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Abstract

Propagation of elastic waves in damaged media (concrete, rocks) is studied theoretically and

numerically. Such materials exhibit a nonlinear behavior, with long-time softening and recovery

processes (slow dynamics). A constitutive model combining Murnaghan hyperelasticity with

the slow dynamics is considered, where the softening is represented by the evolution of a scalar

variable. The equations of motion in the Lagrangian framework are detailed. These equations

are rewritten as a nonlinear hyperbolic system of balance laws, which is solved numerically

using a finite-volume method with flux limiters. Numerical examples illustrate specific features

of nonlinear elastic waves, as well as the effect of the material’s softening. In particular, the

generation of solitary waves in a periodic layered medium is illustrated numerically.
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1. Introduction

Geomaterials such as rocks and concrete exhibit nonlinear features at small strains ε ∼ 10−6.

In particular, longitudinal resonance experiments reveal the generation of higher-order harmon-

ics. Besides this phenomenon, the material exhibits also a softening with increasing strain ampli-

tudes [1, 2]. After the forcing is stopped, the material recovers gradually its initial stiffness. This

softening/recovery process is not instantaneous. The transient regime, named “slow dynamics”

in the corresponding literature [3–6], has a characteristic time much larger than the period of the

forcing.

To describe nonlinear elastic behavior, the finite-strain theory is a self-consistent framework.

Various constitutive laws of isotropic hyperelastic material express the stress as a function of a

strain tensor, and are compatible with Hooke’s law in the infinitesimal strain limit [7–9]. Among

them, the Murnaghan law [10] is frequently used to describe acoustic nonlinearity in rocks and

concrete, and values of the parameters can be found in the literature [11–13]. However, hypere-

lasticity does not account for the long-time relaxation of elastic constants.

Several models from the literature describe the softening of the material by a dependence of

the elastic constants on a scalar variable g [14–16]. In the present study, the internal-variable
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model [16] is used, where the stress issued from Murnaghan’s law is multiplied by 1− g. Hence,

g ≡ 0 corresponds to the hyperelastic case, and the material softens as g increases. The evolution

of g is governed by a first-order differential equation compatible with the principles of thermo-

dynamics. Both softening processes ġ > 0 and recovery processes ġ 6 0 are possible [16],

accordingly to the experimental observations.

In recent works [17], the corresponding one-dimensional equations of motion have been

solved numerically using a finite-volume method with flux limiters [18]. The numerical method

has been validated with respect to reference solutions, and qualitative agreement with experi-

mental observations has been obtained. The present article describes a similar method in the

two-dimensional plane-strain case. The numerical method is well-suited to the computation of

nonlinear waves in the Lagrangian framework, and it can be used for various hyperelastic mate-

rial models (cf. the related study [19] and references therein).

The article is organized as follows. In Section 2, the equations of motion are detailed, which

are rewritten as a nonlinear hyperbolic system of balance laws in two space variables. The

numerical method is presented in Section 3. Section 4 shows 2D numerical results illustrating the

nonlinear wave propagation in elastic solids with softening. The case of a homogeneous medium

is considered, as well as the case of a periodic layered medium with solitary wave solutions.

2. Governing equations

2.1. Lagrangian hyperelasticity with softening

We consider an homogeneous continuum. A particle initially located at some position x0 of

the reference configuration moves to a position xt of the deformed configuration. The deforma-

tion gradient is a second-order tensor defined by (see e.g. [7–9, 20])

F = grad xt = I + grad u , (1)

where u = xt − x0 denotes the displacement field and grad is the gradient with respect to the

material coordinates x0 (Lagrangian gradient). In the reference configuration, the deformation

gradient (1) is equal to the metric tensor I. Here, the Euclidean space is described by an or-

thonormal basis (e1, e2, e3) and a Cartesian coordinate system (O, x, y, z), so that the matrix of the

coordinates of I is the identity matrix.

The Lagrangian representation of motion is used. Hence, the material time derivative Ḟ =

∂t F of the deformation gradient satisfies

Ḟ = grad v , (2)

where v = u̇ is the velocity field. The conservation of mass implies ρ0/ρ = det F, where ρ

denotes the mass density in the deformed configuration, and ρ0 denotes the mass density in the

reference configuration. Self-gravitation and heat conduction are neglected, so that the motion is

driven by the conservation of momentum

ρ0v̇ = div P + f v , where P = det(F)σ · F−⊤ (3)

is the first Piola–Kirchhoff stress tensor, and div denotes the divergence with respect to the ma-

terial coordinates x0. The Cauchy stress tensor σ = (det F)−1 P · F⊤ = σ⊤ is detailed later on

through a specification of P. The term f v is an external volume force applied to the material.
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In hyperelasticity, the only variables of state are the specific entropy and a strain tensor. Here,

the Green–Lagrange strain tensor E = 1
2
(F⊤ · F − I) is used, i.e.

E =
1

2

(

grad u + grad⊤u + grad⊤u · grad u
)

. (4)

An internal variable g ∈ [0, 1[ accounting for the softening of the material is added to the previous

list of variables of state. We define the internal energy by unit of reference volume as [16]

ρ0e = (1 − g) W(E) + Φ(g) , (5)

where e is the specific internal energy. In (5), the potential W(E) is the strain energy function of

Murnaghan’s law [10]

W(E) =
λ + 2µ

2
EI

2 − 2µEII +
l + 2m

3
EI

3 − 2mEIEII + nEIII , (6)

which is expressed as a function of the strain invariants EI = tr E, EII =
1
2

(

(tr E)2 − tr(E2)
)

,

and EIII = det E. The constants λ, µ are the Lamé parameters and the constants l, m, n are

the Murnaghan coefficients (third-order elastic constants). In the case where the Murnaghan

coefficients in (6) equal zero, the strain energy of the Saint Venant–Kirchhoffmodel is recovered.

The potential Φ(g) represents a storage energy. Basic requirements are the convexity of Φ and

Φ′(0) = 0, where Φ′ is the derivative of Φ (see [16]). Moreover, an asymptote at g = 1 is

introduced to avoid the destruction of the material. A suitable expression is

Φ(g) = −1

2
γ ln(1 − g2) , (7)

where γ > 0 is an energy per unit volume. The energy (7) is quadratic Φ(g) ≃ 1
2
γg2 in the limit

g→ 0.

Under the previous assumptions, the simplest set of constitutive equations with softening

which is thermodynamically admissible reads [16]

P = (1 − g) F · ∂W
∂E
, and τ1ġ = W(E) − Φ′(g) , (8)

where τ1 > 0 in J m−3 s is a material parameter. The first equation in (8) is the mechanical

constitutive law, which reduces to the case of hyperelasticity if g ≡ 0. According to the second

equation in (8) which governs the evolution of the variable g, the classical theory of nonlinear

elastodynamics is recovered if τ1 → +∞. Similarly to [16, 17], we rewrite the tensor derivative

∂W/∂E of the strain energy using the invariants’ tensor derivatives:

∂W

∂E
= α0 I + α1 E + α2 E2, (9)

where

α0 =
∂W

∂EI

+ EI

∂W

∂EII

+ EII

∂W

∂EIII

= λEI + lEI
2 − (2m − n)EII ,

α1 = −
∂W

∂EII

− EI

∂W

∂EIII

= 2µ + (2m − n)EI ,

α2 =
∂W

∂EIII

= n .

(10)

In the next subsection, we detail the case of plane strain. The case of uniaxial strain is addressed

in [17].
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2.2. The plane-strain assumption

The displacement field u is independent of z, and its component u3 along e3 is zero. In the

basis of unit tensors (ei⊗e j)16i, j63, the matrix of coordinates of the displacement gradient grad u

is therefore

(

ui, j

)

=

























u1,1 u1,2 0

u2,1 u2,2 0

0 0 0

























. (11)

Using the Einstein notation with indices in {1, 2}, the coordinates of the Green–Lagrange tensor

(4) write Ei j =
1
2

(

ui, j + u j,i + up,iup, j

)

. Its invariants in (6) are EI = Enn, EII =
1
2

(

EI
2 − Ei jEi j

)

=

ǫi jE1iE2 j and EIII = 0, where ǫi j is the Levi-Civita symbol of R2. The Cayley–Hamilton theorem

applied to the restriction of E to R
2 × R

2 reads EimEm j − EIEi j + EIIδi j = 0, where δi j is the

Kronecker delta. Hence, the expression (9) of ∂W/∂E becomes

∂W

∂Ei j

= α̃0δi j + α̃1Ei j (12)

in the basis of unit tensors (ei ⊗ e j)16i, j62, where

α̃0 = α0 − α2EII = λEI + lEI
2 − 2mEII ,

α̃1 = α1 + α2EI = 2 (µ + mEI) .
(13)

The components Pi j of the first Piola–Kirchhoff stress tensor P in (8) are therefore

Pi j = (1 − g)
(

δim + ui,m

)

(

α̃0δm j + α̃1Em j

)

(14)

under the plane strain assumption, which does not depend upon the third Murnaghan coefficient

n.

When the geometric nonlinearities are negligible, the Green–Lagrange strain tensor (4) is

linearized with respect to grad u, i.e. E ≃ 1
2

(

grad u + grad⊤u
)

= ε reduces to the infinitesimal

strain tensor. The coordinates Ei j of E are replaced by the coordinates εi j =
1
2

(

ui, j + u j,i

)

of ε.

Moreover, the first Piola–Kirchhoff stress tensor P is linearized with respect to grad u too, i.e.

F · ∂W/∂E ≃ ∂W/∂ε. Hence, the equation Pi j = (1 − g)
(

α̃0δi j + α̃1εi j

)

replaces (14). Under

this assumption, linear elastodynamics is recovered if g ≡ 0 (i.e., τ1 → +∞ in (8)), and if the

Murnaghan coefficients l, m in (13) are zero (see Appendix A for details).

2.3. System of balance laws

Under the plane-strain assumption, the equations of motion (2)-(3)-(8) are rewritten as a

two-dimensional system of balance laws

∂tq + ∂xf(q) + ∂yg(q) = r(q) + s , (15)
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where q = (u1,1, u1,2, u2,1, u2,2, v1, v2, g)⊤ is the vector of unknowns. The expressions of the flux

functions, the relaxation function and the source term are

f(q) = −











































































v1

0

v2

0

P11/ρ0

P21/ρ0

0











































































, g(q) = −











































































0

v1

0

v2

P12/ρ0

P22/ρ0

0











































































, r(q) =
1

τ1











































































0

0

0

0

0

0

W −Φ′(g)











































































, s =
1

ρ0











































































0

0

0

0

f v · e1

f v · e2

0











































































. (16)

In (16), the Piola–Kirchhoff stress components (Pi j)16i, j62 depend on (ui, j)16i, j62 and g accord-

ing to (14). The strain energy W depends on (ui, j)16i, j62 according to (6).

The Jacobian matrix of the flux component f along the x-axis is

f′(q) = −











































































1 0 0

0 0 0

0 1 0

0 0 0

Q1111 Q1112 Q1121 Q1122 0 0 G11

Q2111 Q2112 Q2121 Q2122 0 0 G21

0 0 0 0 0 0 0











































































, (17)

where only three strips are displayed (everywhere else, the coefficients in the matrix are zero).

The expression of the coefficients Qi jkℓ in (17) defined by ρ0Qi jkℓ = ∂Pi j/∂uk,ℓ is detailed in

the Appendix A, as well as the expression of the coefficients Gi j defined by ρ0Gi j = ∂Pi j/∂g.

A similar Jacobian matrix g′(q) is obtained for the flux component g along the y-axis. These

matrices are diagonalized in the Appendix A. The spectrum of both matrices has the form

{−cP, cP,−cS , cS , 0, 0, 0}. In the case of Murnaghan hyperelasticity, the eigenvalues cP, cS can

be complex [17], so that the system (15)-(16) is not unconditionally hyperbolic (see e.g. [21]

for discussions on hyperbolicity in hyperelasticity). Here, we restrict ourselves to configurations

where the eigenvalues cP > cS > 0 are real. Thus, cP and cS correspond to the velocities of

compression waves and shear waves, respectively.

Plane waves. We assume furthermore that the displacement field is invariant along a direction,

say e2, so that u does not depend on y. In this case, the vector of unknown reduces to q =

(u1,1, u2,1, v1, v2, g)⊤— the second and fourth rows of (15)-(16) are zero — and the flux g along y

is zero. The Jacobian matrix f′(q) is obtained from (17) by removing the second and fourth rows,

as well as the second and fourth columns. Doing so, two zero eigenvalues are removed from the

spectrum, which reduces to {−cP, cP,−cS , cS , 0}.
We consider the case of Murnaghan material g ≡ 0, with the parameters in Table 1. The latter,

found in [13], have been measured on concrete. Let us introduce the relative variation∆c/c of the

sound velocities cP and cS with respect to the case of Hooke’s law, where cP =
√

(λ + 2µ)/ρ0 ≈
4458 m/s and cS =

√

µ/ρ0 ≈ 2700 m/s. Fig. 1 displays the evolution of ∆c/c with respect to the

compression strain u1,1, when the shear strain u2,1 is set to zero. One observes that the variations
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Table 1: Physical parameters of concrete.

ρ0 (kg m−3) λ (GPa) µ (GPa) l (GPa) m (GPa) γ (J m −3) τ1 (J m−3 s)

2400 12.7 17.5 −3007 −2283 4.0 × 10−2 2.0 × 10−6

−5 0 5

×10
−4

−0.1

−0.05

0

0.05

0.1

u1,1

∆
c
/
c

cP

cS

Figure 1: Murnaghan hyperelasticity (g ≡ 0). Relative

variation ∆c/c of the speeds cP and cS of compressional

and shear waves with respect to the case of Hooke’s law.

The variation ∆c/c is represented with respect to the com-

pression strain u1,1, and the shear strain is u2,1 = 0. The

dotted lines mark Taylor series approximations (18).

of cP with respect to u1,1 are much larger than the variations of cS . This is confirmed by the

Taylor series approximations

(∆c/c)P =

(

3

2
+
l + 2m

λ + 2µ

)

u1,1 + O(u1,1
2) + O(u2,1

2) ≈ −157 u1,1 ,

(∆c/c)S =

(

λ + 2µ

2µ
+
m

2µ

)

u1,1 + O(u1,1
2) + O(u2,1

2) ≈ −63.8 u1,1 ,

(18)

represented as dotted lines in Fig. 1 (the magnitude of u1,1 in the figure has been chosen for

graphical reasons). These approximations show also that the shear strain u2,1 has much less

influence than the compression strain u1,1 on the variations of the sound velocities.

3. Numerical resolution

3.1. Numerical strategy

In the examples presented later on, the physical domain is assumed unbounded. We consider

a finite numerical domain [0, Lx] × [0, Ly]. It is discretized using a regular grid in space with

mesh size ∆x in the x direction, and ∆y in the y direction. The coordinates of the nodes are

(xi, y j) = (i∆x, j∆y), where 0 6 i 6 Nx and 0 6 j 6 Ny. The total number of nodes is

(Nx + 1) × (Ny + 1), where Nx = Lx/∆x and Ny = Ly/∆y. A variable time step ∆t = tn+1 − tn is

introduced. Therefore, q(xi, y j, tn) denotes the solution to (15) at the grid node (i, j) and at the

nth time step. Numerical approximations of the solution are denoted by qn
i, j ≃ q(xi, y j, tn).

The non-homogeneous system of balance laws (15) is integrated explicitly in time:

qn+1
i, j = qn

i, j + ∆qn
FV + ∆t

(

r(qn
i, j) + sn

i, j

)

, (19)

where the approximation sn
i, j

of the source term s is specified later on. The increment ∆qn
FV

is

deduced from the integration of ∂tq + ∂xf(q) + ∂yg(q) = 0 over one time step. Usually, one has

6



∆qn
FV
= (Hx +Hy − 2) qn

i, j
, where the discrete operators

Hxqn
i, j = qn

i, j −
∆t

∆x

(

fn
i+1/2, j − fn

i−1/2, j

)

,

Hyqn
i, j = qn

i, j −
∆t

∆y

(

gn
i, j+1/2 − gn

i, j−1/2

)

,

(20)

involve the fluxes fn
i+1/2, j

, gn
i+1/2, j

of a 2D finite-volume scheme [18]. Here, a second-order sym-

metric dimensional splitting [22] is used instead. That is to say, Hx and Hy correspond to the

integration of ∂tq + ∂xf(q) = 0 and ∂tq + ∂yg(q) = 0 over one time step, so that (20) involves the

fluxes fn
i+1/2, j

, gn
i+1/2, j

of a 1D finite-volume scheme. The increment ∆qn
FV

is computed according

to

∆qn
FV =

1

2

(

HxHy +HyHx − 2
)

qn
i, j , (21)

whereHxHy denotes the composition of the operatorsHx andHy.

The numerical fluxes in (20)-(21) are computed according to the flux-limiter method [17, 18]

described in the next subsection. This finite-volume scheme is well-suited for nonlinear wave

propagation and second-order accurate. The operatorsHx andHy are stable under the Courant–

Friedrichs–Lewy (CFL) condition

Co = max
06i6Nx

06 j6Ny

max

{

̺f′ (q
n
i, j)
∆t

∆x
, ̺g′ (q

n
i, j)
∆t

∆y

}

6 1 , (22)

where Co is the maximum Courant number in the x and y directions. The spectral radius ̺f′ (q) of

f′(q) corresponds to cP (expression detailed in the Appendix A), ditto the spectral radius ̺g′ (q)

of g′(q). The stability of the scheme (19) is also restricted by the spectral radius of the Jacobian

matrix r′(q). As in 1D [17], the stability limits imply that the scheme (19) is stable under the

classical CFL condition (22). Hence, given a spatial discretization and a Courant number Co 6 1,

the value of the time step ∆t is imposed by (22).

3.2. Flux limiter

We describe now the flux-limiter scheme [17, 18]. Since the computation of the numerical

fluxes in the x and y directions is similar, only the numerical flux fn
i+1/2, j

in the x direction is

detailed here. To do so, we introduce the Jacobian matrix

Ai+1/2, j = f′
(

1
2
(qn

i, j + qn
i+1, j

)
)

(23)

at the arithmetic mean of the grid node values in the x direction. The jump of the numerical

solution qn
i+1, j
−qn

i, j
along x is decomposed in the basis of right eigenvectors {pk

i+1/2, j
, k = 1, . . . , 7}

of Ai+1/2, j,

qn
i+1, j − qn

i, j =

7
∑

k=1

αk
i+1/2, j pk

i+1/2, j =

7
∑

k=1

W
k
i+1/2, j , (24)

which correspond to the eigenvalues {−cP, cP,−cS , cS , 0, 0, 0} (cf. detailed expressions in the

Appendix A).
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The numerical flux in (20) is the sum of a first-order flux and a second-order limited correc-

tion, fn
i+1/2, j

= fL
i+1/2, j

+ fH
i+1/2, j

, where

fL
i+1/2, j =

1

2

(

f(qn
i, j) + f(qn

i+1, j)
)

− 1

2
cP

(

W
1
i+1/2, j +W

2
i+1/2, j

)

− 1

2
cS

(

W
3
i+1/2, j +W

4
i+1/2, j

)

,

fH
i+1/2, j =

1

2
cP

(

1 − ∆t

∆x
cP

)

(

φ(θ1i+1/2, j)W
1
i+1/2, j + φ(θ

2
i+1/2, j)W

2
i+1/2, j

)

+
1

2
cS

(

1 − ∆t

∆x
cS

)

(

φ(θ3i+1/2, j)W
3
i+1/2, j + φ(θ

4
i+1/2, j)W

4
i+1/2, j

)

.

(25)

The coefficients θk
i+1/2, j

where k = 1, . . . , 4 express the upwind variation of the jump (24) in the

kth characteristic field,

θ1,3
i+1/2, j

=
W

1,3

i+3/2, j
·W1,3

i+1/2, j

W
1,3

i+1/2, j
·W1,3

i+1/2, j

, θ2,4
i+1/2, j

=
W

2,4

i−1/2, j
·W2,4

i+1/2, j

W
2,4

i+1/2, j
·W2,4

i+1/2, j

, (26)

and φ denotes the minmod limiter function φ(θ) = max{0,min{1, θ}}. As such, the weights

φ(θk
i+1/2, j

) are designed to avoid spurious oscillations in the numerical solution. Since the eigen-

values indexed by k = 5, . . . , 7 in the decomposition of the jump (24) are zero, the corresponding

termsWk
i+1/2, j do not appear in the numerical flux (25).

To carry out one iteration in time (19)-(21) at some grid node (i, j), the numerical values of q

at the grid nodes (i−2, . . . , i+2)×( j−2, . . . , j+2) are required (25). Therefore, two columns and

two rows of “ghost cells” are added on the left, the right, the top, and the bottom of the numerical

domain. If not specified differently, a zero-order extrapolation of the numerical values is used to

update the ghost cell values at each step of (21). This procedure is detailed in Section 21.8 of

[18], and is used here to simulate outflow boundary conditions (i.e., an infinite physical domain).

4. Numerical experiments

In the following numerical examples, the Courant number (22) is set to Co = 0.9. If not

specified otherwise, the physical parameters are given in Table 1. The parameters γ, τ1 have

been chosen so as to obtain significant effects of the softening at the scale of the simulation. The

numerical domain is defined by Lx = Ly = 0.4 m, and is discretized using Nx = Ny = 800 points

in each direction.

4.1. Murnaghan hyperelasticity

The first example focuses on nonlinear elastodynamics, i.e., no softening occurs in the ma-

terial. In (15)-(16), the source term and the relaxation function are removed (s = 0, τ1 → +∞).

We consider a Riemann problem with initial data q(x, y, 0), where the material is initially unde-

formed and opposite transverse velocities with amplitude V are applied:

q(x, y, 0) =















V
(

0, 0, 0, 0, sinϕ,−cosϕ, 0
)⊤

if xϕ < 0 ,

V
(

0, 0, 0, 0,−sinϕ, cosϕ, 0
)⊤

if xϕ > 0 .
(27)

The variable xϕ = (x − xs) cosϕ + (y − ys) sin ϕ is the x-abscissa of a new coordinate system,

corresponding to a rotation by an angle ϕ and a translation by (xs, ys) of the original one. Here,
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Figure 2: Generation of compression waves from pure shear initial data in Murnaghan hyperelasticity (g ≡ 0). Map of

W1/8 at t = 0.015 ms, where W is the strain energy density (J/m3) deduced from the numerical solution. The velocity

amplitude of the impact problem (27) is V = 0.1 m/s.

the origin is set at (xs, ys) = (Lx, Ly)/2, the rotation angle is ϕ = 15◦, and the velocity amplitude

is V = 0.1 m/s. To reduce discretization artifacts due to the oblique discontinuity, the average

value of (27) over the cell [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] is initially set at the grid node (i, j).

Figures 2 and 3 illustrate the coupling between plane shear waves and plane compression

waves in hyperelasticity [9, 23], contrary to linear elasticity where both types of waves are de-

coupled. Fig. 2 displays a map of W1/8 at t = 0.015 ms, where W is the strain energy (6) obtained

numerically with the above method. Fig. 3 display the evolution of the rotated longitudinal ve-

locity (v1)ϕ = v1 cosϕ + v2 sin ϕ and the rotated transverse velocity (v2)ϕ = −v1 sin ϕ + v2 cosϕ,

along the solid line displayed in Fig. 2. In the case of Hooke’s law of linear elasticity, the solution

to the initial-value problem (27) writes

q(x, y, t) =







































V
(

0, 0, 0, 0, sin ϕ,−cosϕ, 0
)⊤

if xϕ < −cS t ,

V

cS

(−sinϕ cosϕ,−sin2ϕ, cos2ϕ, sinϕ cosϕ, 0, 0, 0
)⊤

if −cS t < xϕ < cS t ,

V
(

0, 0, 0, 0,−sinϕ, cosϕ, 0
)⊤

if cS t < xϕ ,

(28)

with cS =
√

µ/ρ0 , and only shear waves propagate (solid line in Fig. 3). In the hyperelastic

case, Fig. 3b shows that shear waves are generated from the initial data (27), but faster compres-

sion waves are also generated. This amplitude-dependent nonlinear effect is better observed at

large amplitudes. The small-amplitude perturbations in the numerical solution are caused by the

discretization of the oblique discontinuity (27).
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(a)

0.1 0.15 0.2 0.25
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2
) ϕ
/V

Murnaghan num.

Hooke theo.

t = 0

(b)
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×10−2
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1
) ϕ
/V

V = 0.1 m/s

V = 0.2 m/s
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Figure 3: Rotated longitudinal and transverse velocities (v1)ϕ, (v2)ϕ along the line y = 0.2 m in Fig. 2. (a) Normalized

velocity (v2)ϕ/V in the linear and nonlinear cases for V = 0.1 m/s. (b) Normalized velocity (v1)ϕ/V in the nonlinear case

for various amplitudes V .

4.2. Softening

In this second example, we consider the full system (15)-(16). The material is initially unde-

formed and at rest, q(x, y, 0) = 0, and a volume force f v is used for the forcing s. The volume

force is an acoustic point source along x with expression f v = Av sin(2π fct) δ(x− xs) δ(y− ys) e1,

where δ is the Dirac delta function, Av is the amplitude, and fc is the characteristic frequency.

Usually, the increment sn
i, j

in (19) is obtained by averaging the source term s|t=tn of (15)-(16) over

the cell [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2]. Here, we approximate the Dirac deltas by a truncated

Gaussian function to avoid strain concentration at the source. Thus,

sn
i, j =

Av

ρ0

sin(2π fctn)
exp

(−(di j/σc)2
)

πσc
2
(

1 − exp
(−(R/σc)2

))1di j6R (0, 0, 0, 0, 1, 0, 0)⊤, (29)

where di j is the distance between (xi, y j) and (xs, ys). Denoted by the indicator function 1di j6R,

the function’s support is a disk with radius R = cP/(7.5 fc), where cP =
√

(λ + 2µ)/ρ0 is the

speed of linear compression waves. The width parameter of the Gaussian function is chosen

such that σc = R/2. The point load has amplitude Av = 0.5 kN/m, frequency fc = 100 kHz,

and it is located at the nearest grid node of the domain’s center: (xs, ys) ≃ (Lx, Ly)/2. The source

(29) is switched on at t = 0, and switched off at t = 0.04 ms. Two receivers R1-R2 record the

numerical solution during the simulation. R1 is located at (xr, yr) = (0.2, 0.22) m, and R2 is

located at (xr, yr) = (0.2, 0.27) m.

Figure 4 illustrates the effect of the softening on the wave propagation. Fig. 4a displays a

map of the strain energy (1 − g) W at the time t = 0.04 ms, which shows the propagation of

cylindrical waves. Denoted by a bullet point and by a square, the receivers R1-R2 are located

in a region of the plane where mainly shear waves propagate. Figs. 4b-4c show the effect of the

softening at the position of the receivers for several forcing amplitudes Av. One observes that g

increases while the wave passes by the receiver, and that it relaxes towards zero afterwards. This

softening/recovery process is all the more important as the forcing amplitude is large. The char-

acteristic time of the slow dynamics τ1/γ ≈ 0.05 ms corresponds to the characteristic time of the
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Figure 4: Softening induced by an acoustic point source (29). (a) Map of the strain energy (1 − g) W in J/m3 at t =

0.04 ms, where the forcing amplitude is Av = 0.5 kN/m. (b)-(c) Time histories of the velocity component v1 at the

position of the receivers R1-R2 (bullet point and square on the map) for several forcing amplitudes (top); Same for the

softening variable g (bottom).
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Π =
3
2
Π̄ Π =

1
2
Π̄

. . .
d

Lx

v1(0, y, t)

e1

e2

Figure 5: Map of the periodic medium’s linear material properties Π ∈ {ρ0, λ, µ} over the numerical domain, where

Π̄ ∈ {ρ̄0, λ̄, µ̄} denotes the reference values from Table 1.

recovery [16, 17]. In Figs. 4b-4c, one observes the distortion of the velocity signal during prop-

agation, and its delay due to the increase of g. The recorded signals are similar to experimental

ones obtained in a longitudinal configuration [24].

4.3. Periodic layered medium

Similarly to [25–27], a periodic layered medium is considered. The basis vector e1 which

orientates the x-axis is normal to the interfaces. The layers have the same thickness d = 1 cm

and perfect contact is assumed between neighbor layers (continuity of the displacement and of

the stress). As illustrated in Fig. 5, the linear material properties Π ∈ {ρ0, λ, µ} vary in space

according to

Π(x, y) =















3
2
Π̄ if ⌊x/d + 0.5⌋ ≡ 0 (mod 2),

1
2
Π̄ otherwise,

(30)

where Π̄ ∈ {ρ̄0, λ̄, µ̄} denotes the reference parameters given in Table 1. The nonlinear material

properties l, m, γ, τ1 do not vary in space. A velocity pulse with frequency fc = 10 kHz and

amplitude V = 1 m/s is imposed at the boundary x = 0:

v1(0, y, t) = V sin(π fct)2 106t61/ fc . (31)

Since the configuration is invariant along y, the problem is one-dimensional. The wavelength of

compression waves ceff
P
/ fc ≈ 39 cm≫ d is deduced from the effective sound speed

ceff
P =

√
3

2

√

λ̄ + 2µ̄

ρ̄0

≈ 3861 m/s (32)

in the linear layered medium.

The numerical domain defined by Lx = 1 m is discretized using Nx = 3000 points, i.e. each

layer is represented by 30 points. The boundary condition (31) is implemented accordingly to

Sec. 7.3.4 of [18] up to t = 1/ fc. For t > 1/ fc, periodic boundary conditions are applied (see

Sec. 7.1 of [18]). A modification of the numerical method described in Sec. 3 is introduced to

account for spatially-varying coefficients (Appendix B).
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Figure 6: (a) Seismograms of the particle velocity v1 for a propagating sinusoidal pulse in a periodic layered Murnaghan

material (g ≡ 0). (b) Same output in the case of a periodic layered material with softening (g . 0). (c) In each case, we

represent the observed speed of the largest oscillations over the range of propagation distances [6, 8] m with respect to

their amplitude at the propagation distance 7 m.

Figure 6 illustrates the effect of spatially-varying coefficients on the numerical solution up

to t = 2.5 ms. Figs. 6a-6b display seismograms obtained by unwrapping the velocity signals

v1(0, y, t) recorded at the abscissa x = 0. The “offset” corresponds to the effective propagation

distance from the abscissa x = 0 where the source (31) is imposed. Fig. 6a is obtained with

the Murnaghan parameters l, m in Table 1 while the softening variable g is equal to zero (no

softening: τ1 → +∞). Wavefront steepening is observed, leading to a series of oscillations.

Fig. 6b shows the same output when the softening variable g evolves according to (8), with

the parameters γ = 105 J m−3 and τ1 = 5.0 J m−3 s. The parameters γ, τ1 are chosen such

that the variable g reaches values of 3% during the simulation, while the characteristic time

τ1/γ = 5 × 10−5 s is the same as in Table 1. With respect to the case without softening (Fig. 6a),

a longer propagation distance is needed until the wave separates into a series of oscillations, and

the amplitudes of oscillations are modified.

The speed of the largest oscillations over the range of propagation distances [6, 8] m is de-

duced from Figs. 6a-6b and reported in Fig. 6c, where the abscissa is the amplitude of each

oscillation at the propagation distance 7 m. This procedure is repeated with a smaller input am-

plitude V = 0.9 m/s. A nearly linear evolution of the propagation speed with respect to the

amplitude is observed, as is the case for solitary waves. At small amplitudes, the propagation
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speed is close to the effective speed of sound ceff
P

(32). Similar observations are reported in [27]

where a different constitutive law is used. Numerically, Fig. 6c shows that the softening does not

suppress the solitary waves, but it modifies the relationship between their amplitude and their

propagation speed.

5. Conclusion

Within the Lagrangian finite-strain theory, the constitutive model used in this study expresses

the stress as a function of the Green–Lagrange strain tensor and a softening variable g. Also,

an evolution equation for g is provided. The system of partial differential equations so-obtained

writes as a nonlinear hyperbolic system of balance laws, so that finite-volume methods can be

applied. If the softening is neglected, then the material follows Murnaghan’s law, where a shear

wave excitation induces the propagation of smaller-amplitude compression waves. Otherwise,

the propagation of a perturbation is responsible for the softening of the material, which recovers

gradually its initial stiffness after excitation has stopped. Several numerical examples are consid-

ered along the paper. The latter have been chosen to serve modeling purposes rather than exper-

imental ones, related to the observation of hysteresis and long-time relaxation in geophysics and

non-destructive testing. In a periodic layered medium, solitary waves are numerically observed,

as known in the case of nonlinear elastodynamics.

Now, let us mention possible future works. In the Lagrangian plane-strain case, the numerical

method presented here can be used for various hyperelastic constitutive models, such as neo-

Hookean, Mooney–Rivlin, Ogden, etc. [7, 8]. For such models, it would be interesting to solve

analytically the symmetric shear impact problem in Fig. 2 for validation purposes. Variations of

the evolution equation of g in (8) can be considered as well. The influence of the softening on

the smoothness of solutions could be investigated numerically and theoretically. To go further

towards realistic configurations, viscoelastic attenuation should be accounted for, e.g. in a similar

fashion to [28]. Concerning the nonlinear layered medium, it would be interesting to derive

the corresponding nonlinear dispersive wave equations by homogenization, as done in [27, 29,

30] and related works. For the development of higher-order methods such as ENO or WENO

schemes [31], the eigendecomposition of the fluxes provided in the Appendix A is a useful

result.
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Appendix A. Jacobian matrices of the flux

Appendix A.1. Expression of the coefficients

We use the Einstein summation convention with indices in {1, 2}. To encompass both cases

with and without geometric nonlinearity in a single equation, we introduce a parameterΘ ∈ {0, 1}
such that Θ = 1 corresponds to finite strain and Θ = 0 corresponds to infinitesimal strain. Hence,
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the coordinates of the strain tensor (4) are written Ei j = εi j +
1
2
Θ up,iup, j, where εi j =

1
2
(ui, j+u j,i)

are the coordinates of the infinitesimal strain tensor. Moreover, the components of the Piola–

Kirchhoff stress tensor (14) are written Pi j = (1 − g)
(

δim + Θ ui,m

) (

α̃0δm j + α̃1Em j

)

, i.e.

Pi j = (1 − g)
(

α̃0δi j + α̃1Ei j + Θ
(

α̃0ui, j + α̃1ui,mEm j

))

, (A.1)

where α̃0, α̃1 are given in (13). The coefficients (17) of the Jacobian matrices f′(q) and g′(q)

satisfy ρ0Qi jkℓ = ∂Pi j/∂uk,ℓ and ρ0Gi j = ∂Pi j/∂g. In the present case of Murnaghan material

with softening (A.1), one has

ρ0Qi jkℓ = (1 − g)

(

δi j

∂α̃0

∂uk,ℓ

+ Ei j

∂α̃1

∂uk,ℓ

+ α̃1

∂Ei j

∂uk,ℓ

)

+ Θ (1 − g)

(

ui, j

∂α̃0

∂uk,ℓ

+ α̃0δikδ jℓ + ui,mEm j

∂α̃1

∂uk,ℓ

+ α̃1

(

δikE jℓ + ui,m

∂Em j

∂uk,ℓ

))

,

ρ0Gi j = −
(

α̃0δi j + α̃1Ei j + Θ
(

α̃0ui, j + α̃1ui,mEm j

))

,

(A.2)

where

∂Ei j

∂uk,ℓ

=
1

2

(

δikδ jℓ + δ jkδiℓ

)

+
1

2
Θ

(

uk,iδ jℓ + uk, jδiℓ

)

,
∂Enn

∂uk,ℓ

= δkℓ + Θ uk,ℓ ,

∂α̃0

∂uk,ℓ

= (λ + 2(l −m)Emm)
∂Enn

∂uk,ℓ

+ 2mEi j

∂Ei j

∂uk,ℓ

,

∂α̃1

∂uk,ℓ

= 2m
∂Enn

∂uk,ℓ

.

The case of Hookean solids is recovered if g ≡ 0, geometric nonlinearity is neglected (Θ = 0),

and the Murnaghan coefficients l, m are zero. In this case, Eq. (A.2) gives ρ0Qi jkℓ = λδi jδkℓ +

µ(δikδ jℓ + δ jkδiℓ).

Appendix A.2. Eigendecomposition

We provide an eigendecomposition of the Jacobian matrices f′(q) and g′(q) of the fluxes. The

hyperelastic case without softening is recovered by removing the last row and the last column of

each matrix in the following paragraphs.

Flux along the x-axis. The Jacobian matrix (17) of f at the linear average (23) is diagonalized.

Let us write Ai+1/2, j = PΛP−1 where P is an invertible real matrix, and Λ is a diagonal real

matrix. The matrix of eigenvaluesΛ = diag(−cP, cP,−cS , cS , 0, 0, 0) satisfies

cP,S =
1
√

2

√

Q1111 + Q2121 ±
√

(Q1111 − Q2121)2 + 4 Q1121Q2111 , (A.3)

where the plus sign gives the expression of cP (compressional waves), and the minus sign gives

the expression of cS (shear waves). The first four right eigenvectors pk
i+1/2, j

of Ai+1/2, j used in
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(24)-(25) are the first four columns of P, where

P =











































































p11 −p11 p13 −p13 p15 p16 p17

0 0 0 0 p25 p26 p27

p31 −p31 p33 −p33 1 0 0

0 0 0 0 0 1 0

1 1 p13/p33 p13/p33 0 0 0

p31/p11 p31/p11 1 1 0 0 0

0 0 0 0 0 0 1











































































, (A.4)

with the coefficients

p11 = 1/cP , p31 =
Q2111/cP

(cP)2 − Q2121

,

p13 = −
(cP)2 Q1121/cS

(

(cP)2 − Q2121

)

Q1111 + Q1121Q2111

, p33 = 1/cS ,

p15 =
Q1112Q2121 − Q1121Q2112

Q1111Q2112 − Q1112Q2111

, p25 =
Q1121Q2111 − Q1111Q2121

Q1111Q2112 − Q1112Q2111

,

p16 =
Q1112Q2122 − Q1122Q2112

Q1111Q2112 − Q1112Q2111

, p26 =
Q1122Q2111 − Q1111Q2122

Q1111Q2112 − Q1112Q2111

,

p17 =
G21Q1112 −G11Q2112

Q1111Q2112 − Q1112Q2111

, p27 =
G11Q2111 −G21Q1111

Q1111Q2112 − Q1112Q2111

.

The matrix P is invertible provided that its determinant is nonzero, i.e. Q1121Q2111 , Q1111Q2121

and Q1121Q2111 , − 1
4
(Q1111 − Q2121)2. Let us consider each equality case:

• if Q1121Q2111 = Q1111Q2121, then the eigenvalues of f′(q) satisfy cS = 0. Therefore, the

reduced system of conservation laws for plane waves propagating along x is not strictly

hyperbolic (eigenvalues {−cP, cP,−cS , cS , 0});

• if Q1121Q2111 = − 1
4
(Q1111 −Q2121)2, then the eigenvalues of f′(q) satisfy cP = cS , which is

impossible for the same reason.

Therefore, the previous eigendecomposition is valid over the domain of strict hyperbolicity. The

first four left eigenvectors lk
i+1/2, j

of Ai+1/2, j are the first four rows of P−1, where

P−1 =











































































q11 q12 q13 q14 q15 q16 q17

−q11 −q12 −q13 −q14 q15 q16 −q17

−q41 −q42 −q43 −q44 q45 q46 −q47

q41 q42 q43 q44 q45 q46 q47

0 1/p25 0 −p26/p25 0 0 −p27/p25

0 0 0 1 0 0 0

0 0 0 0 0 0 1











































































, (A.5)

with the coefficients

q11 =
1

2

p33

p11 p33 − p13 p31

, q41 =
1

2

p31

p11 p33 − p13 p31

,
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q12 =
1

2

p13 − p15 p33

p25 (p11 p33 − p13 p31)
, q42 =

1

2

p11 − p15 p31

p25 (p11 p33 − p13 p31)
,

q13 = −
1

2

p13

p11 p33 − p13 p31

, q43 = −
1

2

p11

p11 p33 − p13 p31

,

q14 =
1

2

(p15 p26 − p16 p25) p33 − p13 p26

p25 (p11 p33 − p13 p31)
, q44 =

1

2

(p15 p26 − p16 p25) p31 − p11 p26

p25 (p11 p33 − p13 p31)
,

q15 =
1

2

p11 p33

p11 p33 − p13 p31

, q45 = −
1

2

p31 p33

p11 p33 − p13 p31

,

q16 = −
1

2

p13 p11

p11 p33 − p13 p31

, q46 =
1

2

p11 p33

p11 p33 − p13 p31

,

q17 =
1

2

(p15 p27 − p17 p25) p33 − p13 p27

p25 (p11 p33 − p13 p31)
, q47 =

1

2

(p15 p27 − p17 p25) p31 − p11 p27

p25 (p11 p33 − p13 p31)
.

The coefficients αk
i+1/2, j

in (24) are equal to the scalar products αk
i+1/2, j

= lk
i+1/2, j

·
(

qn
i+1, j
− qn

i, j

)

.

Flux along the y-axis. Similarly to (23), we introduce the Jacobian matrix g′(q) of g at the linear

average Bi, j+1/2 = g′
(

1
2
(qn

i, j
+ qn

i, j+1
)
)

, and provide an eigendecomposition Bi, j+1/2 = PΛP−1. The

matrix of eigenvaluesΛ = diag(−cP, cP,−cS , cS , 0, 0, 0) satisfies

cP,S =
1
√

2

√

Q2222 + Q1212 ±
√

(Q2222 − Q1212)2 + 4 Q2212Q1222 , (A.6)

where the plus and minus signs give the expressions of cP and cS , respectively. With similar

notations as (A.4), we have

P =











































































0 0 0 0 p15 p16 p17

p21 −p21 p23 −p23 p25 p26 p27

0 0 0 0 0 1 0

p41 −p41 p43 −p43 1 0 0

p21/p41 p21/p41 1 1 0 0 0

1 1 p43/p23 p43/p23 0 0 0

0 0 0 0 0 0 1











































































, (A.7)

with the coefficients

p21 =
(cS )2 Q1222/cP

(

(cP)2 − Q1212

)

Q1212 − Q1222Q2212

, p41 = 1/cP ,

p23 = 1/cS , p43 = −
Q2212/cS

(cP)2 − Q1212

,

p15 =
Q1212Q2222 − Q1222Q2212

Q1211Q2212 − Q1212Q2211

, p25 =
Q1222Q2211 − Q1211Q2222

Q1211Q2212 − Q1212Q2211

,

p16 =
Q1212Q2221 − Q1221Q2212

Q1211Q2212 − Q1212Q2211

, p26 =
Q1221Q2211 − Q1211Q2221

Q1211Q2212 − Q1212Q2211

,

p17 =
G22Q1212 −G12Q2212

Q1211Q2212 − Q1212Q2211

, p27 =
G12Q2211 −G22Q1211

Q1211Q2212 − Q1212Q2211

.
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A similar analysis shows that P is invertible over the domain of strict hyperbolicity:

P−1 =











































































q11 q12 q13 q14 q15 q16 q17

−q11 −q12 −q13 −q14 q15 q16 −q17

−q41 −q42 −q43 −q44 q45 q46 −q47

q41 q42 q43 q44 q45 q46 q47

1/p25 0 −p16/p15 0 0 0 −p17/p15

0 0 1 0 0 0 0

0 0 0 0 0 0 1











































































, (A.8)

with the coefficients

q11 =
1

2

p23 − p25 p43

p15 (p21 p43 − p23 p41)
, q41 =

1

2

p21 − p25 p41

p15 (p21 p43 − p23 p41)
,

q12 =
1

2

p43

p21 p43 − p23 p41

, q42 =
1

2

p41

p21 p43 − p23 p41

,

q13 =
1

2

(p16 p25 − p15 p26) p43 − p16 p23

p15 (p21 p43 − p23 p41)
, q43 =

1

2

(p16 p25 − p15 p26) p41 − p16 p21

p15 (p21 p43 − p23 p41)
,

q14 = −
1

2

p23

p21 p43 − p23 p41

, q44 = −
1

2

p21

p21 p43 − p23 p41

,

q15 =
1

2

p43 p41

p21 p43 − p23 p41

, q45 = −
1

2

p41 p23

p21 p43 − p23 p41

,

q16 = −
1

2

p41 p23

p21 p43 − p23 p41

, q46 =
1

2

p23 p21

p21 p43 − p23 p41

,

q17 =
1

2

(p17 p25 − p15 p27) p43 − p17 p23

p15 (p21 p43 − p23 p41)
, q47 =

1

2

(p17 p25 − p15 p27) p41 − p17 p21

p15 (p21 p43 − p23 p41)
.

Appendix B. Spatially-varying coefficients

The problem described in Fig. 5 is one-dimensional. Thus, the variable y and the index j do

not appear in the present description of the numerical method, which is a modification of (25) to

account for spatially-varying coefficients [25–27] (cf. Chap. 9 of [18]). The conservation laws

(15) are rewritten in terms of q = (u1,1, ρ0v1, g)⊤. The modified method amounts to choosing

the eigenvalues {−cP, cP, 0} and corresponding eigenvectors pk
i+1/2, j

, k ∈ {1, 3} of Ai+1/2 in a

downwind fashion. Hence, cP is computed at the abscissa xi for k = 1 and at the abscissa xi+1

for k = 2. Since both left-going and right-going waves do not have equal absolute speeds at the

cell interface xi+1/2, writing the low-order part of the algorithm (25) as a flux difference is no

longer possible: the “wave-propagation form” is used instead. To guarantee the continuity of

the velocity and of the stress at the material interfaces, a modified expression of the coefficients

αk
i+1/2

defining the vectorsWk
i+1/2 is used. In particular, the sum of these vectors does not equal

the jump qi+1 −qi anymore, as was the case in a homogeneous medium (24). To avoid numerical

instability, a transmission-based limiter is implemented, which modifies the expression (26) of

the coefficients θk
i+1/2

.
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