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We consider the difference Schrödinger equation ψ(z + h) + ψ(zh)+v(z)ψ(z) = Eψ(z) where z is a complex variable, E is a spectral parameter, and h is a small positive parameter. If the potential v is an analytic function, then, for h sufficiently small, the analytic solutions to this equation have standard semi-classical behavior that can be described by means of an analog of the complex WKB method for differential equations. In the present paper, we assume that v has a simple pole and, in its neighborhood, we study the asymptotics of meromorphic solutions to the difference Schrödinger equation.

Introduction

We study the difference Schrödinger equation

ψ(z + h) + ψ(z -h) + v(z)ψ(z) = Eψ, (1.1) 
where z is a complex variable, v is a given meromorphic function called potential, E is a spectral parameter, and h is a small positive shift parameter 1 . Instead of (1.1), one often considers equations of the form

φ k+1 + φ k-1 + v(kh + θ)φ k = Eφ k , (1.2) 
where k ∈ Z is an integer variable, and θ ∈ R is a parameter. There is a simple relation between (1.1) and (1.2): if ψ is a solution to (1.1), then the formula φ k = ψ(kh + θ) yields a solution to (1.2). We note that, when h is small, the coefficient in front of φ k in (1.2) varies slowly in k.

Formally, ψ(z + h) = ∞ l=0 h l l! d l ψ
dz l (z) = e h d dz ψ(z); thus, in (1.1) h is a small parameter in front of the derivative. So, h is a standard semiclassical parameter. The semi-classical asymptotics of solutions to ordinary differential equations, e.g., the Schrödinger equation

-h 2 d 2 ψ dz 2 (z) + v(z)ψ(z) = Eψ(z), (1.3) 
are described by means of the well-known WKB method (called so after G. Wentzel, H. Kramers and L. Brillouin). There is a huge literature devoted to this method and its applications. If v in (1.3) is analytic, one uses the variant often called the complex WKB method (see, e.g., [START_REF] Wasow | Asymptotic expansions for ordinary differential equations[END_REF][START_REF] Fedoryuk | Asymptotic analysis. Linear ordinary differential equations[END_REF]). This powerful and classical asymptotic method is used to study solutions to (1.3) on the complex plane. Even when studying this equation on the real line, the complex WKB method is used to compute exponentially small quantities (such as the overbarier tunneling coefficient or the exponentially small lengths of spectral gaps in the case of a periodic v) or to simplify the asymptotic analysis (e.g. by going to the complex plane to avoid turning points), see, e.g., [START_REF] Fedoryuk | Asymptotic analysis. Linear ordinary differential equations[END_REF]. The case of meromorphic coefficients is a classical topic in the complex WKB theory. The analog of the complex WKB method for difference equations is being developed in [START_REF] Buslaev | Complex WKB method for Harper equation[END_REF][START_REF] Fedotov | Complex WKB method for the difference Schrödinger equation with the potential being a trigonometric polynomial[END_REF][START_REF] Fedotov | The complex WKB method for difference equations and Airy functions[END_REF] and in the present paper, where we turn to meromorphic solutions to equation (1.1). Difference equations (1.1) on R or on C and (1.2) on Z with a small h arise in many fields of mathematics and physics. In quantum physics, for example, one encounters such equations when studying in various asymptotic situations an electron in a two-dimensional crystal submitted to a constant magnetic field (see, e.g. [START_REF] Wilkinson | An exact renormalisation group for Bloch electrons in a magnetic field[END_REF] and references therein). The electron is described by a magnetic Schrödinger operator with a periodic electric potential. And, for example, in the semi-classical limit, in certain cases its analysis asymptotically reduces to analyzing an h-pseudodifferential operator with the symbol H(x, p) = 2 cos p + 2 cos x (see [START_REF] Helffer | Analyse semi-classique pour l'équation de Harper (avec application à l'équationde Schrödinger avec champ magnétique)[END_REF]). Its eigenfunctions satisfy equation (1.1) with v(z) = 2 cos z. The parameter h is proportional to the magnetic flux through the periodicity cell, and the case when h is small is a natural one. The reader can find more references and examples in [START_REF] Guillement | Walk inside Hofstadter's butterfly[END_REF].

We add only that equation (1.2) for v(z) = λ cos(2πz), λ being a coupling constant, is the famous almost Mathieu equation (see, e.g., [START_REF] Avila | The Ten Martini Problem[END_REF]), and, for v(z) = λ cot(πz), it is the well known Maryland equation (Maryland model) introduced by specialists in solid state physics in [START_REF] Grempel | Localization in an incommensurate potential: An exactly solvable model[END_REF]. Difference equations in the complex plane (with analytic or meromorphic coefficients) arise in many other fields of mathematics and physics, in particular, in the study of the diffraction of acoustic waves by wedges (see, e.g., [START_REF] Babich | Diffraction theory: the Sommerfeld-Malyuzhinets technique[END_REF]) or in the theory of differential quasi-periodic equations (see, e.g., [START_REF] Fedotov | Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case[END_REF]). Small shift parameters arise in the problem of diffraction by thin wedges (the shift parameter is proportional to the angle of the wedge (see [START_REF] Babich | Diffraction theory: the Sommerfeld-Malyuzhinets technique[END_REF])) and for quasi-periodic equations with two periods of small ratio (the shift parameter is proportional to this ratio (see, e.g., [START_REF] Fedotov | Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case[END_REF])). The semi-classical analysis of difference equations is also used to study the asymptotics of orthogonal polynomials (see, e.g., [START_REF] Geronimo | WKB and turning point theory for secondorder difference equations[END_REF][START_REF] Yu | On Lagrangian manifolds related to asymptotics of Hermite polynomials[END_REF][START_REF] Wong | Asymptotic expansions for second-order linear difference equations with a turning point[END_REF]).

Even when studying (1.2) on Z, it is quite natural to pass to the analysis of (1.1) on R or on C as for this equation one can fruitfully use numerous analytic ideas developed in the theory of differential equations, e.g., tools of the theory of pseudodifferential operators and of the complex WKB method. If the coefficient v is periodic, for equation (1.1) one can use ideas of the Floquet theory for differential equations with periodic coefficients, which leads to a natural renormalization method (see [START_REF] Fedotov | Monodromization method in the theory of almost-periodic equations[END_REF]). B. Helffer and J. Sjöstrand (e.g., in [START_REF] Helffer | Analyse semi-classique pour l'équation de Harper (avec application à l'équationde Schrödinger avec champ magnétique)[END_REF]) and V. Buslaev and A. Fedotov (see, e.g. [START_REF] Fedotov | Monodromization method in the theory of almost-periodic equations[END_REF]) studied the cantorian geometrical structure of the spectrum of the Harper operator in the semiclassical approximation. Therefore, V. Buslaev and A. Fedotov began to develop the complex WKB method for difference equations in [START_REF] Buslaev | Complex WKB method for Harper equation[END_REF].

We are going to use the results of the present paper to study in the semiclassical approximation the multiscale structure of the (generalized) eigenfunctions of the Maryland operator (by means of the renormalization method described in [START_REF] Fedotov | An exact renormalization formula for the Maryland model[END_REF]). In the "anti-semiclassical" case, for the almost Mathieu operator such a problem was solved in [START_REF] Jitomirskaya | Universal hierarchical structure of quasiperiodic eigenfunctions[END_REF]. In this paper, for small h, we describe uniform asymptotics of meromorphic solutions to equation (1.1) near a simple pole of v. In the case of a differential equation, say, equation (1.3) with a meromorphic v, the solutions may have singularities (branch points or isolated singular points) only at poles of v. In the case of equation (1.1), the behavior of its solutions is completely different. Let d x > 0, d y > 0, and S = {z ∈ C : |Re z| < d x , |Im z| < d y }. We assume that v is analytic in S \ {0} and has a simple pole at zero. Let ψ be a solution to equation (1.1) that is analytic in {z ∈ S : Re z < 0}. Equation (1.1) implies that ψ(z) = -ψ(z -2h)v(zh)ψ(zh). Therefore, for sufficiently small h, ψ can be meromorphically continued into S. It may have poles at the points of hN. When h becomes small, these points become close one to another. We describe the semi-classical asymptotics of such meromorphic solutions in S.

Below, unless stated otherwise, the estimates of the error terms in the asymptotic formulas are locally uniform for z in the domain that we consider (i.e., uniform on any given compact subset of such a domain). Instead of saying that an asymptotic representation is valid for sufficiently small h, we write that it is valid as h → 0.

In the sequel, we shall not distinguish between a meromorphic function and its meromorphic continuation to a larger domain.

We also use the notations

R ± = {z ∈ C : Im z = 0, ±Re z ≥ 0}, R * ± = R ± \ 0 and C ± = {z ∈ C : ±Im z > 0}.

Main results

2.1.

The complex WKB method in a nutshell. Formally equation (1.1) can be written in the form

(2 cos p + v(z))ψ(z) = 0, p = -ih d dz . (2.1)
One of the main objects of the complex WKB method is the complex momentum p defined by the formula

2 cos p(z) + v(z) = 0. (2.2)
It is an analytic multivalued function. Its branch points are solutions to v(z) = ±2.

The points where v(z) = ±2 are called turning points. A subset D of the domain of analyticity of v is regular if it contains no turning points. Let D be a regular simply connected domain, and p 0 be a branch of the complex momentum analytic in D. Any other branch of the complex momentum that is analytic in D is of the form sp 0 + 2πm for some s ∈ {±1} and m ∈ Z.

In terms of the complex momentum, one defines canonical domains. The precise definition of a canonical domain can be found in section 3.2. Here, we note only that the canonical domains are regular and simply connected and that any regular point is contained in a canonical domain (independent of h).

One of the basic results of the complex WKB method is Theorem 2.1 ( [START_REF] Fedotov | A complex WKB method for difference equations in bounded domains[END_REF]). Let K ⊂ C be a bounded canonical domain; let p be a branch of the complex momentum analytic in K and pick z 0 ∈ K. For sufficiently small h, there exists ψ, a solution to equation (1.1) analytic in K and such that, in K, one has

ψ(z) = 1 sin p(z) e i h z z 0 p(ζ) dζ+o(1) , h → 0, (2.3) 
where z → sin(p(z)) is analytic in K.

Remark 2.1. The function sin p does not vanish in regular domains; indeed, sin p only vanishes at the points where v(z) = -2 cos p(z) ∈ {±2}, i.e., at the turning points.

In the case of the Harper equation (for unbounded canonical domains), the analog of Theorem 2.1 was proved in [START_REF] Buslaev | Complex WKB method for Harper equation[END_REF]. Let us underline that the branch p of the complex momentum in Theorem 2.1 need not be the one with respect to which K is canonical. For z ∈ S ′ , we set

G 0 (z) = h/2π -z sin p(z) e z h ln 1 h + i h z 0 (p(ζ) -i ln(-ζ)) dζ . (2.4) 
Here and below, h/2π and ln 1 h are positive; -z sin p(z) = √ -z sin p(z); the branch of z → sin p(z) coincides with the one from (2.3). In view of Lemma 2.1, G 0 is analytic in S. Our main result is Theorem 2.2. In S, the solution ψ admits the asymptotic representation

ψ(z) = Γ 1 - z h G 0 (z) e i h 0 z0 p dz + o(1) , as h → 0 (2.5)
where Γ is the Euler Γ-function and the integration path stays in S.

So, the special function describing the asymptotic behavior of ψ near the poles generated by a simple pole of v is the Γ-function.

2.2.3.

The asymptotics of ψ outside a neighborhood of R + . For large values of |z/h|, the Γ-function in (2.5) can be replaced with its asymptotics. Let us give more details. Fix ǫ > 0. We recall that, uniformly in the sector | arg ζ| ≤ πǫ, one has

Γ(1 + ζ) = 2πζ e ζ(ln ζ-1)+o(1) , |ζ| → ∞, (2.6) 
where the functions ζ → √ ζ and ζ → ln ζ are analytic in this sector and satisfy the conditions √ 1 = 1 and ln 1 = 0. Fix δ positive sufficiently small. Using (2.6), one checks that, in S outside the δ-neighborhood of R + , the representation (2.5) turns into (2.3). By construction, ψ admits the asymptotic representation (2.3) in S c . Theorem 2.2 implies that the representation remains valid in S ′ . This reflects the standard semiclassical heuristics saying that an asymptotic representation of a solution remains valid as long as the leading term is increasing; in the present case, the modulus of the exponential in the leading term in (2.3) increases in S ′ as long as z moves to the right parallel to R.

2.2.4.

The asymptotics of ψ near R + away from 0. Assume that z is inside the δ-neighborhood of R + but outside the δ-neighborhood of 0. In this case, to simplify (2.5), we first use the relation

Γ(1 -ζ) = π sin(πζ) 1 Γ(ζ) (2.7)
and, next, the asymptotic representation (2.6). This yields the asymptotic representation

ψ(z) = e i h z z0 p(ζ) dζ + o(1) (1 -e 2πiz/h ) sin(p(z)) , h → 0, (2.8) 
where p, z → z 0 p(ζ) dζ and sin(p) are obtained by analytic continuation from S ′ ∩ C + into the domain under consideration.

2.3.

A basis of solutions. The set of solutions to (1.1) is a two-dimensional module over the ring of h-periodic functions (see section 3.1). We now explain how to construct a basis of this module.

As the first solution, we take

f + (z) = e -i h 0 z 0 p(z) dz ψ(z).
In S ′ , it admits the asymptotic representation

f + (z) ∼ 1 sin p(z) e i h z 0 p(ζ) dζ , h → 0, (2.9) 
and has simple poles at the points of hN.

We note that e i h z 0 p(ζ) dζ increases when z moves to the right parallel to R.

2.3.2. Fix z 1 ∈ S ∩ R * + .
Possibly reducing S somewhat, similarly to ψ, one constructs a solution φ that, in S \ R -, admits the asymptotic representation

φ(z) ∼ 1 sin(p(z)) e -i h z z 1 p(ζ) dζ , h → 0, (2.10) 
and has simple poles at the points of -hN. The branches of the complex momenta appearing in (2.9) and (2.10) coincide in C + .

Note that e p(z) dz φ(z). The function f - is analytic in S; its zeroes are simple and located at the points of hN ∪ {0}. As we prove in section 6.2, in S ′ , the solution f -has the asymptotics 

f -(z) ∼ 1 sin(p(z)) e -i h z 0 p(ζ) dζ+o(1) , h → 0. ( 2 
→ f (z) = ψ(z)/Γ(1 -z/h). It is analytic in S.
Using tools of the complex WKB method for difference equations, outside a disk D centered at 0 (and independent of h), we compute the asymptotics of f and obtain

f (z) = e i h 0 z 0 p dz G 0 (z)(1 + o(1)
). The factor G 0 is analytic and does not vanish in S. Therefore, the function z → e

-i h 0 z 0 p dz f (z)/G 0 (z) -1 is analytic in D,
and, as it is small outside D, the maximum principle implies that it is small also inside D. The plan of the paper is the following. In section 3 we describe basic facts on equation (1.1) and the main tools of the complex WKB method for difference equations. In section 4, we derive the asymptotics of the solution ψ in S outside a neighborhood of 0. In section 5, we finally prove the asymptotic representation (2.5). In section 6, we briefly discuss the solution φ mentioned in section 2.3. 2.5. Acknowledgments. This work was supported by the CNRS and the Russian foundation of basic research under the French-Russian grant 17-51-150008.

Preliminaries

We first recall basic facts on the space of solutions to equation (1.1); next, we recall basic constructions of the complex WKB method for difference equations and prepare an important tool, Theorem 3.1. We will use it various times to obtain the asymptotics of solutions to (1.1).

3.1.

The space of solutions to equation (1.1). The observations that we now discuss are well-known in the theory of difference equations and are easily proved. We follow [START_REF] Fedotov | The complex WKB method for difference equations and Airy functions[END_REF]. Fix (X 1 , X 2 , Y ) ∈ R 3 so that X 1 + 2h < X 2 . We discuss the set M of solutions to equation (1.1) on

I := {z ∈ C : X 1 < Re z < X 2 , Im z = Y }. Let ψ ± ⊂ M. The expression w(ψ + (z), ψ -(z)) = ψ + (z + h)ψ -(z) -ψ + (z)ψ -(z + h), z, z + h ∈ I, (3.1)
is called the Wronskian of ψ + and ψ -. It is h-periodic in z.

If the Wronskian of ψ + and ψ -does not vanish, they form a basis in M, i.e, ψ ∈ M if and only if

ψ(z) = a(z)ψ + (z) + b(z)ψ -(z), z ∈ I, (3.2) 
where a and b are h-periodic complex valued functions. One has

a(z) = w(ψ(z), ψ -(z)) w(ψ + (z), ψ -(z)) and b(z) = w(ψ + (z), ψ (z)) w(ψ + (z), ψ -(z)) . (3.3)
The set M is a two-dimensional module over the ring of h-periodic functions.

3.2. Basic constructions of the complex WKB method. We begin by defining canonical curves and canonical domains, the main geometric objects of the method. 

(p(ζ) -π) dζ < 0, (3.4) 
and at the points of jumps of z ′ (•), these inequalities are satisfied for both the left and right derivatives.

3.2.2. Canonical domains. In this paper we discuss only bounded canonical domains.

Let K ⊂ C be a bounded simply connected regular domain and let p be a branch of the complex momentum analytic in it. The domain K is said to be canonical with respect to p if, on the boundary of K, there are two regular points, say, z 1 and z 2 such that, for any z ∈ K, there exists a curve γ ⊂ K passing through z and connecting z 1 to z 2 that is canonical with respect to p. In this paper, we use the local canonical domains described by Lemma 3.1. For any regular point, there exists a canonical domain that contains this point.

This lemma is an analog of Lemma 5.3 in [START_REF] Fedotov | On the absolutely continuous spectrum of an one-dimensional quasiperiodic Schrödinger operator in adiabatic limit[END_REF]; mutatis mutandis, their proofs are identical. in U if, for h sufficiently small, ψ is analytic and admits the asymptotic representation (2.3) in U . Theorem 2.1 says that, for any given bounded canonical domain K, for any branch of z → p(z) analytic in K, there exists a solution with the standard asymptotic behavior (3.5) in K. To study its asymptotic behavior outside K, we use the construction described in the next subsection.

3.3.

A continuation principle. Assume the potential v in equation (1.1) is analytic in a domain in C. Let z 0 be a regular point, V 0 be a regular simply connected domain containing z 0 and p be a branch of the complex momentum analytic in V 0 . Finally, let ψ be a solution to (1.1) having the standard asymptotic behavior (3.5) in V 0 . One has

Theorem 3.1. Let z 1 ∈ V 0 . Consider the straight line L = {z ∈ C : Im z = Im z 1 }. Pick z 2 ∈ L such that Re z 2 > Re z 1 . Assume the segment I = {z ∈ L : Re z 1 ≤ Re z ≤ Re z 2 } is regular.
If Im p (z) < 0 along I, then there exists δ > 0 such that the δ-neighborhood of I is regular and ψ has the standard behavior (3.5) in this neighborhood. (1) for 0 ≤ j ≤ J, the disk D j is regular and one has Im p(z) < 0 in D j ;

(2) z 1 ∈ D 0 , z 2 ∈ D J , and ψ has the standard behavior (3.5) in D 0 ;

(3) for 0 ≤ j ≤ J, there exists two solutions ψ j ± having the standard behavior

ψ j ± ∼ 1 √ sin p(z) e ± i h z z 0 pdζ the domain D j .
Denote the rightmost point of the boundary of D j by w j . Possibly, excluding some of the disks D j from the collection (D j ) 0≤j≤J and reordering them, we can and do assume that, for 1 ≤ j ≤ J, D j \ D j-1 = ∅ and w j > w j-1 . Indeed, to choose D 1 , consider the point w 0 . If w 0 is to the right of z 2 , we can keep only D 0 in the collection. Otherwise, in our collection, there is a disk that contains w 0 . Denote it by D 1 . We then obtain the set of disks by induction.

For r > 0 we define

S(r) = {z ∈ C : |Im (z -z 1 )| < r}.
For 1 ≤ j ≤ J, let r j = min{r > 0 :

D j ∩ D j-1 ⊂ S(r)}. Pick 0 < δ < min 1≤j≤J r j
sufficiently small so that I δ , the δ-neighborhood of I, be a subset of ∪ J j=0 D j . Let us prove that ψ has the standard behavior (3.5) in I δ . First we note that, for h sufficiently small, by means of the formula ψ(z) = -ψ(z -2h)-v(z)ψ(z -h) (i.e., by means of equation (1.1)), ψ can be analytically continued in I δ . It clearly satisfies equation (1.1) in I δ . Let us justify the asymptotic representation (2.3) in I δ . For 0 ≤ j ≤ J, we define d j = D j ∩ I δ . For j = 1, 2, . . . J, we consecutively prove that ψ has the standard behavior in d j to the right of d j-1 . Therefore, we let d 0 = d j-1 , d = d j , ψ ± = ψ j ± , and then proceed in the following way. Using the standard asymptotic behavior of ψ + and ψ -, one proves the asymptotic formula

w(ψ + (z), ψ -(z)) = 2i + o(1), z, z + h ∈ D j , h → 0. (3.6)
As the Wronskians are h-periodic, for sufficiently small h, formula (3.6) is valid uniformly in I δ . This implies in particular that, for sufficiently small h, in I δ , the solution ψ is a linear combination of the solutions ψ ± with h-periodic coefficients, and one has (3.2) and (3.3). The leading terms of the asymptotics of ψ and ψ + coincide in d 0 ∩ d. Thus, one has 

a(z) = 1 + o(1), z, z + h ∈ d 0 ∩ d, h → 0. ( 3 

The asymptotics outside a neighborhood of 0

We consider the solution described in section 2.2.1 and derive its asymptotics outside a neighborhood of 0, the pole of v. Let us underline that the obstacle to justify the standard behavior of ψ in the whole domain S is the pole of v at 0.

4.2.

Asymptotics in a neighborhood of R + outside a neighborhood of 0. We note that the function z → (1e 2πiz/h ) is h-periodic. As ψ satisfies equation (1.1), so does z → (1e 2πiz/h ) ψ(z). Moreover, as ψ has poles only at the points of hN and as these poles are simple, the solution z → (1e 2πiz/h ) ψ(z) is analytic in S. For δ > 0, let P (δ) = {z ∈ S : Re z > 0, |Im z| < δ}. In this subsection, we prove Proposition 4.1. Let δ > 0 be sufficiently small. In P (δ), the solution z → (1e 2πiz/h ) ψ(z) has the standard behavior

(1 -e 2πiz/h ) ψ(z) ∼ n 0 e i h z 0 p up (ζ) dζ sin p up (z) , n 0 = e i h 0 z 0 p(z) dz ; (4.1)
here, p up and sin p up are respectively obtained from p and √ sin p by analytic continuation from S ′ ∩ C + to P (δ).

To prove Proposition 4.1, it suffices to check that, for any point z * ∈ P (δ), there exists a neighborhood, say, V * of this point (independent of h) where the solution z → (1e 2πiz/h )ψ(z) has the standard behavior. As their study is simpler, we begin with the points z * ∈ R. 

p(z) = i ln(z) + C + g(z) (4.5)
where ln is a branch of the logarithm analytic in C \ R + , C is a constant, and g is a function analytic in S ∪ 0 vanishing at 0.

Proof of Lemma 4.3. By definition (see (2.2)), p satisfies e 2ip(z) + v(z)e ip(z) + 1 = 0. Therefore, e ip(z) = -v(z)/2 + (v(z)/2) 2 -1, where the branch of the square root is to be determined. Since v(z) → ∞ as z → 0, we rewrite this formula in the form

e ip(z) = -v(z)/2 (1 + 1 -(2/v(z)) 2 ). (4.6)
As Im p(z) < 0 in S ′ and as v(z) → ∞ when z → 0, equation (2.2) implies that e ip(z) → ∞ when z → 0. Therefore, in (4.6), the determination of the square root is to be chosen so that 1

-(2/v(z)) 2 = 1 + o(1/(v(z))
2 ) as z → 0. Then, (4.6) yields the representation e ip(z) = -v(z) + g(z) (4.7) where g is analytic in a neighborhood of 0 vanishing at 0. By assumption, v has the Laurent expansion v(z

) = v -1 /z + v 0 + v 1 z + . . . , v -1 = 0, in a neighborhood of 0. Thus, (4.7) implies representation (4.5) in a neighborhood of 0. The function z → g(z) := p(z) -i ln(z) -C is analytic in S in a neighborhood of R -.
To check that it is analytic in the whole domain S, we consider two analytic continuations of z → p(z)i ln z -C into a neighborhood of R + in S, one from S ′ ∩ C + and another from S ′ ∩ C -. As they coincide near 0, they coincide in the whole connected component of 0 in their domain of analyticity. So, g is analytic in S. This completes the proof of Lemma 4.3.

It now remains to prove Lemma 4.2. Therefore, we first prove Lemma 2.1.

The proof of Lemma 2.1. The statements of Lemma 2.1 on the analyticity of the functions z → p(z)i ln(-z) and z → z sin p(z) follow directly from Lemma 4.3. This lemma also implies that the second function does not vanish at 0. Finally, this function does not vanish in S \ {0} in view of Remark 2.1. The proof of Lemma 2.1 is complete.

Proof of Lemma 4.2. Let z ∈ P (δ) ∩ C -. The first formula in (4.3) follows directly from the representation (4.5). By Lemma 2.1, the function z → sin p(z) is analytic and does not vanish in S \ {0}. So, for z ∈ P (δ) ∩ C -, sin p(z) and sin p up (z) either coincide or are of opposite signs. In view of (4.5), we obtain the second relation in (4.3).

Having proved Lemma 4.2, the analysis for z ∈ C -is complete. 4.2.3. Real points z * : construction of two linearly independent solutions. To treat the case of real points, we define two linearly independent solutions to equation (1.1) that have standard asymptotic behavior to the right of 0 and express ψ in terms of these solutions. Below, in the proof of Proposition 4.1, we always assume that z * is a point in R * + ∩ S. Let x ± ∈ S be two points such that 0 < x + < z * < x -. We recall that the set S \ {0} is regular (see the beginning of section 2.2). For • ∈ {+, -}, the point x • is regular. By Lemma 3.1 and Theorem 2.1, there exists a regular ǫ • -neighborhood V • of x • in P (δ) such that there exists a solution ψ • to (1.1) with the standard asymptotic behavior

ψ • ∼ 1 √ sin pup(z) e • i h z x• pup(ζ) dζ in the domain V • . Let ǫ = min{ǫ + , ǫ -} and V be the ǫ-neighborhood of the interval (x + , x -).
As the imaginary part of the complex momentum can not vanish in S \ {0}, Im p up is negative in V . Therefore, by Theorem 3.1, the solution ψ + has the standard asymptotic behavior

ψ + (z) ∼ e i h z x + pup(ζ) dζ sin(p up (z)) (4.8) 
in V to the right of V + . Similarly, one shows that ψ -has the standard asymptotic behavior

ψ -(z) ∼ e -i h z x - pup(ζ) dζ sin(p up (z)) (4.9)
in V to the left of V -. Then, (4.8) and (4.9) yield that, as h → 0, one has

w(ψ + (z), ψ -(z)) = 2ie i h x - x + pup(z) dz+o(1) , z ∈ V. (4.10) 
At cost of reducing ε, this asymptotic is uniform in V . We note that the error term is analytic in z together with ψ ± . In view of (4.10), for sufficiently small h, the solutions ψ ± form a basis of the space of solutions to equation (1.1) defined in V ; for z ∈ V , we have (3.2) and (3.3). Our next step is to compute the asymptotics of a and b in (3.2).

4.2.4.

The coefficient a. We prove Lemma 4.4. As h → 0,

a(z) = n 0 e i h x + 0 pup(z) dz+o(1) 1 -e 2πiz/h , z ∈ V, (4.11) 
where the error term is analytic in z.

Proof. For z ∈ V , we shall compute the asymptotics of the Wronskian w -(z) = w(ψ(z), ψ -(z)) appearing in the formula for a in (3.3). As those of ψ, the poles of w -in S are contained in hN and they are simple. We first compute the asymptotics of w -in V outside the real line. Then, the information on the poles yields a global asymptotic representation for w -in V and, thus, (4.11).

First, we assume that z ∈ V ∩ C + . Then, p up and sin p up coincide respectively with p and √ sin p; using the asymptotics of ψ and ψ -yields This representation and (4.9) yield

w -(z) = 2in 0 e i h x - 0 pup(z) dz+o(1) , z ∈ V ∩ C + , h → 0. ( 4 
w -(z) = -2in 0 e -2πiz/h e i h x - 0 pup(z) dz (1 + o(1)), z ∈ V ∩ C -, h → 0. (4.14) Let f : z → n -1 0 (1 -e 2πiz/h ) e -i h x - 0 pup(z) dz w -(z) -2i.
Representations (4.12) and (4.14) imply that

f (z) = o(1), z ∈ V \ R, h → 0. (4.15)
We recall that f is an h-periodic function (as is w -). Therefore, at the cost of reducing ǫ somewhat, we get the uniform estimate f (z) = o(1) for |Im z| = ǫ and h sufficiently small. Moreover, the description of the poles of w -implies that f is analytic in the strip {|Im z| ≤ ǫ}. x + pup(z) dz

1e 2πiz/h , h → 0, (4.16) where o(1) is analytic in z.

Proof. Let us estimate the Wronskian w + (z) = w(ψ + (z), ψ(z)), the numerator in (3.3). First, we assume that z ∈ V ∩ C + . Then, p up and sin p up coincide respectively with p and √ sin p. Thus, the leading terms of the asymptotics of ψ and ψ + coincide up to a constant factor; this yields

w + = o(1) n 0 e i h x + 0 pup(z) dz+ 2i h z x + pup(ζ) dζ , h → 0. (4.17)
We recall that the Wronskians are h-periodic (see section 3.1). Let us assume additionally that z is either between γ and γ + h or on one of these curves. Pick z ∈ γ such that Im z = Im z. In view of the definition of γ, as p up is analytic in P (δ), one has here, C is a positive constant independent of h. This estimate and (4.17) imply that, for z ∈ V ∩ C + either between the curves γ and γ + h or on one of them, one has

w + = o(1) n 0 e i h x + 0 pup(z) dz , h → 0. (4.18)
Reducing ǫ somewhat if necessary, we can and do assume that (4.18) holds on the line Im z = ǫ between γ and γ + h or on one of these curves. Then, thanks to the h-periodicity of w + , it holds for all z on the line {Im z = ǫ}. Now, we assume that z ∈ V ∩ C -. Using the asymptotics (4.13) and (4.8), we compute

w + (z) = o(1) n 0 e -2πiz/h e i h x + 0 pup(z) dz+ 2i h z x + pup(ζ) dζ h → 0.
Arguing as when proving (4.18), we finally obtain 

w + (z) = o(1) n 0 e -2πiz/h e i h x + 0 pup(z) dz , Im z = -ǫ, h → 0. ( 4 
(z) ψ -(z) a(z)ψ + (z) = o(1)e -2i h z x + pup(ζ)dζ , h → 0.
As before, let z ∈ γ be such that Im z = Im z. Then, we have e

-2i h z x + pup(ζ)dζ = e -2i h z z pup(ζ)dζ ≤ 1.
Here, we used the definition of γ and the fact that Im p up < 0 in V . As a result, we have b(z) ψ-(z) a(z)ψ+(z) = o(1). Formula (3.2) then yields

ψ(z) = a(z) ψ + (z) 1 + b(z) ψ -(z) a(z)ψ + (z) = a(z) ψ + (z)(1 + o(1)).
where o(1) is analytic in z ∈ V * . This and the asymptotic representations for ψ + and a yields (4.1) in V * . This completes the proof of Proposition 4.1.

Global asymptotics

5.1. The proof of Theorem 2.2. We follow the plan outlined in section 2.4.

Recall that G 0 is defined in (2.4). We prove Proposition 5.1. Let δ > 0 be sufficiently small. In S, outside the δ-neighborhood of 0, one has

ψ(z)/Γ(1 -z/h) = n 0 G 0 (z) (1 + o(1)), h → 0. ( 5.1) 
Let us check that Theorem 2.2 follows from Proposition 5.1.

We recall that the poles of ψ belong to hZ and are simple. Furthermore, in view of Lemma 2.1, G 0 is analytic in S. Clearly, G 0 has no zeros in S. These observations imply that the function

f : z -→ ψ(z) n 0 G 0 (z) Γ(1 -z/h) - 1 
is analytic in S. By Proposition 5.1, it satisfies the estimate f (z) = o(1) in S outside the δ-neighborhood of 0. Therefore, by the maximum principle, it satisfies this estimate in the whole of S. This implies the statement Theorem 2.2. To complete the proof of this theorem, it now suffices to check Proposition 5.1. Furthermore, in S 0 ∩ C + the functions p and p up coincide. These two observations imply that one has G0 = G 0 in S 0 ∩ C + . As both G 0 and G0 are analytic in S 0 , they coincide in the whole of S 0 . This and (5.2) imply the representation (5.1) for z ∈ S 0 . This completes the analysis in the sector S 0 and the proof of Proposition 5.1.

A basis for the space of solutions

We finally discuss a basis of the space of solutions to equation (1.1) that are meromorphic in S. First, we describe the two solutions forming the basis and, second, we compute their Wronskian.

6.1. First solution. As the first solution, we take f + (z) = ψ(z)/n 0 . It has the standard behavior (2.9) in S ′ and simple poles at the points of hN. We recall that the modulus of the exponential factor in (2.9) increases when z moves to the right parallel to R. As the Wronskian is h-periodic, this representation is valid in the whole domain S. We see that, for sufficiently small h, the leading term of the Wronskian does not vanish, and, thus, f ± form a basis in the space of solutions to equation (1.1) in S (possibly reduced somewhat for (6.3) to be uniform).

1 p

 1 (ζ) dζ increases when z moves to the left parallel to R. The function z → 1e 2πiz/h being h-periodic, we define another solution to equation (1.1) by the formula f -(z) := (1e 2πiz/h )e

3. 2 . 3 .

 23 Standard asymptotic behavior. Let U ⊂ C be a regular simply connected domain; pick z 0 ∈ U and assume z → p(z) and z → sin p(z) are analytic in U . We say that a solution ψ to equation (1.1) has the standard (asymptotic) behavior

Theorem 3 .

 3 1 roughly says that the asymptotic formula (2.3) stays valid along a horizontal line as long as the leading term grows exponentially. It is akin to Lemma 5.1 in[START_REF] Fedotov | On the absolutely continuous spectrum of an one-dimensional quasiperiodic Schrödinger operator in adiabatic limit[END_REF] that deals with differential equations. The proof of Theorem 3.1 given below follows the plan of the proof of Lemma 5.1 in[START_REF] Fedotov | On the absolutely continuous spectrum of an one-dimensional quasiperiodic Schrödinger operator in adiabatic limit[END_REF].Let ψ be a solution to equation (1.1) with the standard behavior ψ(z)∼ e -i h z z 0 p(ζ) dζ √ sin(p(z)) in V 0 . If Im p < 0 in V 0 ,then the analogue, mutatis mutandis, of Theorem 3.1 on the behavior of ψ to the left of V 0 holds. Proof of Theorem 3.1. Clearly, for ζ ∈ I, there exists an open disk D centered at ζ such that D is regular and Im p(z) < 0 in D. In view of Lemma 3.1, if D is sufficiently small, then there exists two solutions ψ ± having the standard behavior ψ ± (z) ∼ e ± in D (here, we first integrate from z 0 to z 1 in V 0 , next from z 1 to ζ along I and finally from ζ to z inside D). The segment I being compact, we construct finitely many open disks (D j ) 0≤j≤J , each centered in a point of I, covering I and such that

. 7 ).

 7 Due to the h-periodicity of a, for sufficiently small h, formula (3.7) stays valid in the whole I δ . One also has b(z) = o e for z ∈ d 0 ∩ d. For sufficiently small h, the h-periodicity of b yields b(z) = o e 2i h z z 0 p(ζ)dζ , z ∈ I δ , (3.8) where z ∈ d 0 ∩ d and z = z mod h. Estimates (3.7) and (3.8) imply that, in d, one has ψ(z) = a(z)ψ + (z) + b(z)ψ -(z) = e Assume that z ∈ d is located to the right of d 0 . As Im p < 0 in d, one has Re i z z p(ζ)dζ > 0. This implies that ψ has the standard behavior (3.5) in d to the right of d 0 and completes the proof of Theorem 3.1.

4. 1 .

 1 The asymptotics outside a neighborhood of R + . Recall that • in the rectangle S c , the solution ψ has the standard behavior (3.5);• S ′ is regular; • in S ′ ,the branch p appearing in (3.5) satisfies the inequality Im p(z) < 0. Theorem 3.1 yields the asymptotics of ψ in S ′ to the right of S c , namely Lemma 4.1. The solution ψ admits the standard asymptotic behavior (3.5) in the domain S ′ .
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 2142242 Points z * in C + . Let z * ∈ P (δ) ∩ C + . Let V * ⊂ P (δ) ∩ C + be an open disk (independent of h) centered at z * . In V * one has 1e 2πiz/h = 1 + o(1) as h → 0. Furthermore, by Lemma 4.1, ψ has the standard behavior (3.5) in V * . Therefore, in V * , one computes (1e 2πiz/h ) ψ(z) = e i h z z 0 p(ζ) dζ+o(1) sin p(z) = n 0 e i h z 0 pup(ζ) dζ+o(1) sin p up (z) . (4.2) This implies the standard behavior (4.1) in V * . Points z * in C -. Pick now z * ∈ P (δ) ∩ C -and let V * ⊂ P (δ) ∩ C -be an open disk (independent of h) centered at z * . We use For z ∈ P (δ) ∩ C -, one has p(z) = p up (z) -2π, sin p(z) =sin p up (z(z)-2π) dz sin p up (z) , z ∈ V * . (4.4) By Lemma 4.1, ψ has the standard behavior (3.5) in V * . Therefore, (4.4) implies that, in V * , one has (1e 2πiz/h )ψ(z) = n 0 (1e -2πiz/h ) e ζ) dζ+o(1) sin p up (z) , and z → (1e 2πiz/h )ψ(z) has the standard behavior (4.1) in V * . To prove Lemma 4.2, we shall use Lemma 4.3. In S ′ , one has

. 12 )

 12 Now, we assume that z ∈ V ∩ C -. Then, (4.3) implies that ψ(z) = -
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 425 Now, let us consider f as a function of ζ = e 2πiz/h . It is analytic in the annulus {e -2πǫ/h ≤ |ζ| ≤ e 2πǫ/h } and, on the boundary of this annulus, it admits the uniform estimate |f (ζ)| = o(1). By the maximum principle, the estimate f (ζ) = o(1) holds uniformly in the annulus. Thus, as a function of z, the function f satisfies the uniform estimate f (z) = o(1)for |Im z| ≤ ǫ and, therefore, in the whole domain V . This estimate, the representation (4.10) and the definition of a (see(3.3)) imply(4.11). The coefficient b. We estimate b in V for h sufficiently small. To state our result, let γ be the connected component of x + in the set of z ∈ P (δ) dζ = Im p(z) = 0 in P (δ), the Implicit Function Theorem guarantees that γ is a smooth vertical curve in a neighborhood of x + . Reducing ǫ if necessary, we can and do assume that γ intersects both the lines {Im z = ±ǫ}. We prove Lemma 4.5. In V (with ǫ reduced somewhat if necessary), on γ and to the right of γ, one has b(z) = o(

z

  pup(ζ) dζ ≤ e C , h → 0;
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 2521522 The proof of Proposition 5.1. Fix ε sufficiently small positive. The proof of Proposition 5.1 consists of two parts: first, we prove (5.1) in the sector S π = {z ∈ S : |z| ≥ δ, | arg z -π| ≤ π -ε}, and, then, in the sector S 0 = {z ∈ S : |z| ≥ δ, | arg z| ≤ ε}. The asymptotic in the sector S π . If z ∈ S π and h → 0, we can use formula (2.6) for Γ(1z/h) and the standard asymptotic representation (2.3) for ψ, see Lemma 4.1. This immediately yields (5.1) in S π . The asymptotic in the sector S 0 . Let ε be so small that S 0 be a subset of P (δ) (defined just above Proposition 4.1). For z ∈ S 0 and h small, we express Γ(1z/h) in terms of Γ(z/h) by formula (2.7), then, we use formula (2.6) for Γ(z/h) and the standard asymptotic representation for (1e 2πi/z )ψ(z) (seeProposition 4.1). This yieldsψ(z)/Γ(1z/h) = n 0 G0 (z) (1 + o(1)), h → 0up (ζ)i(ln(ζ)iπ)) dζ ,(5.3)and the functions z → ln z and z → √ z are analytic in C \ R -and positive respectively if z > 1 and z > 0. We note that by Lemma 2.1, G0 is analytic in S 0 . Define the functions z → √ -z and z → ln(-z) as in (2.4), i.e. so that they be analytic in C \ R + and positive if z < 0 and z < -1 respectively. Then, these functions are related to the functions z → ln z and z → √ z from (5.3) by the formulas √ -z = -i √ z, ln(-z) = ln ziπ, z ∈ C + .
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 263 Second solution. Let z 1 > 0 be a point in S. Mutatis mutandis, in the way we constructed ψ, in S (possibly reduced somewhat), we construct a solution φ in S \ R -that has the standard asymptotic behavior (2.10) and such that the quasi-momenta p (and the functions √ sin p) in (2.9) and (2.10) coincide in C + . The modulus of the exponential from (2.10) increases when z moves to the left parallel to R. The solution φ has simple poles at the points of -hN and, in S, it admits the asymptotic representationφ(z) = n 1 Γ(1 + z/h) G 1 (z)(1 + o(1)), n 1 = e ζ)i ln(ζ)) dζ .(6.2)Here, the functions z → √ z and z → ln z are analytic in C \ R -and positive, respectively, if z > 0 and z > 1. The factor G 1 is analytic in S.We define the second solution to be f-(z) = 1/n 1 (1e 2πiz/h ) φ(z).The solution f -is analytic in S. It has simple zeros at the points z ∈ hN and at 0. By means of (6.1), one can easily check that, in S ′ , it has the standard behavior (2.11). The Wronskian of the basis solutions. Using the asymptotic representations for f ± in S ′ , one easily computes w(f + (z), f -(z)) = 2i + o(1), h → 0. (6.3)

  The idea of the proof of Theorem 2.2 and the plan of the paper. To prove Theorem 2.2, we consider the function z

.11) 2.3.3. In section 6.2, we shall see that, for sufficiently small h, f + and f -form a basis of the space of solutions to equation (1.1) meromorphic in S (possibly reduced somewhat).

2.4.

  We pick z 0 ∈ γ. The curve γ is called canonical with respect to p if, at the points where z ′ (•) exists, one has

	d dy	Im	z z0	p(ζ) dζ > 0 and	d dy	Im	z z0

3.2.1. Canonical curves. For z ∈ C, we put x = Re z, y = Im z. A connected curve γ ⊂ C is called vertical if it is the graph of a piecewise continuously differentiable function of y. Define the complex momentum, turning points and regular domains as in section 2.1. Let γ be a regular vertical curve parameterized by z = z(y), and p be a branch of the complex momentum that is analytic near γ.
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