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The crust-core phase transition of neutron stars is quantitatively studied within a unified meta-modelling of
the nuclear Equation of State (EoS). The variational equations in the crust are solved within a Compressible
Liquid Drop (CLD) approach, with surface parameters consistently optimized for each EoS set on experimental
nuclear mass data. When EoS parameters are taken from known Skyrme or RMF functionals, the transition
point of those models is nicely reproduced. A model-independent probability distribution of EoS parameters
and of the transition density and pressure is determined with a Bayesian analysis, where the prior is given by
an uncorrelated distribution of parameters within the present empirical uncertainties, and constraints are applied
both from neutron star physics and ab-initio modelling. We show that the characteristics of the transition point
are largely independent of the high density properties of the EoS, while ab-initio EoS calculations of neutron
and symmetric matter are far more constraining. The most influential parameter for the determination of the
transition point governs the surface properties of extremely neutron rich matter, and it is strongly unconstrained.
This explains the large dispersion of existing predictions of the transition point. Only if the surface tension is
fixed to a reasonable but somewhat arbitrary value, strong correlations with isovector EoS parameters (Lsym,Ksym
and Qsym) are recovered. Within the present experimental and theoretical uncertainties on those parameters, we
estimate the transition density as nt = 0.072± 0.011 fm−3 and the transition pressure as Pt = 0.339± 0.115
MeV fm−3.

I. INTRODUCTION

Neutron stars (NS) are a unique observable laboratory of
the different phases of hadronic matter [1]. The structure and
composition of the inner core is still not completely clear [2],
but it is however well established that a phase transition oc-
curs from a solid crust to a liquid core at some ≈ 1 km from
the surface of the star. The presence of a solid crust plays an
important role in a number of phenomena involving NS, from
the cooling of proto-neutron stars [3–5] to the irregularities
(”glitches”) in their rotational motion [6–8]. The precise lo-
cation of the transition in the star is also important for the the-
oretical determination of its static properties, notably the star
radius [10], which accurate measurement will be soon avail-
able with upcoming x-ray observations [9]. To understand all
these aspects of NS physics, a reliable theoretical estimation
of the crustal thickness and its uncertainty is necessary.

For slowly rotating NS, the crustal thickness can be com-
puted with the Tolman-Oppenheimer-Volkov (TOV) equation
of hydrostatic equilibrium, if the equation of state (EoS) and
the core-crust (CC) transition point is known in density nt
and pressure Pt . A large number of studies have been de-
voted to the determination of the transition point with dif-
ferent relativistic [11–16] and non relativistic [17–21] mod-
els. Most of these studies compute the transition ”from the
core”: the transition is defined as the density point where ho-
mogeneous nuclear matter becomes unstable with respect to
density fluctuations. The simplest version of this technique
consists in evaluating the thermodynamical spinodal, that is
the instability point of neutral nuclear matter with respect to
the nuclear liquid-gas (LG) phase transition. The advantage
of this method is that it only requires the knowledge of the
energy functional of homogeneous nuclear matter: this func-
tional, at the density of the CC point which is close to nuclear

saturation density, is characterized by a small set of parame-
ters which can be strongly constrained through nuclear exper-
iments and/or microscopic ab-initio calculations [10, 22–24].

However, the CC transition is very different from the LG
one [25, 26] and the thermodynamical spinodal gives only
a qualitative (and overestimated) estimation of the transition
point. The CC transition occurs at the pressure where the en-
ergy density of clusterized matter (the solid cristal embedded
in a electron and neutron gas) overcomes the energy density
of uniform nuclear matter [27]. The clusterized phase is inho-
mogeneous and locally charged, and its equilibrium energy is
determined by the competition between the Coulomb and the
surface energy. These energy components identically vanish
in uniform matter, and therefore do not enter in the determi-
nation of the thermodynamical spinodal.

A better estimation can be obtained looking at the dynam-
ical response of the homogeneous system with respect to fi-
nite size fluctuations [28]. The resulting dynamical spinodal
is available for a limited set of models [16, 25, 29, 30], and
was recently studied by our group within a Bayesian meta-
modelling technique [31, 32]. One should remark that for the
determination of the dynamical spinodal, in addition to the
EoS of uniform matter, the isovector gradient terms - which
are not well known - play a non negligible role, and its pre-
cise location slightly depends on the many body formalism
adopted (linear response, Vlasov, or RPA) [33]. Even if the
dynamical spinodal certainly gives a better estimation of the
transition than the thermodynamical one, it is worth mention-
ing that in the actual dynamical process of supernova collapse
that gives birth to neutron stars, matter at subsaturation densi-
ties is never uniform but composed of atomic nuclei [34, 35],
meaning that spinodal decomposition is not the dynamical
process leading to the formation of the crust.

For this reason, the most theoretically sound determination
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of the CC point consists in determining the transition ”from
the crust”, by directly comparing the energy density of the
two competing phases [27]. This method demands an explicit
modelling of clusterized matter in beta equilibrium, which is
a complex quantum many body problem. Therefore, after the
seminal work by Baym, Bethe and Pethick [27], only few
works using modern energy functionals have been developed
along this line [36–41], and the problem of model dependence
clearly arises. In particular, many works have been devoted to
the EoS dependence of the transition point and in particular
the effect of the Lsym parameter [30]. However, the interplay
between the EoS parameters and the the isovector surface ten-
sion coefficient, which from the microscopic viewpoint is de-
termined by the isovector gradient terms in the energy func-
tional mentioned above, has been seldom addressed [40].

In this paper, we will calculate the CC transition point
”from the crust”, by solving the variational equations for non-
uniform matter within a compressible liquid drop (CLD) ap-
proach, in the same lines of Refs. [27, 39, 41]. The distribu-
tion probability of the EoS parameters of uniform matter and
the extra parameters associated to the cluster surface proper-
ties will be determined with a Bayesian analysis, using a fully
uncorrelated flat prior and constraints from the low density ef-
fective field theory (EFT) modelling by Drischler et al. [42].
This will allow us presenting model independent estimations
of the density and pressure of the transition point, and deter-
mining which are the most influential parameters governing
the phase transition.

The theoretical uncertainties on the EoS and on the transi-
tion point propagate to global observabes of the neutron star
such as the crust thickness and moment of inertia, which in
turn may be linked to astrophysical observables such as the
amplitude of neutron star glitches. Quantative predictions on
these global observables were presented in a recent paper [43].
In the present work, we concentrate on the nuclear physics in-
gredients, namely the density and pressure of the transition
point, and examine in greater details the influence of the dif-
ferent parameters, and the effectiveness of the different con-
straints.

A very similar Bayesian study was very recently and in-
dependently performed in Ref. [44], for the computation of
different quantities than the ones of the present work, namely
radii and tidal polarizabilities. The functional expression cho-
sen for the homogeneous matter EoS is not the same as in
our work, but our posterior distributions for the EOS parame-
ters are in very good agreement with the results of Ref. [44],
showing the reliability and generality of the meta-modelling
technique.

The plan of the paper is as follows. In section II we de-
scribe the variational equations which are solved to determine
the crust composition and the transition to the core. The meta-
modelling technique from Ref. [45, 46] used for the uniform
matter EoS and the expression of the cluster surface tension
from Ref. [47, 48] will also be shortly summarized. Section III
demonstrates the ability of our meta-modelling technique to
reproduce the published results of specific models. The crust
composition and the CC point obtained with specific choices
for the model parameters will be compared to the litterature,

showing that the parameter space of our meta-modelling is
large enough to cover existing functionals, and can thus be
used for a Bayesian determination of the EoS parameters.
Section IV presents a sensitivity analysis to the different EoS
parameters, and we will show that, together with the slope
of the symmetry energy Lsym, the curvature Ksym is strongly
influential in the determination of the CC pressure. The full
Bayesian analysis is reported in section V, where the probabil-
ity distribution for the transition observables is computed im-
posing to our uncorrelated prior to reproduce the band predic-
tions in isospin-symmetric and neutron matter of Ref. [42] ob-
tained from a many-body perturbation theory (MBPT) based
on two and three-nucleon chiral EFT interactions at N3LO.
We will show that these ab-initio calculations at low density
are far more constraining than the astrophysical constraint at
high density concerning the maximum mass of NS. A com-
plete correlation study will also be presented, where the im-
portance of the isovector surface energy will be underlined.
Conclusions are drawn in section VI.

II. MODELLING INHOMOGENEOUS MATTER

A. Variational equations

The equilibrium configuration of inhomogeneous catalyzed
matter is obtained following the standard variational formal-
ism of Refs. [27, 39, 41]. Using the Lagrange multipliers tech-
nique, the energy density in a Wigner-Seitz cell of volume VWS
is minimized with the constraint of a given baryonic density
nB = np +nn. The auxiliary function to be minimized reads:

F (A, I,n0,np,ng) =
Enuc

VWS
+

(
1− A

n0VWS

)
εg + εel−µnB,

(1)
where εg = ε(np = 0,nn = ng) (εel) is the energy density of
a pure uniform neutron (electron) gas at density ng (ne), and
the bulk interaction between the cluster and the neutron gas
is treated in the excluded volume approximation. The cluster
energy Enuc depends on the cluster atomic number A, isospin
asymmetry I = (N−Z)/A and density n0, and also on the total
electron density ne = np because of the electrostatic interac-
tion with the electron gas, according to:

Enuc =
ε(n0p,n0n)

n0
A+Ec +Es, (2)

where n0n(p) = n0(1± I/2), Es is the surface energy to be
discussed in section II C below, and we use the standard
expression for the Coulomb energy Ec from Ref. [27, 41].
Minimizing with respect to the five independent variables
A, I,n0,np,ng, and using the baryonic density constraint,

nB = ng +
A

VWS

(
1−

ng

n0

)
, (3)

leads to the following system of coupled differential equa-
tions:
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∂ (Enuc/A)
∂A

∣∣∣∣
I,n0,np,ng

= 0, (4)

2
A

∂Enuc

∂ I

∣∣∣∣
A,n0,np,ng

= µel−np
∂ (Ec/A)

∂np

∣∣∣∣
A,I,n0

, (5)

Enuc

A
+

1− I
A

∂Enuc

∂ I

∣∣∣∣
A,n0,np,ng

−
εg

n0
= µ

(
1−

ng

n0

)
, (6)

n0
2 ∂ (Enuc/A)

∂n0

∣∣∣∣
A,I,np,ng

= ngµ− εg, (7)

where the baryonic chemical potential µ results:

µ =
2np

n0A(1− I)−2np

∂Es

∂ng

∣∣∣∣
A,I,n0

+
dεg

dng
. (8)

We can see that, in the absence of a possible in-medium
modification of the surface energy because of the external
gas, the baryonic chemical potential can be identified with the
chemical potential of the gas µg ≡ dεg/dng.

It is easy to show that equations (4)-(7) can be equivalently
written as chemical and mechanical equilibrium equations be-
tween the cluster and the neutron and electron gas, supple-
mented by the Baym virial theorem [27]:

µ
nuc
n = µ

nuc
p +µel +∆µ, (9)

µ
nuc
n = µg, (10)

Pnuc = Pg, (11)
Es = 2Ec, (12)

where Pg = ngµg− εg, the cluster chemical potential is modi-
fied by the external neutron gas as:

µ
nuc
n =

∂Enuc

∂N

∣∣∣∣
Z
+

Pg

n0
, (13)

and the electrostatic interaction between protons in the cluster
and the background electrons leads to a modification of the
β -equilibrium condition, ∆µ =−np∂ (Ec/A)/∂np.

Equations (4)-(7) can be numerically solved if the energy
functional for homogeneous baryonic matter ε(np,nn) and
the surface energy Es are specified. These quantities are af-
fected by strong uncertainties, especially in the isovector sec-
tor [2, 40, 49, 50]. To quantify the uncertainty on the crust-
core transition induced by our imperfect knowledge of the
baryonic bulk and surface energy, we use for both quantities
simple and flexible parametrized expressions with parameters
whose variation embeds the present uncertainty on nuclear
energetics. These functionals are presented in sections II B
and II C below.

B. EoS meta-modelling

We parametrize the energy density of homogeneous nuclear
matter with baryonic density n = nn + np and isospin asym-
metry δ = (nn− np)/n, using the meta-modelling technique
of Refs. [45, 46], here briefly summarized.

It is theoretically known that the energy density of homo-
geneous nuclear matter is analytic at least up to ≈ 2− 3nsat ,
where nsat is the saturation density of symmetric matter. The
integrality of the possible behaviors of the functional can
therefore be explored using a Taylor expansion around the sat-
uration point (n = nsat ,δ = 0), and largely varying the param-
eters of the expansion, that correspond to the well-known EoS
empirical parameters [51]:

ε(n,δ ) = ∑
m≥0

1
m! ∑

k≥0
Ck

mδ
kxm, (14)

with x = (n− nsat)/3nsat . To fasten the series convergence,
the δ 5/3 term coming from the fermionic zero point energy is
explicitly added, as well as an exponential correction insuring
the correct limiting behavior at zero density, see Ref. [45] for
more details.

The final form for the energy per particle e(n,δ ) = ε/n at
order N of the expansion is given by:

e(n,δ ) =
3h̄2

20m

(
3π2n

2

)2/3 [(
1+κsat

n
nsat

)
f1 +κsym

n
nsat

f2

]
+

N

∑
m≥0

(vis
m + viv

mδ
2)

xm

m!
− (ais

N +aiv
Nδ

2)xN+1e−b n
nsat , (15)

where the functions f1, f2 give an effective correction to the
parabolic approximation for the symmetry energy:

f1(δ ) = (1+δ )5/3 +(1−δ )5/3 (16)

f2(δ ) = δ

(
(1+δ )5/3− (1−δ )5/3

)
. (17)

The parameters vis
m,v

iv
m,a

is
N ,a

iv
N of the meta-functional eq.(15)

are linear combinations of the successive derivatives
Eq,Lq,Kq,Qq,Zq, . . . in the isoscalar (q = sat) and isovector
(q = sym) sector. The saturation density nsat , two param-
eters linked to the isoscalar effective mass (κsat ) and effec-
tive mass splitting (κsym), and the b parameter governing the
functional behavior close to the n→ 0 limit [45], complete
the parameter set, which we will note in a compact form as
~X ≡ {Xn,n = 1, . . . ,2(N +1)+3}. It was verified in Ref. [45]
that with an expansion up to N = 4, the parameter space is
sufficiently large to give an excellent reproduction of different
popular Skyrme and RMF functionals. By varying the values
of ~X , eq.(15) thus provides a meta-functional that can contin-
uously interpolate among existing functionals, and possibly
explore novel density dependencies which have not yet been
proposed in the literature.

A flat distribution of ~X values within physically reasonable
intervals determined by empirical evidence [45], will give our
prior distribution for the EoS parameters. Ab-initio MBPT
calculations of uniform nuclear matter [42] will be used in
section V as a constraint, to determine a posterior distribu-
tion that will be used to estimate the model dependence of
the crust-core transition calculation. A similar strategy was
employed to compute different observables of neutron stars in
Ref. [31, 32, 43, 44, 46], and of finite nuclei in Ref. [44, 52].
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C. Surface tension

To determine the crust-core phase transition, the energy
density of homogeneous matter must be compared with the
energy density of clusterized matter. The difference between
the two is essentially given by the Coulomb Ec and surface
Es contribution (see eq.(2)), which identically vanish in ho-
mogeneous matter. The Coulomb energy only depends on the
cluster charge Z and density n0, which are consistently ob-
tained from the variational equations (4)-(7). On the other
hand, to calculate the surface energy from the energy func-
tional, strong approximations are needed in the many-body
treatment [27, 53]. Within these approximations, gradient
terms must be specified, involving extra parameters which are
added in the fitting protocol of phenomenological function-
als [54]. General physical considerations indicate that the sur-
face tension σ(A, I) = Es/S, with S nuclear surface, should
strongly depend on the isospin asymmetry I (with σ → 0 as
I → 1) [55, 56] and only moderately on the nuclear mass
A [57], but the exact value of σ(I) is model dependent, and
the uncertainty is particularly important for the extreme I val-
ues encountered in the inner crust: indeed no experimental
data exist on the surface energy of nuclei beyond the drip-line,
which is in-medium modified by the presence of the neutron
gas [55, 58–60]. For this reason, parametrized expressions are
generally employed [61].
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FIG. 1. Surface tension eq.(19) as a function of the isospin asymme-
try for different values of the p parameter for the SLy4 functional.

We use the expression originally proposed by Ravenhall
et al. [47] on the basis of Thomas-Fermi calculations at ex-
treme isospin ratios, and later employed in different works on
neutron star and supernova modelling within the compressible
liquid-drop model [34, 40, 48]:

Es(A,Yp) = 4πr2
satA

2/3
σ(Yp), (18)

with rsat = (3/4πnsat)
1/3, Yp = Z/A, and

σ(Yp) = σ0
2p+1 +bs

Y−p
p +bs +(1−Yp)−p

. (19)

In this expression, the parameter σ0 determines the value
of the surface tension of symmetric nuclei, while bs governs

the isospin dependence for moderate asymmetries. These pa-
rameters are fitted from experimental masses of the spheri-
cal magic and semi-magic nuclei 40,48Ca, 48,58Ni, 88Sr, 90Zr,
114,132Sn, and 208Pb. Enlarging the set of mass data does not
modify the results presented in this paper. This fit provides
optimal values for σ0 and bs different for each set of uniform
matter parameters ~X . For illustration, Figure 1 displays the
surface tension when σ0 and bs are fixed for the parameter
set ~X corresponding to the SLy4 interaction [62]. Different
values for the parameter p are also displayed in that figure.
We can see that the p parameter determines the behavior of
the surface tension for extreme isospin values [40], and can-
not be accessed from empirical nuclear physics data, which
are limited to values around I ≤ 0.3. For this reason, the pa-
rameter p will be added to the ~X set as an extra dimension in
the parameter space of our meta-modelling, and a reasonable
variation interval for its prior distribution will be determined
in section IV.

III. RESULTS FOR A REPRESENTATIVE EOS

In the previous section we have seen that, even in a unified
equation of state approach as the one employed in this paper,
many different parameters have to be specified to calculate
the crust composition and the crust-core phase transition. The
importance of the equation of state empirical parameters like
Esym,Lsym has been pointed out by many authors in the con-
text of specific EoS models [19] and their influence will be
studied in section IV. In addition to that, other parameters,
much less constrained in the neutron star and neutron physics
literature, enter explicitly in the variational equations eqs.(4)-
(7). These parameters comprise the high order derivatives
Qq,Zq, . . . (q = sat,sym), the b parameter that determines the
limiting low density value where the Taylor expansion around
saturation breaks down (see eq.(15)), and the p parameter dis-
cussed in section II C governing the isovector behavior of the
surface energy at extreme isospin values. In this section we
will therefore consider a representative EoS model, and in-
vestigate whether the transition observables are modified by
varying these relatively uncontrolled parameters. The repre-
sentative EoS model is taken to be the parameter set ~X with
empirical parameters fixed from the SLy4 functional, and will
be noted as meta-SLy4 in the following.

A. Crust composition and CC transition point

The influence of the uncontrolled parameters on the crust
composition is analyzed in Fig. 2. The upper part of the figure
explores the importance of the high order terms in the density
development. We can see that convergence is approximately
reached at N = 3, and a truncation at N = 2 leads to an im-
portant underestimation of the transition density. This means
that the Qq (and to a lesser degree Zq) parameters cannot be
neglected. N = 4 will be used in the rest of the paper.

The medium panel in Fig. 2 explores the influence of the
low density b parameter. A very good reproduction of the
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FIG. 2. Crust composition for different orders of the density expan-
sion (upper part), different values of the b parameter (medium part),
and different values of the surface tension p parameter (lower part)
in the SLy4 meta-model. The ending point of the curves signals the
transition point.

SLy4 functional is obtained if b = 10ln(2) is used. Taking
different values of b corresponds to considering EoS mod-
els which would have exactly the same empirical parameters
(including effective masses and high order parameters up to

N = 4) as the SLy4 functional, but would differ in the treat-
ment of the extreme low density domain. This is indeed
what happens with the inclusion of deuteron or cluster cor-
relations [63, 64]. Since again the effect is non-negligible, we
keep b as an extra EoS parameter. The low density correc-
tion to the Taylor expansion around saturation induced by the
b term in eq.(15) gets suppressed of a factor two at a density
nmin/nsat = ln2/b. We will consider in the following possible
variations of b/ ln2 in the interval [1,10], which corresponds
to a breaking down of the Taylor expansion at a density vary-
ing between nmin = 0.1nsat and nmin = nsat . This latter value
corresponding to the minimum b value might look quite ex-
treme, but we will see in section V that the influence of this
parameter turns out to be negligible. Finally, the effect of
varying the isovector surface p parameter is reported in the
lower panel of Fig. 2. Here the variation is done around the
value p= 3 used in the popular Lattimer and Swesty EoS [34].
We can see that both the average cluster size and the transition
density are strongly influenced by the p parameter, which can-
not be directly linked to the uniform matter energy functional.
From this observation we can already anticipate that the cor-
relation between the CC transition and the EoS will be con-
siderably blurred by our lack of knowledge of the isovector
surface tension.
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FIG. 3. Inner-crust composition Z (in blue) and A (in green) as a
function of the baryon density nB. The dots are the results of the
CLD model of Ref. [39] using the SLy4 interaction. The dotted line
represents the result given by our model for p = 3. Composition for
p = 2.61 (p = 2.34) to reproduce the transition density of Ref. [39]
(Ref. [65]) is also represented.

B. Comparison with previous calculations

Our results with the meta-functional optimized to give a
good reproduction of the SLy4 model are compared with the
other results available in the literature from a direct modelling
of the inner crust using the SLy4 functional and different ap-
proximations for the surface tension [39, 65]. In the case of
the popular Douchin and Haensel (DH) model [39], we also
report the average cluster size and charge for comparison with
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nt (fm−3)
Model ntd ntt p = 2.5 p = 3.0 p = 3.5
BSk14 0.081 0.090 0.073 0.079 0.085
BSk16 0.087 0.096 0.080 0.087 0.092
BSk17 0.086 0.095 0.078 0.085 0.091
NRAPR 0.073 0.083 0.062 0.071 0.076
RATP 0.086 0.097 0.078 0.087 0.092
SkO 0.062 0.073 0.050 0.061 0.064
SLy230a 0.081 0.090 0.076 0.080 0.085
SLy230b 0.080 0.089 0.073 0.079 0.083
SLy4 0.080 0.089 0.073 0.079 0.083
NL3 0.054 0.065 0.046 0.054 0.061
TM1 0.060 0.070 0.049 0.058 0.062
DD-ME1 0.070 0.085 0.064 0.076 0.083
DD-ME2 0.072 0.087 0.071 0.081 0.087

Pt (MeV/fm3)
Model Ptd Ptt p = 2.5 p = 3.0 p = 3.5
BSk14 0.381 0.483 0.311 0.366 0.433
BSk16 0.402 0.502 0.340 0.409 0.459
BSk17 0.397 0.499 0.324 0.391 0.455
NRAPR 0.413 0.545 0.299 0.391 0.454
RATP 0.390 0.500 0.321 0.401 0.452
SkO 0.270 0.413 0.162 0.271 0.315
SLy230a 0.319 0.404 0.269 0.307 0.351
SLy230b 0.362 0.462 0.296 0.355 0.397
SLy4 0.361 0.461 0.296 0.355 0.397
NL3 0.236 0.422 0.160 0.261 0.368
TM1 0.324 0.511 0.177 0.302 0.362
DD-ME1 0.404 0.605 0.391 0.526 0.607
DD-ME2 0.409 0.594 0.445 0.550 0.616

TABLE I. Transition density nt (top) and transition pressure Pt (bot-
tom) for several interactions. Meta-modelling unified EoS calcula-
tions with p = 2.5, p = 3, p = 3.5 are given together with the compi-
lation by Ducoin et al. from Ref. [19] using the dynamical (ntd ,Ptd)
and thermodynamical (ntt ,Ptt ) methods.

our results. We can see that the value of the cluster charge Z
is resonably compatible, but strong differences exist between
the different calculations concerning the cluster size as well
as the transition density. The difference in the cluster size be-
tween our approach and the DH one may be simply due to
the different definitions of a cluster in a dense medium, which
is affected by a certain degree of arbitrariness [40, 66]. Con-
versely, the difference in the transition point is most probably
due to the slightly different treatments of the isovector surface
tension. We can see that choosing p = 2.61 (p = 2.34) allows
reproducing the previous results by DH (Vinas et al. [65]), and
the difference between Ref. [39] and Ref. [65] is of the same
order as the difference between our results using p = 2.61 or
the canonical value p = 3 from Ref. [34].

As we have already discussed in the introduction, a very
limited number of works exists computing the CC transition
from a direct modelling of the inner crust, because of the com-
plexity of the simulations. A greater effort has been devoted
to the calculations from the core side, using the thermody-
namical or dynamical spinodal technique. The compilation of
Ref. [19] of the transition density and pressure calculated for

different models is reported in Table I . For each model, the
results compiled in Ref. [19] are compared to our calculation
where the parameter set ~X is fixed such as to reproduce the
considered model. A part of these results can also be found in
Ref. [43].

We can see that the transition density results of the literature
for the dynamical spinodal are globally nicely reproduced by
our calculation ”from the crust” with the choice p = 3. Higher
values of the isovector surface tension parameter are needed
if we want to reproduce the estimations of the thermodynam-
ical spinodal. The transition pressure is more fluctuating, but
still a variation of p in the interval [2.5,3.5] allows reproduc-
ing all the considered models. A flat probability distribution
within this interval will be our prior for the statistical analysis
of section V.
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Table IV of Margueron et al. (2018)

FIG. 4. Sensitivity analysis of the transition density nt with respect
to EoS parameters. p = 3 is fixed and two different reference points
are chosen: SLy4 parameters (top) and parameters of Table IV of
Ref. [45] (bottom).

IV. SENSITIVITY ANALYSIS

One of the advantages of the meta-modelling technique is
that, since all the model parameters are a-priori uncorrelated,
it is possible to vary each one of them independently of the
others, which is not possible using specific functional behav-
iors such as Skyrme or Gogny or the different versions of
RMF. This allows determining the most influential parame-
ters on any given observable. Such a sensitivity analysis is
presented in Fig. 4 for the transition density and in Fig. 5 for
the transition pressure.

The one-by-one variation of all the EoS parameters is per-



7

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

n sa
t

E sa
t

K sa
t

Q sa
t

Z sa
t

E sy
m

L sy
m

K sy
m

Q sy
m

Z sy
m

m
*/

m

∆
m

*/
m

P
t 
[M

eV
/f

m
3
]

Central value

SLy4

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

n sa
t

E sa
t

K sa
t

Q sa
t

Z sa
t

E sy
m

L sy
m

K sy
m

Q sy
m

Z sy
m

m
*/

m

∆
m

*/
m

P
t 
[M

eV
/f

m
3
]

Central value

Table IV of Margueron et al. (2018)

FIG. 5. Same as Fig. 4 for the transition pressure Pt .

Parameter Unit Prior HD LD
Min Max Average σ Average σ

nsat fm−3 0.15 0.17 0.1600 0.0060 0.1641 0.0049
Esat MeV -17 -15 -16.01 0.61 -15.29 0.25
Ksat MeV 190 270 229 24 234 23
Qsat MeV -1000 1000 200 535 -31 362
Zsat MeV -3000 3000 1038 1233 -146 1728
Esym MeV 26 38 33.53 3.48 30.71 0.76
Lsym MeV 10 80 45.45 17.97 43.66 3.68
Ksym MeV -400 200 -92 136 -202 42
Qsym MeV -2000 2000 913 740 -253 673
Zsym MeV -5000 5000 1463 2216 -114 2868

m∗sat/m 0.6 0.8 0.70 0.06 0.70 0.06
∆m∗sat/m 0.0 0.2 0.10 0.06 0.10 0.06

b 1 10 5.3 2.7 5.2 2.6

TABLE II. Minimum value and maximum value of each of the em-
pirical parameters for the prior distribution (prior) and average and
standard deviation of each of the empirical parameters of the poste-
rior distribution after application of the HD(LD) filter (see text).

formed around two different reference parameter set ~Xre f ,
namely the parameter set corresponding to the SLy4 model
(upper part of Figs. 4,5), and the set of average values of the
different parameters from the compilation of empirical con-
straints in Ref. [45] (lower part of Figs. 4,5).

The minimum and maximum value chosen for each param-
eter are taken from Ref. [46] and they are given in Table II.
These values reflect the degree of uncertainty on the differ-
ent parameters, as measured by their observed variation in the
different functionals that have been successfully confronted
to low energy nuclear physics data. The vertical lines in
Figs. 4,5) give the transition density and pressure domain ob-

tained when the EoS parameters are one by one varied around
the reference model, within the interval of Table II. Since the
uncertainty on the different parameters is not the same, the
length of the segments is a qualitative measure of the prop-
agation of the uncertainty on the transition point brought by
each parameter.

We can see that the sensitivity of each parameter depends
on the value of the other parameters, that is on the chosen
reference set ~Xre f . Still, universal trends clearly emerge. We
can see that the CC phase transition, at variance with the stan-
dard liquid-gas of symmetric matter, is virtually insensitive
to isoscalar parameters. Even if extremely large variations of
Qsat and Zsat are considered (see Table II), the prediction of
the transition point is almost unaffected. This underlines the
importance of the energetics of the neutron gas on the transi-
tion point. Concerning the isovector sector, we can see that
Lsym is the most important parameter. This result is in agree-
ment with previous findings by many authors [19]. The sym-
metry energy at saturation Esym and the effective mass split-
ting κv do not play any role on the transition, which can be
partially explained by the fact that these parameters are al-
ready relatively well constrained. Depending on the chosen
reference point, the transition pressure shows also a great sen-
sitivity to the isovector compressibility Ksym. This can ex-
plain why the transition pressure exhibits an irregular behavior
when plotted as a function of Lsym [19]: the different function-
als considered in the litterature have very different values of
Ksym, which blurs the correlation with Lsym. This effect is also
amplified by the fact that, depending on the reference point,
the dependence of Pt with Lsym is not monotonic. Finally, we
can remark that the influence of the fully unknown high or-
der derivatives Qsym and Zsym, though less important than the
one of Lsym, is not negligible and comparable to the one of
the isovector surface energy parameter p that can be inferred
from Table I. Similar conclusions can be drawn if the sensitiv-
ity analysis is performed using the definition of the transition
point from the dynamical spinodal [31, 32].

V. STATISTICAL ANALYSIS

We now come to the quantitative determination of the CC
transition point and its uncertainty, on the basis of our imper-
fect knowledge of the nuclear energy functional. To this aim,
we perform a Bayesian determination of the model parame-
ters on the full 2(N +1)+3 parameter space, up to the fourth
order in the Taylor expansion (N = 4). The prior distribution
of ~X is given by an uncorrelated ansatz and a flat distribution
of each parameter within the interval specified in Table II,

pprior(~X) =
2(N+1)+3

∏
k=1

f (Xmin
k ,Xmax

k ;Xk) (20)

where f is a uniform distribution between Xmin
k and Xmax

k ,
defined in terms of the Heavyside step function H(x) as
f (a,b;x) = (H(x−a)−H(x−b))/(b−a). The posterior dis-
tribution is obtained by applying different physical filters to
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FIG. 6. Low density constraints (energy per nucleon and pressure)
for neutron and symmetric matter from the EFT ab-initio calculation
of Ref. [42]. Blue bands are associated to our LD filter.

the prior distribution,

ppost(~X) = N wLD(HD)(~X)e−χ2(~X)/2 pprior(~X). (21)

In this expression, both strict (w term) and likelyhood (ex-
ponential term) filters are applied, and N is a normalization.
χ2(~X) represents the χ2 corresponding to the optimal fit of
nuclear masses which is done to determine the surface ten-
sion parameters σ0 and bs for each ~X parameter set (see sec-
tion II C). w is a sharp δ -function filter that outputs 1 if the
constraint is respected, and 0 otherwise.

Two different constraints are considered for the w filter. The
first constraint, noted wLD, concentrates on the low density
(LD) n≤ nsat behavior of the energy functional. We impose to
the different functionals generated following eq.(20) to strictly
pass through the uncertainty band of the N3LO effective field
theory calculation for symmetric and pure neutron matter by
Drischler et al. [42]. This same condition was applied in pre-
vious studies [31, 32, 43, 44]. This filter is applied in the
density interval [0.05,0.2] fm−3. The very low density region
is not considered because of numerical issues due to the very
small uncertainty, but we recall that all the generated mod-
els by construction converge to zero energy and pressure in
the n→ 0 limit. The energy per particle and pressure uncer-
tainty bands applied are displayed in Fig. 6. In this figure,
the interval delimited by the dotted lines corresponds to our
prior distribution. We can see that the uncertainty band of
the prior energy per particle and pressure of symmetric matter
around saturation is comparable and even narrower than the
one corresponding to the ab-initio calculation. This is due to
the strong empirical constraints coming from different low en-
ergy nuclear physics experiments, that have been considered
to determine realistic intervals for the empirical parameters
in Table II. Conversely, as it is well known, the empirical in-
formation embedded in the prior distribution is insufficient to
effectively constrain the neutron matter EoS, and the ab-initio
predictions are much narrower than our prior distribution. In
the isovector sector the LD filter is extremely selective: only
2118 models out of the 100 millions generated to numerically

sample the prior parameter distribution, fulfill the LD condi-
tion.

The second (HD) filter imposes general physical constraints
to the global density behavior of the functional, as follows:

• positive symmetry energy at all densities,

• P(n)≥ 0 for n≥ nsat (stability of the EoS),

• 0 < vs < c,

• Mmax > 2M�,

where Mmax is the maximum neutron star mass obtained
through a TOV calculation [1].

Once the posterior parameter distribution is determined, the
probability distribution of any parameter or observable Y can
be straightforwardly computed as:

p(Y ) =
2(N+1)+3

∏
k=1

∫ Xmax
k

Xmin
k

dXkY (~X)ppost(~X), (22)

where Y (~X) is the value of the Y variable as obtained with
the ~X parameter set.

A. Distribution of parameters and observables

The posterior distribution of the most influential isovector
EoS parameters is displayed in Figure 7. We can see that the
general physical conditions corresponding to the HD filter al-
most do not constrain the low order empirical parameters, in
agreement with the findings of Ref. [46]. Conversely, the LD
filter allows a very tight determination of the empirical param-
eters Lsym and Ksym.

The effect on the distribution of the transition density and
pressure is displayed in Fig. 8. The two-humped posterior dis-
tribution is due to the isovector surface energy parameter p,
for which we consider for simplicity only three values 2.5, 3,
and 3.5 with equal probability: the left peak in the distribution
of nt(Pt) is associated to p = 2.5 while we can not distinguish
between p = 3 and p = 3.5. This shows that the highest un-
certainty in the determination of the transition point, once the
EoS is constrained through the most advanced ab-initio calcu-
lations of nuclear matter, is due to our poor knowledge of the
surface properies of extremely neutron rich matter.

This statement can be quantified by calculating the first
moments of the distribution. We give in Table III the aver-
age value and the standard deviation of the transition density
(pressure) nt(Pt) for the prior and posterior distributions. In
each case, the convergence of the results with the number of
sampled models fulfilling the most restrictive LD filter, is also
checked. We can see that, if the value of the isovector sur-
face tension parameter p is fixed, the LD filter is much more
effective in reducing the uncertainty on the transition point,
with respect to the HD filter. This underlines the importance
of precise constraints on the low density EoS parameters for
a reliable prediction of neutron star crust properties, as it has
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nt (fm−3) Pt (MeV/fm3)
Average σ Average σ

Prior (p = 3) 0.078 0.040 0.342 0.426
HD (p = 3) 0.076 0.032 0.394 0.327
LD (p = 3) 0.074 0.011 0.360 0.122
LD 0.065 0.021 0.307 0.167

TABLE III. Average value and standard deviation of the transition
density (pressure) with the prior parameter distribution, the posterior
using the HD filter, and the posterior using the LD filter for p = 3
and p = {2.5,3,3.5}.
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been often stressed in the literature. If the transition point is
computed with reasonably well-behaved models for neutron
stars fulfilling the HD conditions and with empirical param-
eters within the accepted bands from nuclear physics experi-
ments (see Table II), without the more precise constraints from
ab-initio calculations, the transition pressure can be badly pre-
dicted even in average.

This discussion ignores the uncertainty that we have on the
behavior of the surface tension for extreme isospin values. If
we incorporate that uncertainty considering p as an extra pa-
rameter (last line in Table III), we can see that, according to
the range assumed for the prior distribution of p, the uncer-
tainty on the transition point is considerably increased and
even the average value is affected.

B. Correlations among the empirical parameters and the
transition

We now turn to explore the correlations between the empir-
ical EoS parameters and the transition point, as obtained by
applying the different filters. Fig. 9 displays the correlation
matrix among the different EoS parameters. The isovector
surface tension parameter p is fixed to p = 3 for this study
but the results are unmodified if p is allowed to vary. This
is because p is decoupled by construction from the homoge-
neous EoS parameters, and it additionally does not play any
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FIG. 9. Correlation matrix for the empirical parameters and the sur-
face parameters σ0, bs. The part under the diagonal show to the cor-
relation coefficients for the sets passing through the HD filter only
while the part above the diagonal corresponds to the correlation co-
efficients for the sets passing through the LD + mass filter.

role in the mass fit (see section II C), meaning that it is inde-
pendent also of the other parameters of the surface tension.
The matrix elements above the diagonal in Fig. 9 give the
linear correlation coefficient ri j = |σXiX j |/σXiσX j obtained for
the posterior distribution eq.(21) with w = wLD, that is after
application of the low density filter, while the terms below the
diagonal refer to the high density filter. In agreement with the
findings of Ref. [46] we can see that the HD filter does not
induce any correlation among the empirical parameters, with
the exception of a small positive correlation between Lsym and
Ksym, essentially due to the EoS stability requirement at high
density. On the other side, many different correlations ap-
pear due to the LD constraints. The constraint of mass repro-
duction induces a clear correlation of the surface tension pa-
rameters between themselves, as well as with the zero order
isoscalar and isovector parameters (Esat ,Esym), which domi-
nate the global energetics of finite nuclei. More interesting
correlations among the different isovector parameters are in-
duced by the constraint of reproducing the ab-initio EFT cal-
culations: besides the well known correlation between Esym
and Lsym which has been observed by many authors in the
context of different models [44, 67–70] , we also observe a
strong correlation among higher order parameters, notably the
isovector curvature Ksym with the skewness Qsym, and the high
order isoscalar parameters Qsat ,Ksat with the corresponding
isovector ones Qsym,Ksym. These non-trivial correlations can
only be observed within the meta-modelling strategy, because
in popular functionals like Skyrme the high order parameters
are a-priori correlated by the chosen functional form. The

fourth order parameters Zsat ,Zsym do not show any correla-
tion with any other parameter, showing their negligble influ-
ence on the density relatively close to saturation implied in
the LD filter. Finally, the isoscalar effective mass and effec-
tive mass splitting are also essentially uncorrelated with the
others: variations of these parameters, which play a crucial
role in the structure of finite nuclei, are fully compensated by
variations of the density derivatives as long as only the total
energetics (kinetic plus potential) is involved [52].

The correlation matrix between the model parameters and
the density and pressure of the transition point is presented in
Fig. 10. When the prior parameter distribution is used, which
supposes the EoS parameters fully uncorrelated, the transi-
tion density is only (slightly) negatively correlated to the Lsym
parameter, as it was previously reported [19]. The transition
density directly depends on the energy of β - equilibrium mat-
ter. The transition pressure being linked to the first derivative
of the energy density, it is not surprising that it is correlated
to higher order parameters of the symmetry energy, namely
Ksym and Qsym. Since these parameters widely vary in exist-
ing functionals, this can explain why the present predictions
of the transition pressure are so largely scattered (see Table I).
Once physical correlations among the EoS parameters are ac-
counted for in the posterior distribution, new correlations ap-
pear for the transition point.

As we have already discussed, for the computation of the
transition point it is important to specify, together with the
different parameters analyzed in Fig. 9, also the isovector sur-
face tension parameter p. Let us first consider the case where
we fix this parameter to its canonical value p = 3 that best
reproduces the homogeneous matter dynamical spinodal (see
Table I). In this case, we can see that the correlation of nt
(resp. Pt ) with Lsym (resp. Ksym) is preserved. Further inter-
esting correlations with the high order isovector parameters
Ksym and Qsym emerge if the EoS sample is restricted to re-
spect the HD filter, and even more if the LD filter is applied.
All these correlations fade away if the p parameter is allowed
to vary (lines ”LD+masses”). In that case, the transition point
is solely correlated to the surface properties (parameters σ0, bs
and p). This means that the dominant parameter determining
the CC transition is the isovector surface tension. Only if we
constrain its behavior ar large isospin values imposing p = 3,
the correlation with the symmetry energy is recovered. In that
case, we can see that the knowledge of the largely discussed
Lsym parameters is not enough, and higher order parameters
beyond Lsym must be constrained to improve the prediction of
the transition point, both in density and in pressure.

Our final result for the value and 1σ confidence interval for
the transition point is displayed in Fig. 11. We can observe
in a graphical way that the LD and HD filter lead to compati-
ble predictions for the transition point, but the LD filter is by
far more constraining. It is clear from this figure that a reli-
able determination of the CC transition point demands a better
control on the isovector properties of the nuclear surface for
extreme isospin values, more than more stringent constraints
on the EoS parameters. A Bayesian analysis of the micro-
scopic evaluation of the isovector surface energy within the
extended Thomas-Fermi method is under progress.
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FIG. 10. Top: Correlation between the transition density nt and the parameters for different filters. Bottom: Same for the transition pressure
Pt .

VI. CONCLUSIONS

In this paper we have presented a detailed study of the
core-crust transition point, in the framework of a unified EoS
treatment where the inhomogeneous crust is calculated with
the same energy functional as employed for the modelling
of the homogeneous core. The full parameter space of the
EoS, including the successive isoscalar and isovector deriva-
tives of the energy functional at saturation up to N = 4, the
isoscalar and isovector effective mass, and the isospin depen-
dent surface tension, is evenly explored within a completely
uncorrelated flat prior, within intervals compatible with the
present empirical constraints. The correlated (2(N +1)+3)-
dimensional parameter distribution is obtained constraining
the parameter space such as to reproduce measured mass of
magic and semi-magic nuclei, fulfill basic physical conditions
as well as modern ab-initio calculations of symmetric and neu-
tron matter. We find that the most influential parameter for the
determination of the transition point is linked to the behavior

of the surface tension for extreme isospin values, specifically
the isospin value at which the surface tension vanishes. Only
if this parameter is fixed to an educated, but somewhat arbi-
trary value, important correlations with the isovector parame-
ters of the EoS are recovered. We confirm the correlation of
the transition density with the slope of the symmetry energy
at saturation Lsym already observed in previous works, and ad-
ditionally point out the important correlation of the transition
pressure with the isovector compressibility Ksym.

Ab-initio calculations of the symmetric and neutron mat-
ter energy and pressure for densities below saturation from
Ref. [42] provide very stringent constraints on the EoS pa-
rameter distribution, and are shown to be much more effective
for the determination of the transition point than the available
constraints at supersaturation density.

Still, if the isovector surface tension is not further con-
strained, considerable uncertainties affect the transition point
(nt = 0.060±0.027 fm−3, Pt = 0.25±0.225 MeV/fm−3 at the
1σ level). If the educated guess p= 3 can be confirmed by mi-
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FIG. 11. 1σ error ellipse between the transition density nt and the
transition pressure Pt for different filters.

croscopic calculations, the predictions are sensibly changed
to nt = 0.072± 0.011 fm−3, Pt = 0.339± 0.115 MeV/fm−3.
These values, with the associated uncertainty intervals, de-
termine the crustal width and momentum of inertia of neu-
tron star, which in turn allows quantifying the role of the NS
crust in interesting astrophysical phenomena such as pulsar
glitches. Our study is performed in the framework of the com-
pressible liquid drop (CLD) model for the inhomogeneous
crustal matter and a specific parametrized functional form for
the surface energy, but equivalent parameters to our p parame-
ter can be found in alternative modellings, such as for instance
isovector gradient couplings in the DFT or Thomas-Fermi ap-
proximation [54], or the surface stiffness parameter in the con-
text of the Droplet model [71–73].

For this reason, further studies of the isovector surface ten-
sion will be extremely important.
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Appendix A: More on the properties of EFT EoS

The EFT constraints displayed in Fig. 6 are obtained from
Ref. [42] as the limiting surface containing the seven different

functionals proposed, which correspond to different hypothe-
ses for the NN interaction, resolution scale, cut-offs, and long
range couplings. It can also be interesting to compute the tran-
sition point using directly the functionals of Ref. [42]. This
can be done within our meta-modelling technique considering
seven ~X parameter sets corresponding to the different func-
tionals, which allows computing the energy density for differ-
ent isospin ratios. The results for the beta-equilibrium EoS
and the transition point are displayed in Table IV and Fig. 12.

Model nd (fm−3) nt (fm−3) Pt (MeV/fm3) n∗µ (fm−3)
1 2.55×10−4 0.0785 0.5833 0.1275
2 2.82×10−4 0.0769 0.4982 0.1289
3 2.88×10−4 0.0758 0.4575 0.1318
4 2.88×10−4 0.0740 0.4266 0.1300
5 1.59×10−4 0.0320 0.0847
6 2.82×10−4

7 2.68×10−4 0.0374 0.1045 0.1244

TABLE IV. Neutron drip density nd , crust-core transition density nt
and pressure Pt , and density n∗µ at which muons appear for the meta-
model realization of the seven Drischler et al. functionals. Empty
cells when no solution is found.

For some functionals, no solution can be found for the vari-
ational equations in the whole density range covered by the
crust: this is in particular the case for model 6, which predicts
a very low value of Esat not compatible with values extracted
from empirical information from nuclear mass. Apart from
these slight anomalies, the results are well within the range of
our predictions imposing the global constraint of Fig. 6.
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FIG. 12. Unified equation of state P as a function of the baryon den-
sity nB (crust and core) for the meta-model realization of the seven
Drischler et al. functionals. The empirical parameters for each func-
tional are given in Table IX of Ref. [45].
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