/A3, and the terms on the r.h.s. still have to be
symmetrized over all possible permutations. The first few Taylor
coefficients are

χ
(�)
1 = 1 , χ

(�)
2 = 2

7
, χ

(�)
3 = 23

189
,

χ
(�)
4 = 7576

130977
− 2λ

11
, χ

(�)
5 = 16465

567567
− 102λ

1001
.

(64)

We note that the above recursion relation is vastly different from
the one in the EdS case (equation 35); none the less a quick check
reveals that for λ = 0 we obtain the same Taylor coefficients as
in the EdS case, as required. The obvious reason why the present
recursion relation is more cluttered is, that in the �CDM case there
is no simple way to write the perturbed displacement in terms of

MNRAS 484, 5223–5235 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/484/4/5223/5308849 by C
N

R
S - ISTO

 user on 05 July 2023



Quasi-spherical collapse of matter 5233

the unperturbed one, as it was possible in the EdS case (for the
derivation see Appendix A; in particular see equation A2).

By using our tools we have verified that the perturbed Taylor
series is also convergent in �CDM. Actually, no rigorous proof
for the convergence is required since we have already established
convergence for the perturbed displacement in EdS, as well as
the convergence for the unperturbed displacement in �CDM.
Thus, particle trajectories are time-analytic from which it follows
trivially that also the perturbed displacement in �CDM must be
representable by a convergent Taylor series.

Summing up, the Jacobian matrix for �CDM reads in the
perturbed case

xi,j = δij (1 + S�) − ε
χ�

A
φ

(init)
,ij , (65)

with the Taylor coefficients for S� and χ� given in equations (56)
and (63), respectively. From this result both fluid variables trivially
follow, i.e. the density is δ = 1/ det[xi,j ] − 1, and the velocity is
given by v = ∂L

a x.
Let us close this section by translating the main results obtained

in the previous sections to �CDM. Perturbed collapse will occur
at the time value Aa�� = Aa

(0)
�� + εC�, where Aa

(0)
�� denotes the

time of unperturbed/spherical collapse (see e.g. equation 59), and
C� a space-dependent constant. Actually, the analysis that we have
applied in Section 5.2 straightforwardly translates to �CDM; in
particular we can obtain the unknown C� by plugging the Ansatz
for the perturbed time into the Jacobian, evaluated to first order in ε,
and require its vanishing. We then find

Aa�� = Aa
(0)
�� (1 − 3ε�(init)/A) , (66)

and thus, perturbed collapse in �CDM will occur earlier than for
spherical collapse if �(init) > 0, and otherwise occurs at the same
time as in the spherical case – exactly for the same reasons as
outlined in Section 5.2.

7 SUMMARY AND DISCUSSION

The case of exact spherical collapse is highly degenerated. Fur-
thermore, even just a tiny initial inhomogeneity that is added to a
spherical top-hat profile is crucial, as it decides shape and orientation
of the collapsed object. Thus, such small inhomogeneities are not
at all negligible and must be incorporated in realistic models for
structure formation. By departing perturbatively from the pure
spherical problem, we have shown that the quasi-spherical problem
can be solved exactly, and by fully analytical means, until the
instance of shell-crossing. The latter denotes the first crossing of
particle trajectories which results in infinite densities (in Eulerian
coordinates), indicating the formation of density caustics on the one
side, and the breakdown of the fluid description on the other.

The methodology of the present approach is as follows. First,
we employ a 3D formulation of the cosmological fluid equations
in Lagrangian coordinates (Eulerian coordinates should be avoided
when investigating the matter collapse because of the appearance
of explicit singularities). We solve the equations for a choice of ICs
that resemble, to the zeroth order in a small expansion parameter,
a spherical top-hat profile. In Lagrangian coordinates, the solution
of the fluid equations is represented in terms of an infinite time-
Taylor series for the displacement field, for which we report all-
order recursion relations (see equation 15 for EdS, and equation 56
for �CDM). Here it is important to note that the used time variable is
not the cosmic time t but the cosmic scale factor a ∼ t2/3. By drawing
the so-called Domb–Sykes plot (see Fig. 1) for the time-Taylor

coefficients of the Lagrangian displacement field, we establish the
mathematical convergence of the Lagrangian description until col-
lapse. At collapse, the Jacobian of the Lagrangian transformation,
which controls the inverse density, is exactly zero, thereby signalling
the blow-up of the density.

Then, we add an arbitrary perturbation to the top-hat profile at the
level of the ICs. This perturbation, controlled by the dimensionless
perturbation parameter ε > 0, is allowed to have any non-trivial
spatial dependence, thereby breaking exact spherical symmetry.
That perturbation leads to a perturbed Lagrangian displacement
field, which can be represented by an infinite time-Taylor series.
For an EdS universe, we are able to vastly simplify the resulting
recursion relations for the displacement, essentially expressing the
perturbed displacement coefficients in terms of the unperturbed
ones (equation 35). For a �CDM Universe, we do find explicit
recursions relations (63) as well, which, however, cannot be written
in such a compact form as in the EdS case. Then, by formally
going to all orders in the Taylor series, we find that the series,
both for EdS and �CDM, converge absolutely until the instance of
shell-crossing.

As a direct consequence, we obtain the perturbed particle
trajectory (39a), subject to the initial density �(init) of the per-
turbation to the spherical collapse. Investigating the time of col-
lapse a�, for which the Jacobian vanishes the first time, it is found
that

Aa� = 1.686(1 − 3ε�(init)/A) (67)

for �(init) > 0, and otherwise simply Aa� = 1.686 for an EdS
universe. Here, A > 0 is the initial amplitude for the spherical top-
hat. For ε = 0 we are back at the spherical problem, whereas for
ε > 0 and �(init) > 0, collapse will generically occur earlier than
in the pure spherical case. For a �CDM Universe, the structure
of the above formula still holds, and one only needs to replace
the time value for spherical collapse, which is 1.686 for EdS,
by its �CDM value (which is slightly larger than 1.686, see
Fig. 7).

The observation that perturbed collapse occurs earlier than in
the spherical case has been already made in the literature for
specific perturbation problems, although we are only aware of fairly
qualitative statements about a�, thus no analytic formula was known;
see LoVerde (2014) for the spherical collapse in the presence of
massive neutrinos, or Monaco (1997) for the ellipsoidal collapse.
We also remark that, including the perturbation in the analysis, the
time of collapse as well as the (linear) density become inherently
dependent on the mass scales of the collapse problem (set by the
ratio �(init)/A). This observation appears to be in agreement with the
numerical analysis of Sheth et al. (2001).

In the present approach the collapse criterion is set by the first
vanishing of the Jacobian

Jε = [1 + S]2

(
1 + S + ε

3aṠ

A
�(init)

)
, (68)

which, in the perturbed problem, is triggered by the Laplacian of
the perturbed initial gravitational potential �(init) = ∇2φ(init). We
note that the three bracketed terms on the r.h.s. in equation (68)
do not resemble the factorization into contributions from the three
principal axis. In particular the last term in the round brackets
originates from a combination from all principal axis. Thus, it is
the total source of the perturbation in all coordinate directions,
and not the collapse along a single coordinate axis, that sets our
collapse criterion. As a consequence of the decreased collapse time,
we find that the critical linear density at quasi-spherical collapse
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is reduced (see equation 45), irrespective of the sign of �(init).
Finally, we remark that in the literature there exists other collapse
criteria than (68); another frequent collapse criteria, e.g. used in the
context of ellipsoidal or triaxial collapse models, is associated with
virialization (see e.g. Sheth et al. 2001 and the discussion therein).

For the case of a �CDM Universe, the presence of � > 0 delays
the collapse w.r.t. to the EdS case (for which � = 0), since the
acceleration of the Universe opposes the gravitational clustering.
Generally, the physical impact of � on the matter evolution is
small, especially considering that we have performed a time-
Taylor expansion around a = 0 (thus formally pushing the birth of
structures to the origin of time, which is however just a property of
our mathematical model). More impact of � on the matter dynamics
occurs at late times (see e.g. Wintergerst & Pettorino 2010); of
course, such late-time behaviour can also be incorporated within
the present methodology, provided one follows the steps as outlined
in the following.

To initialize the matter collapse at arbitrary times ainit > 0 within
our methodology, one may proceed as follows. First, for initializa-
tions at late times, the initial density contrast δinit ≡ δ(ainit, q) is
generally non-zero which needs to be incorporated in the evolution
equations. Secondly, observe that within the Lagrangian evolution
equations, the time variable appears explicitly in the temporal
operator R(�)

a = [a2(1 + �a3)(∂L
a )2 + 3�a4∂L

a + (3a/2)∂L
a ]. The

system of equations is thus not time invariant. Therefore, for Taylor
expansions around ainit, one should time translate this operator
according to a → ainit + ã, where ã is the new time variable.

The temporal operator then becomes R(�)
a → R̃

(�)
(ainit+ã), with all a’s

being replaced with ainit + ã and the temporal derivatives changed
according to ∂L

a → ∂L
ã .

Summing up, the Lagrangian evolution equations then become

εiklεjmnxk,mxl,n R̃
(�)
(ainit+ã)xi,j = 3 (J − 1 − δinit) , (69)

εijk ẋl,j xl,k = 0 , (70)

which then can be solved with a Taylor series Ansatz around ainit.
These equations, which to our knowledge have never been reported
in the literature and are valid for any types of ICs, can then be solved
by an ã-time Taylor series. For this, note that the initial velocity
in the Lagrangian representation is simply vinit = ∂L

ã x(ainit, q). It
is expected that the recursion relations for initializations at ainit

> 0 will become highly non-trivial, and thus will be investigated
elsewhere.

Having found new exact analytical solutions to the fluid equa-
tions, for EdS and �CDM (and possibly even beyond when
suitably generalized), could open a new window of applications.
For example, the analytical solutions could be compared against
results from N-body simulations, with the aim to optimize the N-
body technique in the critical vicinity of particle crossings. We find
such avenues to be in close correspondence with the work of e.g.
Hahn, Angulo & Abel (2015) and Hahn & Angulo (2016) who
have introduced new methods with the aim to refine the N-body
technique.

Our findings of analytical solutions to the quasi-spherical collapse
delivers also accurate thresholds for the critical density at collapse,
which could be used as the input to formalisms that predict the
abundance, mass or shape of a given tracer, for example in the
Press–Schechter formalism, excursion set, or peaks theory (Press &
Schechter 1974; Bond et al. 1991; Desjacques 2008a; Paranjape
et al. 2013). When suitably adapted, our methodology could be also

relevant for determining the abundance of primordial black holes
(PBHs; cf. Kühnel & Sandstad 2016).

Finally, we have seen that to leading order in ε, the perturbed
displacement for quasi-spherical collapse is seemingly unaffected
by tidal/environmental effects. Indeed, at no instance in the cal-
culations have we made use of non-local operations (such as the
inverse Laplacian) which would signal environmental dependence.
The absence of environmental effects is due to the fact that, for
sufficiently small departures from sphericity where a linearization
in ε is justified, such effects are indeed negligible. It would be
interesting to go to second order in the perturbation parameter
ε, because this would allow the inclusion of such environmental
corrections (cf. Desjacques 2008b). We leave such investigations
for future work.
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APPENDIX A : SIMPLE R ELATION BETWEEN
UNPERTURBED AND PERTURBED
S O L U T I O N S F O R A N ED S U N I V E R S E

In Section 5 we reported the finding of an exact relation between
the Taylor coefficients of the displacement, i.e. that χn = 3n σn.
Here we prove the validity of this simple relation by considering
the evolution equation for the perturbed displacement. We note that

the below is strictly valid only for an EdS universe; in particular it
does not hold for a �CDM Universe.

Plugging the Ansatz (10) for the Jacobian matrix into the
evolution equation (5a) we arrive at first order in ε at

(1 + S)2Raχ + 2χ (1 + S)RaS = 3

2
χ (1 + S)2 . (A1)

The relation χn = 3n σn between the time-Taylor coefficients
amounts to the following relation,

χ = 3aṠ . (A2)

Using this in equation (A1) we find

(1 + S)2Ra(aṠ) + 2aṠ(1 + S)RaS = 3

2
aṠ(1 + S)2 . (A3)

Now, we rewrite the r.h.s. of the last equation in terms of a
Lagrangian time derivative

r.h.s. = a∂L
a

{
3

2

[
S + S2 + S3

3

]}
= a∂L

a

{
(1 + S)2RaS

}
, (A4)

where in the last step we have used equation (12). Equating the
last expression with the l.h.s. of (A3), a few terms are cancelling
without further actions, and we are left with

Ra(aṠ) = a∂L
a (RaS) . (A5)

This turns out to be an identity, and thus, we have proven that the
perturbed evolution equation (A1) is identical with the unperturbed
evolution equation, provided that we make use of the identifica-
tion (A2).
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