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This paper implements the extended finite element (XFEM) methodology to perform the failure analysis, which is essential to model and predict the post peak behavior of structures, especially as regard to seismic demands, where an efficient structural performance requires the structural components to behave in-elastically.

XFEM is a local partition of unity (PoU) based method, where the key idea is to paste together special functions into the finite element approximation space to capture the desired features in the solution. Special functions may be discontinuous, their derivatives can be discontinuous or they can be chosen to incorporate a known characteristic of the solution. Accordingly, in the paper we first present some basics on the methodology, specifically focusing on crack propagation problems. The concept of enriching the field using PoU is then demonstrated using simple 1D numerical examples. The performance of the methodology is elaborated by means of characteristic bench mark problems in failure analysis followed by problems of interest to structural engineering such as evolving cracks in beams, crack emanating from voids etc. Finally, an analysis of beam with multiple interacting cracks is also presented.

INTRODUCTION

In the events of severe seismic demands, earthquake induced stresses may exceed the elastic strength capacity of the material. This may cause structural elements to respond in-elastically and may thus result in a progressive failure of the structure. There have been several catastrophic failures reported in the past earthquakes, such as failure of critical zones in structures like the beam column joints, brittle shear failure in concrete and masonry structures.

Similarly seismic design of critical structures like dams and bridges also requires careful numerical modeling and analysis methods. Furthermore, experimental verification of new materials and structures, design verification and assessment of existing important structures, subjected to increased seismic demands requires efficient and accurate analysis methods to numerically model and simulate the structural behavior and damage pattern.

Failure analysis is imperative not only to determine the ultimate capacity of the new materials and structures but also to predict the post-peak behavior correctly. These failures often manifest themselves in the form of (a) fracture process zones in quasi-brittle materials (rock or concrete), (b) shear (localization) bands in ductile materials (steel), which tend to fail in shear as thin bands undergoes considerable plastic deformations or (c) as discrete cracks in brittle materials.

One of the major difficulties in failure analysis is to capture the strain localization process, process in general due to microcracking, macrocracking, shear banding, defect nucleation and growth, local and global buckling of structural elements. Processes of localizations are often associated with material instability which may result in catastrophic failure of the structure. Unstable failure leads to serious hazards such as landslides, collapses of tunnels, dams, building structures etc. Due to the highly non-linear nature of the problem, localization problems are in general associated to highly non-linear equations, hence failure analysis demands robust, computationally efficient and stable algorithms.

Finite element method (FEM) has been used since decades to solve myriad of problems in a variety of areas in engineering sciences to study, model and predict the behavior of structures. Its vast area of application includes aeronautical and aerospace engineering, automobile industry, mechanical engineering, civil engineering, biomechanics, geomechanics, material sciences and many more. However, there are number of instances where the usual FEM poses restrictions in its efficient application. Such class of problems includes, problems involving strong or weak discontinuities in the approximation field or singularities in the gradient of the field. Modeling localizations using classical FEM method is not only cumbersome but also computationally expensive. This is due to the fact that FEM requires finite element edges to be aligned with the discontinuities like cracks or material interfaces etc.

A re-meshing technique is traditionally used for modeling cracks within the frame work of finite element method (see for example [START_REF] Swenson | Modeling mixed mode dynamic crack propagation using finite elements: Theory and application[END_REF]), where re-meshing is done near the crack to align the element edges with the crack faces. This becomes quite burdensome in case of static or quasi-static evolving cracks or dynamic crack propagation problems, where each time a new mesh is generated as the crack grows. Furthermore, whenever the mesh is changed, local material history must be preserved and this is accomplished by transferring data from the old mesh to the new mesh. Process of mapping variables may also result in a loss of accuracy. Several other methods have been used over the past few decades to solve localization problems, i.e Element deletion method [START_REF] Beissel | An element failure algorithm for dynamic crack propagation in genral directions[END_REF][START_REF] Song | A comparative study on finite element methods for dynamic fracture[END_REF]], Inter-element method [START_REF] Xu | Numerical simualtion of fast crack growth in brittle solids[END_REF][START_REF] Camacho | computational modeling of impact damage in brittle materials[END_REF],

Global-local methods [START_REF] Pattibiraman | Statics and synamics of elastic shells with cutouts-a review[END_REF][START_REF] Noor | Global-local methodologies and their application to nonlinear analysis[END_REF]], Global enrichment methods [START_REF] Gifford | Stress intensity factors by enriched finite elements[END_REF].

A different approach to model crack and crack evolution, hence to perform failure analysis started following the pioneering work of [START_REF] Belytschko | A finite element with embeded localization zones[END_REF] and based on the idea of pursuing a local enrichment of the approximation field at the element level [START_REF] Oliver | Strong discontinuities and continuum plasticity models: the strong discontinuity approach[END_REF][START_REF] Jirasek | comparative study on finite elements with embedded discontinuities[END_REF]], leading to the so called extended finite element method (XFEM). This becomes possible due to the notion of partition of unity (PoU) as identified by [START_REF] Melenk | The partition of unity finite element method: Basic theory and application[END_REF] and [START_REF] Duarte | Hp clouds-an h-p meshless method[END_REF]. Using the idea of PoU to paste together non-polynomial functions into a generic approximation space, successful efforts were made to incorporate discontinuities in the approximation spaces in the framework of meshless methods leading for example to the enriched element free galerkin method (EEFG). For a few applications in the above spirit see [START_REF] Flemming | Enriched element free galerkin methods for crack tip fields[END_REF][START_REF] Krongauz | EFG approximation with discontinuous derivatives[END_REF][START_REF] Belytchko | Smoothing, enrichment and contact in the element-free galerkin method[END_REF]. [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF] incorporated functions from the analytical solution of the displacement field near a crack tip to enrich the field near the crack throughout the crack length. However the method requires some remeshing near the crack root for severely curved cracks. The resulting enriched space is then capable of capturing the non-smooth solutions with optimal convergence rate.

Later on Strouboulis et al. [2000] used the same concept of partition of unity and showed that different partition of unity functions can be embedded into the finite element approximation to locally enrich the field. This facilitated the use of higher order traditional FEM shape functions for low order elements in combination with the usual linear FEM shape functions. The method was called as Generalized Finite Element Method (GFEM). For more details on GFEM see [START_REF] Oden | A new cloud based hp finite element method[END_REF]Strouboulis et al. 2000;Strouboulis et al. 2000;[START_REF] Duarte | Generalized finite element methods for three-dimensional structural mechanics problems[END_REF][START_REF] Kim | Analysis of interacting cracks using generalized finite element method with global-local enrichment functions[END_REF].

A modification of the XFEM method was proposed by [START_REF] Moes | A finite element method for crack growth without remeshing[END_REF], removing also the need of minimal mesh refinement through the adoption of two enrichment functions: a Haar/jump function to enrich the field throughout the length of the crack, and near-tip enrichment functions obtained from the analytical solution of displacement field from LEFM to enrich the crack tip region.

Accordingly, the real beauty and effectiveness of XFEM lies in the fact that the problem is subdivided into two parts: A) a generation of FEM mesh without any cracks/inclusions description; B) a procedure of enriching the FEM approximation with additional functions that models the discontinuities. This alleviates the need for remeshing or explicit geometric modeling of the discontinuity. For a few applications in the above spirit see also [START_REF] Duax | Arbitrary branched and intersecting cracks with the extended finte element method[END_REF]Dolbow et al. 2000a;Dolbow et al. 2000b;[START_REF] Dolbow | An extended finite element method with discontinuous enrichment for applied mechanics[END_REF][START_REF] Sukumar | Modelling quasi-static crack growth with the extended finite element method part i: Computer implementation[END_REF][START_REF] Huag | Modelling quasi-static crack growth with the extended finite element method part ii: Numerical applications[END_REF][START_REF] Bechet | Improved implementation and robustness study of the xfem for stress analysis around cracks[END_REF][START_REF] Moes | Imposing dirichlet boundary conditions in the extended finite element method[END_REF][START_REF] Rozycki | Explicit dynamics for constant strain elements to alleviate mesh constraints on internal or external boundaries[END_REF]].

In reference [START_REF] Sukumar | Extended finite elment method for three-dimesional crack modelling[END_REF]] XFEM was applied for modeling 3D crack propagation problems, however issues regarding the accurate crack modeling, determination of correct crack surfaces and crack path in 3D is still under debate [START_REF] Areias | Analysis of three dimensional crack initiation and propagation using the extended finite element method[END_REF][START_REF] Jager | Modelling three dimensional crack propagation-a comparison of crack path tracking strategies[END_REF][START_REF] Rabczuk | On three-dimensional modelling of crack growth using partition of unity methods[END_REF].

XFEM was initially developed for crack growth problems in brittle materials. In cohesive crack growth the crack propagation is governed by the traction-separation law at the crack faces following for example the models presented in sixties for metals, like the one by [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF]. The cohesive crack growth simulations were first incorporated into XFEM by [START_REF] Wells | A new method for modeling cohesive cracks using finite elements[END_REF]. Later on, [START_REF] Moes | Extended finite element method for cohesive crack growth[END_REF] improved their earlier method [START_REF] Dolbow | An extended finite element method for modelling crack growth with frictional contact[END_REF] providing a more comprehensive model addressing also the issue of extent of cohesive zone. They also proposed a partly cracked element which is enriched with the set of non-singular branch functions to model the displacement field around the tip of the crack. For some of the applications of XFEM in modeling cohesive cracks see also [START_REF] Zi | New crack tip element for xfem and applications to cohesive cracks[END_REF][START_REF] Khoei | Contact friction modelling with the extended finite element method(x-fem)[END_REF][START_REF] Asferg | A consistnet partly cracked xfem element for cohesive crack growth[END_REF][START_REF] Unger | Modelling of cohesive crack growth in concrete structures with the extended finite element method[END_REF]]. [START_REF] Meschke | Energy based modeling of cohesive and cohesionless cracks via xfem[END_REF] and [START_REF] Dumstorff | Crack propagation criteria in the framework of xfem-based structural analyses[END_REF] proposed a global energy based method within the frame work of XFEM for modeling cohesive as well as cohesion less cracks in brittle and quasi brittle materials, including the crack propagation angle and length of the new crack segment into the variational principle as additional unknowns.

In this paper we explore the use of XFEM to perform structural failure analysis. An XFEM methodology is implemented to model flaws in the structures such as cracks, voids and inclusions, where their presence in a structure or in a structural component requires careful analysis to assess the true strength, durability and integrity of the struc-ture/structural component. Problems involving static cracks in structures, evolving cracks, cracks emanating from voids are numerically studied and the results are compared with analytical and experimental results to demonstrate the robustness of the method. Finally, an analysis of interacting cracks is presented and complex stress distribution caused by interaction of many cracks is studied.

The paper is organized as follows. In section 2 an XFEM methodology is reviewed. In section 3 numerical results for problems involving crack, crack growth, and multiple cracks are presented to demonstrate the applicability, efficiency and robustness of the method. Section 4 briefly summarize the main conclusions drawn from the investigation.

EXTENDED FINITE ELEMENT METHOD

FEM Basics

Finite element approximation to a field variable u(x) is given as a linear combination of basis functions as

u(x) = n I=1 N I (x)u I ∀x ∈ Ω (1)
where N I (x) are the standard finite element shape functions and u I are nodal unknown parameters.

Finite element approximation relies on piecewise polynomials to approximate the field, hence require smooth solutions. However, if the solution contains a non-smooth behavior (like strong or weak discontinuities or singularities) then the finite element method fails to give good results with optimal convergence.

Partition of unity, PoU

The basic idea in partition of unity method is to cover the domain Ω with overlapping patches ω I centered at node I. We then construct smooth functions φ I (x), each one associated to a corresponding patch ω I and such that φ I (x)

are non-zero only in the sub-domain ω I and possessing the following property

n I=1 φ I (x) = 1 ∀x ∈ Ω (2)
where n is the number of nodes.

Thanks to the property expensed through equation 2, the set of functions φ I (x) are indicated as a partition of unity. Note that the above requirement is the same as applied to finite element shape functions. It is also interesting to see that equation 2 represents a reproducing condition, which is essential for convergence, i.e for any arbitrary function g(x) the following property holds

u(x) = n I=1 g(x)φ I (x)u I = g(x) u I = 1 (3) 
This suggests that any function other than polynomial can be reproduced exactly with the only requirement that equation 2 is satisfied.

In order to elaborate the idea further, let us denote χ I (ω I ) = span{F mI } m∈M (I) as a local approximation space defined on the support ω I , able to capture locally the physical solution, where F mI denotes local approximation functions and M (I) is the index set. The exact nature of local approximation functions is described later in the article. The global approximation space, X, is then constructed using the partition of unity functions as X =

span{ φm I = φ I F m I }.
Where φm I are the enriched approximation functions built from the product of partition of unity functions φ I and local approximation functions F mI . It is worthy to note here that the global approximation space X inherits the approximation properties of local approximation spaces χ I . In addition to this, smoothness of partition of unity functions enforces inter-element continuity which in other case is not possible using nonpolynomial approximation spaces. This allows considerable freedom in choosing local approximation spaces χ I .

More explicitly, we may write local approximation space as

χ I = span{F m I } m∈M (I) = {1, g 1 (x), g 2 (x), g 3 (x), ..., g k (x), ...} (4) 
where functions g k (x) are the additional functions able to capture locally the physical solution and k = 1...n E is the index number of additional/enrichment functions. In particular, functions g k (x) can be polynomial , nonpolynomial, discontinuous functions, singular, trigonometric, logarithmic or any other function containing a-priori knowledge on the characteristic properties of the expected solution. It should be recognize here, that the total number of additional functions incorporated in the approximation space is not limited and hence large number of additional functions can be added to construct an approximation space of larger dimension, as needed by the problem. Furthermore, since each F m I can be different for each node I, we can use different basis functions associated with different nodes I.

The approximation to the field variable u(x) is then expressed as a linear combination of basis functions as:

u(x) = n I=1   1+n E m=1 φm I (x)U Im   ∀x ∈ Ω (5a) u(x) = n I=1 φ I (x)   1+n E m=1 F m I U Im   ∀x ∈ Ω (5b) u(x) = n I=1 φ I (x)   u I + n E k=1 g k (x)a Ik   ∀x ∈ Ω (5c) 
where:

φ I (x) are the partition of unity functions;

g k (x) are the additional functions with good local approximation properties;

U mI = {u I , a Ik } is the set of all unknown parameters; u I and a Ik are the standard and additional unknown parameters for the approximations respectively;

n E is the number of enrichment terms at each node.

Note that, for a node with n E = 0, equation 5c becomes identical to standard finite element approximation.

It is worthy to mention here that different partition of unity functions can also be used for approximation, i.e equation 5c can be generalize as follows:

u(x) = n I=1 φ p I (x)u I + n I=1 φ q I   n E k=1 g k (x)a Ik   ∀x ∈ Ω (6)
Where φ p I (x) and φ q I (x) are the partition of unity functions of order p and q respectively.

Construction of enriched basis and FEM

Within the finite element method (FEM) framework, it is interesting to see that the standard shape functions also possess the property of partition of unity, hence they can be used as partition of unity functions. In order to construct a partition of unity function, we group all the elements sharing the same node I, the union of all those elements now can be regarded as the cloud or a patch ω I centered at I. Grouping the shape functions of these elements forms the partition of unity function φ I , which has a unity value at node I and zero at the boundary, see Then, the enriched approximation to the field u(x) is given as

u(x) = n I=1 N I (x)u I Standard + n I=1 N I   n E k=1 g k (x)a Ik   Enriched ∀x ∈ Ω (7)
where N I are the standard finite element shape functions. The approximation to the field u(x) now consist of two parts, a standard finite element approximation part and an enriched approximation part, where coefficients u I and a Ik are the standard and enriched/additional unknowns at the nodes respectively. Note that equation 6 and 7 are identical except that now we are using standard FEM shape functions, N I , as the partition of unity functions, φ I , additionally we are utilizing the same interpolation functions for both the standard and enriched part of approximation. Now setting all u I to zeros and setting one of the a Ik equal to unity with the remaining values set to zero (for example setting a I1 equals to unity), we get the expression

n I=1 N I (x)g k (x) = g k (x) ∀x ∈ Ω (8)
The additional function is recovered exactly without losing the approximation properties.

XFEM enriched displacement approximation

XFEM is a local partition of unity based method. By local here we mean that, only the region near the discontinuities such as cracks, holes, material interfaces, is enriched with the enrichment functions using the notion of partition of unity unlike the partition of unity finite element method (PUFEM) of [START_REF] Melenk | The partition of unity finite element method: Basic theory and application[END_REF].

This makes the method computationally more efficient. Hence the equation 7 can be simplified as

u(x) = i∈I N i (x)u i Standard + j∈J N j   n E k=1 g k (x)a jk   Enriched ∀x ∈ Ω (9)
Where I is the set of all nodes and J is the set of nodes which are required to be enriched with special enrichment functions. n E is the number of enrichment terms added at each node. Another attractive property of the above form of approximation is that, it allows the addition of different enrichment functions g k (x) from node to node without introducing a discontinuity in the approximation and inter-element continuity is automatically ensured. The strong form of the equilibrium equation is given as:

Problem formulation

divσ + b = 0 (10)
The boundary conditions for the body B are:

σn = t on Γ t (11) σn = 0 on Γ + d (12) σn = 0 on Γ - d (13) u = ū on Γ u ( 14 
)
where σ is the Cauchy stress tensor and n is the unit outward normal.

Considering the case of small strains and displacements we can express strain displacement relationship as:

= ∇ s u (15)
where is the linear strain tensor and ∇ s u is the symmetric part of the displacement gradient.

Considering the material to be linear elastic the constitutive equation is given by the Hooke's law as:

σ = C ( 16 
)
where C is the elastic material stiffness tensor. The weak form of the above mentioned strong form of equilibrium equation is given as

Ω [∇w : σ(u)] dΩ - Γt w • t dΓ - Ω w • b dΩ = 0 (17)
with the following definitions of the trial and test functions

u ∈ U = u|u ∈ H 1 (Ω), u = ū on Γ u , u is discontinuous on Γ d (18) w ∈ W = w|w ∈ H 1 (Ω), w = 0 on Γ u , w is discontinuous on Γ d (19)

Discrete form

In the following we construct a finite dimensional approximation of equation 17, limiting also the discussion to the introduction of a single additional function g(x) for simplicity. Accordingly, the extended displacement approximation is written as:

u(x) = i∈I N i (x)u i Standard + j∈J N j (x)g(x)a j Enriched ∀x ∈ Ω (20) 
Using the bubnov-Galerkin method the trial functions "u" as well as the test function "w" are represented as the linear combination of the same interpolation functions. Incorporating the approximations into the weak form of equilibrium, equation 17, we get a discrete system of equations

    Ω (B u i ) T σ Ω (B a i ) T σ     =     Ω (N u i ) T b + Γt (N u i ) T t Ω (N a i ) T b + Γt (N a i ) T t   
The superscripts over N i and B i , refers to the shape function and discrete gradient matrices, associated with the corresponding standard and additional degrees of freedom u and a, where:

N u i is the standard FEM shape function matrix;

N a i = N u i g is the enriched shape function matrix, obtained by simple multiplication of additional function with the standard shape function matrix;

B u i = ∇ s N u i is the standard discrete gradient matrix; B a i = ∇ s (N u i g) is the enriched discrete gradient matrix; (∇ s ) ij = 1 2 ∂ ∂xj i + ∂ ∂xi j is the symmetric differential operator.
For linear elastic material we have

    K uu ij K ua ij K au ij K aa ij         u j a j     =     f u i f a i    
The stiffness matrix is then given as

K αβ ij = Ω h (B α i ) T C(B β j ) dΩ (α, β = u, a) (21) 

XFEM FOR CRACK PROPAGATION PROBLEMS

For modeling of cracks, we define three different regions for enrichment, namely the two crack tip regions and the crack interior. We define three different sets of nodes, set I is the set of all nodes, set K 1 and K 2 are the set of nodes to be enriched for the crack tip regions 1 and 2 respectively. These are the nodes whose nodal support contains the crack tips. Set J contains the nodes to be enriched for the crack interior. These are the nodes whose nodal support is intersected by the crack.

The XFEM approximation for the crack propagation problem can now be written as

u h = i∈I N i u i + i∈Ic N i H c u c i + i∈It N i 4 l=1 H l t u t il (22) 
where u i and u c i , u t il are the standard and enriched degrees of freedom, H c and H l t are the enrichment functions defined in subsequent sections, c stands for crack interior and t denotes the crack tips, t = 1, 2.

Figure 5 shows the enrichment scheme for crack modeling problem. Where nodes marked with circles are the nodes belonging to set J and nodes marked with square belongs to set K 1 and K 2 .

Modeling crack interior

Nodes whose nodal support is cut by the crack belongs to set J and they are enriched with step or Heaviside function

H c (x, y) = sign (φ(x)) =        1 for φ(x) > 0 -1 for φ(x) < 0        ( 23 
)
Where φ is the level set function, defined in section 3.4. The nodes enriched with step function are encircled in figure 5. 

Modeling crack tip region

For modeling crack tip regions we make use of analytical solutions for the asymptotic displacement field around the crack tip. These fields are contained within the span of the following four functions as proposed by [START_REF] Flemming | Enriched element free galerkin methods for crack tip fields[END_REF].

H l t (r, θ) 4 l=1 = √ r cos θ 2 , √ r sin θ 2 , √ r sin θ 2 sinθ, √ r cos θ 2 sinθ ( 24 
)
The nodes enriched with near-tip enrichment functions are shown as square nodes in figure 5. Figure 6 shows the plot of the near-tip enrichment functions. It is worthy to see that the second function √ r sin(θ/2) among the four, is discontinuous across the crack and thus gives the required discontinuity in the approximation. Further, it can be seen that with the help of this function, it is possible to model the crack which partially cut the element, this on the other hand cannot be modeled with the step function. The term √ r will give the required singularity in the gradient of the field. The remaining three functions are used for improving the solution.

Crack initiation and crack growth criteria

Crack initiation

In this paper crack initiation criteria is based on principal stress criteria. When the principal stress after each equilibrium step exceeds the maximum tensile strength of the material, a crack is introduced orthogonally to the 

(a) F 1 = √ rcos(θ/2) (b) F 2 = √ rsin(θ/2) (c) F 3 = √ rsin(θ/2)sinθ (d) F 4 = √ rcos(θ/2)sinθ

Crack growth

The accuracy and reliability of the analysis of a cracked body primarily depends upon the accurate determination and continuity of the crack path. It is therefore very much important to select the crack growth criteria very carefully. Some of the commonly used crack growth criteria are: Minimum strain energy density criteria, [START_REF] Sih | Strain energy density factor applied to mixed mode crack problem[END_REF]], Maximum energy release rate criteria, [START_REF] Nuismer | An energy release rate criterion for mixed fracture[END_REF]], Maximum hoop stress or maximum principal stress criteria, [START_REF] Erdogan | On the crack extension in plates under plane loading and transverse shear[END_REF] and Global tracking algorithm, [START_REF] Oliver | Continuum approach to the numerical simulation of material failure in concrete[END_REF]]. It should be noted here that [START_REF] Meschke | Energy based modeling of cohesive and cohesionless cracks via xfem[END_REF] proposed a global energy based criterion for cohesive and cohesion less cracks.

In this paper we used a maximum hoop stress criteria. According to this criteria it is assumed that (1) the crack initiation will occur when the maximum hoop stress reaches to a critical value, (2) the crack will grow in a direction θ cr in which circumferential stress σ θθ is maximum.

The circumferential stress in the direction of crack propagation is a principal stress, hence the crack propagation direction is determined by setting the shear stress equal to zero. This leads to the equation for the crack propagation direction θ cr in local crack tip coordinate system as

θ cr = 2tan -1   K I K II ± K I K II 2 + 8   (25) 
A more efficient expression for θ cr is implemented in [START_REF] Liang | Evolving crack patterns in thin films with the extended finite element method[END_REF].

θ cr = 2tan -1 -2(K II /K I ) 1 + 1 + 8(K II /K I ) (26) 
Where K I and K II are mode I and mode II stress intensity factors which are obtained using the domain form of interaction integral.

Level set representation of discontinuities

Within the framework of extended finite element method discontinuities are often represented using the level set method. Level set method is a numerical technique for tracking moving interfaces. It allows treatment of internal boundaries and interfaces without explicit treatment of interface geometry. The key idea is to construct iso-contours such that the interface is represented as a zero iso-contour. Simplest form of level set function is a signed distance function and is a defined as

φ(x) = d • n (27) d = (X -X Γmin ) (X -X Γmin ) = min X -X Γ
For modeling cracks we define two level set functions, (1) Normal level set function φ(x), minimum signed distance to the crack and its tangent extensions (2) Tangential level set function ψ(x), minimum signed distance to the normals drawn at the crack tip, see figure 8. A crack can now be fully defined as

       For X ∈ Γ c φ = 0 AND ψ ≤ 0 For X ∈ Γ tip φ = 0 AND ψ = 0       

NUMERICAL EXAMPLES

Several numerical examples in 1D and 2D are presented in this section, with the intention to show the robustness of the methodology for modeling arbitrary discontinuities. In order to set the basic ideas and to demonstrate the 

φ < 0 φ > 0 φ = 0 Γ d = X-X Γ X X Γ n

One-dimensional problem with sinosidal response

Consider a one dimensional bar of length L, subjected to a body force b. The bar is clamped at the end, x = 0. The equilibrium of a body is then given by

σ ,x + b = 0 ( 28 
)
where σ is the Cauchy stress. The boundary conditions of the problem are

u(0) = 0 (29) u ,x (L) = 0 (30) 
We consider the following form of the body force b.

b = sin(x) (31) 
The exact solution for this problem is given by

u(x) = sin(x) -xcos(L) (32) 
In order to solve this boundary value problem (BVP), we first approximate the solution using the standard finite element method (FEM). A linear basis function is used for the approximation of the field variable. The analysis is performed with different mesh discretizations and the numerical results are compared with the analytical solution.

The results of the analysis are shown in figure 10. It is evident from the figures that in order to approximate the field correctly and accurately using FEM, a high degree of mesh refinement is necessary.

Next the same problem is solved using an enriched approximation as given by equation 7, utilizing also the idea that finite element shape functions can be used as partition of unity functions. By examining the form of the body force, a sinusoidal function in x is used as an enrichment function for the analysis.

g 1 (x) = sin(x) (33) 
The analysis is performed using uniform mesh discretization of 3,5,11 and 21 equispaced nodes as were previously used in FEM analysis. We enriched all the nodes of the mesh with one enrichment function. Accordingly, the problem has two degrees of freedom per node for a total of 2n degrees of freedom, where n is the total number of Figure 11 shows result of the analysis for mesh discretization with 5 nodes. The result is not surprising, as information about the solution has been incorporated into the approximation. The result is in excellent agreement with the exact solution and shows small error as compare to FEM analysis with different mesh discretization.

Analysis results are presented in table 1. The error in the numerical results were evaluated by

Error = |u num -u exact | |u exact | (34) 
where the integral was computed using trapezoidal rule.

Figure 12 shows the comparison of convergence curves obtained from the two analysis methods. It is evident from figure 12 that Enriched FEM not only reduced the error in the numerical solution as compare to FEM analysis but also increased the rate of convergence.

One-dimensional problem with localization

In the example below, we discuss a one dimensional problem with a local character in response. An approximate solution of the problem is provided using the finite element and an enriched finite element approximation to demonstrate the ability of the methods to capture local features of the solution. bar is clamped at x = 0. For the sake of simplicity the elastic material stiffness EA is taken to be 1. We can now write the above stated problem in mathematical form as

σ ,x + b = 0 (35) u(0) = 0 (36) u ,x (L) = T (37)
We consider the following form of the body force b

b =   4 α 2 x -L 2 α 2 - 2 α 2   e - x-L 2 α 2 (38)
The exact solution for this problem is given by The result shows good approximation of the field however, it is to note here that this accuracy is achieved on the cost of computational efficiency. Next the same problem is analyzed using an enriched approximation, equation 9. A very coarse mesh consisting of 4 equispaced nodes with 3 elements is used for the analysis, figure 16(a). With this mesh discretization the localization lies within the interior of element Ω 2 . In order to capture the local feature we make use of local enrichment of the domain. We select the element Ω 2 as the region to be enriched with special function. Next we select the nodes whose nodal support (By nodal support we mean the support of the nodal shape functions which consist of the union of elements at that node) is intersected by the enriched region (Ω 2 ). In our case we shall enrich the nodes 2 and 3 with the enrichment function g(x). We can now define the sets I and J for our problem as I = {1, 2, 3, 4} , set of all the nodes in the mesh while J contains the enriched nodes J = {2, 3}. By examining the behavior of the solution which is governed by an exponential function, we used the following form of an enrichment function

u(x) = -e - x-L 2 α 2 -e -( L 2α ) 2 L α 2 x + 1 + T x (39) 
g(x) = e - x-L 2 α 2 (40)
For the enriched element we used 25 gauss points in order to integrate the singular field correctly, while in the rest of the elements 10 gauss points were used for gauss quadrature. Numerical result of the analysis is shown in figure 16(b). It is worthy to note here that a very coarse mesh is used for the analysis, additionally the singular field was present within an element interior, but even then the approximation was well able to capture the local features of interest. Table 2 shows the results of the two analysis. Stress intensity factor K I is evaluated using XFEM analysis and compared with the exact solution available in the literature [START_REF] Yau | A mixed mode crack analysis of isotropic solids using conservation laws of elasticity[END_REF]]. The stress intensity factors for an infinite plate subjected to a uniform stress with a crack in the center is given by

K I = σ o √ πa ( 41 
)
where a is the crack length. In order to take into account the finiteness of the body a correction factor C given in [START_REF] Ewalds | Fracture Mechanics[END_REF],

is used 

K I = Cσ o √ πa (42) 
The analysis was performed with a uniform mesh formed by quadrilateral elements. A plain strain problem is performed with E = 1000 and ν= 0.3.

In order to see the rate of convergence of the method, we used three different structured meshes. mesh 1 consists of 288 nodes, mesh 2 consists of 1152 nodes and mesh 3 consists of 1800 nodes . The error in the stress intensity factors is calculated as:

ERROR = K num I -K exact I K exact I
Results of the analysis are shown in figures 18 and 19. It is to emphasize here, that the crack is arbitrarily aligned with the mesh but even after that the field is better approximated with high convergence rate. Additionally singular field is captured very well without any mesh refinement. 

Static or quasi static crack growth analysis

To study the crack propagation problem we shall use the problem geometry and material properties of previous example 4.1.1. A crack increment length of a = 0.04 is used for the crack propagation analysis. The crack is propagated through the domain till it cut the whole body into two halves. Figure 21 shows the deformed shape at different crack increment steps. As the body is in mode I failure mode, so it follows a straight path as was expected. 

Interior crack in an infinite plate under mixed mode fracture

In order to test the effectiveness of the method under mixed mode failure an interior crack problem is investigated.

In case where the crack is present in the interior of the domain, there are two tips of the crack that needs to be enriched with the tip-enrichment function and the rest of the crack with the step function. The plate is subjected to a uniform tensile stress of σ o at both ends. A crack of length 2a is introduced in the center of the domain at an angle θ. Stress intensity factors were calculated and compared with the exact solution. The exact solution of stress intensity factors for this problem is given by [START_REF] Yau | A mixed mode crack analysis of isotropic solids using conservation laws of elasticity[END_REF]. For an analysis purpose, a square plate of width W=10in with a half crack length a=0.5in is used. It should be noted here that the exact values of stress intensity factors mentioned above is for an infinite plate, and as the problem at hand has the plate dimensions quite large as compare to the crack length used for analysis, the numerical solution can be compared with the exact solution. The domain is discretized into uniformly spaced grid of 41x 41 quadrilateral elements. A uniaxial stress of σ o = 1Psi is applied at both ends. The problem geometry with boundary conditions is shown in the figure 22. The material properties used for the analysis are, young's modulus E=100Ksi with poison's ratio ν= 0.3.

K I = σ o √ πa cos 2 (θ) (44) 
K II = σ o √ πa cos(θ)sin(θ) (45) (a) (b) (c) (d) 
The analysis was performed for a range of crack angles . Figure 23 shows that the computed numerical results

shows good agreement with the analytical solutions.

Three point bending test

To test the validity of the code, a standard three point bending test is performed. The geometry of the problem is shown in the figure 24(a). The analysis was performed to show how well XFEM can be used to perform failure analysis.

The analysis was performed using structured mesh of quadrilateral elements with 1216 nodes. At each step the crack is advanced by an increment of a = 0.02cm. The analysis was initiated with an un-cracked beam. For the analysis, a beam of length l = 500cm and depth b = 100cm is used. The material properties used are as follows: E = 30,000 MPa , ν= 0.1 f t = 1 MPa. where E is young's modulus, ν is Poisson's ratio and f t is the tensile strength of the material. The fracture energy of the material is taken to be G f = 20 N m -1 . The crack is propagated throughout the whole depth of the beam section. As the failure mode in this case is a pure mode I failure, so the obtained straight propagation of the crack throughout the depth of the beam is an expected outcome. Figure 25 shows the obtained load-deflection curve for the XFEM analysis of a three point bending test. It should be observed that the snap-back in the structural response is captured very well.

Shear crack propagation in beams

We shall now investigate the accuracy of XFEM in modeling curved cracks. Due to the ease that, XFEM does not require the mesh to be aligned with the geometry of the crack, it offers an elegant, computationally inexpensive and easy way of analyzing problems with curved crack propagation. Let us consider the same beam model used for three point bending test. In this case instead of placing the load at the middle of the beam, the load is placed at a distance L/3 from the end of the beam. The overall beam span is L=5cm, width b=1cm and a shear span of 1.67cm, ultimately resulting in a shear span to depth ratio of 1.67. The geometry of the problem is shown in the figure 26(a). The analysis was carried out using three different mesh discretizations in order to see the effect of with different mesh discretizations. It is worthwhile to mention few things here, first it can be seen that XFEM is well able to predict the curved crack path without the need of mesh alignment with the crack. Further, the obtained crack path is qualitatively representing the expected crack pattern for shear cracks in beams. secondly, It can be seen from the figure 27 that crack path was not fully captured when the mesh was coarse (mesh A), however the crack propagation pattern improved with the mesh refinement(mesh B) and after that further refinement of the mesh (mesh C) did not cause much change in the solution. The example clearly demonstrated that the crack growth pattern is also affected by the mesh discretization. One of the reasons for such behavior is, that the stress intensity factors are affected by the mesh discretization hence requires sufficient mesh refinement to resolve the physics of the problem.

Another interesting feature that can also be observed from the crack paths is that, the crack direction becomes unstable and shows oscillations near the end of the beam. In the authors opinion this is due to the fact that, in that zone the body is in compression and under compression loading the crack direction tends to become unstable as the crack nears arrest. In this case it can be observed that the crack path deviates from the smooth path as was identified by [START_REF] Belytchko | Smoothing, enrichment and contact in the element-free galerkin method[END_REF]. Critical locations in a structure such as bolted joints and connections, openings in a wall or a panel, if subjected to cyclic loading may impair the structural integrity due to loss of strength and stiffness by crack formation. In this section a numerical study of crack emanating from a rectangular void in a rectangular plate subjected to shear loading is performed.

The geometry of the body and void is shown in the figure 28(a). The plate consist of length L=1 and height H=2.

The material properties used for the analysis are young's modulus E = 1000 and ν = 0.3. A rectangular void is present in the center of the domain. The panel is subjected to uniform shear stress τ o = 1 at the top. Due to shear loading the stresses were maximum at the corners of the rectangular void. An initial cracks at 45 o were introduced at the corners, where the tensile stresses exceeds the material strength. to uniform shear at infinity by [START_REF] Erdogan | On the crack extension in plates under plane loading and transverse shear[END_REF].

Multiple interacting cracks

In this section we shall implement XFEM in modeling multiple cracks. The test examples will be carried out to analyze the efficiency of the XFEM in modeling interacting cracks and their effect on correct determination of crack propagation paths. The accuracy of the solution is judged by comparing numerically computed stress intensity factors form XFEM analysis with a reference solution given in [START_REF] Civelek | Crack problems for a rectangular plate and an infinite strip[END_REF]. [1982], where the effect of interaction between multiple cracks on crack propagation was discussed. It was shown that the cracks will move apart from each other as the distance between them decreases. Further it was shown that, the decrease in the distance between the cracks decreases the K I (mode I stress intensity factor) and increases the K II (mode II stress intensity factor).

For the analysis, following geometric parameters are used, V=10, H=1. It was assumed that using V/H = 10, will Plain strain conditions were assumed for the analysis with ν = 0.3 and young's modulus E = 1000Ksi. A mesh consisting of 24x240, 4 nodded quadrilateral elements is used for the analysis.

Table 3 shows the results of the analysis performed with different crack lengths and separation distances. The stress intensity factors computed are normalized to stress intensity factors of a single crack in an infinite plate as

k I = K I σ o √ πa (46) 
where k I is the normalized stress intensity factor for mode I and K I is the interacting cracks mode I stress intensity factor.

As the mode II stress intensity factors, K II are too low as compare to mode I, so the efficiency of the method is judged by only mode I stress intensity factors. Table 3 also gives the error in the computed results. Figure 30 shows the plots of numerical and reference solution for K I and K II .

The obtained results shows good agreement with the reference solution. The computed error in the results is about 0.5 percent. It is clear from the figure 30 that mode I stress intensity factor decreases as the cracks comes closer to The obtained results are qualitatively in good agreement with the results of [START_REF] Civelek | Crack problems for a rectangular plate and an infinite strip[END_REF]. This demonstrates that the method(XFEM) is capturing well the effects of interaction between the cracks. It can be seen from figure 32, that the mode II stress intensity factor for central crack (k II (a2)) is zero, meaning the central crack will propagate straight for all crack separation values. Further it can be seen that at smaller B/H values the stress intensity factor for the middle crack is smaller than the side cracks, hence most of stresses will be given to other part of the beam resulting in greater stress intensity factors for the outer cracks. negative for smaller B/H values. This means that when the separation between the crack is small, there will be greater interaction between the cracks. In this case, the outer cracks will propagate away from the middle crack.

This can be seen in figure 31(c).

When the cracks are far from each other most of the stresses will be taken by the central crack. The central crack actually relaxes the stress state in rest of the domain, thus resulting in smaller stress intensity factors for the outer cracks as can be seen in figure 32 and also from the stress plot in figure 31(b).

CONCLUSION

Extended finite element method offers an elegant numerical tool to perform failure analysis for the design and analysis of new and existing structures subjected to seismic excitation. As XFEM is a finite element based method hence it can be incorporated into existing finite element codes. Furthermore, XFEM uses traditional standard finite elements.

XFEM uses the idea of partition of unity, which allows incorporation of discontinuities independent of the mesh.

This alleviates the need for mesh conformity i.e aligning element edges with the boundary of the domain.

An attractive feature of XFEM is that using the notion of partition of unity any function, typically non-polynomial with good local approximation properties can be incorporated into the FEM approximation space. The resulting space will then fully able to capture the desired features of interest in the solution. Additionally the enrichment is added only locally i.e where the domain is required to be enriched. Furthermore, the incorporation of enrichment functions using the notion of partition of unity ensures the maintenance of a measure of the sparsity in the system of equations. All of the above features provide the method with distinct advantages over standard finite element for modeling arbitrary discontinuities and performing failure analysis.
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 1 Figure 1: An open covering of the domain Ω formed by clouds ωi
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 22 figure 2. The enriched basis can now be constructed through the product of classical (piecewise polynomial) shape
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 3 Figure 3: Construction of enriched basis function by the product of classical FEM shape functions forming PoU function, φ(x), and a local approximation function, g(x)

  Consider a body B with domain denoted by Ω and an outer boundary Γ, see figure 4. The body is subjected to a uniform body/volume forces b and traction forces at the boundary Γ t . The displacement boundary conditions are applied at the boundary surface Γ u . In addition to these external boundaries, a body contains a crack surface boundary inside the domain Ω, denoted by Γ d , which divides the domain into Ω + and Ω -on two sides of the discontinuity. The crack boundary is considered to be traction free and consists of two coincident boundaries Γ + d and Γ - d .
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 4 Figure 4: Body with internal crack subjected to loads
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 5 Figure 5: Crack enrichment scheme
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 6 Figure 6: Near-tip enrichment functions
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 78 Figure 7: Construction of level set function as signed distance function
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 9 Figure 9: One dimensional bar with applied body force
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 10 Figure 10: Comparison of standard FEM analysis results with Exact solution
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 11 Figure 11: Comparison of Enriched FEM analysis result with Exact solution
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 12 Figure 12: Convergence curves for standard FEM and enriched FEM analysis
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 13 Figure 13: One dimensional bar with applied body force and tractions
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 14 Figure 14: Comparison of standard FEM analysis results with Exact solution
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 15 Figure 15: Comparison of standard FEM analysis results with Exact solution

  Comparison of numerical result with exact solution
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 16 Figure 16: Enriched FEM analysis

  (a) Finite dimensional plate with Center edge crack (b) Zoom at Crack in numerical model showing enrichment scheme
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 17 Figure 17: Problem geometry and numerical model for edge crack analysis in a finite dimensional plate
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 18 Figure 18: Rate of convergence
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 2020 Figure 20(a) shows the variation of model I, K I , stress intensity factor with increase in crack length. Figure 20(b) shows the error in numerical K I values with respect to the exact solution. It can be seen from the graph that, numerically computed results are well in agreement with the exact solution and the error is below 1percent.

Figure 21 :

 21 Figure 21: Deformed shape at different instants of crack growth (plotted with different scale factors)
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 22 Figure 22: Geometry of an infinite plate with an interior crack subjected to uniaxial tension stresses

  Figure 23: Comparison of numerical KI and KII values with exact solutions for different crack angle θ in an infinite plate

  (a) Model geometry for three point bending test (b) Cracked beam
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 24 Figure 24: Geometry and crack propagation in three point bending beam test
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 28 Figure 28(b) shows the crack propagation path from a rectangular void subjected to shear loading. The obtained
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 25 Figure 25: Load displacement curve for three point bending beam test
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 2728 Figure 27: Effect of mesh discretization on crack propagation path
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 29 Figure 29: Infinite plate with interior cracks

  4.8.2 Three point bending test on an infinite plate with multiple cracksIn this section we shall examine the interaction between multiple cracks in an infinite strip subjected to three point bending test. The geometry of the problem domain is shown in the figure31(a). Three edge cracks are incorporated in the beam. The effect of interaction of each crack with the other is analyzed by varying the separation distance between the cracks.A numerical model consists of depth H=1 and length L=10. The material properties used are young's modulus E=1000 and ν = 0.3. Initial cracks of lengths a1 = a2 = 0.2 were introduced. Stress intensity factors for the two modes, mode I and mode II, were computed for each B/H value and were normalized to the corresponding stress intensity factors for single edge crack. The results were compared with the reference solution[START_REF] Civelek | Crack problems for a rectangular plate and an infinite strip[END_REF].
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 323031 Figure32shows the variation of normalized stress intensity factors with varying B/H ratios. The dashed line shows
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 32 Figure 32: Comparison of numerical results with the reference solution of multiple interior cracks in an infinite plate

Table 1 :

 1 Error in numerical solution

			Standard FEM				Enriched FEM
	Number of Elements										
	No. of unknowns		Error		No. of unknowns	Error
	2		3			0.2034			6		0.2471
	4		5			0.1874			10	0.0148
	10		11			0.0457			22	1.9038e-5
	20		21			0.0124			42	8.4555e-8
	0 -9	2	4	6	8	10	12	14	16	18	20

Table 2 :

 2 Error in numerical solution using FEM and Enriched FEM In order to test the robustness and efficiency of the method standard test problems were performed. The first test example is a finite dimensional plate with a center edge crack. The problem geometry is shown in figure17.

	Analysis method	elements no. of unknowns	Error
	FEM	7	8	0.4034
	FEM	15	16	0.0216
	Enriched FEM(XFEM)	3	6	0.0014
	4.3 Edge crack in a finite dimensional plate under uniaxial tension
	4.3.1 Static crack analysis			

Table 3 :

 3 Comparison of XFEM results with Reference solution a B/H k I,XF EM k I,Ref f Error =

	|k I,XF EM -k I,Ref f |
	k I,Ref f

Another thing that one can note from figure 30 by comparing the k I curves for two different crack lengths is, that the stress intensity factors are also affected by the crack length. The change in separation distance in case of larger cracks affected the stress intensity factors more as compare to smaller cracks. In short to say, interaction has smaller effect on the overall crack propagation behavior for smaller crack depths, but as the crack length increases the interaction becomes stronger.

  With the increasing B/H values the mode I stress intensity factor approaches towards the single edge crack value. Now coming to the outer cracks, as can be seen from the figure 32 that mode II, k II (a1) stress intensity factor is
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