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Abstract 13 

 14 

Digital Soil Map uncertainty is usually evaluated from a set of independent soil observations 15 

that are used to determine various uncertainty indicators. However, the number and locations 16 

of the sites that constitute these evaluations may impact the value of these indicators.  17 

In this paper, a numerical experiment on uncertainty indicators was performed using the 18 

pseudo values of topsoil clay content obtained from an airborne hyperspectral image in the 19 

Cap Bon region (Tunisia). These pseudo values form a soil pattern with a large extent (46% of 20 

300 km2), high resolution (5 m) and good accuracy (R2
val = 0.75) while being free of visible 21 

artefacts and pedologically plausible. Therefore, the dataset was considered a fair 22 

representation of reality while providing a quasi-unlimited choice of sites.  23 
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The numerical experiment considered three Quantile Regression Forests as examples of DSM 24 

models by using inputs from relief soil covariates and geographical locations that were 25 

calibrated from 200, 2,000 and 100,000 individuals respectively (low, medium and high quality 26 

models). Their uncertainty indicators were first evaluated by calculating four uncertainty 27 

indicators (ME, MSE, SSMSE and PICP) from a large independent validation set of 100,000 sites. 28 

These uncertainty indicators were then computed from independent evaluation sets of 29 

different sizes (from 50 to 500 sites) and from different locations (500 evaluation sets of each 30 

size). The independent evaluation sets were selected following a stratified random sampling 31 

using compact geographical strata. 32 

The numerical experiment showed that the values of the uncertainty indicators were highly 33 

variable across numbers and locations of sites. The largest variations were observed for 34 

evaluation sets with fewer than 100 sites, but non-negligible variations remained for larger 35 

evaluation datasets. This result suggested that evaluations from independent sets convey a 36 

non-negligible error on the uncertainty indicators, which increases as the number of sites 37 

decrease.  38 

Evaluations of DSM models from independent evaluation sets should be interpreted with care 39 

and uncertainty on validation results should be systematically estimated. For that, numerical 40 

experiments for benchmarking DSM models on known soil patterns across the world would 41 

be a valuable complement to the analytical expressions for the uncertainty indicators and the 42 

many DSM applications for which these analytical expressions are not valid. This would serve 43 

also to improve the sampling techniques for the calibration and evaluation datasets to reduce 44 

the error when estimating the uncertainty of a DSM product. 45 

 46 

Keywords: Soil mapping, Uncertainty, Hyperspectral imagery, Random forest, Sampling 47 
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 48 

 49 

1. Introduction 50 

 51 

Soil maps are simplified representations of more complex and partially unknown patterns of 52 

soil variations. Therefore, any prediction of a soil property that can be derived from these soil 53 

maps has an irreducible and often substantial error that is the difference between the true 54 

and estimated values of the soil property. Since there is no way to systematically measure this 55 

error, we are uncertain about the true value of the soil property at most of the locations, 56 

where uncertainty refers to the state of mind of a person who expresses a lack of confidence 57 

about reality (Heuvelink, 2014). 58 

Getting accurate estimates of this uncertainty is of paramount importance for end-users to 59 

make enlightened decisions on the utility and limitations of the soil data products delivered 60 

to them. An example of a concrete translation of this exigence is provided by the 61 

GlobalSoilMap specifications (Arrouays et al., 2014). Following these specifications, each soil 62 

property estimate should be provided under the form of a 90% prediction interval (PI), which 63 

reports the range of values in which the true value is expected to occur 9 times out of 10. 64 

To provide this uncertainty information, a rigorous assessment of the uncertainty is 65 

considered a mandatory component of any Digital soil mapping application. Two main groups 66 

of methods can be used to accomplish this task (Heuvelink, 2014). The first is a model-based 67 

approach that involves spatial stochastic models that can provide estimates of the uncertainty 68 

of their own predictions. The main drawback of these model-based approaches is that their 69 

uncertainty evaluations are only valid under certain assumptions of the stochastic models. 70 

They also use the same data that were used to calibrate the models, which may cause an 71 
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underestimation of the uncertainty. The second group of uncertainty evaluation methods 72 

avoids this restriction by undertaking a model-free statistical evaluation with independent 73 

sites selected by probability sampling. The comparison between the predicted and actual 74 

values of the soil attributes of interest yields a set of uncertainty indicators, the most common 75 

of which are the mean error (ME), the mean squared error (MSE), the root mean square error 76 

(RMSE) and the coefficient of determination (R2). The latter is confusingly referred to in the 77 

DSM literature either as the goodness-of-fit of a linear regression between the predicted and 78 

observed values, or to how close the paired prediction-observation points are to the 1:1 line. 79 

For DSM models that deliver predictions via probability distributions, accuracy plots 80 

(Goovaerts, 2001) or Prediction Interval Coverage probability (PICP) (Shrestha and Solomatine 81 

2006), it can also be calculated to evaluate the accuracy of the uncertainty attached to each 82 

prediction.  83 

Various methods for producing sets of independent sites (denoted further ‘evaluation sets’), 84 

including the data-splitting of the available dataset, cross-validation over the available dataset 85 

and the probabilistic sampling of additional sites, were reviewed by Brus et al (2011). They 86 

recommended the latter to ensure unbiased uncertainty estimations and provide a more 87 

complete view of the spatial distribution of the error via the Spatial Cumulative Distribution 88 

Function (SCDF).  89 

The main drawback of any model-free statistical evaluation is that the calculated uncertainty 90 

indicators are themselves prone to uncertainty. Indeed, similar to any statistical parameters 91 

that are derived from a set of individuals, the uncertainty indicators (e.g., R2, ME, and PICP) 92 

are sensitive to the number and the locations of the soil observations used for calculating 93 

them. Under the condition that a probabilistic sampling is applied, Brus et al (2011) provided 94 

an analytical expression of the mean error (ME) and the mean square error (MSE) variances 95 
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using the sampling fraction (the ratio between the number of samples and the number of 96 

possible sample locations) and the estimated variance of the error over a given area as inputs. 97 

Such analytical expressions of the ME and MSE variances measure the uncertainty of these 98 

uncertainty indicators, which could be very useful. For example, they could be used for 99 

determining whether the differences between the ME and MSE of two different DSM models 100 

reveal significantly different performances or for computing the size of the validation sample 101 

that is required for estimating the ME and MSE at a given precision level. However, it must be 102 

noted that i) for some indicators other than ME and MSE and ii) for some specific sampling 103 

designs (such as two-stage random sampling), there might not be readily available statistical 104 

estimates of the uncertainty of the uncertainty indicators (Brus et al. (2011)). 105 

Although the uncertainty of the ME and MSE is easily computable for some sampling designs, 106 

it is far from being currently computed in DSM applications. This is because the soil datasets 107 

used as inputs of DSM models are rarely suitable for applying a probabilistic sampling. Indeed, 108 

these soil datasets are often undersized with regard to the size of the study area and the 109 

complexity of the soil cover to be modelled. This leads to substantial losses of predictive 110 

performances as soon as the sampling effort for collecting calibration sites is depleted for 111 

populating the set of independent sites required by probabilistic sampling. Furthermore, DSM 112 

applications most often use legacy data that do not respect the randomness and evenness 113 

required for a probabilistic sampling. For all these reasons, the DSM mappers most often 114 

disregard calculating any uncertainty in their uncertainty indicators and therefore neglect this 115 

issue when evaluating the DSM products. 116 

This paper presents a numerical experiment for assessing the uncertainties of the uncertainty 117 

indicators of the three DSM models with contrasted predictive performances by using 118 

different probabilistic samplings of different sizes. To overcome the above-evoked limitations 119 
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of the current soil input data, the study used the virtual pattern of the topsoil pseudo clay 120 

content derived from airborne Vis-NIR-SWIR hyperspectral data acquired over the Cap Bon 121 

region (300 km2, Tunisia) at a five-meter resolution (Gomez et al., 2015). This pattern is 122 

constituted of well-predicted clay values (R2=0.75) that are free of visible artefacts and 123 

pedologically plausible, which allows it to be considered as a fair representation of the 124 

variations of a real soil property across the landscape. Such a soil dataset provided a quasi-125 

unlimited number of pseudo-measured sites that made probabilistic sampling (and therefore 126 

ME and MSE variance calculations) applicable without any effect on the predictive 127 

performances. It also enabled the calculation of any uncertainty indicators from their 128 

empirical distributions obtained by repeating the validation process n times, which means 129 

selecting n different validation sets of a given size and determining the uncertainty indicators 130 

each time.  131 

 132 

Figure 1: Location of the study area (a) and the spatial pattern of pseudo values of topsoil clay content 133 
(b) 134 

b
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 135 

2. Material and methods 136 

 137 

2.1. The study area 138 

 139 

The study area is in the Cap Bon region in northern Tunisia (36°24’N to 36°53’N; 10°20’E to 140 

10°58’E), which is 60 km east of Tunis (Figure 1a). This 300 km² area includes the Lebna 141 

catchment, which is mainly rural (>90%). The Lebna catchment is devoted to the cultivation 142 

of cereals in addition to legumes, olive trees, vineyards and natural vegetation for animals. 143 

The region is characterized by its rolling hills and elevations between 0 and 226 m. The climate 144 

varies from humid to semi-arid, with an inter-annual precipitation of 600 mm and an inter-145 

annual potential evapotranspiration of 1500 mm. The soil pattern of the Lebna catchment is 146 

mainly the result of variations in lithology. The variations in the bedrock between Miocene 147 

sandstone and Marl cause large variations in the physical and chemical soil properties (Zante 148 

et al., 2005). Furthermore, the distance between successive sandstone outcrops decreases 149 

significantly as the terrain changes from the ocean to the mountains, which also causes 150 

variations in the soil property patterns (Gomez et al., 2012b). The soil materials were 151 

redistributed laterally along the slopes during the Holocene, which adds to the complexity of 152 

the soil pattern. The main soil types are regosols (IUSS working group WRB, 2006)), which are 153 

preferentially associated with sandstone outcrops, and calcic cambisols and vertisols, which 154 

preferentially formed on marl outcrops and lowlands. The southeastern region of the study 155 

area has a flatter landscape with sandy Pliocene deposits in which calcosols and rendzinas 156 

prevail. 157 

 158 
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2.2. Data 159 

 160 

2.2.1. Hyperspectral image and derived topsoil clay content predictions 161 

 162 

The numerical experiment uses an image of topsoil clay content as input. The data were 163 

derived from a Vis-NIR-SWIR hyperspectral image (Gomez et al., 2012b). The approach used 164 

to produce the data is summarized below. More details about the pre- and post-processing of 165 

the hyperspectral image can be found in Gomez et al (2012b). 166 

On November 2, 2010, AISA-Dual airborne-based hyperspectral data were acquired over the 167 

study area with a spatial resolution of 5 m. The area of the image is approximately 12 km x 24 168 

km. The AISA-Dual spectrometer measured the reflected radiance via 359 non-contiguous 169 

bands covering the 400 to 2450 nm spectral range, with 4.6 nm bandwidths between 400 and 170 

970 nm and 6.5 nm bandwidths between 970 and 2450 nm. The instantaneous field of view 171 

(IFOV) was 24 degrees. Topographical corrections were performed using a digital elevation 172 

model built from ASTER data and ground control points. 173 

To isolate the bare soil areas, the study masked pixels with normalized difference vegetation 174 

index (NDVI) values greater than an expert-calibrated threshold (0.20). Water and Urban areas 175 

were also removed. Finally, the bare soil represented 46.3% of our study area and potentially 176 

5,889,847 measured AISA-Dual 5 m x 5 m pixels. 177 

A Partial Least Square Regression (PLSR) technique (Tenenhaus, 1998) was then applied to 178 

estimate the topsoil clay contents from the 280 reflectance bands provided by the AISA-DUAL 179 

airborne sensor at each location. The PLSR was calibrated from 129 couples of Vis-NIR-SWIR 180 

reflectance spectra acquired by the AISA-DUAL sensor on bare soil surfaces associated with 181 

the topsoil clay content measured on a laboratory soil sample collected from the same bare 182 
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soil surfaces. Before the PLSR model was built, the reflectance was converted into 183 

“absorbance” (log [1/reflectance]). In addition, a Savitzky–Golay filter with second-order 184 

polynomial smoothing and window widths of 30 nm (Savitzky and Golay, 1964) and a mean 185 

centering and variance scaling was applied to the spectra to reduce noise. The calibrated PLSR 186 

model was then validated using a leave-one-out cross-validation that showed successful 187 

predictions (R² = 0.75). The PLSR model was then applied to all bare soil pixels to estimate the 188 

topsoil clay content, thus providing the final predicted topsoil clay properties map (Figure 1b), 189 

which is denoted “pseudo values of Clay content”. These treatments were implemented in R 190 

(Version 1.17) using the signal and pls packages (Mevik and Wehrens, 2007). 191 

 192 

2.2.2. Digital Elevation Model and derivatives 193 

 194 

A 30-m ASTER digital elevation model (DEM) with specific ortho-rectification and mosaicking 195 

was produced for this area. The classical geomorphometric indicators found in the DSM 196 

literature were calculated. These include Elevation, Slope, Aspect, plan Curvature, Profile 197 

Curvature and Multi-Resolution Valley Bottom Flatness (MRVBF). Sine and cosine 198 

transformations were applied to the ‘aspect’ to obtain four indices with a continuous gradient: 199 

‘northness’, ‘easterness’,’north-westerness’ and ‘north-easterness’. Finally, the X and Y 200 

coordinates (the n of “scorpan” in McBratney et al., 2003) were also used as soil covariates. 201 

 202 

2.3. Checking the plausibility of the predicted soil patterns 203 

 204 

We conducted a prior check to confirm the reliability of using the pseudo values of the clay 205 

content determined above as a realistic example of a soil property pattern. It was particularly 206 
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important to check the absence of any distortion of the spatial pattern due to the spectral 207 

measurements by remote sensing. Three experimental variograms showing the spatial 208 

structure of clay variations were calculated and then fitted with an exponential model using 209 

the weighted least square method (Cressie, 1993) using three different data sets: i) the 129 210 

sites with laboratory measurements of the clay content, ii) the same sites with pseudo values 211 

of the clay content and iii) 100,000 randomly selected sites with pseudo values of the clay 212 

content. Comparisons of the variograms were performed (see section 3.1.).  213 

 214 

2.4. Sampling technique 215 

 216 

We used probability sampling for selecting the calibration set used to build the DSM model, 217 

evaluating the performance of these models and undertaking the numerical experiment. All 218 

of the probability sampling techniques followed the same sampling approach (the stratified 219 

random sampling technique) using compact geographical strata (Walvoort et al., 2010) 220 

recommended by Brus et al. (2011). The main advantage of this technique is that it ensures 221 

an even distribution of the samples over the studied area and is simple to apply. 222 

The stratified random sampling approach was applied as follows. The study area was first 223 

stratified into 25 geographical strata of equal area using a K-means classification of the X and 224 

Y coordinates of each locations. We then randomly selected pixels of the grid within each 225 

stratum with a fixed number of locations in accordance with the total of samples required. 226 

 227 

2.5. Uncertainty indicators 228 

 229 
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We considered four uncertainty indicators among the possible ones that could have been 230 

examined. The first two were the mean error (ME) and the mean squared error (MSE) that 231 

were selected because these are the classical indicators whose variance can be calculated 232 

from analytical expressions (Brus et al, 2011). The last two were the mean square error skill 233 

score (SSmse) (Wilks, 2011 p 359, cited by NussBaum et al, 2017)) and the Prediction Interval 234 

Coverage probability (PICP) (Shrestha and Solomatine 2006). SSMSE is similar to the R2 reported 235 

in some studies (Vaysse and Lagacherie, 2015, Viscarra-Rossel, 2015) as the percentage of 236 

variance explained by the model: 237 

𝑆𝑆!"# = 1 −	∑ %&!'&!
∗(²!#$

!#%
∑ (&!'&̅&, )²!#$
!#%

                         (1) 238 

Where zi and 𝑧.∗ are the respective observed and predicted values of property z at location I, 239 

and 𝑧0̅(  is the mean value of z. 240 

The PICP expresses the probability that all observed values fit within the 90% prediction limits 241 

provided by the DSM model (see section 2.7.1.). 242 

It must be noted that the first three uncertainty indicators (ME, MSE and SSMSE) are 243 

measurements of the accuracy of predictions, whereas PICP is a measurement of the accuracy 244 

of the uncertainty prediction.  245 

The calculations of these indicators should take into account the fact that a stratified random 246 

sampling technique is applied for selecting the independent sites. Following Brus et al (2011), 247 

these calculations are as follows. 248 

The estimations of the ME, MSE, SSMSE and PICP correspond to a global mean that was 249 

estimated by design-based inference, particularly by the usual estimator for stratified random 250 

sampling.  251 

𝑦*+ = ∑ 𝑤1𝑦*+12
134            (2) 252 
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𝑦*+1 =
4
5'
∑ 𝑦1.
5'
.34           (3) 253 

Where 𝐻 is total number of strata (𝐻 = 25	), 𝑤1 is the weight of stratum ℎ quantified by the 254 

relative area, 𝑦*+1 is the estimated mean of the stratum ℎ, 𝑛1 is the number of sampling points 255 

in stratum ℎ, and 𝑦1.  is the measurement of the indicator at location 𝑖 in stratum ℎ. For the 256 

ME, 𝑦1.  can be replaced by the difference between the actual value 𝑧1.  and the 257 

prediction	𝑧∗1.. The MSE can be estimated by replacing 𝑦1.  with the squared difference 258 

between the actual value 𝑧1.  and the prediction	𝑧∗1.. The SSMSE and the PICP can be estimated 259 

by replacing 𝑦1.  by the SSMSE and the PICP of the stratum ℎ. 260 

 261 

2.6. Analytical calculations of standard errors of ME and MSE 262 

If probabilistic sampling is applied, it is possible to calculate the standard errors of the ME and 263 

MSE. In the case of a stratified random sampling, the equations are (from De Gruijter, 2006) 264 

 265 

𝑆𝐸5(𝑦*) = 	 8∑ 𝑎16𝑉+(𝑦*+1)2
134            (4)   266 

Where 𝑉+(𝑦*+1) is the sampling variance of the stratum mean 𝑦*+1, which is estimated by : 267 

𝑉+(𝑦*+1) = 	
"'
(

5'
                        (5) 268 

𝑠16 =	
4

5''4
∑ (𝑦1. − 𝑦*+1)
5'
.34 ² (6) 269 

 270 

 271 

2.7. DSM modelling 272 

 273 

Since the validation process tested in this paper is model free, any model used in DSM could 274 

have been selected as an example of a DSM model. However, only two criteria were 275 
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considered: i) the model had to provide local uncertainty predictions for being able to test 276 

PICP, and ii) the model should be run without manual intervention and repeated a great 277 

number of times in the numerical experiment. We combine these two criteria results in 278 

selecting the Quantile Regression Forest as the example DSM model. 279 

 280 

2.7.1. Random Forests and Quantile Random Forests 281 

 282 

This section describes Random Forests and Quantile Random Forests. More details on these 283 

two machine learning algorithms are given in the seminal papers by Breiman et al (2001) and 284 

by Meinshausen (2006), respectively. 285 

Let Y be a real-valued response variable and X be a covariate or predictor variable that is likely 286 

high-dimensional. A standard goal of statistical analysis is to infer the relationship between Y 287 

and X. Random Forests grow a large (>500) ensemble of trees using n independent 288 

observations (Yi ,Xi), i = 1, . . ., n. Each tree grows via a recursive partitioning of the source set 289 

using one predictor variable X. At each step, the source set is split into two subsets following 290 

a test on the value of X. When Y is a quantitative variable, the selected test is the one that 291 

minimizes the within subset variance of Y (Breiman et al., 1984). The recursive partitioning is 292 

limited by a stopping rule, and the subsets are produced by the last split being the leaves of 293 

the tree. The ensemble of trees is produced by using a random sample of the training data 294 

and a random subset of the predictor variables for each tree.  295 

For the regression, the prediction 𝑌"!(𝑥) of a single tree 𝜭 of a Random Forest for a new data 296 

point x can be represented as the weighted average of the original observations Yi, i = 1,. . ., 297 

n :  298 

 299 
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𝑌"!(𝑥) = ∑ 𝑤!"(𝑥, 𝜃)𝑌"#
"$%      [7] 300 

 301 

where wθi(x,θ) is the weight vector given by a positive constant that is one if the observation 302 

Yi is part of the same leaf and is 0 otherwise. 303 

By using Random Forests, the prediction is the average prediction of k single trees that were 304 

constructed as described above.  305 

𝑌&+(𝑥) = ∑ 𝑤&"(𝑥)𝑌"#
"$%      [8] 306 

With      𝑤&"(𝑥) = 𝑘'%∑ 𝑤!"(𝑥, 𝜃)(
)$%       [9] 307 

 308 

One could assume that the weighted observations deliver a good approximation not only of 309 

the conditional mean but also of the full conditional distribution. This assumption is at the 310 

heart of the Quantile Regression Forest algorithm, which estimates the conditional 311 

distribution function of Y given x via 312 

 313 

𝐹"(𝑦|𝑥) = ∑ 𝑤"(𝑥)1{+!,-}
#
"$%     [10] 314 

 315 

From this conditional distribution, it is possible to derive both the predicted value (the mean) 316 

and the bound of the 90% prediction interval that predicts the associated uncertainty (the 317 

0.05 and 0.95 quantiles). 318 

 319 

2.7.2. Calibration and Validation of QRFs 320 

 321 

Three different QRF were calibrated with 200, 2,000 and 50,000 sites with known pseudo 322 
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values of clay content. The locations were selected according to the stratified sampling 323 

techniques described above. The increasing number of sites was selected to obtain contrasted 324 

predictive performances (see section 3.2.) 325 

After removing the calibration sites, we selected a master evaluation set of 100,000 326 

independent sites by applying the stratified random sampling technique using the compact 327 

geographical strata described in section 2.5. The reference values of the three uncertainty 328 

indicators of interest were computed from this master evaluation set. This set was then 329 

removed from the set of possible sites to ensure the independence of the further numerical 330 

experiment. 331 

 332 

2.8. Empirical simulation 333 

 334 

The empirical simulation aims to evaluate the amount of variation in the four uncertainty 335 

indicators (ME, MSE, SSMSE and PICP) when different evaluation sets are selected. This 336 

variation can then be used as an estimate of the uncertainty caused by relying on the choice 337 

of a single specific evaluation set, as is always the case in reality.  338 

The empirical simulation proceeds as follows: 339 

1. Sample a set of n evaluation sites using a stratified random sampling technique using 340 

compact geographical strata, 341 

2. Calculate the uncertainty indicators over the n sites, 342 

3. Repeat steps 1 and 2 500 times, and 343 

4. Compute the distributions and their summary statistics from the 500 values of the 344 

uncertainty indicators. 345 
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The tested numbers of sites ranged between n = 50 and n = 500 with an increment of 25. This 346 

represents the densities of the observations ranging between 1/2.67 km2 and 1/0.27 km2. 347 

 348 

2.9. Software 349 

 350 

The software for Random Forests and Quantile Random Forest are made available in R (R 351 

Development Core Team, 2008) with the packages RandomForest (Liaw and Wiener, 2002) 352 

and quantregForest (Meinshausen and Schiesser, 2015), respectively. Stratified sampling 353 

using compact geographical strata is implemented in the R package “spcosa” (Walvoort et al., 354 

2010). Variogram studies (section 3) were performed with the gstat package (Pebesma, 2004). 355 

 356 

3. Results 357 

 358 

3.1. Check of the predicted soil patterns 359 

 360 

To check the plausibility of using the pseudo values of clay content derived from hyperspectral 361 

data, we compared the experimental variograms and fitted model variograms obtained using 362 

real clay content measurements at measured sites, the pseudo values of the clay content at 363 

the same locations, and a set of 10,000 sites with the pseudo values of the clay content. 364 

Figure 2 shows the experimental and the fitted variograms of the topsoil clay content 365 

calculated from different inputs. The parameters of the variogram estimated from the pseudo 366 

values of clay content (figure 2b) were similar to those estimated with the real clay content 367 

measurements at the same locations (figure 2a). Indeed, the shapes, ranges and sills were 368 
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close to one another. The only noticeable difference was a smaller nugget value exhibited by 369 

the variogram of the pseudo values of the clay contents.  370 

The experimental variogram obtained from 100,000 sites was much less noisier than but very 371 

similar to the previous one. 372 

 373 

Figure 2: Variograms of clay content obtained from a) 129 sites with clay content laboratory 374 
measurements, b) the same 129 sites with pseudo values of clay content c) 100,000 sites with pseudo 375 
values of clay content. 376 
 377 

  378 

 379 

 Uncertainty indicators   

Number of calibration sites ME (g/kg) MSE(g2/kg2) SSMSE PICP (%) 

200 -11.3 (0.5) 19555 (89) 0.29 88.5 

2,000 -7.0 (0.4) 13550 (69) 0.51 90.3 

50,000 -2.7 (0.3) 6090 (42) 0.78 90.3 

 380 
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Table 1: Estimated ME (standard error), MSE (standard error), SSMSE, and PICP from the master set of 381 

independent sites 382 

 383 

3.2. DSM model performances 384 

 385 

Table 1 shows the values of the uncertainty indicators calculated from the master set of 386 

independent sites (100,000 sites) for the DSM models obtained by calibrating the quantile 387 

regression Forests with three sizes of calibration sets. As expected, the overall accuracy of the 388 

measured predictions (as measured by SSMSE) increased significantly as the number of 389 

calibration sites increased, while the bias measured by the ME and mean squared error (MSE) 390 

decreased. The PICP values were found to be close to the expected value of 90 for the two 391 

models with the greatest numbers of calibration sites. Meanwhile, the model built from 200 392 

calibration sites exhibited a PICP below 90, which revealed a slight underestimation of the 393 

uncertainty. Finally, the results obtained by the three models well covered the large range of 394 

performances of DSM models that can be encountered in the literature. It is also worth noting 395 

that the standard errors of the ME and MSE that were calculated from the variances given by 396 

equations 8 and 9 are very small, which means that the performances of the three models are 397 

significantly different from each other. 398 

In the following, the QRFs calibrated from 200, 2,000 and 50,000 sites are denoted, 399 

respectively, as “low-quality QRF”, “medium-quality QRF” and “high-quality QRF”. 400 
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 401 

Figure 3: Comparisons between the estimations of standard errors of ME and MSE derived from the 402 
numerical experiment (X-axis) and their analytical calculations (Y-axis). ME (first row), MSE (second 403 
row), low quality QRF (first column), medium quality QRF (second column) and high-quality QRF (third 404 
column). Dots : mean values of the calculated standard errors on ME and MSE over the 500 iterations, 405 
bars: twice the standard deviations of the calculated standard errors on ME and MSE over the 500 406 
iterations) 407 

 408 

3.3. Comparisons of estimated standard errors of ME and MSE  409 

For each DSM model, the standard deviations of the ME and MSE observed over the 500 410 

iterations for the different sizes of evaluation sets were compared with the standard errors of 411 

the ME and MSE calculated following equations 4, 5 and 6 (figure 3).  412 

The dots of figure 3 representing the mean values over the 500 iterations of the calculated 413 

standard errors of the ME and MSE were found to be very close to the 1:1 line. This denoted 414 

good agreement between the analytical calculations of the ME and MSE and the simulation 415 

outputs, which was expected. Interestingly, the error bars around the dots of figure 3 416 

6
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representing twice the standard deviation over the 500 iterations of the analytical calculations 417 

of the standard errors of the ME and MSE were great for the largest standard errors and 418 

decreased as the standard errors decreased, regardless of the indicator and the DSM model. 419 

This revealed the residual impacts of the evaluation sites’ locations that were selected by the 420 

spatial sampling, the DSM model and the size of the evaluation set being fixed. 421 
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422 

Figure 4: Values of uncertainty indicators obtained using validation sets of different sizes (from 50 to 423 

500 sites): ME (first row), MSE (second row),SSMSE (third row) and PICP (fourth row), Low quality QRF 424 

(first column), medium quality QRF (second column) and high-quality QRF (third column). Black line: 425 



 22 

mean value of the uncertainty indicators over 500 trials. Dotted black lines: 0.05 and 0.95 quantiles 426 

of the uncertainty indicators over 500 trials.. Red line: reference values of the uncertainty indicators 427 

3.4. Numerical experiment results 428 

 429 

Figure 3 shows the result of the numerical experiment on the three tested QRFs and the four 430 

uncertainty indicators. Each result consists of three graphical curves showing the evolution of 431 

the median (black line) and the 0.05 and 0.95 quantiles (dotted black lines) of the uncertainty 432 

indicator values, with the size of evaluation sets expressed by its number of sites (in abscissa). 433 

A red line shows the reference value of the indicator, as calculated from the master evaluation 434 

set.  435 

All the results exhibited similar patterns. The mean values of the uncertainty indicators were 436 

all close to the reference values. The differences between the quantiles (or the confidence 437 

interval widths) were generally large, which reveals imprecise estimations of the uncertainty 438 

indicators.  439 

An increase in precision was observed as the sizes of the evaluation sets increased. For small 440 

sets (fewer than 100 sites), the confidence interval widths were so great that the estimations 441 

of the uncertainty indicators were weakly informative. For the largest sets (500 sites), the 442 

confidence interval widths were much smaller but still conveyed a non-negligible imprecision. 443 

For example, the confidence interval widths for the ME, SSMSE and PICP were, respectively, 17 444 

g/kg, 0.11 and 5% for the medium precision QRF.  445 

Some differences in the results across uncertainty indicators and models had to be noted. The 446 

high precision QRF exhibited less difference between quantiles than did the two other QRFs 447 

for the ME, MSE and SSMSE. A “better” model would also be a model whose performance can 448 
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be more easily assessed. However, this was not the case for PICP, which exhibited differences 449 

in quantile values as large as those observed for the two other models. 450 

 451 

 452 

4. Discussion  453 

 454 

4.1. Suitability of hyperspectral data for testing DSM models 455 

 456 

The comparisons of the variograms showed that the pseudo values of the clay content 457 

obtained from hyperspectral data represented the spatial structure of a soil property well, 458 

apart from a smoothing of the small range variability revealed by a decrease in the nugget 459 

value. It must be noted that similar sill and range closeness and nugget decreases were 460 

observed in a previous study (Gomez et al, 2012a). This smoothing is attributable to several 461 

factors that may perturb the spectral signature of the topsoil clay content (Lagacherie et al., 462 

2008): atmospheric conditions, changes in support (a square block of 5 m side) compared to 463 

soil sampling, or variations in the stoniness, vegetation and rugosity of the soil surface. This 464 

may be also the result of using the partial least square regression that as a linear model, 465 

smooths the variations of the predicted variable. This slight underestimation of the variability 466 

of clay content could lead to slightly underestimated uncertainty indicators. However, this 467 

artefact cannot compromise the results obtained from the variations across the sampling of 468 

these indicators. 469 

The spatial pattern of the pseudo values of clay content (as obtained from hyperspectral data) 470 

can be considered a good approximation of a real pattern of soil properties while providing a 471 

quasi-unlimited set of possible sites with soil property measurements. In this paper, we exploit 472 
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these advantages for experimentally assessing the quality of estimations of the usual 473 

uncertainty indicators of DSM models, which, to the best of our knowledge, has not been done 474 

before. Furthermore, such data make it possible to accurately validate and compare DSM 475 

models thanks to the large size of the validation sets, from which the uncertainty indicators 476 

can be computed. 477 

Although it cannot be envisaged that spatial sets of pseudo values of soil properties derived 478 

from airborne hyperspectral imagery could be collected for each DSM application, several 479 

study areas with such soil datasets across the world can be used to enlarge the range of tested 480 

soil properties and pedological contexts (Schwangart and Jarmer, 2011; Stevens et al., 2010; 481 

Ben Dor et al., 2002, Gomez et al., 2012a, Vaudour et al, 2016). Furthermore, other study 482 

areas could be added to this initial set with the aim of building national, regional or global 483 

benchmarks for DSM models, which exist in other disciplines (Rosensweig et al., 2013, Luo et 484 

al., 2012). 485 

 486 

4.2. Uncertainty of the evaluation process 487 

 488 

Our results (figure 4) revealed that the uncertainty indicators can vary across evaluations sets, 489 

from different sample counts, and between evaluation sets of the same number of samples. 490 

This highlights that the uncertainty indicators calculated from statistical validations are 491 

themselves (depending on the evaluation setup) prone to non-negligible uncertainty.  492 

It therefore can be claimed from these results that too low of a number of evaluation sites 493 

cannot accurately estimate the performance of DSM models since the values of the 494 

uncertainty indicators may vary a lot with the locations of the evaluation sites. Even with large 495 

numbers of evaluation sites and an unbiased probability sampling, there can still be an 496 
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imprecision that prevents the models from being ranked in terms of the calculated uncertainty 497 

indicators if the differences in their performances are too small. For example, two models with 498 

differences in SSMSE below 0.05 may have confidence intervals that overlap each other by more 499 

than half their width. However, it must be noted that the ME, MSE and SSMSE
2 calculated for a 500 

“high quality” model could be less uncertain. The decrease in the uncertainty of predictions 501 

also correspond with a decrease in the spatial variability of the errors, which in turn may 502 

correspond with a decrease of the sensitivity of these uncertainty indicators to the evaluation 503 

dataset. The question then is how does one know for sure that a model is of high quality; 504 

because of the variability of the indicators for low and average quality models, some models 505 

might mistakenly be considered high quality models. This seems particularly true when 506 

considering indicators such as PICP and MSE. This emphasizes the usefulness of estimating 507 

models using a set of complementary indicators. 508 

 509 

4.3. Benefit of the numerical experiment 510 

It must be noted that the impact of the sample size on the uncertainty of some uncertainty 511 

indicators (ME and MSE) is already well established in analytical expressions (equations 4, 5 512 

and 6) that have been applied in a few DSM studies (e.g. Kempen et al, 2011). As expected, 513 

our numerical experiment well reproduced the results obtained from the analytical 514 

expressions both for estimating the uncertainty of the ME and MSE (figure 3) and for 515 

reproducing the effect of the sample sizes (Figure 4). Beyond reproducing these results, the 516 

large number of evaluation procedures performed in a same study (27,000) provided a 517 

comprehensive understanding of the respective impacts of the DSM model quality, the 518 

number of evaluation sites and the location of these sites on the values of uncertainty 519 

indicators, including those for which no analytical expression still exist (SSMSE, PICP). It also 520 
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revealed that the analytical calculations of the ME and MSE uncertainties were themselves 521 

prone to uncertainty that could be important for the evaluation sets having the largest 522 

variances (Figure 3), which corresponded to those with the smallest sized evaluation sets 523 

(Figure 4). 524 

In the future, such a numerical experiment can also be used for obtaining references about 525 

the loss of precision in evaluating the uncertainty of DSM models when it is not possible to 526 

perform a probabilistic sampling and thus to calculate ME and MSE by the analytical 527 

expressions. This occurs in most of the current DSM applications that use legacy soil data 528 

whose locations have been selected by a soil surveyor following a non-probabilistic process 529 

(“free survey”).  530 

 531 

4.4. Improving the evaluation process 532 

 533 

Our results clearly showed that the uncertainty of Digital Soil Mapping products cannot be 534 

estimated with a great precision. This must be better taken into account in the practices of 535 

soil mapping evaluations. A first recommendation is to systematically assess the standard 536 

error of the uncertainty indicators using the available analytical formulations when possible 537 

or by bootstrapping the validation set. Furthermore, better attention should be paid to the 538 

sampling techniques used to select the evaluation sites. Indeed, stratified random sampling 539 

using compact geographical strata ensures an even distribution of sites across space but does 540 

not avoid the error on the uncertainty indicators. Reducing this error by using more 541 

sophisticated sampling techniques is a priority. In this perspective, our case study provides a 542 

quasi-infinite number of validation sets that exhibited differences with the master validation 543 

set regarding the values of the uncertainty indicators. Analysing the variability of these 544 
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differences would permit the sampling criteria to be found that would ensure more accurate 545 

estimations. The new sampling techniques could also be extended to the calibration datasets 546 

of DSM models that provide a priori estimations of their errors or that are used for evaluations 547 

with cross-validation techniques (Brus et al., 2011). In addition, using uncertainty indicators 548 

that are less sensitive to outliers (Nusbaum et al., 2014) would be a complementary way to 549 

reduce the uncertainty of the uncertainty revealed by this paper. Finally, although a 550 

quantitative assessment of uncertainty represents a great progress over the current 551 

evaluation practices of traditional soil surveys, it should be completed by an expert-based 552 

assessment that could check the plausibility of the predicted spatial patterns with regard to 553 

the available pedological knowledge. 554 

 555 

 556 

5. Conclusion 557 

 558 

Different evaluation sets obtained by probabilistic sampling were tested for their ability to 559 

assess the prediction uncertainty of DSM models using (as a case study) a spatial pattern of 560 

pseudo-values of topsoil clay content obtained from airborne hyperspectral imagery. The 561 

main lessons are summarized as follows: 562 

• The spatial patterns of pseudo-values of some soil properties that could be available 563 

in some study areas across the world constitutes a relevant network for experimental 564 

assessments of the uncertainty of validation results. This is because i) it allows the DSM 565 

model to be evaluated by using many sites that could not be envisaged if only real soil 566 

data were used, and ii) it allows different numbers and locations of possible evaluation 567 

sets to be tested. Thus, it may provide an useful complement to the analytical 568 
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expressions (Brus et al, 2011) for the indicators and the many DSM applications for 569 

which these analytical expressions are not valid. 570 

• Any evaluation from independent sets conveys a non-negligible error on the 571 

uncertainty indicators that is greater when the number of sites is low. Such evaluations 572 

should therefore be interpreted with care and the uncertainty on validation results  573 

must be systematically estimated. 574 

• The sampling techniques used for the calibration and evaluation datasets should be 575 

improved to reduce this error. 576 

 577 
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